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Abstract. We study the following two problems:
(1) Given n ≥ 2 and 0 ≤ α ≤ 180◦, how large Hausdorff dimension can

a compact set A ⊂ Rn have if A does not contain three points that form an

angle α?
(2) Given α and δ, how large Hausdorff dimension can a subset A of a

Euclidean space have if A does not contain three points that form an angle in

the δ-neighborhood of α?
An interesting phenomenon is that different angles show different behaviour

in the above problems. Apart from the clearly special extreme angles 0 and
180◦, the angles 60◦, 90◦ and 120◦ also play special role in problem (2): the

maximal dimension is smaller for these angles than for the other angles. In
problem (1) the angle 90◦ seems to behave differently from other angles.

1. Introduction

The task of guaranteeing given patterns in a sufficiently large set has been a
central problem in different areas of mathematics for a long time. Perhaps the most
famous example is the celebrated theorem of Szemerédi [14], which states that any
sequence of positive integers with positive upper density contains arbitrarily long
arithmetic progressions.

More closely related to the present paper are the results of Falconer [3], Keleti [9]
and Maga [10], which state that for any three points in R or in R2 there exists a set
of full Hausdorff dimension that contains no similar copy to the three given points.
It is open whether the analogous result holds in higher dimensions. In case of a
negative answer it would be natural to ask what Hausdorff dimension guarantees a
similar copy of three given points. Since the similar copy of a triangle has the same
angles as the original one, the following question arose.

Question 1.1. For given n and α, what is the smallest d for which any compact
set A ⊂ Rn with Hausdorff dimension larger than d contains three points that form
an angle α?

We use the following terminology.

Definition 1.2. We say that the set A ⊂ Rn contains the angle α ∈ [0, 180◦] if
there exist distinct points x, y, z ∈ A such that the angle between the vectors y− x
and z − x is α.

Definition 1.3. By dim we denote the Hausdorff dimension.
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Harangi, Keleti and Máthé were supported by Hungarian Scientific Foundation grant

no. 72655. Keleti was also supported by Bolyai János Scholarship. Máthé was also supported
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If n ≥ 2 is an integer and α ∈ [0, 180◦], then let

C(n, α) = sup{s : ∃A ⊂ Rn compact such that

dim(A) = s and A does not contain the angle α}.
Clearly, answering Question 1.1 is the same as finding C(n, α). Somewhat sur-

prisingly our results depend very much on the given angle. For 90◦ we show (Theo-
rem 2.4) that C(n, 90◦) ≤ [(n+1)/2] (where [a] denotes the integer part of a) while
for other angles we prove (Theorem 2.2) only C(n, α) ≤ n − 1, which is sharp for
α = 0 and α = 180◦.

In the other direction, Máthé constructed compact sets of Hausdorff dimension
n/8 not containing α; this construction is published separately in [12]. He obtains
a better result (n/4) in the special case when cos2 α is rational, and an even better
one (n/2) when α = 90◦. Table 1 shows the best known bounds for C(n, α).

Table 1. Best known bounds for C(n, α)

α lower bound upper bound

0, 180◦ n− 1 n− 1
90◦ n/2 [12, Thm 3.1] [(n+ 1)/2]
cos2 α ∈ Q n/4 [12, Thm 3.2] n− 1
other angles n/8 [12, Thm 3.4] n− 1

In the present paper for any α ∈ (0, 180◦) \ {60◦, 90◦, 120◦} we construct (The-
orem 3.4) a self-similar compact set with Hausdorff dimension c(α) log n that does
not contain the angle α. This set is of smaller dimension than in Máthé’s construc-
tion, but it avoids not just the angle α, but an interval of angles around α.

In light of the above construction it is natural to ask what can be said if we only
want to guarantee an angle near to a given angle. In Section 4 we show that the
previously mentioned special angles (0, 60◦, 90◦, 120◦, 180◦) are really very special.
If we fix α and a sufficiently small δ (but do not fix n) then for all other angles
the above-mentioned self-similar construction (Theorem 3.4) gives a compact set
with arbitrarily large Hausdorff dimension that does not contain any angle from
the δ-neighborhood of α, while for the special angles this is not the case. More
precisely, we show that any set with Hausdorff dimension larger than 1 contains
angles arbitrarily close to the right angle (Theorem 4.1), and that any set with
Hausdorff dimension larger than C

δ log( 1δ ) (with an absolute constant C) contains
angles from the δ-neighborhoods of 60◦ and 120◦ (Corollary 4.7 and Theorem 4.12).
For the angles 0 and 180◦ Erdős and Füredi showed [2] that any infinite set contains
angles arbitrarily close to 0 and angles arbitrarily close to 180◦.

Note that the previous two upper bounds were independent of n, the dimension

of the ambient space. To express the results we introduce the following function C̃.

Definition 1.4. If α ∈ [0, 180◦] and δ > 0, then let

C̃(α, δ) = sup{dim(A) : A ⊂ Rn for some n;

A does not contain any angle from (α− δ, α+ δ)}.

Theorem 3.4 implies that C̃(α, δ) = ∞ if α is different from the special angles
0, 60◦, 90◦, 120◦, 180◦ and δ is smaller than the distance of α from the special

angles. A construction of Harangi [7] shows that C̃(α, δ) ≥ c
δ/ log(

1
δ ) for the angles

α = 60◦, 120◦. We summarize the above results in Table 2.
We emphasize the difference between the tasks of finding an angle precisely and

finding it approximately. For example, we can find angles arbitrarily close to 90◦
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Table 2. Smallest dimensions that guarantee an angle in the δ-
neighborhood of α

α C̃(α, δ)

0, 180◦ = 0
90◦ = 1
60◦, 120◦ ≈ 1/δ apart from a multiplicative error C · log(1/δ)
other angles = ∞ provided that δ is sufficiently small

given that the dimension of the set is greater than 1, while if we want to find 90◦

precisely in the set, we need to know that its dimension is greater than n/2.
A related question is: How large does the Hausdorff dimension of a compact

subset of Rn need to be to ensure that the set of angles contained in the set has
positive Lebesgue measure? In [8] it is proved that larger than n+1

2 is enough and
in [12] that n/6 is not enough.

Conway, Croft, Erdős and Guy [1] studied the distribution of values of angles
determined by finite sets. The angles 60◦, 90◦ and 120◦ also have a special role in
their results.

Notation 1.5. We denote the s-dimensional Hausdorff measure by Hs.
Recall that compact sets having the property 0 < Hs(K) < ∞ are called compact

s-sets.

Using the fact that an analytic set A with positive Hs measure contains a com-
pact s-set (see e.g. [4, 2.10.47-48]) we get that in all of the above-mentioned results
instead of compactness it is enough to assume that the set is analytic (or Borel).
Similarly, we can always suppose that the given compact or analytic set is a compact
s-set. Thus C(n, α) can be also expressed as

C(n, α) = sup{s : ∃A ⊂ Rn analytic such that

dim(A) = s and A does not contain the angle α},
or

C(n, α) = sup{s : ∃K ⊂ Rn compact such that

0 < Hs(K) < ∞ and K does not contain the angle α}.
However, some assumption on the set is necessary: for any given n and α we

construct by transfinite induction a set in Rn of full Lebesgue outer measure that
does not contain the angle α (Theorem 5.1).

Note that in the definition of C̃(α, δ) (Definition 1.4) there is no assumption on
the set A. This is simply because the closure of A contains an angle in (α−δ, α+δ)
if and only if A does, so in these problems we can always assume that A is closed.
Combining this with the above-mentioned fact that any analytic set with positive
Hs measure contains a compact s-set we get

(1) C̃(α, δ) = sup{s : ∃n ∃K ⊂ Rn compact such that 0 < Hs(K) < ∞
and K does not contain any angle from (α− δ, α+ δ)}.

In fact, when we want to find an angle near to a given angle, then we get the
same results if we replace Hausdorff dimension by upper Minkowski dimension, but
this is not as clear as the above observation (see Corollary 5.7).

The following theorem, which is the first statement of [13, Theorem 10.11], is
essential in some of our proofs.
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Notation 1.6. The set of k-dimensional subspaces of Rn will be denoted by G(n, k)
and the natural probability measure on it by γn,k (see e.g. [13] for more details).

Theorem 1.7. If m < s < n and A is an Hs measurable subset of Rn with
0 < Hs(A) < ∞, then

dim
(
A ∩ (W + x)

)
= s−m

for Hs × γn,n−m almost all (x,W ) ∈ A×G(n, n−m).

In two dimensions this says that for Hs almost all x ∈ A, almost all lines through
x intersect A in a set of dimension s − 1. As one would expect, this theorem
also holds for half-lines instead of lines (Marstrand [11, Lemma 17]). Note that
Marstrand stated the result only for lines but he actually proved this for half-lines.
Therefore the following theorem is also true.

Theorem 1.8. Let 1 < s < 2 and let A ⊂ R2 be Hs measurable with 0 < Hs(A) <
∞. For any x ∈ R2 and ϑ ∈ [0, 360◦) let Lx,ϑ denote the half-line from x at angle
ϑ. Then

dim
(
A ∩ Lx,ϑ

)
= s− 1

for Hs × λ almost all (x, ϑ) ∈ A× [0, 360◦).

2. Finding a given angle

In this section we give estimates on C(n, α). For n = 2 we get the following
exact result.

Theorem 2.1. For any α ∈ [0, 180◦] we have C(2, α) = 1.

Proof. A line has dimension 1 and it contains only the angles 0 and 180◦. A
circle also has dimension 1, but does not contain the angles 0 and 180◦. Therefore
C(2, α) ≥ 1 for all α ∈ [0, 180◦].

For the other direction let α ∈ [0, 180◦] and s > 1 fixed. We have to prove
that any compact s-set contains the angle α. By Theorem 1.8, there exists x ∈ K
such that dim(K ∩ Lx,ϑ) = s − 1 for almost all ϑ ∈ [0, 360◦), where Lx,ϑ denotes
the half-line from x at angle ϑ. Hence we can take ϑ1, ϑ2 ∈ [0, 360◦) such that
|ϑ1 − ϑ2| = α, and dim(K ∩ Lx,ϑi

) = s− 1 for i = 1, 2. If xi ∈ Lx,ϑi
\ {x} then the

angle between the vectors x1 − x and x2 − x is α, so indeed, K contains the angle
α. �

An analogous theorem holds for higher dimensions.

Theorem 2.2. If n ≥ 2 and α ∈ [0, 180◦] then C(n, α) ≤ n− 1.

Proof. We have already seen the case n = 2, so we may assume that n ≥ 3. It is
enough to show that if s > n − 1 and K is a compact s-set, then K contains the
angle α. By Theorem 1.7, there exists x ∈ K such that there exists a W ∈ G(n, 2)

with dim(B) = s − n + 2 > 1 for B
def
= A ∩ (W + a). The set B lies in a two-

dimensional plane, so we can think about B as a subset of R2. Applying Theorem
2.1 completes the proof. �

Now we are able to give the exact value of C(n, 0) and C(n, 180◦).

Theorem 2.3. C(n, 0) = C(n, 180◦) = n− 1 for all n ≥ 2.

Proof. One of the inequalities was proven in the previous theorem, while the other
one is shown by the (n− 1)-dimensional sphere. �

We prove a better upper bound for C(n, 90◦).

Theorem 2.4. If n is even then C(n, 90◦) ≤ n/2. If n is odd then C(n, 90◦) ≤
(n+ 1)/2.
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Proof. Since Rn embeds into Rn+1, we may assume that n is even. Let s > n/2
and let K be a compact s-set. From Theorem 1.7 we know that there exists a point
x ∈ K such that

(2) dim
(
K ∩ (x+W )

)
= s− n/2 > 0

for γn,n/2 almost all W ∈ G(n, n/2). There exists a W ∈ G(n, n/2) such that

(2) holds both for W and W⊥. As (x + W ) ∩ (x + W⊥) = {x}, by choosing a
y ∈ K ∩ (x+W ) and z ∈ K ∩ (x+W⊥) such that x 6= y and x 6= z, we find a right
angle at x in the triangle xyz. �

Remark 2.5. In fact, if n is even, C(n, 90◦) = n/2. This follows from the following
result of Máthé [12]: for any n there exists a compact set of Hausdorff dimension
n/2 in Rn that does not contain 90◦.

The construction uses number theoretic ideas and the set contains angles arbi-
trarily close to 90◦. In the next section we will present a different approach where
the constructed sets avoid not only a certain angle α but also a whole neighborhood
of α.

3. A self-similar construction

In this section we construct a self-similar set in Rn with large dimension such
that it does not contain a certain angle α ∈ (0, 180◦). On the negative side, our
method does not work for the angles 60◦, 90◦ and 120◦. On the positive side, the
presented sets avoid a whole neighborhood of α, not only α.

We start with two simple lemmas.

Lemma 3.1. Let P0, . . . , Pn be the vertices of a regular n-dimensional simplex.
For any quadruple of indices (i, j, k, l) with i 6= j and k 6= l, the angle between the
lines PiPj and PkPl is either 0, 60◦ or 90◦.

Proof. The set {Pi, Pj , Pk, Pl} is the set of vertices of a one-, two-, or three-
dimensional regular simplex. Our assertion is clear in each of these cases. �

Definition 3.2. A nonempty compact setK is self-similar if there exist contracting
similarities S0, . . . , Sk such that K = S0(K) ∪ · · · ∪ Sk(K). If, in addition, the sets
Si(K) are pairwise disjoint then K is said to satisfy the strong separation condition.

We say that the transformation f : Rn → Rn is a homothety if there exist a
fixed point O and a nonzero real number r such that for any point P we have
f(P ) − O = r(P − O). The number r is called the ratio of magnification and if
r 6= 1, the single fixed point O is called the center of the homothety. We call a
self-similar set K = S0(K)∪ · · · ∪ Sk(K) self-homothetic if each Si is a homothety.

Lemma 3.3. Let K = S0(K) ∪ · · · ∪ Sk(K) be a self-homothetic set. Then, for
any x0, x1 ∈ K, x0 6= x1 there exist y0, y1 and i 6= j such that y0 ∈ Si(K) and
y1 ∈ Sj(K) and y0 − y1 is parallel to x0 − x1.

Proof. Since x0, x1 ∈ K, there exist sequences i1, i2, . . . and j1, j2, . . . such that

x0 ∈ Si1

(
Si2

(
· · ·Sik(K)

))
and x1 ∈ Sj1

(
Sj2

(
· · ·Sjk(K1)

))

for every positive integer k.
Let k be the smallest positive integer such that ik 6= jk (such a k exists else x0

and x1 would coincide). Set

S
def
= Si1

(
Si2

(
· · ·Sik−1

(·)
))

.

There exist y0 ∈ Sik(K) and y1 ∈ Sjk(K) such that x0 = S(y0) and x1 = S(y1).
Since S is also a homothety, y0 − y1 is parallel to x0 − x1. �
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Theorem 3.4. For any ε > 0 there exists a constant cε > 0 such that for every
n ≥ 2 there exists a compact self-similar (in fact, self-homothetic) set K ⊂ Rn with
dim(K) ≥ cε log n and with the property that all angles occurring in the set lie in
the ε-neighborhood of the angles {0, 60◦, 90◦, 120◦, 180◦}.

In particular, for any α ∈ (0, 180◦) \ {60◦, 90◦, 120◦} we construct a compact set
of dimension c(α) log n that does not contain the angle α; moreover, the set avoids
a small neighborhood of α.

Proof. Our set K will be a modified version of the Sierpiński gasket. Take a regular
n-dimensional simplex with unit edge length in Rn, denote its vertices by P0, . . . , Pn

and let K1
def
= conv({P0, . . . , Pn}). Fix a 0 < δ < 1/2 and denote by Si the

homothety of ratio δ centered at Pi (i = 0, . . . , n). The similarities Si (i = 0, . . . , n)
uniquely determine a self-similar set K which can also be written in the following
form:

K
def
=

∞⋂

k=1

⋃

(i1,...,ik)∈{0,...,n}k

Si1

(
Si2

(
· · ·Sik(K1)

))
.

The set K clearly satisfies the strong separation condition. By [13, Theorem 4.14],
the dimension ofK is the unique positive number s for which (n+1)δs = 1, therefore

dim(K) =
log(n+ 1)

log 1
δ

.

We say that a direction V ∈ G(n, 1) occurs in a set H ⊂ Rn if there are x, y ∈ H,
x 6= y such that x− y is parallel to V . We will show that the directions occurring
in K are actually close to the directions occurring in {P0, . . . , Pn}.

Let V ∈ G(n, 1) which occurs in K and let x0, x1 ∈ K, x0 6= x1 such that x0−x1

is parallel to V . By Lemma 3.3 there exist y0, y1 ∈ K, y0 6= y1 such that y0 − y1 is
also parallel to V and there exist i 6= j with y0 ∈ Si(K) and y1 ∈ Sj(K).

We may assume without loss of generality that y0 ∈ S0(K), y1 ∈ S1(K). We will
show that the angle ϕ between y0 − y1 and P0 −P1 is small, which is equivalent to
cosϕ being close to 1. Let hi = yi − Pi. We have ||hi|| ≤ δ (i = 0, 1), hence

cosϕ =
〈y0 − y1, P0 − P1〉

||y0 − y1|| · ||P0 − P1||
=

1 + 〈h0 − h1, P0 − P1〉
||(P0 − P1) + (h0 − h1)||

≥ 1− 2δ

1 + 2δ
.

Set ε(δ) = 2 arccos( 1−2δ
1+2δ ). Lemma 3.1 implies that the angles occurring in K are

in the union of the following intervals: [0, ε], [60◦ − ε, 60◦ + ε], [90◦ − ε, 90◦ + ε],
[120◦ − ε, 120◦ + ε], [180◦ − ε, 180◦]. If δ, and therefore ε is sufficiently small, then
none of these intervals contain α. �

Harangi [7] improved this result: he used the same methods to show that there
exists a set with the same properties and with dimension cεn. Moreover, even for
the angles 60◦ and 120◦ it is possible to construct large dimensional self-homothetic
sets avoiding these angles.

However, as the next theorem shows, one cannot avoid the right angle with
similar constructions.

Theorem 3.5. Suppose K = S0(K)∪S1(K)∪ · · · ∪Sk(K) is a self-homothetic set
satisfying the strong separation condition (that is, S0, . . . , Sk are homotheties with
ratios less than 1 and the sets Si(K) are pairwise disjoint) and dim(K) > 1. Then
K contains four points that form a non-degenerate rectangle.

Proof. We begin the proof by defining the following map:

D : K ×K \ {(x, x) : x ∈ K} → Sn−1; (x, y) 7→ x− y

||x− y|| .
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We denote the range of D by Range(D). The set Range(D) can be considered as
the set of directions in K.

First, we prove that if K is such a self-similar set then Range(D) is closed. By
Lemma 3.3, for any x, y ∈ K, x 6= y there exist x′ ∈ Si(K) and y′ ∈ Sj(K) for
some i 6= j such that x′ − y′ is parallel to x − y. If d(·, ·) denotes the Euclidean
distance then

min
0≤i<j≤k

d(Si(K), Sj(K)) = c > 0,

so Range(D) actually equals to the image of D restricted to the set K0 = K ×K \
{(x, y) : d(x, y) < c}. As K0 is compact and D is continuous, Range(D) = D(K0)
is indeed compact.

Next we show that for any v ∈ Sn−1 there exist x, y ∈ K, x 6= y such that
the vectors v and D(x, y) are perpendicular. If this was not true, the compactness
of Range(D) would imply that the orthogonal projection p to a line parallel to v
would be a one-to-one map on K with p−1 being a Lipschitz map on p(K). This
would imply dim(K) ≤ 1, which is a contradiction.

The homotheties S0 ◦ S1 and S1 ◦ S0 have the same ratio. Denote their fixed
points by P and Q, respectively. Since P 6= Q, there are x, y ∈ K, x 6= y such
that x− y is perpendicular to P −Q. It is easy to check that the points S0(S1(x)),
S0(S1(y)), S1(S0(y)) and S1(S0(x)) form a non-degenerate rectangle. �

4. Finding angles close to a given angle

In this section we show the remaining claims made in Table 2.
We start by proving that a set that does not contain angles near to 90◦ must

be very small, it cannot have Hausdorff dimension bigger than 1. This makes
90◦ very special since the analogous statement would be false for any other angle
α ∈ (0, 180◦) (see Theorem 3.4 and Remark 4.8). This result is clearly sharp since
a line segment contains only 0 and 180◦.

Theorem 4.1. Any set A ⊂ Rn with Hausdorff dimension greater than 1 contains

angles arbitrarily close to the right angle. Thus C̃(90◦, δ) = 1 for any δ > 0.

Proof. By the equivalent definition (1) of C̃ we can assume that A is compact and
0 < Hs(A) < ∞ for some s > 1. Applying Theorem 1.7 for m = 1 we obtain that
for Hs almost all x ∈ A the set A ∩ (W + x) has positive dimension for γn,n−1

almost all W ∈ G(n, n − 1). Let us fix a point x with this property and let y 6= x
be an arbitrary point in A.

Since for any fixed δ > 0 the subspaces forming an angle at least 90◦ − δ with
x− y have positive measure, and the exceptional set in Theorem 1.7 is of measure
zero, the theorem follows. �

Now we prove the same result for upper Minkowski dimension instead of Haus-
dorff dimension. Note that the upper Minkowski dimension is always greater or
equal than the Hausdorff dimension (see e.g. in [13]). Hence the following theorem
is stronger than the previous one.

Theorem 4.2. Any bounded set A in Rn with upper Minkowski dimension greater
than 1 contains angles arbitrarily close to the right angle.

The upper Minkowski dimension can be defined in many different ways, we will
use the following definition (see [13, Section 5.3] for details).

Definition 4.3. By B(x, r) we denote the closed ball with center x ∈ Rn and
radius r. For a non-empty bounded set A ⊂ Rn let P (A, ε) denote the greatest
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integer k for which there exist k disjoint balls B(xi, ε) with xi ∈ A, i = 1, . . . , k.
The upper Minkowski dimension of A is defined as

dimM(A)
def
= sup{s : lim sup

ε→0+
P (A, ε)εs = ∞}.

Note that we get an equivalent definition if we consider the lim sup through ε = 2−k,
k ∈ N.

The following technical lemma is needed not only for the proof of Theorem 4.2
but also for the result about finding angles near to 60◦. It roughly says that in a
set of large upper Minkowski dimension one can find many points such that the
distance between each pair is more or less the same.

Lemma 4.4. Suppose that dimM(A) > t for a bounded set A ⊂ Rn and a positive
real t. Then for infinitely many positive integers k it is the case that for any integer
0 < l < k there are more than 2(k−l)t points in A with the property that the distance
of any two of them is between 2−k+1 and 2−l+2.

Proof. Let

rk = P (A, 2−k)2−kt.

Due to the previous definition lim supk→∞ rk = ∞. It follows that there are infin-
itely many values of k such that rk > rl for all l < k. Let us fix such a k and let
0 < l < k be arbitrary.

By the definition of rk, there are rk2
kt disjoint balls with radii 2−k and centers

in A. Let S denote the set of the centers of these balls. Clearly the distance of any
two of them is at least 2−k+1.

Similarly, we can find a maximal system of disjoint balls B(xi, 2
−l) with xi ∈ A,

i = 1, . . . , rl2
lt. Consider the balls B(xi, 2

−l+1) of doubled radii. These doubled
balls cover the whole A (otherwise the original system would not be maximal). By
the pigeonhole principle, one of these doubled balls contains at least

rk2
kt

rl2lt
=

rk
rl
2(k−l)t > 2(k−l)t

points of S. These points clearly have the desired property. �

Now we are in a position to prove the theorem.

Proof of Theorem 4.2. We can assume that diam(A) > 2. Fix a t such that
dimM(A) > t > 1.

Lemma 4.4 tells us that there are arbitrarily large integers k such that for any
l < k one can have more than 2(k−l)t points in A such that each distance is between
2−k+1 and 2−l+2. Let S be a set of such points and pick an arbitrary point O ∈ S.
Since diam(A) > 2, there exists a point P ∈ A with OP ≥ 1. Now we project the
points of S to the line OP . There must be two distinct points Q1, Q2 ∈ S such
that the distance apart of their projections is at most

2−l+2

2(k−l)t
= 2−l+2−(k−l)t,

It follows that

cos∠(
−−−→
Q1Q2,

−−→
OP ) ≤ 2−l+2−(k−l)t

2−k+1
= 2−(k−l)(t−1)+1.

Since Q1O ≤ 2−l+2 and OP ≥ 1, the angle of the lines OP and Q1P is at most
C12

−l with some constant C1. Combining the previous results we get that

|∠PQ1Q2 − 90◦| ≤ C12
−l + C22

−(k−l)(t−1)
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with some constants C1, C2. The right hand side can be arbitrarily small since t−1
is positive and both l and k − l can be chosen to be large. �

Now we try to find angles close to 60◦. We will do that by finding three points
forming an almost regular triangle provided that the dimension of the set is suffi-
ciently large.

We will need a simple result from Ramsey theory. Let Rr(3) denote the least
positive integer k for which it holds that no matter how we color the edges of a
complete graph on k vertices with r colors it contains a monochromatic triangle.
The next inequality can be obtained easily:

Rr(3) ≤ r ·Rr−1(3)− (r − 2).

(A more general form of the above inequality can be found in e.g. [6, p. 90, Eq. 2].)
It readily implies the following upper bound for Rr(3).

Lemma 4.5. For any positive integer r ≥ 2

Rr(3) ≤ 3r!,

that is, any complete graph on at least 3r! vertices edge-colored by r colors contains
a monochromatic triangle.

Using this lemma we can prove the following theorem.

Theorem 4.6. There exists an absolute constant C such that whenever dimM(A) >
C
δ log( 1δ ) for some bounded set A ⊂ Rn and δ > 0 the following holds: A contains
three points that form a δ-almost regular triangle, that is, the ratio of the length of
the longest and shortest sides is at most 1 + δ.

As an immediate consequence, we can find angles close to 60◦.

Corollary 4.7. Suppose that dimM(A) > C
δ log( 1δ ) for some bounded set A ⊂ Rn

and δ > 0. Then A contains angles from the interval (60◦ − δ, 60◦] and also from

[60◦, 60◦ + δ). Therefore C̃(60◦, δ) ≤ C
δ log( 1δ ).

Remark 4.8. The above theorem and even the corollary is essentially sharp: Harangi
[7] constructed a set with Hausdorff dimension c

δ/ log(
1
δ ) and without any angles

from the interval (60◦ − δ, 60◦ + δ), so we have C̃(60◦, δ) ≥ c
δ/ log(

1
δ ).

Proof of Theorem 4.6. Let t = C
δ log( 1δ ) and apply Lemma 4.4 for l = k−1. We ob-

tain at least 2t points in A such that each distance is in the interval [2−k+1, 2−k+3].
Let a = 2−k+1 and divide [a, 4a] into N = ⌈ 3

δ ⌉ disjoint intervals of length at most
δa. Regard the points of A as the vertices of a graph. Color the edges of this graph
with N colors according to which interval contains the distance of the corresponding
points.

Easy computation shows that 2t > 3N ! (with a suitable choice of C). Therefore
the above graph contains a monochromatic triangle by Lemma 4.5. It easily follows
that the three corresponding points form a δ-almost regular triangle in Rn. �

Remark 4.9. The same proof yields the following: for any positive integer d and
positive real δ there is a number K(d, δ) such that whenever dimM(A) > K(d, δ)
for some bounded set A, one can find d points in A with the property that the ratio
of the largest and the smallest distance among these points is at most 1 + δ. (One
needs to use the fact that the Ramsey number Rr(d) is finite.)

In order to derive similar results for 120◦ instead of 60◦ we show that if large
Hausdorff dimension implies the existence of an angle near α, then it also implies
the existence of an angle near 180◦ − α.
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Proposition 4.10. Suppose that s = s(α, δ, n) is a positive real number such that
any analytic set A ⊂ Rn with Hs(A) > 0 contains an angle from the interval
(α − δ, α + δ). Then any analytic set B ⊂ Rn with Hs(B) > 0 contains an angle
from the interval (180◦ − α− δ′, 180◦ − α+ δ′) for any δ′ > δ.

Proof. Again, we can assume that 0 < Hs(B) < ∞. It is well-known that for Hs

almost all x ∈ B the set B ∩ B(x, r) has positive Hs measure for any r > 0 [13,
Theorem 6.2]. If we omit the exceptional points from B, this will be true for every
point of the obtained set. Assume that B had this property in the first place. Then,
by the assumptions of the proposition, any ball around any point of B contains an
angle from the δ-neighborhood of α.

We define the points Pm, Qm, Rm ∈ B recursively in the following way. Fix
a small ε. First take P0, Q0, R0 such that the angle ∠P0Q0R0 falls into the in-
terval (α − δ, α + δ). If the points Pm, Qm, Rm are given, then choose points
Pm+1, Qm+1, Rm+1 from the ε ·min(QmPm, QmRm)-neighborhood of Pm such that
∠Pm+1Qm+1Rm+1 ∈ (α− δ, α+ δ).

We can find two indices k > l such that the angle enclosed by the vectors
−−→
QlPl

and
−−−→
QkPk is less than ε. It is clear that if we choose ε sufficiently small, then

∠(Ql, Qk, Rk) ∈ (180◦ − α− δ′, 180◦ − α+ δ′). �

Remark 4.11. Proposition 4.10 holds for δ′ = δ as well. Surprisingly, it even holds
for some δ′ < δ. The reason behind is the following. If every analytic set A ⊂ Rn

with Hs(A) > 0 contains an angle from the interval (α − δ, α + δ), then there
necessarily exists a closed subinterval [α−γ, α+γ] (γ < δ) such that every analytic
set A ⊂ Rn with Hs(A) > 0 contains an angle from the interval [α− γ, α+ γ]. We
prove this statement in the Appendix (Theorem 5.3).

This implies that C̃ satisfies the symmetry property

C̃(α, δ) = C̃(180◦ − α, δ).

Theorem 4.12. There exists an absolute constant C such that any analytic set
A ⊂ Rn with dim(A) > C

δ log( 1δ ) contains an angle from the δ-neighborhood of

120◦. Therefore C̃(120◦, δ) ≤ C
δ log( 1δ ).

Proof. The claim readily follows from Corollary 4.7, Proposition 4.10 and the fact
that the upper Minkowski dimension is greater or equal than the Hausdorff dimen-
sion. �

Remark 4.13. In fact, in Theorem 4.12 it is enough to assume that the upper
Minkowski dimension is bigger than C

δ log( 1δ ). This follows from a more general
result that we prove in the Appendix.

To find angles arbitrarily close to 0 and 180◦, it suffices to have infinitely many
points.

Proposition 4.14. Any A ⊂ Rn of infinite cardinality contains angles arbitrarily

close to 0 and angles arbitrarily close to 180◦. Therefore C̃(0, δ) = C̃(180◦, δ) = 0.

Sketch of the proof. We claim that given N points in Rn they must contain an angle
less than δ1 = C

n−1
√
N

and an angle greater than 180◦ − δ2 with δ2 = C
n−1

√
logN

. The

former follows easily from the pigeonhole principle. The latter is a result of Erdős
and Füredi [2, Theorem 4.3]. �

5. Appendix

5.1. A transfinite construction. We prove the following theorem, which shows
that if we allowed arbitrary sets in Definition 1.3 then C(n, α) would be n.
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Theorem 5.1. Let n ≥ 2. For any α ∈ [0, 180◦] there exists H ⊂ Rn such
that H does not contain the angle α, and H has full Lebesgue outer measure; that
is, its complement does not contain any measurable set with positive measure. In
particular, dim(H) = n.

The proof we present here is shorter than our original proof, this one was sug-
gested by Marianna Csörnyei.

We need the following simple lemma, which might be well-known even for more
general sets but for completeness we present a proof. Recall that an algebraic set
is the set of solutions of a system of polynomial equations.

Lemma 5.2. Fewer than continuum many proper algebraic subsets of Rn cannot
cover a Borel set of positive n-dimensional Lebesgue measure.

Proof. We prove by induction. For n = 1 this is clear since proper algebraic subsets
of R are finite and every Borel set of positive Lebesgue measure has cardinality
continuum.

Suppose that the lemma holds for n − 1 but it is false for n, so there exists a
collection A of less than continuum many proper algebraic subsets of Rn such that
they cover a Borel set B ⊂ Rn with positive Lebesgue measure.

LetHt denote the “horizontal” sectionHt = {(x1, . . . , xn−1) : (x1, . . . , xn−1, t) ∈
H} of a set H ⊂ Rn at “height” t ∈ R. If A is a proper algebraic subset of Rn

then with finitely many exceptions every At is a proper algebraic subset of Rn−1.
Therefore, by using the assumption that the lemma holds for n − 1, we get that
(∪A)t can contain Borel sets of positive n− 1-dimensional Lebesgue measure only
for less than continuum many t. Let f(t) denote the (n− 1)-dimensional Lebesgue
measure of the Borel set Bt. Since B ⊂ ∪A, we obtain that {t : f(t) > 0} has
cardinality less than continuum.

On the other hand, by Fubini theorem f is measurable and its integral is the
Lebesgue measure of B, so it is positive. This implies that {t : f(t) > 0} is a
measurable set of positive measure, hence it contains an uncountable compact set,
so it must have the cardinality of the continuum, contradiction. �

Proof of Theorem 5.1. Take a well-ordering {Bβ : β < c} of the Borel subsets of
Rn with positive n-dimensional Lebesgue measure. We will construct a sequence of
points {xβ : β < c} of Rn using transfinite induction so that

(3) xβ ∈ Bβ and Hβ = {xδ : δ ≤ β} does not contain the angle α

for any β < c. This will complete the proof since then H = {xβ : β < c} will have
all the required properties.

Suppose that γ < c and we have already properly defined xβ for all β < γ so
that (3) holds for all β < γ. For any p, q ∈ Rn, p 6= q, let Ap,q denote the set of
those x ∈ Rn for which one of the angles of the triangle pqx is α. Note that Ap,q

can be covered by three proper algebraic subsets of Rn. Then, by Lemma 5.2, the
sets Axδ,xδ′

(δ, δ′ < γ, xδ 6= xδ′) cannot cover Bγ , so we can choose a point

xγ ∈ Bγ \ ∪{Axδ,xδ′
: δ, δ′ < γ, xδ 6= xδ′}.

Then (3) also holds for β = γ.
This way we obtain a sequence (xβ)β<c, so that (3) holds for all β < c, which

completes the proof. �

5.2. The size of the neighborhood in the approximative problems. Now,
our goal is to prove the following theorem, which was claimed in Remark 4.11.

Theorem 5.3. Suppose that s = s(α, δ, n) is a positive real number such that
every analytic set A ⊂ Rn with Hs(A) > 0 contains an angle from the interval
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(α − δ, α + δ). Then there exists a closed subinterval [α − γ, α + γ] (γ < δ) such
that every analytic set A ⊂ Rn with Hs(A) > 0 contains an angle from the interval
[α− γ, α+ γ].

To prove this theorem, we need two lemmas. For r ∈ (0,∞] let

Hs
r(A) = inf

{ ∞∑

i=1

diam(Ui)
s : diam(Ui) ≤ r, A ⊂ ∪∞

i=1Ui

}
,

thus Hs(A) = limr→0+ Hs
r(A).

Lemma 5.4. Let Ai be a sequence of compact sets converging in the Hausdorff
metric to a set A. Then the following two statements hold.

(i) Hs
∞(A) ≥ lim supi→∞ Hs

∞(Ai).
(ii) Suppose that for every i = 1, 2, . . . the set Ai does not contain any angle

from [α − δ + 1/i, α + δ − 1/i]. Then A does not contain any angle from
(α− δ, α+ δ).

Proof. The first statement is well-known and easy. To prove the second, notice that
for any three points x, y, z of A there exist three points in Ai arbitrarily close to
x, y, z, for sufficiently large i. �

The next lemma follows easily from [4, Theorem 2.10.17 (3)]. For the sake of
completeness, we give a short direct proof.

Lemma 5.5. Let A ⊂ Rn be a compact set satisfying Hs(A) > 0. Then there exists
a ball B such that Hs

∞(A ∩B) ≥ c diam(B)s, where c > 0 depends only on s.

Proof. We may suppose without loss of generality that Hs(A) < ∞. (Otherwise we
choose a compact subset of A with positive and finite Hs measure. If the theorem
holds for a subset of A then it clearly holds for A as well.)

Choose r > 0 so that Hs
r(A) > Hs(A)/2. Cover A by sets Ui of diameter at

most r/2 such that
∑

i diam(Ui)
s ≤ 2Hs(A). Cover each Ui by a ball Bi of radius

at most the diameter of Ui. Then the balls Bi cover A, have diameter at most r,
and

∑
i diam(Bi)

s ≤ 21+sHs(A).
We claim that one of these balls Bi satisfies the conditions of the Lemma for

c = 2−2−s. Otherwise we have

Hs
∞(A ∩Bi) < 2−2−s diam(Bi)

s

for every i. Since the sets A ∩ Bi have diameter at most r, clearly Hs
r(A ∩ Bi) =

Hs
∞(A ∩Bi). Therefore

Hs
r(A) ≤

∑

i

Hs
r(A ∩Bi) <

∑

i

2−2−s diam(Bi)
s

≤ 2−2−s21+sHs(A) = Hs(A)/2,

which contradicts the choice of r. �

Proof of Theorem 5.3. Suppose on the contrary that there exist compact sets Ki ⊂
Rn with Hs(Ki) > 0 such that Ki does not contain any angle from [α−δ+1/i, α+
δ − 1/i]. Choose a ball Bi for each compact set Ki according to Lemma 5.5. Let
B be a ball of diameter 1. Let K ′

i be the image of Ki ∩ Bi under a similarity
transformation which maps Bi to the ball B. Thus Hs

∞(K ′
i) ≥ c. Let K denote

the limit of a convergent subsequence of the sets Ki. We can apply Lemma 5.4 to
this subsequence and obtain Hs

∞(K) ≥ c, implying Hs(K) > 0. Also, K does not
contain any angle from the interval (α− δ, α+ δ), which is a contradiction. �
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5.3. Replacing Hausdorff dimension by upper Minkowski dimension. Our
final goal is showing that in the problems when we want angles only in a neigh-
borhood of a given angle, Hausdorff dimension can be replaced by Minkowski di-
mension. This will follow from the following theorem. As pointed out by Pablo
Shmerkin, this theorem also follows from a result of Furstenberg [5]. His result is
much more general and it is not immediately trivial to see that it implies what we
need. Therefore we give a direct self-contained proof.

Theorem 5.6. Let A ⊂ Rd be a bounded set with upper Minkowski dimension
s > 0. Then there exists a compact set K of Hausdorff dimension s such that all
finite subsets of K are limits of homothetic copies of finite subsets of A. (That is,
for every finite set S ⊂ K and ε > 0 there exists a set S′ ⊂ A and r > 0, t ∈ Rd

such that the Hausdorff distance of t+ rS′ and S is at most ε.)

Applying Theorem 5.6 to a bounded set A that does not contain any angle
from an open interval we get a compact set K with the same property and with
dim(K) = dimM(A). Thus we get the following.

Corollary 5.7. For any α ∈ [0, 180◦] and δ > 0, we have

C̃(α, δ) = sup{dimM(A) : A ⊂ Rn for some n;A is bounded;

A does not contain any angle from (α− δ, α+ δ)}.
Proof of Theorem 5.6. We will need to use a slightly different version of the Haus-
dorff content Hs

∞(B) in this proof. Instead of covering B ⊂ Rd with arbitrary
sets, we will only consider coverings with homothetic copies of the unit cube [0, 1]d.
(From now on, a cube is always assumed to be a homothetic copy of the unit cube.)
For a cube C, diam(C) is just a constant multiple of the edge length of C (denoted
here by |C|). For the sake of simplicity, we will use |C| in our definition: for any
B ⊂ Rd and s > 0 let

Ĥs
∞(B)

def
= inf

{ ∞∑

i=1

|Ci|s : Ci is a cube for each i; B ⊂
∞⋃

i=1

Ci

}
.

It is easy to see that d−s/2Hs
∞ ≤ Ĥs

∞ ≤ Hs
∞. Also note that Ĥs

∞([0, 1]d) = 1 for
any 0 < s ≤ d.

We may assume that A ⊂ [0, 1]d. For a positive integer n we divide the unit
cube into nd subcubes of edge length 1/n. Let An be the union of the subcubes
that intersect A.

We claim that for any fixed 0 < δ < s/2, for infinitely many n (depending on δ)
there exists a cube C such that

(4) |C| ≥ n
δ

2d /n and Ĥs−2δ
∞ (C ∩An) ≥ 2−s−2|C|s−2δ.

First we show how the theorem follows from this claim. If (4) holds for n and C,
then let Kn be the image of C ∩ An under the homothety that maps C to [0, 1]d.

Hence Ĥs−2δ
∞ (Kn) ≥ 2−s−2. If S ⊂ Kn is finite, then there exists S′ such that the

Hausdorff distance of S and S′ is at most
√
dn−δ/(2d) and a homothetic image of

S′ is in A.
For each δ = 1/l choose n = nl ≥ ll such that the claim holds. Let K̃ be the

limit of a convergent subsequence of Knl
. By Lemma 5.4 the Hausdorff dimension

of K̃ is at least s. Let K be a compact subset of K̃ of Hausdorff dimension s. It is
easy to check that K satisfies all the required properties.

It remains to prove the claim. Since dimM(A) = s, An contains at least ns−δ

subcubes for infinitely many n. Fix such an n with n ≥ 24/δ. Let

c = min
{
Ĥs−2δ

∞ (B)/m : B is the union of m subcubes of An, m ≥ 1
}
.



14 HARANGI, KELETI, KISS, MAGA, MÁTHÉ, MATTILA, AND STRENNER

Since the unit cube covers An, by choosing B as the union of m ≥ ns−δ subcubes

of An we get c ≤ Ĥs−2δ
∞ (B)/m ≤ 1/ns−δ. (On the other hand, one subcube has

content 1/ns−2δ, hence the minimum is taken for a set B for which m is at least
nδ.)

Suppose now that B is a set for which the minimum is taken; that is,

Ĥs−2δ
∞ (B) = cm,

where B consists of m subcubes of An. It follows that there exists a covering of B
with cubes Ci (i = 1, 2, . . .) such that

∞∑

i=1

|Ci|s−2δ ≤ 2cm.

Let k = nδ/(2d). We say that a cube Ci is “bad” if |Ci| < k/n, and “good”
otherwise. The total volume of the bad cubes is at most

∑

Ci is bad

|Ci|d =
∑

Ci is bad

|Ci|d−s+2δ|Ci|s−2δ ≤ (k/n)d−s+2δ
∞∑

i=1

|Ci|s−2δ

≤ 2cm(k/n)d−s+2δ ≤ 2mkd−s+2δn−δ−d ≤ 2mkdn−δ−d = 2mn− δ

2
−d ≤ m

2
n−d,

where the last four estimates follow from c ≤ 1/ns−δ, δ < s/2, k = nδ/(2d) and
n ≥ 24/δ. So there are at most m/2 subcubes that are fully covered by bad cubes.
Let B′ be the union of the remaining (at least m/2) subcubes in B. Since each
subcube in B′ must intersect a good cube Ci, it follows that the cubes 2Ci cover
B′, where 2Ci is the cube with the same center as Ci and double edge length.

Then the definition of c implies that
∑

Ci is good

Ĥs−2δ
∞ (2Ci ∩An) ≥ Ĥs−2δ

∞ (B′) ≥ c
m

2
.

On the other hand, we have

∑

Ci is good

|2Ci|s−2δ ≤ 2s−2δ
∞∑

i=1

|Ci|s−2δ ≤ 2s−2δ2cm ≤ 2s+1cm.

Therefore there exists a good cube Ci such that

Ĥs−2δ
∞ (2Ci ∩An) ≥ 2−s−2|2Ci|s−2δ.

Thus (4) holds for the cube C = 2Ci, which completes the proof. �

Acknowledgment. We would like to thank the anonymous referees for their very
careful reading of the manuscript.

References
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[12] A. Máthé, Sets of large dimension not containing polynomial configurations, arXiv:1201.0548.
[13] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press,

1995.
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