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Abstract The main concern of this article is to present the Rubis method
for tackling the choice problem in the context of multiple criteria decision
aiding. Its genuine purpose is to help a decision maker to determine a sin-
gle best decision alternative. Methodologically we focus on pairwise com-
parisons of these alternatives which lead to the concept of bipolar-valued
outranking digraph. The work is centred around a set of five pragmatic
principles which are required in the context of a progressive decision aid-
ing approach. Their thorough study and implementation in the outranking
digraph lead us to define a choice recommendation as an extension of the
classical digraph kernel concept.
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1 Introduction

We present a new method for constructing choice recommendations in the
context of multiple criteria decision aiding where the objective is to deter-
mine a single best best alternative from a set of potential decision objects.
This work is situated in the context of progressive decision aiding methods
(see Section 3.1) consisting normally in several stages providing the decision
maker (DM) with more and more precise choice recommendations. Each of
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these steps aims at determining a subset of alternatives among which the
best one is situated. As long as such a provisional recommendation consists
of several candidates, the decision aiding process may be restarted on this
restricted set with new and more detailed information in order to further
assist the DM in his decision problem. Note that it may be up to him to
determine the ultimate choice from the eventual recommendation of the
decision aiding.

Apart from the European multiple criteria decision aiding community
(Roy, 1985; Roy and Vanderpooten, 1996), the progressive resolution of the
choice problem has attracted quite little attention by the Operational Re-
search (OR) field. Seminal work on it goes back to the first article of Roy on
the Electre I methods (Roy, 1968). After Kitainik (1993), interest in solv-
ing the choice problem differently from the classical optimisation paradigm
has reappeared. An early work of Bisdorff and Roubens (1998) on valued
kernels has resulted in new attempts to tackle the progressive choice prob-
lem directly on the valued outranking digraph. After first positive results
(Bisdorff, 2000), methodological difficulties appeared when facing highly
non-transitive and partial outranking relations. In this paper, we therefore
present a new proposal for computing provisional choice recommendations
from a valued outranking digraph. Our approach is based on new prag-
matic and logical foundations of the progressive choice problematique1 in
the tradition of the pioneering work of Roy and Bouyssou (1993).

The paper is organised as follows. In Section 2, we introduce the basic
concepts and notation which are necessary for our future discourse. In Sec-
tion 3, we revisit the very foundations of the choice problematique, briefly
present the classical Electre approach, and list new pragmatic principles
which are required for computing choice recommendations in a progres-
sive decision aiding process. The third section deals with the translation
of these principles into properties in the bipolar-valued outranking digraph
which lead to the concept of hyperkernel, an extension of the classical ker-
nel of a digraph. In the fourth and last section, we show how to determine
these hyperkernels and detail the Rubis method for computing a choice
recommendation.

2 Fundamental concepts

We start by establishing the backbone of the Rubis method, namely the
bipolar-valued credibility scale, modelling the credibility of the validation
of preferential statements.

1 A broad typology or category of problems for which multiple criteria decision analysis
may be useful (see Belton and Stewart (2002, page 15)).
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2.1 Bipolar-valued credibility calculus

Let ξ be a propositional statement like “alternative x is a choice recommen-
dation” or “alternative x is at least as good as alternative y”. In a decision
process, a DM may either accept or reject these statements following his be-
lief in their validity (Bisdorff, 2000). This degree of credibility (or credibility
for short) may be represented via a credibility scale L = [−1, 1] supporting
the following semantics. Let ξ and ψ be two propositional statements to
which are associated credibilities r and s ∈ L:

1. If r = +1 (resp. r = −1) then it is assumed that ξ is clearly validated
(resp. clearly non-validated). If 0 < r < +1 (resp. −1 < r < 0) then
it is assumed that ξ is more validated than non-validated (resp. more
non-validated than validated). If r = 0 then ξ could either be validated
or non-validated, a situation we call undetermined.

2. If r > s then it is assumed that the validation of ξ is more credible than
that of ψ (or that the non-validation of ψ is more credible than that of
ξ).

3. The credibility of the disjunction ξ ∨ ψ (resp. the conjunction ξ ∧ ψ) of
these statements equals the credibility of the statement that is the most
(resp. the less) credible of both, i.e. max(r, s) (resp. min(r, s)).

4. −r ∈ L denotes the credibility of the non-validation of ξ, i.e., the credi-
bility of the validation of the logical negation of ξ (written ¬ξ).

Definition 2.1. The credibility associated with the validation of a proposi-
tional statement ξ, defined on a credibility domain L and verifying properties
(1) to (4) is called a bipolar-valued characterisation of ξ.

It follows from property (4) that the graduation of credibility degrees con-
cerns both the affirmation and the negation of a propositional statement
(Windelband, 1884). Starting from +1 (certainly validated) and −1 (cer-
tainly non-validated), one can approach a central position 0 by a gradual
weakening of the absolute values of the credibility degrees. This particular
point 0 in L represents an undetermined situation concerning the validation
or non-validation of a given propositional statement (Bisdorff, 2000, 2002).

Definition 2.2. The degree of determination of the validation (for short
determinateness) D(ξ) of a propositional statement ξ is given by the absolute
value of its bipolar-valued characterisation: D(ξ) = |r|.

For both a clearly validated and a clearly non-validated statement, the
determinateness equals 1. On the opposite, for an undetermined statement,
this determinateness equals 0.

This establishes the central degree 0 as an important neutral value in
the bipolar-valued credibility calculus. Propositions characterised with this
degree 0 may be either seen as suspended or as missing statements (Bisdorff,



4 R. Bisdorff, P. Meyer and M. Roubens

2002). The credibility degree 0 represents a temporary delay in character-
ising the validation or non-validation of a propositional statement. In the
framework of progressive decision aiding, this feature allows us to easily cope
with currently undetermined preferential situations that may eventually be-
come determined to a certain degree, either as validated or non-validated,
in a later stage of the decision aiding process.

The following section introduces the important concept of bipolar-valued
outranking digraph which is the preferential support for the Rubis choice
decision aiding methodology.

2.2 The bipolar-valued outranking digraph

Let X = {x, y, z, . . .} be a finite set of decision objects (or alternatives)
evaluated on a finite, coherent family F = {1, . . . , p} of p criteria. To each
criterion j of F is associated its relative significance weight represented by
a rational number wj from the open interval ]0, 1[ such that

∑p

j=1
wj =

1. Besides, to each criterion j of F is linked a preference scale in [0, 1]
which allows to compare the performances of the decision objects on the
corresponding preference dimension.

Let gj(x) and gj(y) be the performances of two alternatives x and y
of X on criterion j. Let ∆j(x, y) be the difference of the performances
gj(x)−gj(y). To each preference scale for each j of F is associated a variable
indifference threshold qj(gj(x)) ∈ [0, 1[, a preference threshold pj(gj(x)) ∈
[qj(gj(x)), 1[, a weak veto threshold wvj(gj(x)) ∈ [pj(gj(x)), 1] ∪ {2} and a
strong veto threshold vj(gj(x)) ∈ [wvj(gj(x)), 1] ∪ {2}, where the complete
absence of veto is modelled via the value 2. All these threshold functions
are supposed to verify the standard non-decreasing monotonicity condition
(see Roy and Bouyssou (1993, page 56)).

Let S be a binary relation on X . Classically, an outranking situation
xSy between two decision alternatives x and y of X is assumed to hold
if there is a sufficient majority of criteria which supports an “at least as
good as” preferential statement and there is no criterion which raises a veto
against it (Roy, 1985). The validity an such outranking situation may quite
naturally be expressed in the bipolar credibility calculus defined in Section
2.1.

Indeed, in order to characterise a local “at least as good as” situation
between two alternatives x and y of X for each criterion j of F , we use the
following function Cj : X ×X → {−1, 0, 1} such that:

Cj(x, y) =






1 if ∆j(x, y) > −qj(gj(x)) ;

−1 if ∆j(x, y) 6 −pj(gj(x)) ;

0 otherwise .
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Following the semantics of the bipolar-valued characterisation, credibility 0
is assigned to Cj(x, y) in case it cannot be determined whether alternative
x is at least as good as alternative y or not (see Section 2.1).

Similarly, the local veto situation for each criterion j of F is characterised
via a veto-function Vj : X ×X → {−1, 0, 1} where:

Vj(x, y) =






1 if ∆j(x, y) 6 −vj(gj(x)) ;

−1 if ∆j(x, y) > −wvj(gj(x)) ;

0 otherwise .

Again, according to the semantics of the bipolar-valued characterisation,
the veto function Vj renders an undetermined response when the difference
of performances is between the weak and the strong veto thresholds wvj

and vj .

The global outranking index S̃, defined for all pairs of alternatives (x, y) ∈
X ×X , conjunctively combines a global concordance index, aggregating all
local “at least as good as” statements, and the absence of veto on each of
the criteria. For any two alternatives x and y of X we have:

S̃(x, y) = min{C̃(x, y),−V1(x, y), . . . ,−Vp(x, y)}, (2.1)

where the global concordance index C̃(x, y) is defined as follows:

C̃(x, y) =
∑

j∈F

wj · Cj(x, y). (2.2)

The min operator in Formula 2.1 translates the conjunction between the
global concordance index C̃(x, y) and the negated criterion-based veto in-
dexes −Vj(x, y) (∀j ∈ F ). In the case of absence of veto, the resulting

outranking index S̃ equals the global concordance index C̃. Following For-
mulae (2.1) and (2.2), S̃ is a function from X × X to L representing the
credibility of the validation or non-validation of an outranking situation
observed between each pair of alternatives. S̃ is called the bipolar-valued
characterisation of the outranking relation S, or for short, the bipolar-valued
outranking relation.

The maximum value +1 of the valuation is reached in the case of unan-
imous concordance, whereas the minimum value −1 is obtained either in
the case of unanimous discordance, or if there exists a strong veto situ-
ation on at least one criterion. The median situation 0 represents a case
of undeterminateness: either the arguments in favour of an outranking are
compensated by those against it or, a positive concordance in favour of the
outranking is outbalanced by a potential (weak) veto situation.

It is now easy to recover the semantics linked to this bipolar-valued
characterisation from our earlier considerations (see Section 2.1). For any
two alternatives x and y of X ,
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– S̃(x, y) = +1 means that assertion “xSy” is clearly validated.

– S̃(x, y) > 0 means that assertion “xSy” is more validated than non-
validated.

– S̃(x, y) = 0 means that assertion “xSy” is undetermined.

– S̃(x, y) < 0 means that assertion “xSy” is more non-validated than val-
idated.

– S̃(x, y) = −1 means that assertion “xSy” is clearly non-validated.

Definition 2.3. The set X associated to a bipolar-valued characterisation
S̃ of the outranking relation S ∈ X×X is called a bipolar-valued outranking
digraph, denoted G̃(X, S̃).

The crisp outranking relation S can be constructed via its bipolar-valued
characterisation. S is the set of pairs (x, y) of X ×X such that S̃(x, y) >
0. We write G(X,S) the corresponding so-called crisp outranking digraph

associated to G̃(X, S̃).

Example 1 Consider the set X1 = {a, b, c, d, e} of alternatives evaluated
on a coherent family F1 = {1, . . . , 5} of criteria of equal weights (see left
part of Table 2.1). To each criterion is associated a rational preference scale
in [0, 1] and an indifference threshold of 0.1, a preference threshold of 0.2,
a weak veto threshold of 0.6, and a strong veto threshold of 0.8.

Based on the performances of the five alternatives on the criteria, we
compute the bipolar-valued outranking relation S̃1 shown in the right part
of Table 2.1. The crisp outranking digraph G1(X1, S1) associated to the

bipolar-valued outranking digraph G̃1(X1, S̃1) is shown in Figure 2.1. Note
the dotted arc from alternative e to d which represents an undetermined
outranking. This situation is not expressible in a standard Boolean-valued
characterisation of the outranking. Consequently, the (‘positive’) negation

of the general S̃ relation is not identical to the complement of S in X ×X.

coherent family of criteria eS
alternatives 1 2 3 4 5 a b c d e

a 0.52 0.82 0.07 1.00 0.04 1.0 -0.2 -1.0 0.6 0.4
b 0.96 0.27 0.43 0.83 0.32 0.4 1.0 0.2 0.2 0.4
c 0.85 0.31 0.61 0.41 0.98 0.2 0.4 1.0 0.4 0.6
d 0.30 0.60 0.74 0.02 0.02 -1.0 -1.0 -1.0 1.0 -1.0
e 0.18 0.11 0.23 0.94 0.63 0.2 0.2 -0.4 0.0 1.0

Table 2.1. Example 1: Random performance table and bipolar-valued outranking rela-
tion

The reader, familiar with the Electre methodology, may have noticed
much ressemblance between the bipolar-valued characterisation S̃ and the
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Fig. 2.1. Example 1: Associated crisp digraph and undetermined arc

classical Electre-type valuations of an outranking relation. It is important
to notice, however, that the latter do not necessarily respect the semantics of
the bipolar credibility calculus. In particular, the 1/2 value does in general
not have the meaning of undetermined validation which is given here to the
0 credibility degree.

Let us now introduce some further concepts which are used in this article.
The order n of the digraph G̃(X, S̃) is given by the cardinality ofX , whereas

the size p of G̃ is given by the cardinality of S. A path of order m 6 n in
G̃(X, S̃) is a sequence (xi)

m
i=1 of alternatives of X such that S̃(xi, xi+1) ≥ 0,

∀i ∈ {1, . . . ,m−1}. A circuit of order m 6 n is a path of order m such that

S̃(xm, x1) ≥ 0.

Definition 2.4. An odd chordless circuit (xi)
m
i=1 is a circuit of odd order

m such that S̃(xi, xi+1) ≥ 0, ∀i ∈ {1, . . . ,m − 1}, S̃(xm, x1) ≥ 0 and

S̃(xi, xj) < 0 otherwise.

Following a result by Bouyssou (2006) which extends the results of Bouys-
sou (1996) to the bipolar-valued case, it appears that, apart from certainly
being reflexive, the bipolar-valued outranking digraphs do not necessarily
have any particular relational properties such as transitivity or total com-
parability. Indeed he shows that, with a sufficient number of criteria, it
is always possible to define a performance table such that the associated
crisp outranking digraph renders any given reflexive binary relation. This
rather positive result from a methodological point of view, namely that the
outranking based methodology is universal, bears however a negative algo-
rithmic consequence. Indeed, as we will show in Sections 3 and 4, solving the
choice problem based on a bipolar-valued outranking relation is a non-trivial
algorithmic problem in case of non-transitive and partial outrankings.

Before switching to the following section, it is important to underline
here that the starting point of this study is deliberately a given performance
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table, a set of threshold and veto functions as well as significance weights
which are all clearly defined and have been acknowledged by the DM2.

Historically, in the context of outranking relations, the progressive choice
problem has been solved by using the independent outranking set , i.e. the
kernel of a digraph (Roy, 1968, 1985). Let us now define this concept in a
bipolar-valued outranking digraph.

2.3 On kernels in bipolar-valued outranking digraphs

Definition 2.5. Let Y be a non-empty subset of X.

1. Y is said to be outranking (resp. outranked) in G̃(X, S̃) if and only if

x 6∈ Y ⇒ ∃y ∈ Y : S̃(y, x) > 0 (resp. S̃(x, y) > 0).

2. Y is said to be independent (resp. strictly independent) in G̃(X, S̃) if

and only if for all x 6= y in Y we have S̃(x, y) 6 0 (resp. S̃(x, y) < 0).
3. Y is called an outranking (resp. outranked) kernel if and only if it is an

outranking (resp. outranked) and independent set.
4. Y is called a determined outranking (resp. outranked) kernel if and only

if it is an outranking (resp. outranked) and strictly independent set.

Example 1 (continued) In the crisp digraph G1 (see Figure 2.1) we can
observe two determined outranking kernels, namely the singletons {b} and
{c}. The digraph also contains one outranked kernel, namely the pair {d, e}.
Note that alternatives d and e are independent (but not strictly independent)
from each other.

The set Y may be characterised with the help of bipolar-valued membership
assertions Ỹ : X → L, denoting the credibility of the fact that x ∈ Y or not,
for all x ∈ X . Ỹ is called a bipolar-valued characterisation of Y , or for short
a bipolar-valued set in G̃(X, S̃). The semantics linked to this characterisation
can again be derived from the properties of the bipolar-valued scale L (see
Section 2.1).

In the following paragraphs, we recall useful results from Bisdorff et al.
(2006). They allow us to establish a link between the classical graph theo-
retic and algebraic representations of kernels (via their bipolar-valued char-
acterisations).

Proposition 2.6. The outranking (resp. outranked) kernels of G̃(X, S̃) are

among the bipolar-valued sets Ỹ satisfying the respective following bipolar-
valued kernel equation systems:

max
y 6=x

[min(Ỹ (y), S̃(y, x))] = −Ỹ (x), for all x ∈ X ; (2.3)

2 Tackling impreciseness issues in these data is out of the scope of this paper. For first
attempts to cope with this topic in a bipolar-valued credibility calculus framework, see
(Bisdorff, 2004).



The Rubis choice method 9

max
y 6=x

[min(S̃(x, y), Ỹ (y))] = −Ỹ (x), for all x ∈ X. (2.4)

Let Y+ and Y– denote the set of bipolar-valued sets verifying the respective
kernel equation systems (2.3) and (2.4) above. Let Ỹ1 and Ỹ2 be two elements

of Y+ (or Y–). Ỹ1 is said to be at least as sharp as Ỹ2 (denoted Ỹ2 � Ỹ1) if

and only if for all x inX either Ỹ1(x) 6 Ỹ2(x) 6 0 or 0 6 Ỹ2(x) 6 Ỹ1(x). The
� relation defines a partial order (antisymmetrical and transitive) (Bisdorff,

1997). If Ỹ (x) 6= 0 for each x in X , Ỹ is called a determined bipolar-valued
set.

Theorem 2.7 (Bisdorff, Pirlot, Roubens).

1. There exists a one-to-one correspondence between the maximal sharp
determined sets in Y+ (resp. Y–) and the determined outranking (resp.

outranked) kernels in G̃.
2. Each maximal sharp set in Y+ (resp. Y–) characterises an outranking

(resp. outranked) kernel in G̃.

Proof. The first result, specialised to determined sets, is proved in Bisdorff
et al. (2006, Theorem 1). The second one results directly from the kernel
equation systems of Proposition 2.6. ⊓⊔

The maximal sharp sets in Y+ (resp. Y–) deliver thus outranking (resp.
outranked) kernel characterisations. It is worthwhile noting that not all par-
tially determined outranking or outranked kernels admit, however, a maxi-
mal sharp solution. Let us furthermore underline, that it may also happen
that neither Y+ nor Y– contain any determined, or even partially deter-
mined sets at all. Such a case arises for example if G̃ is an odd chordless
circuit (see Definition 2.4).

Example 1 (continued) Recall that the crisp outranking digraph G1 con-
tains two outranking kernels and one outranked kernel. The bipolar-valued
characterisations of these kernels are shown in Table 2.2. The outranking
kernel {c} is more determined than {b} and is therefore the more credible
instance. Indeed, one can easily verify that the degrees of logical determi-
nation of the membership assertions for {c} are higher than those for {b}
(recall Definition 2.2). Concerning the outranked kernel {d, e}, it is worth-
while noting that alternative d belongs to it with certainty, where as the
belonging of alternative e to this kernel depends on the undetermined situa-
tion dSe. In the context of a progressive approach, if this latter outranking
becomes more true than false at a later stage, then e can be dropped from the
kernel without any regret. On the opposite, if the outranking becomes more
non-validated than validated, then e remains part of the then determined
kernel {d, e}.
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eY a b c d e

{b} -0.2 0.2 -0.2 -0.2 -0.2
{c} -0.2 -0.4 0.4 -0.4 -0.4

{d, e} -0.6 -0.2 -0.4 1.0 0.0

Table 2.2. Example 1: bipolar-valued characterisations of the kernels

In the past (see e.g. Bisdorff and Roubens (2003)), the authors have
promoted the most determined outranking kernel in a bipolar-valued out-
ranking digraph G̃ as a convenient choice recommendation in a progressive
choice problem.

Example 1 (continued) The reader can indeed easily verify in the per-
formance table of Example 1 (see Table 2.1) that alternative c is performing
better than alternative b. Alternative a has very contrasted performances
and d indisputably presents the worst performances.

However, recent well founded criticisms against the capacity of the out-
ranking kernel concept to generate in general outranking digraphs a sat-
isfactory and convincing choice recommendation led us to reconsider our
method. We therefore revisit in the next section the pragmatic foundations
of a progressive choice decision aiding methodology.

3 Foundations of the Rubis choice decision aiding methodology

First, we revisit the choice problematique in order to identify the type of
pragmatic decision aiding we are interested in. A brief comparison with the
classical Electre approach will underline similarities and differences with
the Rubis approach. Finally, we present new foundations for the choice
decision aiding methodology.

3.1 The choice problematique

From a classical OR point of view, the choice problem is the search for one
best or optimal alternative. From a decision aiding point of view, however,
the assistance we may offer the DM depends on the nature of the decision
aiding process we support.

Choice and elimination:
Following the tradition (Roy, 1985; Roy and Bouyssou, 1993), we call choice
problematique the category of decision problems consisting of the search for
a single best alternative. Symmetrically to this choice problematique, we
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define the elimination problematique as the category of decision problems,
whose objective it is to search for a single worst alternative.

The interest of considering both opposite problematiques will appear
later in Sections 3.3 and 4.3, where we show that, due to the intransitivity
of the outranking relation, certain sets of alternatives can be considered a
potential choice, as well as, a potential elimination recommendation (which
makes the recommendation ambiguous in both problematiques).

Following the symmetric design of the bipolar credibility calculus, both
the choice, and the elimination problematique can be tackled similarly. As
the first one is much more common, we will in the sequel exclusively focus
on the choice problematique.

Type of decision aiding process:
A decision aiding method is a particular approach to solve a given decision
problem. A choice recommendation is the output of such a decision aiding
method in the particular context of the choice problematique.

Following the nature of the decision aiding process, we have to distin-
guish between two general kinds of choice problems. On the one hand, choice
problems which require the single best alternative to be uncovered in a single
decision aiding step, and, on the other hand, choice problems which allow
to progressively uncover the single best alternative through the implemen-
tation of an iterative, progressive multiple step decision aiding process.

In the first case, a choice recommendation must always propose a single
best alternative, whereas in the second case, the choice recommendation is
a provisional advice that should, given the current available information,
propose all plausible candidates for a final solution. It is in fact a set of
potentially best alternatives which has to be refined via further interactions
with the DM. We have here to clearly distinguish between a current and
the eventual choice recommendation consisting ideally of the single best
alternative. If not, this last recommendation requires to be further analysed
by the DM himself, in view of determining his ultimate choice.

We focus in the sequel on the resolution of this progressive decision
aiding problem, in the tradition of the classical Electre methods.

3.2 The Electre choice decision aiding method

The progressive choice problem is extensively discussed and promoted in the
context of multiple criteria decision aiding in Roy and Bouyssou (1993) who
explain that it is important that the non-retained alternatives for the current
choice recommendation are left out for well-founded reasons, acknowledged
and approved by the DM. Instead of forcing the decision aiding procedure
to elicit a single best alternative at any cost, it is indeed preferable to obtain
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a set Y of potential candidates for the choice, as long as it can be plainly
justified on the basis of the currently available preferential information.

Starting from this methodological position, Roy defines two principles
for the construction of a choice recommendation. subset Y of X is a choice
recommendation if:

1. Each alternative which in not selected in Y is outranked by at least one
alternative of Y ;

2. The number of retained alternatives in the set Y is as small as possible.

The first principle counterbalances the second one. Indeed, it tends to keep
the cardinality of the choice recommendation high enough to guarantee that
no potentially best alternative is missed out. The second principle tends to
keep its cardinality as small as possible in order to focus on the single best
choice.

In the context of the Electre methods, Roy (1968, 1985) proposes to
use as provisional choice recommendation the concept of outranking kernel,
i.e., an independent and outranking set. One can indeed easily check that
this recommendation verifies both principles. According to Roy, a choice
recommendation has furthermore to be unique. The existence of a unique
outranking kernel is, however, only guaranteed when the digraph does not
contain any circuits at all (Berge, 1970). To avoid a possible emptiness
or multiplicity of outranking kernels, Roy (1968) initially proposed in the
Electre I method to consider the alternatives belonging to maximal cir-
cuits as ties. The retract along these ties results in an outranking digraph
that always admits a unique outranking kernel. The alternatives gathered
in such a maximal circuit might, however, not be all equivalent and behave
differently when compared to alternatives exterior to the circuit. Further-
more, the validation of the arcs of such a circuit may be problematic due
to imprecision in the data or the preferential information provided by the
DM. All in all, these difficulties in the clear interpretation of those circuits
led to the development of the Electre IS method (see Roy and Bouyssou
(1993)). There, robustness considerations allow to remove certain arcs of
the outranking digraph leading to a circuit-free graph containing a unique
outranking kernel. Note finally that in both methods, the outranking re-
lation is not viewed on a valued credibility scale. The double requirement
of sufficient concordance and absence of vetoes is used instead for a crisp
validation of pairwise outranking situations.

In this work we do not follow the same approach, even if the bipolar-
valued framework would allow it. We instead revisit the very foundations of
a progressive choice decision aiding methodology in order to discover how
the bipolar-valued concept of outranking kernel may deliver a satisfactory
choice recommendation without having to express doubts about a given
bipolar-valued characterisation of the outranking relation.
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3.3 New foundations for a progressive choice decision aiding
methodology

In this section we introduce five principles (two from the previous discussion
and three new ones) that the construction of a choice recommendation in a
progressive decision aiding method should follow.

P1: Non-retainment for well motivated reasons
Each non-retained alternative must be put aside for well mo-
tivated reasons in order to avoid to miss any potentially best
alternative.

A similar formulation is that each non-retained alternative must be consid-
ered as worse as at least one alternative of the choice recommendation.

P2: Minimal size
The number of alternatives retained in a choice recommendation
should be as small as possible.

This requirement is obvious when recalling that the goal of the choice prob-
lem is to find a single best alternative and that ultimately, a choice recom-
mendation containing a single element concludes the progressive decision
aiding process.

P3: Efficient and informative refinement
Each step of the progressive decision aiding must deliver an ef-
ficient and informative refinement of the previous recommenda-
tion.

The currently delivered recommendation should focus on new and previously
unknown preference statements, such that the progressive decision aiding
process can converge to a single choice recommendation as quickly and
efficiently as possible. Note that a progressive decision aiding process is not
required to go on until a single best alternative can be recommended. As
already mentioned, it may be up to the DM to determine the ultimate choice
from the eventual recommendation of the decision aiding.

Principle P3 is quite similar to the previous principle and appears to
make it redundant. In the following section, however, when implementing
the Rubis method, their strategic difference will become apparent.

P4: Effective recommendation
The recommendation should not correspond simultaneously to a
choice and an elimination.

This principle avoids the formulation of ambiguous recommendations, i.e.
both outranking and outranked sets of alternatives, which could appear in
intransitive and partial outranking relations. It is worthwhile noting that
in a situation where all decision alternatives are either considered to be
pairwisely equivalent or incomparable, no effective choice recommendation
can be made.
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P5: Maximal credibility
The choice recommendation must be as credible as possible with
respect to the preferential knowledge available in the current step
of the decision aiding process.

As the credibility degrees in the bipolar-valued outranking digraph repre-
sent the more or less overall concordance or consensus of the criteria to
support an outranking situation, it seems quite natural that in the case of
several potential choice recommendations, we recommend the one(s) with
the highest determinateness of the membership assertions.

As mentioned before, the first two principles are identical to those pro-
posed by Roy (see Section 3.2). However, alone they are not sufficient to
generate satisfactory choice recommendations. The three additional princi-
ples P3, P4, and P5 will show their operational value when translated in
Section 4 into properties in the bipolar-valued outranking digraph.

Definition 3.1. A choice recommendation which verifies the five principles
above is called a Rubis choice recommendation (RCR).

Our goal in the following section is to determine the properties in the
outranking digraph to which these five principles lead, and which graph
theory-related object these properties characterise as a convincing choice
recommendation.

4 Tackling the choice problem in the bipolar-valued outranking digraph

Let us note beforehand that obvious Rubis choice recommendations exist in
case the outranking relation is transitive, namely all maximal alternative(s).
However, as already mentioned earlier, the crisp outranking digraphs that
we obtain from the bipolar-valued characterisation of an outranking relation
are in general not transitive. This clearly motivates the necessity to find
a procedure which computes a choice recommendation verifying the five
principles for any possible reflexive binary relation.

Throughout this section, we illustrate our discourse via the following
didactic example3.

Example 2 Let G̃2(X2, S̃2) be a bipolar-valued outranking digraph, where

X2 = {a, b, c, d, e} and S̃2 is given in table 4.1 and the associated crisp
digraph G2(X,S) is represented in figure 4.1.

Let us now analyse the previously mentioned principles one by one and
present their translations in terms of the concepts presented in Section 2.
Note that all the directed concepts linked to an outranking property can
symmetrically be reused in an elimination problematique via the corre-
sponding outranked properties.

3 B.Roy, 2005, private communication.
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eS2 a b c d e

a 1.0 0.2 -1.0 -0.7 -0.8
b -0.6 1.0 0.8 1.0 0.0
c -1.0 -1.0 1.0 0.2 0.8
d 0.6 -0.6 -1.0 1.0 -0.4
e -1.0 -0.8 -0.4 -0.6 1.0

Table 4.1. Example 2: the bipolar-valued outranking relation

?

ec

b

a

d

Fig. 4.1. Example 2: the associated crisp digraph and an undetermined arc

4.1 Non-retainment for well motivated reasons (principle: P1)

In terms of the bipolar-valued outranking relation, principle P1 amounts to
saying that each non-retained alternative should be outranked by at least
one alternative of the choice recommendation.

R1: Outranking
An RCR4 is an outranking set in G̃(X, Ỹ ).

Example 2 (continued) The sets {a, b, e}, {b, c, d}, as well as {a, b, c} for
instance, are all outranking sets.

4.2 Minimal size and efficient and informative refinement (principles:
P2 and P3)

In this subsection we show that these two principles are closely linked. To
rewrite principle P2 of minimal size in the present context, we first need to
define some concepts related to graph theory.

Definition 4.1.

1. The outranking neighbourhood Γ+(x) of a node (or equivalently an al-
ternative) x of X is the union of x and the set of alternatives which are
outranked by x.

4
Rubis choice recommendation (see Definition 3.1).
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2. The outranking neighbourhood Γ+(Y ) of a set Y is the union of the
outranking neighbourhoods of the alternatives of Y .

3. The private outranking neighbourhood Γ+

Y (x) of an alternative x in a
set Y is the set Γ+(x) \ Γ+(Y \ {x}).

For a given alternative x of a set Y , the set Γ+

Y (x) represents the individual
contribution of x to the outranking quality of Y . If the private outranking
neighbourhood of x in Y is empty, this means that, when x is dropped from
this set, Y still remains an outranking set. From this observation one can
derive the following definition.

Definition 4.2. An outranking (resp. outranked) set Y is said to be irredun-
dant if all the alternatives of Y have non-empty private outranking (resp.
outranked) neighbourhoods.

The formal counterpart of the minimal size principle is therefore that of
irredundancy of the set.

Example 2 (continued) {a, b, e}, {b, c, d}, {b, e, d}, and {a, c} are irre-
dundant outranking sets. {a, b, c}, listed in the context of principle R1, is
not irredundant outranking because alternative b has an empty private neigh-
bourhood in this set.

Let us now switch to principle P3 (efficient and informative refinement),
whose primary objective is to avoid that, in the case of a provisional choice
recommendation, the DM may notice a best sub-choice without any further
analyses. We require therefore that a choice recommendation Y should be
such that the digraph restricted to the nodes of Y does not contain any
obvious sub-choice recommendation. Consequently, at each stage of the de-
cision aiding process, the provisional choice recommendation must focus on
new and previously undetermined or unknown preference statements. Let
us illustrate this with a short example.

Example 3 Consider the problem shown on the crisp digraph represented
in figure 4.2. Both highlighted sets Y1 = {a, b} and Y2 = {a, d, e, f, . . . , z}
verify the principles P1 and P2 as outranking irredundant sets. One would
be tempted to prefer Y1 to Y2 because of its lower cardinality. Nevertheless,
Y1 contains information which is already confirmed at this stage of the pro-
gressive search, namely that the statement “a outranks b” is validated. In
the case of the choice Y2, the next step of the search will focus on alter-
natives which presently are incomparable. If a further analysis step would
focus on the set Y1, then it is quite difficult to imagine that the DM will
be able to forget about the already confirmed validation of the statement “a
outranks b”. He will most certainly consider a as the choice, which might
however not be the best decision alternative, as a is not outranking any of
the alternatives of {d, e, f, . . . , z}.
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According to principle P3 we therefore recommend Y2 as a choice rec-
ommendation.

a

c b

d ze f . . .

Fig. 4.2. Example 3: An unstable ({a, b}) and a stable ({a, d, e, f, . . . , z}) set.

In view of the previous considerations and the output generated by prin-
ciples P1 and P2, it is quite natural to define the concept of stability as
follows:

Definition 4.3. An outranking (resp. outranked) set Y in G̃(X, Ỹ ) is said

to be stable if and only if the induced subgraph G̃Y (Y, S̃|Y ) does not contain
any irredundant outranking (resp. outranked) subset.

The outranking (resp. outranked) kernels (see Definition 2.5) of an out-
ranking digraph verify this property of stability. Nevertheless, as already
mentioned in Section 3.2 and as it is shown in the following property, the
existence of an outranking (resp. outranked) kernel is not guaranteed in an
outranking digraph.

Property 4.4. If a digraph G̃(X, S̃) has no outranking (resp. outranked) ker-
nel, it contains a chordless circuit of odd order.

Proof. This property represents the contraposition of Richardson’s general
result: If a digraph contains no chordless circuit of odd order, then it has
an outranking (resp. outranked) kernel (see Richardson, 1953). ⊓⊔

The outranking kernel gives indeed a potential choice recommendation in
case the outranking digraph does not contain any chordless circuit of odd
order. Consider now the case where a potential choice recommendation, re-
sulting from principles P1 and P2, consists in a chordless circuit Y = {a, b, c}
of order 3 such that aSb, bSc and cSa. Such a choice recommendation is
clearly neither a kernel nor is it a stable recommendation. Nevertheless,
it may be an interesting provisional recommendation because it presents
three alternatives to the DM which do not contain obvious information on
the possible single choice at this step of the progressive search. In fact, a, b
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and c can be considered as equivalent potential candidates for the choice in
the current stage of the decision process.

Neither the concepts of stability and irredundancy nor that of outranking
kernel are in fact sufficient for guiding the search for a choice recommen-
dation in a general outranking digraph. In the first case, potentially inter-
esting choice recommendations are left out and in the latter case, nothing
guarantees the existence of a kernel in an outranking digraph. In order to
overcome these difficulties, we introduce the concept of hyperindependence,
an extension of the independence property discussed in Section 2.3.

Definition 4.5. A set Y is said to be (strictly) hyperindependent in G̃
if it consists of chordless circuits of odd order p ≥ 1 which are (strictly)
independent of each other.

Note that in Definition 4.5 above, singletons are assimilated to chordless
circuits of (odd) order 1. Principles P2 and P3 can now be translated into
the following formal property:

R2: Hyperindependence
An RCR is a hyperindependent set in G̃(X, Ỹ ).

As a direct consequence, we can define the concept of hyperkernel.

Definition 4.6. A hyperindependent (resp. strictly hyperindependent) out-
ranking (resp. outranked) set is called an outranking (resp. outranked) hy-
perkernel (resp. determined hyperkernel).

Example 2 (continued) Set {a, b, d, e} (see Figure 4.1) is an outranking
hyperkernel. The undetermined outranking relation between b and e implies
that the set is not strictly hyperindependent. Note here that this obvious
potential choice recommendation would have been left out if the search was
restricted to outranking kernels.

In case the outranking digraph does not contain any chordless circuits of
odd order 3 and more, the outranking kernels of the digraph deliver po-
tential choice recommendations verifying the two first Rubis principles. In
the general case however, the RCR will consist of at least one outranking
hyperkernel of the digraph.

4.3 Effective and maximally credible recommendation (principles P4

and P5)

In order to translate principle P4 (effective recommendation), we introduce
the concept of strict outranking set. Recall that one can associate an out-
ranking (resp. outranked) set Y with a bipolar-valued characterisation Ỹ +

(resp. Ỹ −). It may happen that both kernel characterisations are solutions
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of the respective kernel equation systems of Proposition 2.6. In order to
determine in this case whether Y is in fact an outranking or an outranked
set, it is necessary to specify which of its bipolar-valued characterisations is
the more determined.

We extend therefore the concept of determinateness of propositional
statements (see Definition 2.2) to bipolar-valued characterisations of sets.

Definition 4.7. The determinateness D(Ỹ ) of the bipolar-valued character-

isation Ỹ of a set Y is given by the average value5 of the determinateness
degrees D(Ỹ (x)) for all x in X.

We can now define the concept of strictness as follows:

Definition 4.8.

1. A set Y which is outranking and outranked with the same determinate-
ness, i.e., D(Ỹ +) = D(Ỹ −) is called a null set.

2. A set Y for which D(Ỹ +) > D(Ỹ −) (resp. D(Ỹ −) > D(Ỹ +)) is called
a strict outranking set (resp. outranked set).

One can now translate the principle of effectiveness P4 into the following
formal property:

R3: Strict outranking
An RCR is a strict outranking set in G̃(X, Ỹ ).

This concept allows to solve the problem raised by the following example.

Example 4 Consider the crisp outranking digraph represented on figure 4.3 6

(for the sake of simplicity we suppose that all the arcs which are drawn (resp.
not drawn) represent a credibility of the outranking of 1 (resp. −1)). {a}
and {c} are both irredundant outranking sets with the same maximal de-
terminateness 1. However, one can easily see that alternative a compares
differently with b than c does. Set {c} is clearly a null set. If we now require
the three properties R1, R2 and R3 to be verified, only the set {a} can be
retained as a potential choice recommendation.

An immediate consequence of the effectiveness principle is that a bipolar-
valued outranking digraph, which is completely symmetrical, i.e., with equal
credibility degrees for all xSy and ySx, does not admit any RCR. Every
outranking set will automatically be a null set. Indeed, without any asym-
metrical preferential statements, it is impossible to derive any preferential
discriminations that would support a convincing choice recommendation.

5 In view of the bipolar definition of the global outranking and concordance indexes
(Formulae 2.1 and 2.2), which solely balance rational significance weights, the mean
operation is meaningful on the determinateness degrees.

6 Inspired from Roy and Bouyssou (1993).
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a c

b

Fig. 4.3. Example 4: illustration of the necessity of Property R3

eY a b c d e D(eY )

{c} -0.2 -0.4 0.4 -0.4 -0.4 0.36 RCR
{b} -0.2 0.2 -0.2 -0.2 -0.2 0.20 -

Table 4.2. Example 1: Illustration of the maximal credibility principle

Finally, principle P5 (maximal credibility) involves again the idea of
determinateness of bipolar-valued sets (see Definition 4.7). In the case of
multiple potential choice recommendations, we recommend the most deter-
mined one, i.e., the one with the highest determinateness. Let Ỹ be the set
of sets verifying R1, R2 and R3 in G̃(Y, S̃).

R4: Maximal determinateness
An RCR is a choice in G̃(X, S̃) that belongs to the set

Ỹ∗ =
{
Ỹ ′ ∈ Ỹ|D(Ỹ ′) = max

eY ∈ eY

D(Ỹ )
}
. (4.1)

Example 1 (continued) Recall that in this example (see Section 2.2),
we determined two outranking kernels which were potential choice recom-
mendations (see Table 4.2). The determinateness of the kernel {c} (0.36) is
significantly higher than that of kernel {b} (0.20). Following property R4,
we recommend in this case the first solution, namely kernel {c}.

In this section, we have presented the translation of the five Rubis prin-
ciples into properties of sets of alternatives defined in the bipolar-valued out-
ranking digraph. Detailed motivations for these principles have been given.
They lead quite naturally to the new concept of outranking hyperkernel of
an outranking digraph. Consequently, a maximally determined strict out-
ranking hyperkernel, which by construction verifies all five principles, gives
a Ruby choice recommendation.

The following section focuses on the construction of the hyperkernels and
proposes a general algorithm for computing the Rubis choice recommenda-
tions in a given (non-symmetrical) bipolar-valued outranking digraph.
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5 Computing the Rubis choice recommendation

We start by presenting an approach which allows to determine the hyper-
kernels of an outranking digraph before presenting some of their properties.

5.1 Determination of the hyperkernels

If G̃(X, S̃) contains chordless circuits of odd order (> 3), the original out-
ranking digraph is modified into a digraph that we will call the chordless-
odd-circuits-augmented (COCA) outranking digraph G̃C(XC, S̃C). Intuitively,
the main idea is to “hide” the problematic circuits behind new nodes which
are added to the digraph in a particular way. This may appear to be a
problematic perturbation of the original information. Nevertheless, as we
will see later, such a transformation does not affect the original problem
but only helps to find more suitable solutions.

The procedure to obtain the COCA digraph G̃C is iterative. The initial
digraph is written G̃0(X0, S̃0), and is equal to G̃(X, S̃). At step i, the set of
nodes becomes Xi = Xi−1 ∪ Ci, where Ci is a set of nodes representing the

chordless circuits of odd order of G̃i−1(Xi−1, S̃i−1). These nodes are called

hypernodes. The outranking relation S̃i−1 is augmented by links between
the nodes from Xi−1 and those from Ci in the following way (the resulting

relation is written S̃i)
7:

∀Ck ∈ Ci





S̃i(Ck, x) =

⋃
y∈Ck

S̃i−1(y, x) ∀x ∈ Xi−1 \ Ck ,

S̃i(Ck, x) = +1 ∀x ∈ Ck ,
(5.1)

∀x ∈ Xi−1, Ck ∈ Ci





S̃i(x,Ck) =

⋃
y∈Ck

S̃i−1(x, y) if x /∈ Ck ,

S̃i(x,Ck) = +1 if x ∈ Ck .
(5.2)

The iteration is stopped at step r for which |Xr| = |Xr+1|. We then define

G̃C(XC , S̃C) as the digraph G̃r(Xr, S̃r). As the order of the original digraph

G̃ is finite, the number of circuits it may contain is also finite. Therefore, the
iteration is a finite process. Note that this iterative approach is necessary
because of the fact that new chordless circuits of odd order may appear
when new hypernodes are added to the digraph.

The outranking (resp. outranked) hyperkernels of G̃(X, S̃) are then de-
termined by searching the classical outranking (resp. outranked) kernels of

G̃C(XC , S̃C) (Bisdorff, 1997, 2006a).

7 For the sake of simplicity, an element Ck of Ci will represent a node of Xi as well as
a the set of nodes of Xi−1 representing the circuit Ck.
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5.2 Properties of the COCA outranking digraph

This extension of the digraph has two very important properties.

Property 5.1. The outranking (resp. outranked) kernels of G̃(X, S̃) are also

the outranking (resp. outranked) kernels of G̃C(XC , S̃C).

Proof. Let us suppose that G̃ contains at least one odd chordless circuit.
Let Y be an outranking kernel of G̃ (the case of the outranked kernels can
be treated similarly). We must prove that Y is also an outranking kernel of

G̃C .
First, the elements of Y are independent in G̃ and G̃C because no relation

is added between elements of X in XC . Secondly, as Y is an outranking set
in G̃, each element of X \ Y is outranked by at least one element of Y . In
particular, if Ck is an odd chordless circuit of X , each node of Ck is also
outranked by at least one element of Y (in X). Due to the special way S̃C

is built, the node representing Ck in XC is also also outranked by at least
one element of Y . ⊓⊔

Property 5.2. The digraph G̃C(XC , S̃C) contains at least one outranking
(resp. outranked) hyperkernel.

Proof. Following from the construction principle of the COCA digraph (see
Equations 5.1 and 5.2), a hypernode inherits the outranking (outranked)
characteristics of its corresponding odd chordless circuit. A direct conse-
quence of this inheritance is that the outranking, as well as the outranked,
neighbourhood of the odd chordless circuit are inherited by the hypern-
ode. Furthermore, the individual nodes of each odd chordless circuit are
outranked by and are outranking the hypernode with a credibility of +1
(indifference).

Let us now suppose that G̃(X, S̃) contains no outranking kernel (a simi-
lar proof can be given for the outranked kernels). According to Property 4.4

this means that G̃(X, S̃) contains at least one odd chordless circuit. One can
easily understand that if the structure of the digraph requires an element
x ∈ X of an odd chordless circuit Ck to be in an irredundant outranking
set Y , due to the odd number of elements of that particular circuit, one
of the two direct neighbours of x in the circuit will also be added to Y .
Consequently, Y cannot be kernel in that situation.

Due to the particular construction of the associated COCA digraph G̃C ,
there exists, for each odd chordless circuit, a hypernode which inherits its
properties, and which is considered as indifferent to it. Consequently, each
element of each odd chordless circuit in G̃C is outranked by, and is out-
ranking, a hypernode. Furthermore, each of the hypernodes has the same
outranking and outranked neighbourhoods as its corresponding odd chord-
less circuit.
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Finally, the element x of the odd chordless circuit Ck will no longer be
problematic in the construction of the outranking kernels of G̃C because
there exists at least one hypernode which is equivalent to x, and which
inherits from the outranking neighbourhoods of Ck. Consequently Ck (as a
hypernode) is added to Y instead of x. ⊓⊔

Finally we present and discuss the effective computing of a Rubis choice
recommendation.

5.3 The RCR algorithm

Algorithm

Input: G̃(X, S̃),

1. Construct the associated COCA digraph G̃C(XC , S̃C),

2. Extract the sets K̃+ and K̃− of all outranking and outranked hyperker-
nels from G̃C,

3. Eliminate the null kernels from K̃+,
4. Rank the elements of K̃+ by decreasing logical determinateness,

Output: The first ranked element(s) in K̃+.

The first step of the RCR (Rubis choice recommendation, see Definition
3.1) algorithm is by far the most difficult to achieve, as the number of odd
chordless circuits in a bipolar-valued outranking digraph might be huge. To
study this operational difficulty, we have compiled a sample of 1000 bipolar-
valued outranking digraphs generated from performances of 20 alternatives
evaluated randomly on 7 to 20 criteria with random weights distributions
and random thresholds. In nearly 98% of the sample, the time to compute
the COCA digraph on a standard desktop computer is less than a second.
In one case, we observe an execution time of around 30 seconds (due to high
number of odd chordless circuits in the digraph).

number of odd frequency
chordless circuits # rel. (in %) cum. (in%) histogram

0 735 73.57 73.57 **************************
1 116 11.61 85.19 ****
2 65 6.51 91.69 **
3 25 2.50 94.19
.
..

.

..
.
..

.

..
9 1 0.10 99.00

Table 5.1. Number of odd chordless circuits in random bipolar-valued outranking di-
graphs of order 20 (1000 observations).
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In Table 5.1, we note that nearly 75% of the sample digraphs do not
admit any odd chordless circuit at all. In 99% of the observations less than
10 hypernodes are added to the original outranking digraph.

The second step of the RCR algorithm concerns the extraction of hyper-
kernels from the COCA digraph. From a theoretical point of view, this step
is well-known to be computationally difficult (Chvátal, 1973). However, this
difficulty is directly linked to the arc-density, i.e., the relative size of the di-
graph. Indeed, only very sparse digraphs, showing an arc-density lower than
10% in the range of digraph orders which are relevant for the choice decision
aiding problematique (10-30 alternatives), may present difficulties for the
search of kernels. For the test sample of 1000 random outranking digraphs
of order 20, we observe a very high mean density of 82.6% with a standard
deviation of 5.7%. Consequently, determining hyperkernels is in general a
task which is feasible in a very reasonable time. Indeed, the mean execution
time with its standard deviation for this step of the algorithm are around
a thousandth of a second on a standard desktop computer.

Finally, eliminating the null hyperkernels and sorting the strict outrank-
ing hyperkernels in decreasing order of determinateness is linear in the order
of the digraph and involves no computational difficulty at all.

Let us illustrate the RCR algorithm on the second example of this paper
(see Section 4).

Example 2 (continued) The bipolar-valued outranking digraph of this
example (see Figure 4.1) contains a chordless circuit of order 3, namely

{a, b, d}. The original digraph G̃ is extended to the digraph G̃C which con-
tains a hyper-node representing {a, b, d}. The corresponding outranking di-
graph admits an outranking kernel {a, c} and a hyperkernel {{a, b, d}, e}
which is both outranking and outranked, but not with the same degree of de-
terminateness (see Table 5.2). The first one is significantly more determined
than the second one. Consequently, the Rubis “choice recommendation” is
{{a, b, d}, e}, where alternative e is in an undetermined situation.

Let us finish this last section by indicating that all the examples of this
paper have been computed with the free Python module digraphs (Bisdorff,
2006b) which allows to manipulate bipolar-valued digraphs and to determine
the RCR from a given performance table.

Concluding remarks

In this paper we defined new operational instruments, namely the strict out-
ranking hyperkernel and the chordless circuits augmented digraph, which
contribute to enrich the set of decision aiding tools for the choice problema-
tique. New concepts, such as the Rubis choice recommendation, defined on
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eSC a b c d e {a, b, d}

a 0.1 0.2 -1.0 -0.7 -0.8 1.0
b -0.6 1.0 0.8 1.0 0.0 1.0
c -1.0 -1.0 1.0 0.2 0.8 0.2
d 0.6 -0.6 -1.0 1.0 -0.4 1.0
e -1.0 -8 -0.4 -0.6 1.0 -0.6

{a, b, d} 1.0 1.0 0.8 1.0 0.0 1.0 D

{{a, b, d}, e}+ -0.6 -0.6 -0.6 -0.6 0.0 0.6 0.5

{a, c} 0.2 -0.2 0.2 -0.2 -0.2 -0.2 0.2

{{a, b, d}, e}− 0.0 0.0 0.0 -0.6 0.0 0.6 0.2

Table 5.2. Example 2: the associated COCA digraph with the bipolar-valued character-
isations of its outranking (+) and outranked (-) hyperkernels.

a bipolar-valued outranking digraph, adapt and extend the traditional the-
oretical and pragmatic framework in which the choice problem is generally
tackled. Some topics remain of course untouched. In particular, the authors’
future challenge will be to illustrate with a successful Rubis decision aiding
practice, that a DM may indeed enhance his actual choices.

Acknowledgements: The authors would like to thank Bernard Roy and
an anonymous referee for their helpful comments.

References

Belton, V. and Stewart, T. (2002). Muliple Criteria Decision Analysis: An Integrated
Approach. Kluwer Academic, Dordrecht.

Berge, C. (1970). Graphes et hypergraphes. Dunod, Paris.
Bisdorff, R. (1997). On computing kernels from l-valued simple graphs. In Proceedings of

the 5th European Congress on Intelligent Techniques and Soft Computing, volume 1,
pages 97–103. EUFIT’97, Aachen.

Bisdorff, R. (2000). Logical foundation of fuzzy preferential systems with application to
the electre decision aid methods. Computers & Operations Research, 27:673–687.

Bisdorff, R. (2002). Logical foundation of multicriteria preference aggregation. In Bouys-
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