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ABSTRACT

Transcription factor binding specificity is crucial for
proper target gene regulation. Motif discovery al-
gorithms identify the main features of the bind-
ing patterns, but the accuracy on the lower affin-
ity sites is often poor. Nuclear factor E2-related
factor 2 (NRF2) is a ubiquitous redox-activated
transcription factor having a key protective role
against endogenous and exogenous oxidant and
electrophile stress. Herein, we decipher the effects
of sequence variation on the DNA binding sequence
of NRF2, in order to identify both genome-wide bind-
ing sites for NRF2 and disease-associated regu-
latory SNPs (rSNPs) with drastic effects on NRF2
binding. Interactions between NRF2 and DNA were
studied using molecular modelling, and NRF2 chro-
matin immunoprecipitation-sequence datasets to-
gether with protein binding microarray measure-
ments were utilized to study binding sequence vari-
ation in detail. The binding model thus generated
was used to identify genome-wide binding sites for
NRF2, and genomic binding sites with rSNPs that
have strong effects on NRF2 binding and reside on
active regulatory elements in human cells. As a proof
of concept, miR-126–3p and -5p were identified as
NRF2 target microRNAs, and a rSNP (rs113067944)
residing on NRF2 target gene (Ferritin, light polypep-
tide, FTL) promoter was experimentally verified to
decrease NRF2 binding and result in decreased tran-
scriptional activity.

INTRODUCTION

Transcription factors bind to specific sequences within the
genome, but in most cases detailed information about the
sequences does not exist (1). Nuclear factor E2- related fac-
tor 2 (NRF2) is a ubiquitously expressed transcription fac-
tor and a key regulator of cellular redox homeostasis (2).
In addition to antioxidant and detoxification genes, NRF2
regulates genes involved in the metabolic control of the cell,
and genes involved in the repair and degradation of dam-
aged macromolecules (2). Experimental studies using ani-
mal models of disease show a protective role of NRF2 in
age-related degenerative and inflammatory diseases (3,4).
In addition, the gene encoding NRF2, NFE2L2, has been
shown to be highly polymorphic and these functional risk
alleles and haplotypes have been identified in various hu-
man disorders (4). However, NRF2 binding sequence vari-
ation has been less extensively studied. Although the con-
sensus sequence for the NRF2 binding antioxidant response
element (ARE) sequence has been previously identified (5–
9), a more thorough analysis of the allowed variance on
the binding sequence is prerequisite for predicting the func-
tional binding sites (Figure 1A) and the effects of disease-
associated sequence polymorphisms on the transcription
factor binding more accurately (Figure 1B).

Genome-wide association studies (GWAS) provide infor-
mation that associate variations on genomic loci with hu-
man diseases and traits (10). However, a genomic locus as-
sociated with a certain disease in GWAS typically contains
dozens of variants leaving the actual disease-causing vari-
ant(s) and the mechanisms for the increased disease suscep-
tibility unfound (11). The majority of heritable genetic risk
factors for most common diseases remain elusive (12), sug-
gesting that the genetic architecture for many traits is poly-
genic and that hundreds of genetic variants play a causal
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Figure 1. Cellular stress response and regulatory SNPs. (A) In basal conditions, NRF2 is bound by KEAP1 inhibitory complex, polyubiquitinated by the
Cul3-based E3 ligase (CUL3) complex and rapidly degraded by the proteasome. Only a small proportion of NRF2 is able to avoid proteasomal degradation
and migrate to the nucleus to mediate basal Antioxidant Response Element (ARE)-dependent gene expression thereby maintaining cellular homeostasis.
Under cellular stress, KEAP1 is modified through cysteine residues leading to inhibition of proteasomal degradation and accumulation of NRF2 in the
nucleus. NRF2 binds to AREs together with small MAF proteins (MAFF, MAFG and MAFK) and drives the expression of NRF2 target genes such
as NQO1, HMOX1 and FTL. (B) Single nucleotide polymorphisms (SNPs) in transcription factor binding sites may alter the binding properties of a
transcription factor either by destroying, creating, weakening or enhancing a binding site and thus affecting target gene regulation.

role in a multitude of traits (13,14). About 89% of disease-
associated variations reside in intronic or intergenic regions
(15), making it difficult to pinpoint the direct molecular
consequences of the variants for human physiology. Given
that genetic risk variants commonly target cis-regulatory
elements, mainly enhancers, in a disease-, tissue- and cell-
specific manner (16–24), it has been suggested that the ma-
jor contributors predisposing to common diseases are vari-
ants called regulatory SNPs (rSNPs) that modulate bind-
ing of transcription factors (11). Indeed, enhancer-targeting
disease-associated loci commonly harbour genetic variants
that map to transcription factor binding sites and modu-
late the binding affinity for transcription factors with direct
consequences on target gene expression (16,25–27).

In this study, we have utilized molecular dynamics (MDs)
simulations and custom-made protein binding microarrays
combined with publicly available chromatin immunopre-
cipitation coupled with deep sequencing (ChIP-seq) data
to study the binding preferences of NRF2 in order to cre-
ate a flexible sequence model that captures subtle sequence
changes affecting binding strength of NRF2 more precisely
than previously published position weight matrix (PWM)
model (9). This new model has been applied to the search of
putative genome-wide NRF2 binding sites, and the search
of binding sites bearing genetic variations that lead to dras-
tic changes in NRF2 binding, and consequently, in target
gene regulation (Figure 2). To illustrate the feasibility of this
approach in finding putative target genes and causal rSNPs,
miR-126–3p and -5p were shown to be NRF2 target genes,
and a rSNP found on previously identified NRF2 target
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Figure 2. Project outline.

gene (Ferritin, light polypeptide, FTL) promoter was found
to confirm the correlation between predicted and measured
NRF2 binding and consequent transcriptional activity. The
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data presented here is the first step towards a model that al-
lows prediction of NRF2-regulated gene expression based
on regulatory genetic code.

MATERIALS AND METHODS

Molecular modelling

Comparative modelling. The x-ray structure of v-maf
avian musculoaponeurotic fibrosarcoma oncogene ho-
molog G (MafG) homodimer complexed to DNA (5′-
CTGATGAGTCAGCAC-3′, [PDB ID: 3A5T]) determined
to 2.8 Å resolution (28) was used as a template to model
the NRF2-MAFG-DNA (5′-CAGTGACTCAGCAG-3′),
MAFG-NRF2-DNA (5′-CAGTGACTCAGCAG-3′),
MAFG-MAFG-DNA (5′-CAGTGACTCAGCAG-3′)
and NRF2-NRF2-DNA (5′-CAGTGACTCAGCAG-3′)
complexes. In the modeling, the TGATGAGTCAGCAC
sequence of the template was replaced with the target
sequence CAGTGACTCAGCAG. In the case of base
substitution, the Leap programme of the AMBER package
( AMBER 14 (29), University of California, San Francisco)
was used to build the coordinates of the new base by
using the common atoms of the two bases. Thus, only the
coordinates of the atoms not shared by the two bases were
built. The NRF2 of the models was built using correspond-
ing MAF monomer of the x-ray structure as a template
and the Prime module of Schrödinger suite (Schrödinger
Release 2014–3: Maestro, version 9.9.013; Prime, version
3.7, Schrödinger, LLC, New York, NY, 2014).

Molecular dynamics simulations. Crystallographic water
molecules of the x-ray structure were included in the
simulation system when they did not overlap protein or
DNA atoms. For the MD simulations, the NRF2-MAFG-
DNA/MAFG-NRF2-DNA complexes were solvated by
TIP3P water molecules (∼30 000) in a periodic box with
dimensions of 92 × 62 × 122 Å. The water molecules of
systems were first energy-minimized for 1000 steps, heated
to 300 K in 60 ps and equilibrated by 100 ps at a constant
temperature of 300 K and constant volume. After that, the
simulation systems were minimized for 1000 steps, the tem-
perature of the system were increased to 300 K in 80 ps
and equilibrated for 20 ps. The production simulation of
10 ns at a constant temperature of 300 K and pressure (1
atm) was then started. In the simulations, the electrostat-
ics were treated using the particle-mesh Ewald method. A
timestep of 2.0 fs was used and bonds involving hydrogen
atoms were constrained to their equilibrium lengths. From
the production simulations, structures were saved every 1.0
ps for analyses. The MD simulations were done using the
SANDER and PMEMD programmes of the AMBER 14
package. In all the simulations, the Duan et al. (30) force
field (parm99 + frcmod.ff03 parameter files of AMBER)
was used. The stability of the structures was checked from
the root-mean-square deviation curves of the backbone C�
calculated with the cpptraj (31). Figures were created using
the PyMOL programme (The PyMOL Molecular Graphics
System, Version 1.7.0.5, Schrödinger, LLC).

ChIP-seq analysis

ChIP-seq datasets GSE37589 (32) and GSM1208659 were
downloaded from GEO. Reads were aligned to hg19 us-
ing Bowtie (-v 2 -m3 -k 1 –best) and peak detection per-
formed with QuEST (33). Specifically, the following settings
were used: Mappable genome fraction: 0.8; KDE band-
width: 30. ChIP seeding fold enrichment: 15; ChIP exten-
sion fold enrichment: 3; ChIP-to-background fold enrich-
ment: 3. Known satellite DNA regions were removed us-
ing a track available via UCSC Table Browser. De novo
DNA motif analysis was performed using command line
version of MEME-ChIP (34), using parameters -mod zoops
-nmotifs 4 -minw 8 -maxw 20 -revcomp -p 5. FIMO (34)
tool and MEME-ChIP results were used to extract individ-
ual motif occurrences to cover whole genome using param-
eters –motif 1 -pthresh 0.0001. R 2.14 and BEDtools (35)
were used to process files.

Expression vectors

Expression vectors for MAFF and MAFK were cloned
as previously described in (36) for NRF2 and MAFG. In
short, MAFF and MAFK cDNAs (German Research Cen-
ter for Genome Research, Germany) were polymerase chain
reaction (PCR) amplified and cloned to the HindIII and
EcoRI restriction sites of the respective pcDNA3 vectors
with the Kozac consensus sequence. The primers used for
the cloning are listed in Supporting Material: Table S1.
Constructs were verified by sequencing.

In vitro translation

Human NRF2, MAFF, MAFG and MAFK proteins were
generated by coupled in vitro transcription/translation
system using their respective pcDNA3-based cDNA
expression constructs and TNT Quick Coupled
Transcription/Translation kit as recommended by the
supplier (Promega, Madison, WI, USA).

Oligonucleotide anneal

Double-stranded DNA oligonucleotides were constructed
of three separate single-stranded oligonucleotides (Sigma-
Aldrich, St Louis, MO, USA): a biotin-tagged universal
primer (17 nt), oligonucleotide containing the variable ARE
(33 nt) and a complementary oligonucleotide for the former
two oligonucleotides (50 nt). Oligonucleotides are listed in
Supporting Material: Tables S2 and S3. Multi Core Buffer
(Promega, Madison, WI, USA) containing 5 �l of each of
the three oligonucleotides (100 �M) were was first heated
at 85◦C on a heat block for 5 min. Heat block was then
switched off and the annealing reactions were slowly cooled
to RT on the block.

Protein binding microarrays

Glass slides were activated with pre-polymerized glu-
taraldehyde and coated with avidin (37). Oligonucleotides
and controls (positive control [NQO1.ARE], negative con-
trols [Scramble oligonucleotides and Phosphate Buffered
Saline; PBS]) were diluted 1:20 in PBS. The dilutions were
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dispensed in a 384-well plate (polypropylene plate No
267462, Nunc, N.Y, USA) and printed onto the avidin-
coated glass slides with a microarray printer (BioRobotics
MicroGrid II, BioRobotics Ltd, Cambridge, UK). After
two days incubation at RT protected from light and mois-
ture, the array slides were washed with TE-buffer (10 mM
Tris–HCl, 1 mM ethylenediaminetetraacetic acid (EDTA),
pH 8.0) and incubated in SYBR Green I solution (1:10 000
in TE buffer, Sigma-Aldrich, St Louis, MO, USA) for 5 min
at RT protected from light. The slides were washed with
TE-buffer and deionized water, dried with compressed air
and scanned at 488 nm using ScanArray 5000 (GSI Lumon-
ics, Packard Bioscience, USA). SYBR Green I signal serves
as a measure of the amount of printed oligonucleotides on
each spot, and is used during data analysis for normaliza-
tion. After scanning, the slides were incubated in 100 mM
NaCl with 2.5 volumes of ethanol for 20 min at RT and
washed with 70% ethanol and deionized water and dried
by compressed air. The slides were incubated for 10 min
at RT in a blocking solution (0.5% bovine serum albumin
(BSA) in PBS). After washing with Phosphate Buffered
Saline with Tween 20 (PBST) and drying by compressed air,
nine parts of MAFG was added to the 11 parts of NRF2
in a tube and the protein solution was added on the arrays
(10 �l/array) for 10 min in RT. The unbound proteins were
removed by washing the slides with PBST. NRF2 antibody
(sc-722, Santa Cruz Biotechnology, USA) was diluted 1:500
(2 �g/ml) in PBS and 1 ml solution was added on the ar-
rays. After 10 min incubation at RT, the slides were washed
with PBST. Fluorescence labelled secondary antibody anti-
rabbit IgG Alexa Fluor 546 (goat polyclonal, Invitrogen,
USA) was diluted 1:1000 (2 �g/ml) in PBS and 1 ml of so-
lution was added to each slide. Slides were incubated for
10 min at RT followed by washes with PBST and deion-
ized water. Finally, the slides were dried by compressed air
and scanned by ScanArray 5000 (546 nm laser, GSI Lu-
monics, USA). Fluorescence intensities were analysed using
Spotfinder software (http://www.tm4.org/spotfinder.html).

Data analysis for protein binding microarrays

The spot intensity data was analysed using a custom
pipeline developed in R. First, outlier spots, defined as de-
viating more than 2 SDs from the z-scored mean for the
respective oligonucleotide across all the arrays, were de-
tected separately from both SYBR Green I and NRF2 in-
tensities and eliminated globally from both intensities. In-
dividual arrays with now more than 20% missing values
were discarded entirely. Thereafter, the NRF2 intensities
were corrected for background within each array by divid-
ing them, per spot, by the relative SYBR Green I intensi-
ties, and normalized across all arrays using the ‘cyclicloess’
method of the normalizeBetweenArrays function from the
‘limma’ R/Bioconductor package. The lower limit of detec-
tion, defined as the 90% percentile of the combined scram-
bled oligonucleotide intensities, was next subtracted from
all normalized intensities, and all intensities now falling be-
low zero were replaced by zero to avoid falsely inflating es-
pecially the means of weakly binding oligonucleotides. Fi-
nally, oligonucleotide intensities were expressed as relative
to the mean of the reference oligonucleotide, and subjected

to the final round of outlier detection and removal with the
same ±2 SD limit as above.

Candidate NRF2 binding AREs and the search for clinically
significant rSNPs

To facilitate the genome-wide search for SNPs affecting
NRF2-MAFG binding the explicit 11 nt oligonucleotides
measured or predicted to bind NRF2 were defined as fol-
lows: the 11 nt core sequence was divided into four ‘motifs’
with suggested inter-dependency (positions 1–4, 5, 6–8 and
9–11), and all possible nucleotide combinations within each
motif that might therefore contribute positively to bind-
ing were generated (5, 4, 57 and 30 combinations, respec-
tively). All 34200 possible permutations within each mo-
tif were then formed, supplementing them with additional
sequences (the reference, all possible 33 single nucleotide
variants and a few explicit binder sequences) and eliminat-
ing a few explicit non-binder sequences, yielding the initial
set of 34224 unique 11 nt possible binder sequences. For
these, predicted binding values were calculated as illustrated
in Figure 6. All sequences with more than four variations
were discarded as likely non-binders, leaving 5253 sequences
that were then converted to fasta format and used as the
query on a Blast search of a database of short sequences
(21 nt for the 1 nt variants, centred on the variant) repre-
senting all known alleles in the dbSNPv137 with essential
command line arguments ‘blastn -task megablast -strand
both -word size 11 -dust no’. For details on the genera-
tion of the allelic dbSNPv137 database and its conversion
to Blast source database, see Supporting Material. Then,
to focus on SNPs with potential clinical consequences, all
perfect-match Blast hits were filtered to obtain a total of
190 698 dbSNPv137 SNPs that were among (i) the 49 065
unique SNPs compiled from the NCBI SNP subsets for
OMIM (17 365 rsIDs) and Clinical/LSDB Submissions (34
978 rsIDs) and the UCSC GWAS SNP catalogue (12 723
rsIDs), or (ii) the 180 500 proxy SNPs in significant linkage
disequilibrium (LD) with and fairly proximal to any of the
point i) SNPs (R2 ≥ 0.8, distance <100 kb) using the SNAP
online tool (http://www.broadinstitute.org/mpg/snap/), but
(iii) not among exonic SNPs (defined as having value ‘ex-
onic’ in the ‘fxn-class’ field of the flat SNP annotations).
To simplify the data set, for each rsID all allele––binder se-
quence pairs were removed but the one that had the highest
predicted binding value. Further, the 11 nt sequence along
either strand of any of the non-binding alleles that gave the
highest predicted binding value was chosen as the conserva-
tive basis for calculating the maximal difference in predicted
binding value between the binding and non-binding alleles
of an rsID.

Locations of genome-wide putative NRF2 binding sites
in hg19 were collected into a BED6-formated file and split
to five subsets representing high to low categories of pre-
dicted binding strength: 16 576 ‘Strong’ (relative binding
>0.9); 120 252 ‘Medium to Strong’ (relative binding ≤0.9
but >0.67); 400 229 ‘Medium’ (relative binding ≤0.66 but
>0.5); 656 194 ‘Medium to Weak’ (relative binding ≤0.5
but >0.4); and 1 099 564 ‘Weak’ (relative binding ≤0.4 but
>0.3) binding sites were predicted. The subset of high bind-

http://www.tm4.org/spotfinder.html
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ing strength is included as example (Supporting Material:
Table S4) and the other subsets are available upon request.

NRF2 activating agent and human umbilical cord vein en-
dothelial cells (HUVECs)

1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
(PAPC, 10 mg/ml) was purchased from Avanti Polar
Lipids, Inc., oxidized to oxPAPC and used as described in
(38).

Human umbilical vein endothelial cells (HUVECs) were
extracted with collagenase (0.3 mg/ml) digestion from um-
bilical cords obtained from the maternity ward of the Kuo-
pio University Hospital with the approval of its ethics com-
mittee. The cells were cultivated as previously described in
(39).

Chromatin immunoprecipitation

ChIP was performed as previously described in (36), with
following modifications: Prior to immunoprecipitations, 20
�l of Magna ChIP magnetic beads (Millipore) per im-
munoprecipitation were re-suspended to 1 ml of PBS/BSA
(5 mg/ml). Beads were washed with PBS/BSA and re-
suspended in 2 ml of PBS/BSA. A total of 5 �g of anti-
body (Nrf2, sc-722 or anti-rabbit IgG, Sc-2027, Santa Cruz
Biotechnologies) was added to each tube. The tubes were
incubated on rotating platform O/N at +4◦C. The next
day, the beads were washed twice with PBS/BSA and re-
suspended in 100 �l of PBS/BSA. HUVECs were grown
on 10 cm plates. After crosslinking, nuclei were extracted
by scraping the cells to 1 ml of MNase buffer (10 mM Tris
pH 7.4, 10 mM NaCl, 5 mM MgCl2, 0,1% NP-40, protease
inhibitors) and after 10 min incubation on ice, the nuclei
were pelleted by centrifugation (1500 x g, 5 min, +4◦C).
The extracted nuclei were washed with 1 ml MNase buffer
and, after centrifugation, lysed with 0.3 ml sodium dode-
cyl sulphate (SDS) lysis buffer (1% SDS, 10 mM EDTA,
50 mM Tris–HCl, pH 8.1, protease inhibitors). Sonicated
chromatin was divided in 100 �l aliquots and suspended in
1 ml of ChIP dilution buffer (0.01% SDS, 1.1% Triton X-
100, 1.2 mM EDTA, 167 mM NaCl, 16.7 mM Tris–HCl,
pH 8.1, protease inhibitors). A total of 2.5 �l BSA (100
mg/ml) was added to each tube. Hundred microlitre chro-
matin sample was removed as input DNA. Hundred mi-
crolitre of antibody-bound beads were added to the chro-
matin samples and the samples were incubated O/N at
+4◦C on a rocking platform. Next day, the beads were
washed five times with LiCl wash buffer (100 mM Tris pH
7.5, 500 mM LiCl, 1% IGEPAL, 1% Sodium deoxycholate)
and twice with TE buffer (10 mM Tris–HCl, pH 7.5, 1 mM
EDTA) and eluted with 200 �l of elution buffer (1% SDS,
0.1 M NaHCO3). All samples were treated with Proteinase-
K (10 mg/ml, Thermo Scientific) and DNA was purified
with MinElute PCR Purification Kit (Qiagen).

Real-time quantitative PCR of ChIP templates were per-
formed as in (36) using chromatin region-specific primers
(Sense: 5′-AGGCTCCTGTGTGGCT-3′ and Antisense: 5′-
TGGGCCAAGGATGCT-3′). The results were calculated
relative to control treatment values.

Transfections

Oligonucleotides MISSION hsa-miR-126–3p mimic
(HMI0117, Sigma-Aldrich), MISSION miRNA Mimic,
Negative Control #1 (HMC0002, Sigma-Aldrich), MIS-
SION hsa-miR-126–3p inhibitor (HSTUD0117, Sigma-
Aldrich) and MISSION Synthetic microRNA (miRNA)
Inhibitor, Negative control 1 (NCSTUD001, Sigma-
Aldrich) were transfected into cells using Oligofectamine
(Invitrogen). Mimic and mimic control concentration used
in the experiments was 25 nM, and inhibitor and inhibitor
control concentration was 1 nM.

RNA extraction and qPCR

Exosomes were extracted using miRCURY Exosome Iso-
lation Kit (Exiqon). Non-exosomal RNA was extracted
from the exosome-depleted medium after exosome extrac-
tion using miRCURY RNA Isolation Kit for Biofluids
(Exiqon). Total RNA (cellular and exosomal) was ex-
tracted using the miRCURY RNA isolation kit for cells
and plants (Exiqon) and reverse transcribed using the miR-
CURY LNA Universal RT miRNA PCR, Polyadenyla-
tion and cDNA synthesis kit (Exiqon) for miRNAs and
Transcriptor First Strand cDNA Synthesis Kit (Roche) for
mRNA. The cDNA templates were assayed in 10 �l PCR
reactions with a LightCycler 480 Real-Time PCR System
(Roche) according to the protocol of miRCURY LNA Uni-
versal RT miRNA PCR for miRNA samples and the pro-
tocol of Fast Start Universal Probe Master (Rox) (Roche)
for mRNA samples using hsa-miR-126–5p (206 010, Ex-
iqon) and -3p (204227, Exiqon) LNATM PCR primer set,
UniRT and Assays-on-Demand target mixtures for KEAP1
(Hs00202227 m1, Applied Biosystems), Krüppel-like fac-
tor 2 (KLF2) (Hs00360439 g1, Applied Biosystems) and
EGFL7 (Hs00211952 m1, Applied Biosystems), and con-
trol genes PPIA1 (Hs04194521 s1, Applied Biosystems)
and GAPDH (Hs99999905 m1, Applied Biosystems). The
amplification curves were analysed using the Roche LC
software, both for the determination of Cp (by the second
derivative method) and for the melting curve analysis.

Western blot

Western blots were performed as previously described in
(40) using antibodies for KLF2 (sc-18690, Santa Cruz
Biotechnologies), �-actin (#4967L, Cell Signaling Technol-
ogy and sc-47778, Santa Cruz Biotechnologies), ECL Plex
goat-�-rabbit IgG, CY5 (PA45012V, GE Healthcare) and
ECL Plex goat-�-mouse IgG, CY3 (PA43010V, GE Health-
care).

Luciferase reporter gene assay

Luciferase reporter constructs with either FTL ARE with
SNP A or FTL ARE with SNP C were cloned using
oligonucleotides listed in Supporting Material: Table S1.
Oligonucleotides were annealed and cloned into the KpnI-
SacI site in the pGL3-SV40 vector (Promega, Madison, WI,
USA). Constructs were verified by sequencing. HEK-293T
cells were cultured as previously described in (36), seeded
onto 96-well plates and transfected the next day with the
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calcium phosphate transfection method using the follow-
ing plasmids: 20 ng of pGL3-SV40 as control, pGL3-SV40–
1xNQO1-ARE-luciferase (41), pGL3-SV40–1xFLT1-SNP-
A-ARE-luciferase, or pGL3-SV40–1xFLT1-SNP-C-ARE-
luciferase, and 40 ng of pcDNA3 (Invitrogen) as a con-
trol or pCI-NRF2 (42). For normalization, cells were also
transfected with 20 ng of pCMV-�-galactosidase vector (In-
vitrogen). Twenty-four hours after transfection, cells were
treated with 5 �M sulforaphane (SFN). Sixteen hours after
treatment, luciferase activities were measured with Britelite
Reporter Gene Assay (Perkin Elmer) according to the man-
ufacturer’s instructions. Luciferase activities were normal-
ized to �-galactosidase activities measured as previously de-
scribed (41) and represented as fold change versus pGL3-
SV40-control vector for each treatment.

RESULTS

Analysis of the simulated NRF2-MAFG-DNA models

Dimeric small MAF proteins bind to MAF recognition ele-
ments (MAREs) (TGCTGAG/CTCAGCA), which have a
12-o-tetradecanoylphorbol-13-acetate -responsive element
(TRE) (TGAG/CTCA) sequence as the core sequence,
whereas the AREs (G/ATGACTCAGCA) are composed of
TRE and MARE elements (28). Based on Maf homod-
imer and Nrf2-MafG heterodimer binding measurements
(28,43), Nrf2-MafG heterodimer is more sensitive to a core
mutation of the MARE than MafG homodimer, thus indi-
cating that Nrf2 recognizes the core sequence (TRE) and
small Maf proteins the MARE half of the sequence.

In order to study the protein–DNA interactions, the
NRF2-small MAF heterodimeric complexes and DNA
were modelled using comparative modelling followed by
MDs simulations (Figure 3). Two models were constructed:
(i) NRF2 as ‘Chain A’ and MAF as ‘Chain B, and (ii) MAF
as ‘Chain A’ and NRF2 as ‘Chain B. As small MAF proteins
(MAFF, MAFG and MAFK) are identical on the motifs in-
cluded in the modelling, MAFG was chosen as a represen-
tative for all three. Unconstrained MD simulations of 10 ns
showed that both of the models were stable over the simula-
tion period (Supporting Material: Figure S1), but the RMS
deviations (Supporting Material: Figure S2) suggested that
the model having NRF2 as ‘Chain A’ and MAFG as ‘Chain
B’ was more stable of the two. The notion is in accordance
with the model, which positions NRF2 with TRE sequence
and MAFG with half TRE half MARE sequence. Further
analysis of the interaction patterns of the MD model re-
vealed several hydrogen bond and salt bridge contacts be-
tween the protein side chains and DNA backbone phos-
phate groups which have a major role in the recognition
and positioning of the protein to the DNA groove (Sup-
porting Material: Figure S3 and Table S5). The specificity
of the binding was achieved at the bottom of the groove
with the formation of specific hydrogen bonds accompa-
nied with hydrophobic contacts between the protein side
chains and DNA bases. In contrast to homodimeric MAF
proteins, NRF2 is unable to form homodimers (36,44–46)
most likely due to the repulsion caused by two positively
charged lysine (K72) residues at the cross section of the ho-
modimeric NRF2–DNA complex and a disturbed hydro-
gen bond network caused by the positioning of asparagine

residues, which causes a tilt at the helical structure of the
subunit A (Supporting Material, Figure S4).

The impact of systematic ARE variations on NRF2 binding

In previous studies, the MARE sequence variations forming
the basis for selective Maf-Nrf2 heterodimer binding over
Maf homodimer binding (46) and the molecular basis dis-
tinguishing the binding profile of the heterodimer from the
homodimer (43) have been investigated, but systematic as-
sessments of ARE variance on NRF2 binding are lacking.
A recent high-throughput SELEX analysis on small MAF
proteins resulted in TGAC/GTCAGCA as dimeric MAF
binding sequence and TGAC/G as monomeric MAF bind-
ing sequence suggesting a strong MAF interaction with the
palindromic TRE core of the sequence also in the absence of
NRF2 (47). This finding indicates that the intact TRE core
is also essential for the homodimeric MAF binding and fur-
ther suggests intolerance towards sequence variation on the
motif.

In order to examine the impact of the systematic point
variations of ARE on the binding site affinity, the bind-
ing of the in vitro-translated NRF2-small MAF protein
heterodimers was investigated using custom-made protein
binding microarrays. ARE residing on a well-characterized
NRF2 target gene (NAD(P)H dehydrogenase, quinone 1,
NQO1) promoter was chosen to serve as a reference se-
quence as it matches the consensus sequence for NRF2 (9)
(Figure 4A). The binding of all three small MAF proteins
was investigated, but no significant differences were found
between their binding profiles (Supporting Material: Fig-
ure S5), therefore, MAFG was chosen as a representative
for all three. The ‘TGA’ motif (positions 2–4 of the ARE se-
quence) was found critical for the heterodimer binding (Fig-
ure 4B and Supporting Material: Table S6), whereas the rest
of the sequence allowed more variation without major ef-
fects on the relative binding. This is in accordance with both
the modelling data and the recent publications (28,43,47),
where the most important interactions for NRF2 binding
were formed with these positions (Figure 3).

To gain further insight into the cellular binding prefer-
ences of NRF2 and the effects of multiple variations of
ARE on the NRF2 binding, publicly available NRF2 ChIP-
seq datasets (GSE37589 (32) and GSM1208659) were anal-
ysed. De novo motif search successfully enriched ARE mo-
tif in the sites identified by ChIP-seq. (Of note, the cut-off
in the motif enrichment was set very low in order to de-
tect as many ARE-like sequences from the data as possi-
ble.) The ARE-like sequences forming the motif were then
extracted from the datasets and categorized into groups
based on the detected sequence similarities. All of the col-
lected, nearly 1000 unique ARE sequences could be sum-
marized into 48 representative sequences listed in Figure
5A by replacing nucleotides in positions 1, 5 and 11 with
‘n’. The majority (65.3%) of the 1000 unique sequences
were confirmed of being ‘nTGAnTCAGCn’ (where n =
A, C, G or T), which is similar to the classical NQO1
ARE sequence (ATGACTCAGCA) (Figure 5A). The bind-
ing of NRF2-MAFG heterodimers to the representative se-
quences was measured using protein-binding microarrays
(Figure 5B and Supporting Material: Table S7). As the cut-
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Figure 3. NRF2-MAFG bound to double stranded DNA. (A) An overview of the modelled binding mode of NRF2-MAFG–DNA. (B) More specific
interactions between the residues of NRF2 (cyan) and MAFG (green) to DNA. For the clarity only interactions between protein side chains and DNA
bases are shown. In addition, key hydrogen bond contacts are highlighted using dotted lines. (C) A schematic presentation of specific protein–DNA
interactions using cyan coloured marks for NRF2 and green for MAFG. Elliptical shapes stand for hydrogen bond interactions and round shaped plots
hydrophobic van der Waals’ contacts. At the DNA groove, the interactions were found to be composed of conserved hydrogen bonds between Asn61 of
NRF2 and positions 1G and 2T of the DNA strand and accompanying hydrophobic interactions between two NRF2 Alanines (A64 and A65) and 2T. An
additional contact pattern was formed with the counter DNA strand positions 1–4 (CACT motif) consisting of hydrogens bond with 3C and hydrophobic
interactions with 1C, 2A and 4T.

off in motif enrichment was set low, not all of the identified
ARE-like sequences were true NRF2 binding sites and thus,
only a proportion of the measured sequences were expected
to bind NRF2. According to the measurements, ARE se-
quence could be divided into three submotifs (n-‘TGA’-n-
‘TCA’-‘GC’-n). The sequences capable of binding NRF2
were varied only on the middle motif, ‘TCA’, whereas vari-
ations on ‘TGA’ (positions 2–4) or ‘GC’ (positions 9–10)
motifs abolished the binding. This was partially in contrast
with the single variation measurements, where the ‘GC’ mo-
tif (positions 9–10) was found to tolerate more variation.

To address the question whether allowed sequence varia-
tion was restricted to certain parts of the sequence, a third
set of multivariate oligonucleotides was designed. In addi-
tion to testing the variability of the ‘TGA’ (positions 2–4)
and the ‘GC’ (positions 9–10) motifs, oligonucleotides de-
signed to determine the limits of the ‘TCA’ motif variation
(positions 6–8) and the possible effects of the ‘n’ nucleotides
(positions 1, 5 and 11) were added to the measurements.
The combined results (Figures 4–6 and Supporting Mate-
rial: Table S8) suggested that, although the first (‘TGA’, po-
sitions 2–4 of the sequence) and the third motif (‘GC’, po-
sitions 9 and 10) of the sequence did allow some variation
to the sequence (Figures 4 and 6), the variation was lim-
ited compared to the middle motif (‘TCA’, positions 6–8,

Figures 4–6) and the combinatorial variations (i.e. varia-
tions occurring in other parts of the sequence in addition
to variations in the first or third motif) were even more re-
stricted (Figure 5). These results are in line with the molecu-
lar modelling results (Figure 3, Supporting Material: Table
S5), where MAFG was found to form three well organized
hydrogen bonds with the ‘TCG’ motif (positions 8–10) of
the complementary DNA strand in addition to hydropho-
bic contacts formed with the ‘TCAG’ motif (positions 6–9)
of the first DNA strand. This wide DNA contact interphase
appears to allow more flexibility to the binding site recog-
nition and stabilization when the motif is varied.

In the majority of the cases, ‘n’ nucleotides (positions
1, 5 and 11 of the sequence) did not have drastic effects
on the binding strength, and the variations on these posi-
tions weakened the protein binding as expected. However,
for some weak binders, adding variation to the ‘n’ position
increased the binding compared to sequences without the
variation (1A10T versus 1A10T11C/G/T), which could be
due to neighbouring effect. Overall, the binding results em-
phasize the importance of the positions 2–4, 6–8 and 9–10
for determining the binding capacity of the sequence, and
suggest that position 11 has base-stacking interactions with
positions 9 and 10. In addition, the data indicates that the
sequence cannot bear more than four variations compared
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Figure 4. Impact of ARE variation on NRF2-MAFG binding. (A) Illustration of oligonucleotide designing for protein binding microarrays. Full-length
NRF2 binding consensus ARE (21 nt) is shown with 11 nt core element. Experimentally verified NRF2-binding ARE on NQO1 gene promoter was selected
as a reference sequence (50 nt) and the 11 nt core element was systematically varied one position at a time to receive all 33 single variation sequences. (B)
The binding of NRF2-MAFG heterodimers on the varied ARE sequences (n = 36) was measured using custom-made protein binding microarrays. Results
are depicted as measured binding relative to NQO1.ARE binding (mean ± S.E.M.).

to the consensus sequence ‘GTGACTCAGCA’, irrespective
of the variation positions and the magnitude of their sin-
gle variation effects. These results agree partially with a re-
cent study where the characteristics of mouse AREs were
examined from Nrf2 ChIP-seq data by analysing and cat-
egorizing ARE-like motifs (48): the study concluded that
the majority of the detected Nrf2-MafG binding sites con-
tained A or G in the ARE position 1 and TCA in posi-
tions 6–8 (GTGACtcaGCA), which agrees with the human
NRF2 ChIP-seq data analysed for this study. However, ma-
jor variant nucleotides for mouse data positions 6, 7 and 8
were A/G, A/T and T/G, respectively, whereas in the hu-
man data they were A/C for position 6, A for position 7
and C/G for position 8. Therefore, our data does not sup-
port the suggested reformulation of the core ARE motif to
TGACDHDGC (where D = not C and H = not G).

Prediction of NRF2 binding on AREs

A popular way of describing a transcription factor binding
specificity mathematically is a PWM, which describes the
effect on binding for each base of the sequence separately
(47,49). The advantage of the model is its simplicity and,
thus, ease of use, but the weakness is that it assumes that
the binding of protein to individual bases in the sequence is
independent, when, in fact, adjacent bases commonly af-
fect each other (47). The specificity of the model can be
improved by additional parameters and several alternative

models have been created (1,50–52), but they lack the sim-
plicity of the PWM model.

To explore the possibility to predict the multivariate ef-
fects from their component single variant measurements, a
simple multiplicative model, exemplified in Figure 7, was
tested. The single variation values used for the calculations
were derived from single variation measurements by calcu-
lating the binding relative to the strongest binder in the se-
ries (7A) in order to bring all values between 0 and 1. Over-
all, the predicted binding strengths of the sequences showed
high correlation with the measured values (Figure 7C and
Supporting Material: Figure S6 A, C and E), and the model
was found to bring significant improvement to the predic-
tion accuracy of NRF2 binding AREs compared to the pre-
viously described PWM model for NRF2 (9) especially in
the recognition of weak to nonbinding ARE-like sequences
(Supporting Material: Figure S6).

Genome-wide NRF2 binding sites

In order to find and classify genome-wide putative NRF2
binding sites, the predictive binding model (Figure 7) was
utilized. The genome was scanned and the locations of
genome-wide putative NRF2 binding sites were collected
and split to five subsets representing high to low categories
of predicted binding strength. The subset of high binding
strength is included in the Supporting Material (Support-
ing Material: Table S4) and the other subsets are available
upon request.
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Figure 5. NRF2-MAFG binding on multivariate AREs. (A) Nearly 1000 unique ARE-like sequences collected from publicly available NRF2 ChIP-seq
datasets were listed and summarized into 48 representative sequences by replacing positions 1, 5 and 11 of the unique sequences with ‘n’. The occurrence of
these 48 sequence types in the ChIP-seq data is shown in percentages (%). The names of the sequences (Tested Oligos) indicate the varied positions of the
sequence compared to the reference sequence, NQO1 ARE (GTGACTCAGCA). (B) The binding of NRF2-MAFG heterodimers to the 48 representative
sequences was measured using protein binding microarrays. Positions 1, 5 and 11 in the sequence were filled with nucleotides that occurred most often in
these positions in the ChIP-seq data (A, C and A respectively). Results are depicted as measured binding relative to NQO1.ARE binding (n = 39, mean ±
S.E.M.).

Application 1: finding putative target genes

miRNAs are small non-coding RNAs that act as post-
transcriptional regulators of gene expression by inhibiting
target mRNA translation (53). They are important regu-
lators of most cellular and developmental processes, and
have been implicated in a large number of human dis-
eases, including cardiovascular diseases (54), but less is
known about their transcriptional regulation. miR-126–5p
and miR-126–3p originate from a common precursor. The
expression of miR-126–5p is lower of the two, but they
are nevertheless both among the most highly expressed
miRNAs in endothelial cells (55,56). Shear stress that pro-

tects from atherosclerosis increases endothelial miR-126–
5p expression KLF2––dependently, whereas at atheroscle-
rosis prone sites miR-126–5p expression is downregulated
(56,57). miR-126–3p, on the other hand, is involved in an-
giogenesis and contributes to quiescent endothelial pheno-
type by reducing inflammatory activation and increasing
cell survival (56). It is also enriched in membrane-enclosed
vesicles (apoptotic bodies) that are secreted from apoptotic
endothelial cells allowing its transfer from an apoptotic cell
to a viable endothelial cell (58,59). In atherosclerotic mouse
model, miR-126–3p-containing apoptotic bodies have been
shown to limit atherosclerosis (59).
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Figure 6. Testing the limits of NRF2 binding. Systematic multivariate ARE results by protein binding microarray for NRF2-MAFG heterodimer are
shown. Tolerance for sequence variation was studied for positions 1–3 (white), 6–8 (grey) and 9–11 (dark grey) (A) and positions 1, 5 and 11 (seed sequences
are shown in grey) (B). Results are depicted as measured binding relative to NQO1.ARE binding (black) (mean ± S.E.M., n = 45).

As NRF2 is an essential transcription factor involved
in the maintenance of vascular health (56), we set out
to investigate whether NRF2 regulates miR-126–3p and
miR-126–5p in human vascular endothelial cells by uti-
lizing the genome-wide binding site data obtained in this
study. (Strong binding sites are listed in Supporting Ma-
terial: Table S4, and other subset are available upon re-
quest.) The precursor for miR-126–3p and -5p resides on
chromosome 9 in the intron 7 of the EGFL7 gene (Fig-
ure 8A). The EGFL7 gene locus was found to contain sev-
eral putative NRF2 binding sites (Figure 8A), and ARE,
which had the highest binding value according to the pre-
diction and overlapped with H3K27Ac histone marker sig-
nal (marker for active regulatory elements) in human um-
bilical vein endothelial cells (HUVECs), was selected for
experimental validation (Figure 8A). The element was veri-
fied to bind NRF2 (Figure 8B) and corresponding changes

in the miR-126–3p and miR-126–5p levels were seen in
NRF2 inducer (1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphocholine, oxPAPC) treated cells (Figure 8C, D and
E). MicroRNAs were also secreted from the cells and were
found to reside mostly in the exosomal fraction of the
medium after NRF2 induction (Figure 8D and E).

KLF2 is a transcription factor that is upregulated by
atheroprotective blood flow in endothelial cells and inhibits
endothelial inflammation together with NRF2 (60,61). As
KLF2 has been shown to promote NRF2 pathway acti-
vation (62) and to upregulate miR-126 indirectly, we set
out to investigate, whether miR-126 completes the regula-
tory loop by targeting KLF2 (Figure 8F). KLF2 sequence
was found to contain several possible binding sites for
miR-126–3p (Figure 8G), although no perfect match was
found. KLF2 was confirmed to be significantly upregu-
lated in NRF2 inducer treated cells (Figure 8H) and miR-
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Figure 7. Mathematical model for the NRF2 binding strength prediction. (A) Variance table indicating the values for binding strength calculations for
the binding prediction. The values are derived from the experimental single variation measurements by calculating the binding relative to the strongest
binder in the series (7A) instead of the reference sequence (NQO1.ARE). (B) The simple multiplicative prediction model is exemplified for the ARE variant
1A6A8G. (C) Comparison of the predicted and measured binding strengths for the multivariate ARE sequences by Pearson correlation is shown.

126–3p mimic treatment was found to abolish the effect
(Figure 8J). Furthermore, miR-126–3p inhibitor treatment
caused a significant upregulation of KLF2 in uninduced
cells (Figure 8J). On protein level, miR-126–3p inhibitor
treatment caused a moderate increase in KLF2 levels (Fig-
ure 8K), whereas miR-126–3p mimic decreased KLF2 levels
in oxPAPC-treated cells (Figure 8L) suggesting that KLF2
is a miR-126–3p target gene.

Application 2: detecting regulatory SNPs in experimentally-
verified NRF2 binding AREs

To test the feasibility of the binding model on finding
functional regulatory SNPs, experimentally verified NRF2
binding AREs reported in the literature (9) were searched
for genetic variations using 1000 Genomes Project on-
line tool ‘Region Report’ (http://browser.1000genomes.org/
Homo sapiens/UserData/). The analysis identified a SNP
(rs113067944) on NRF2 binding ARE (6,63–65) resid-
ing on FTL (Ferritin, light polypeptide) gene promoter
(Figure 9A and B). The FTL gene encodes for a ubiqui-
tous cellular protein called L-ferritin that maintains iron
homeostasis (66). The selected SNP itself is rare and has
only been observed in one HapMap-CEU individual (het-
erozygote, male, NA07022), but it nevertheless serves as
a very good mechanistic example of the drastic effect a
SNP can have on transcription factor binding. Theoreti-
cally, as common SNPs explain only a proportion of the
genetic background of complex diseases, ‘private SNPs’,
like rs113067944, could actually contribute to diseases on
an individual level. rs113067944 causes an allelic change
from A to C, which according to our prediction causes the
ARE to lose its ability to bind NRF2 by changing its pre-
dicted binding value from 0.953 to 0.004. Protein binding
microarray results for the sequences confirm the predic-

tion results yielding binding affinity of 1.35 for the allele A
and 0.002 for allele C (Figure 9C). To study the functional
changes in a cellular context, the promoter constructs for al-
lele A and C were cloned into luciferase vectors and studied
in HEK-293T cells using an NRF2 inducer (L-SFN) and
NRF2 overexpression. Luciferase activity of FTL-ARE-A
increased with NRF2 inducer and/or NRF2 overexpres-
sion, whereas allelic change from A to C thwarted the in-
ducing effect (Figure 9D) indicating that the allelic change
affects also transcriptional activity by decreasing the target
gene transcription.

Future perspectives: catalogue of clinically significant puta-
tive NRF2 regulatory SNPs

To facilitate the genome-wide search for SNPs affecting
NRF2 binding, explicit 11 nt oligonucleotides measured or
predicted to bind NRF2 were mapped against the allelic se-
quences of 49 065 potentially clinically relevant non-exonic
SNPs within dbSNP v137 (NCBI SNP subsets for ‘OMIM’
and ‘Clinical/LSDB Submissions’, and the UCSC GWAS
SNP catalogue), and the 180 500 nearby SNPs in LD with
them (distance <100 kb, LD R2 > 0.8). This yielded a set of
5800 potential NRF2 rSNPs, out of which 557 were clin-
ically relevant SNPs and 5243 proxy SNPs for the clini-
cally relevant SNPs (Supporting Material: Table S9). Of the
SNPs, 1221 had a drastic effect on NRF2 binding accord-
ing to our measurements or measurement-based prediction.
To allow future evaluation of evolutionary aspects of the
NRF2 rSNPs, the ancestral alleles, where available, have
been included in Supplementary Table S9. The initial set of
5800 rsIDs with at least one match and one non-match al-
lele for the 5253 NRF2 binder sequences was further filtered
to SNPs with (i) an allelic match with predicted binding
strength >0.6, (ii) difference in predicted binding strength

http://browser.1000genomes.org/Homo_sapiens/UserData/
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Figure 8. Regulatory loop of NRF2, miR-126 and KLF2 in HUVECs. (A) EGFL7 gene locus shown together with putative NRF2 binding sites (Class I:
‘Medium to Strong’ (relative binding 0.9–0.67); Class II: ‘Medium’ (relative binding 0.66–0.5); Class III: ‘Medium to Weak’ (relative binding 0.5–0.4); and
Class IV: ‘Weak’ binding sites (relative binding 0.4–0.3)) and ENCODE HUVEC H3K27Ac data. miR-126 locus resides on intron 7. (B) HUVECs were
treated with oxPAPC and NRF2 binding was measured with chromatin immunoprecipitation (ChIP) in 2, 4, 6 and 24 h time points (mean ± SD, n = 3).
Results are shown as fold change against control samples. (C) Relative miRNA and host gene expression was measured with qPCR from oxPAPC-treated
HUVECs in 4, 8, 12, 24 and 48 h time points (mean ± SD, n = 6). (D and E) Relative cellular expression and medium levels (exosomal and non-exosomal)
for miR-126–3p and miR-126–5p were measured with qPCR from oxPAPC-treated HUVECs in 4, 8, 12, 16 and 24 h time points (mean ± SD, n = 3). (F)
Regulatory loop for NRF2, miR-126 and KLF2. (G) The predicted binding of hsa-miR-126–3p to KLF2 mRNA (NM 016270.2 nt 466–487) (H) KLF2
expression was measured with qPCR from oxPAPC and control treated HUVECs after 8 h treatment. (I and J) HUVECs were transfected with inhibitor
control, miR-126–3p inhibitor, mimic control and miR-126–3p mimic. Forty-eight hours after transfection, mimic samples were treated with oxPAPC to
induce KLF2 expression. miR-126–3p and KLF2 expression were measured with qPCR (mean±SD, n = 3). (K and L) KLF2 and �-actin were measured
from transfection samples after 16 h oxPAPC treatment. OxPAPC concentrations for (B–H) were 50 �g/ml and for (I–L) 20 �g/ml. In statistical analysis,
samples were compared to respective control samples using unpaired t-test. *P < 0.05, **P < 0.01 and ***P < 0.001.

between binder and non-binder alleles >0.5 [or (i) >0.8 and
(ii) >0.25], iii) overlap with any ENCODE clustered TF
binding or DNase hypersensitive site, and (iv) global minor
allele frequency <0.25. This yielded 14 top candidate NRF2
rSNPs that were either direct hits to a ‘Clinical/LSDB Sub-
missions’ SNPs (1 SNP, rs9274490), or proximal to any of
the clinically relevant SNPs (13 SNPs) (Table 1). Of note,

one of the top 14 candidates (rs34171066) overlaps with a
binding site of MAFK in ENCODE ChIP-seq data.

DISCUSSION

Binding specificity of a given transcription factor is cru-
cial for proper regulation of its target genes (67). Human
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Figure 9. A SNP in FTL promoter has drastic effects of NRF2 binding and transcriptional activation. (A) A promoter analysis of the FTL gene at chr19
showing the location of experimentally verified NRF2 binding ARE together with dbSNP (v138) and ENCODE ChIP-seq data. ChIP-seq track displays
combined MAFF and MAFK binding signals in H1-hESC (MAFK), K562 (MAFF, MAFK), HeLa-S3 (MAFK), HepG (MAFF, MAFK) and IMR90
(MAFK) cell lines. (B) Detailed view showing FTL ARE sequence and the SNP (rs113067944, A→C) position. (C) Protein binding microarray results for
FTL.ARE.A and the SNP bearing FTL.ARE.C. Results are calculated as measured binding relative to NQO1.ARE binding (mean ± S.E.M, n = 39.).
Scramble oligonucleotides served as negative control. (D) HEK-293T cells were transfected with NQO1-ARE and FTL-ARE bearing either allele A or
allele C with and without NRF2 -expressing plasmids. Twenty-four h after transfection cells were treated with NRF2 inducer (L-SFN) for 16 h followed
by luciferase activity measurements. An empty pGL3 promoter vector served as control and activities were normalized to �-galactosidase activity. Results
are shown relative to control (mean± S.E.M, n = 4).

Table 1. Genomic NRF2 rSNPs residing in regulatory elements

SNP ID Sequence SNP effect GMAF [Allele] GWAS SNP Reported trait Reported genes

rs16913624 GTGACTCAGCC 0.60 0.1003 [T] rs17556665 Inflammatory biomarkers SPON1
rs2454138 GTGAGTCATCG 0.54 0.1827 [A] rs477515 Epstein Barr virus immune response

(EBNA-1), Hepatitis B vaccine
response, Inflammatory bowel disease

HLA-DQA1, HLA-DRA, BTNL2,
HLA-DRB1, C6orf10, PSORS1C1,
BAT2, EHMT2, HLA-DQB1, C6orf15,
BAT4, NOTCH4, PRRT1, HLA-B

rs3026775 GTGAATAAGCA 0.56 0.0339 [A] rs3026785 Hirschcprung disease, protection
against

RET51

rs34171066 CTGACTCAGCA 0.76 0.0659 [C] rs17638544 Bone mineral density TNFSF11
rs34608229 ATGACACAGCA 0.62 0.1268 [C] rs13273123 |

rs7833986
Height | Height PLAG1 | PLAG1

rs4545169 ATGACTAAGCA 0.83 0.1786 [G] rs7851696 Autoimmune and infectious diseases FCN2
rs4798979 GTGACTCAGCT 0.62 0.2074 [A] rs12967884 Subcutaneous adipose tissue SALL3
rs62052186 GTGACACAGCA 0.72 0.0893 [T] rs2228479 Skin/hair/eye pigmentation 2, red

hair/fair skin
MC1R

rs62096279 ATGATACAGCA 0.69 0.2060 [T] rs12456021 Multiple sclerosis ALPK2
rs6448280 ATGACTAATCA 0.64 0.0614 [A] rs6841898 Myopia (pathological) DHX15
rs71565194 ATGATGCAGCA 0.73 0.0041 [T] rs1403155 Immune response to smallpox (secreted

IL-2)
AUTS2

rs76845667 GTGACTCAGCT 0.63 0.2115 [T] rs7294919 Brain structure, Hippocampal volume,
Subcortical brain region volumes

HRK, FBXW8

rs8027358 ATGATTCAGCA 0.77 0.1392 [C] rs8030136 Periodontitis (DPAL) SNRPN
rs9274490 GTGAGGCAGCA 0.59 0.1699 [G] NA HLA-DQB1

Sequence = 11 nt sequence, with the variant nt as the central, 6th nt, of the strongest binding allele.
SNP effect = Difference between predicted relative binding values for the strongest and weakest allele.
GMAF = Global minor allele frequency.
GWAS SNP = A disease or trait-associeted SNP in linkage disequilibrium with the NRF2 rSNP.
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genome contains ∼1 million putative enhancer elements
through which transcription factors regulate their targets
(68), and a considerable proportion of disease-associated
genetic variations occurs in these enhancer regions (19) po-
tentially affecting transcription factor binding and predis-
posing individuals to different diseases and syndromes, such
as cancer, neurological disorders and cardiovascular dis-
eases (68). Although knowledge on the genomic transcrip-
tion factor binding site locations and their sequence-specific
binding preferences has increased due to next generation se-
quencing methods, most of the techniques do not provide
precise information on the binding sequences (67). Even
ChIP-seq, a technique for determining the in vivo transcrip-
tion factor binding locations within the genome, only pin-
points a region of 100–300 bp in which a binding site resides,
and does not differentiate between direct and indirect bind-
ing. Also, as ChIP-seq uses antibodies to capture protein–
DNA interactions, it is prone to technical errors due to non-
specific binding or low sensitivity of the antibody. Motif dis-
covery algorithms can be used to identify the main features
of the binding patterns and to resolve the highest affinity se-
quences but the accuracy on the lower affinity sites is often
poor due to technical limitations (67). In this study we have
investigated the binding specificity of NRF2 and created a
detailed binding model for this transcription factor to allow
a more refined stratification of binding strength.

Understanding the intrinsic specificity of the transcrip-
tion factor binding and combining this knowledge with in
vivo binding patterns lays a foundation for studying the
disease-associated genetic variation occurring in enhancer
regions. To gain this knowledge, either the binding to all
potential binding sequences has to be studied or the bind-
ing to sufficient amount of sequences for building a model
that allows the estimation of the complete set (67). In our
study, publicly available NRF2 ChIP-seq data was utilized
to reduce the number of binding measurements required
for constructing the NRF2 binding model. The confidence
on the model was further increased with subsequent addi-
tional binding measurements and the correlations between
the measured and predicted binding values of the model
were found high. Although structurally a wide variety of
interactions form between the protein and DNA, hydrogen
bonds formed between double helix grooves and surface
amino acids of the transcription factor are considered as
the most important ones making simple recognition mod-
els applicable (50). Most mutations affect hydrogen bond
networks locally and, thus, their effects are also mostly lo-
cal. A simple recognition mechanism translates into simple
transcription factor binding specificity model and to easily
predictable variation effects which can be utilized in find-
ing functional regulatory SNPs and in estimating the SNP
effect (50).

Accurate prediction of functional AREs in a given cell
type requires knowledge on the chromatin landscape. Open
chromatin is readily accessible to TFs, and most TF bind-
ing events correlate with open and active chromatin states,
whereas closed chromatin is found on regions of the genome
that are fully silenced by nucleosome modifications and
DNA methylations (68,69). Closed chromatin is densely
packed, which effectively blocks TF binding and transcrip-
tional activity. Poised chromatin, on the other hand, com-

prises both activating and repressing histone modifications
at the same location (70) and the genes on poised chromatin
are repressed but poised for rapid activation. Chromatin
states and regulatory regions vary significantly in activity
levels across cell types, and the differences relate to cell-type
specific gene functions (20,22). Enhancers of key genes that
control and define cell identity are called super-enhancers
(22). Recent studies have shown that disease-associated
SNPs tend to occur in super-enhancers of disease-relevant
cells more frequently than in typical enhancers suggesting
that altered expression of cell identity genes predisposes
to diseases (22). Although evolutionary conservation is a
much used approach for the identification of regulatory re-
gions, the mechanism leading to intra- and cross-species dif-
ferences in gene expression often works through changes in
transcription factor binding sites leading to lineage-specific
regulatory regions that are conserved functionally but not
on sequence level (11) hence supporting the use of alter-
native approaches such as identification of the cell-type-
specific super-enhancers to find putative causal variants for
further studies in cellular context. Super-enhancer can be
identified from histone H3K27ac ChIP-seq data, and a cat-
alogue of super-enhancers for 86 human cell and tissue sam-
ples is available (22).

The data presented here is the first step towards a model
that allows prediction of NRF2-regulated gene expression
based on regulatory genetic code. Flexible sequence mod-
els that explain subtle changes in binding are prerequisite
for understanding cell-dependent sequence preferences that
may be important in cell-type-specific binding in addition
to chromatin accessibility (69). In gene regulation, multiple
weak AREs can be equally effective as one or two strong
ones, and it has been suggested that evolution might favour
these complex sites over simple ones, simply because they
are more abundant in the genome (71). Therefore it is also
important to device methods to identify the weak binding
sites reliably.

In conclusion, we have investigated the NRF2 binding
preferences in order to construct a model for linking the
disease-associated genomic loci and regulatory SNPs with
molecular mechanisms leading to diseases and syndromes.
Genomic variation within ARE sequences can greatly al-
ter the NRF2 binding and thus potentially affect NRF2-
dependent gene regulation and susceptibility to diseases in
which increased oxidative or electrophilic stress plays a role.
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37. Viitala,S.M., Jääskeläinen,A.J., Kelo,E., Sirola,H., Moilanen,K.,
Suni,J., Vaheri,A., Vapalahti,O. and Närvänen,A. (2013)
Surface-activated microtiter-plate microarray for simultaneous CRP
quantification and viral antibody detection. Diagn. Microbiol. Infect.
Dis., 75, 174–179.

38. Jyrkkanen,H.-K., Kansanen,E., Inkala,M., Kivela,A.M.,
Hurttila,H., Heinonen,S.E., Goldsteins,G., Jauhiainen,S., Tiainen,S.,
Makkonen,H. et al. (2008) Nrf2 regulates antioxidant gene
expression evoked by oxidized phospholipids in endothelial cells and
murine arteries in vivo. Circ. Res., 103, e1–e9.

39. Levonen,A.L., Dickinson,D.A., Moellering,D.R., Mulcahy,R.T.,
Forman,H.J. and Darley-Usmar,V.M. (2001) Biphasic effects of
15-deoxy-delta(12, 14)-prostaglandin J(2) on glutathione induction
and apoptosis in human endothelial cells. Arterioscler. Thromb. Vasc.
Biol., 21, 1846–1851.

40. Leinonen,H.M., Ruotsalainen,A.-K., Määttä,A.-M., Laitinen,H.M.,
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