
A Model-Based Framework for Legal Policy
Simulation and Legal Compliance Checking

Ghanem Soltana
(Supervisors: Mehrdad Sabetzadeh and Lionel Briand)

SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
Email: ghanem.soltana@uni.lu

Abstract—Analyzing legal policies for many laws, such as taxes
and social benefits, is a common way for governments to identify
risks, e.g., risk of legal policies not achieving expected revenue. A
typical analysis includes validation of policies and the verification
of the systems implementing them. One efficient way to validate
policies is simulation, e.g., by simulating whether a proposed law
reform would realize target objectives. Once validated, policies
are implemented into public administration procedures and
eGovernment applications. Systems implementing legal policies
also need to be analyzed and verified, e.g., through testing, to
ensure that they are compliant with the underlying policies.

Currently, legal policy analysis is conducted using a combi-
nation of spreadsheets and software code. Such strategy suffers
mainly from being hard to use by legal experts due to the lack
of adequate background. This is partly rooted in the fact that
available techniques to formalize legal policies are based on com-
plex logical expressions and code. The main goal of this research
project, that this paper describes, is to narrow the aforementioned
expertise gap by proposing convenient, systematic and automated
techniques to support analysis of legal polices from their design
to their implementation.

Index Terms—Legal Policies, Model-Based Simulation, Com-
pliance Verification, Model-Driven Code and Data Generation

I. PROBLEM STATEMENT AND RESEARCH METHODOLOGY

A. Problem Statement

[Context] Laws are extended, reviewed and revised on a reg-
ular basis to ensure that they meet fiscal, monetary, and social
expectations. Thoroughly assessing risks related to designing
and implementing legal policies for many laws, e.g., taxation
and social benefits, is a major concern for governments.
Computer-assisted analyzers have been increasingly used in
recent years as tools for: (1) validating legal policies [1]–[3],
e.g., by checking that policies are aligned with the provisional
budget of the government, and (2) verifying systems compli-
ance to the underlying laws [4], e.g., through testing.
[Scope] In a nuanced field such as law, providing adequate
support for automated analysis depends mainly on having
a focused scope. This project targets prescriptive laws, i.e.,
highly regulated laws, such as taxation, that are defined by a
set of legal policies– a legal policy being the textual definition
of step-by-step guidance in the form of procedures to apply for
compliance [5]. Nevertheless, we believe that this works can
be tailored to other laws, e.g., declarative laws that are founded
on permissions, obligations, and prohibitions. In this paper, we
take legal policies to mean “procedural” legal policies.

[Motivation] Legal policies need to be validated to check that
they actually lead to their expected results and nothing else. In
practice, validation is done by conducting several simulation
scenarios over the policies. An example of a simulation
scenario is to quantify the effect of modifying the policies on
variables of interest such as the revenue, while assessing that
no undesirable side effects can occur, e.g., provoking a high
increase in tax dues for low-earning families. Quantifying the
outcome of a set of policies in a precise manner is not a trivial
task due to: (1) the high number of policies to consider, (2)
the complexity of the procedures specified by the policies, and
(3) the inter-relationships between policies, e.g., some policies
being mutually exclusive or complementary. Once validated,
policies are implemented into administrative procedures and
software systems. At this stage, system verification is needed
to ensure that systems being built are indeed compliant to the
law. To be effective, compliance verification has to consider
the subtleties of the targeted legal jurisdiction, e.g., the pro-
cedural aspect of prescriptive laws.

[Policy formalization challenge] A key prerequisite for any
kind of automated analysis is to formalize legal policies in
a syntactically and semantically well-defined form. To date,
policy formalization are mainly based on complex logical
expressions and code [6], [7]. An important factor to consider
here is that these formalizations are simultaneously used
by several stakeholders with different and non-overlapping
backgrounds, e.g., legal experts and system analysts. An open
question here then is how to interpret the underlying law so
that the resulting formalizations are, on the one hand, intuitive
enough to all types of users, and on the other hand detailed
enough to be analyzable through automated means.

In addition, when legal text undergoes modification, it is
difficult to trace the impact of changes on the developed arti-
facts if no support is provided within the policy formalizations.
The inability to automatically identify the impact of changes
would not only complicate the testing of the system once the
changes made, but can also introduce further inconsistencies
between the legal texts, legal requirements, and the system
implementation.

[Data generation for V&V of legal policies challenge] Out-
puts of both targeted analysis in this project, i.e., simulation
and testing, are obtained by processing some data as input,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31226134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


e.g., simulation data. However, one might face the situation
where no complete and usable input data is available. This is
particularly true when new policies are being added to the cur-
rent legislation (no real historical data). Test case generation
has long been studied to generate fault-revealing inputs for
testing [8]. On the other hand, few works address simulation
data generation. A challenge is to devise a data generator that:
(1) is scalable, as many simulation cases are needed, and (2)
produce representative samples of the underlying population,
to ensure the reliability and precision of the simulation results.

B. Research methodology

The research methodology of this project follows an indus-
try based collaboration paradigm for research innovation [9],
[10]. One particularity of such paradigm is that most research
activities are realized in close collaboration with industrial
partners. Adopting such research methodology promotes tack-
ling tangible problems in their real settings. Furthermore, pro-
posed solutions can be empirically validated thorough indus-
trial case studies. In our context, this project was motivated by
an initiative of the government of Luxembourg to enhance its
current practices in analyzing legal policies. Our collaborating
institutes are: (1) Centre des technologies de l’information de
l’Etat, Luxembourg’s government computing center, and (2)
the Inland Revenue Office of Luxembourg.

II. RELATED WORK

In this section, we present related work on the topics of
legal policies modeling, legal policy simulation, and legal
compliance verification.
Legal policies modeling. Legal policy formalizations have
long been studied in the artificial intelligence community [6],
[11]–[14]. Notable among these is the work by Rissland and
Skal [13] that combines different knowledge representation
techniques to capture then reproduce the reasoning of legal
experts in tax court cases. Melz and Valente [12] build a
domain-specific ontology for the US internal revenue code
and discuss applications for tax assistance systems using their
ontology. These formalizations were primarily developed for
performing expert search and question-answer reasoning with-
out considering the software engineering aspects of systems
implementing them. In particular, missing from the above-
cited work is an operational view of the legal policies, the
verification of software compliance to the law, and enabling
automated analysis such as simulation. In contrast, our pro-
posed research has a strong software engineering orientation.
The formalization that we propose captures workflows of legal
policies while providing executable semantics that will later
enable simulation and testing.

Little work exists that addresses the development of large-
scale legal applications from a software engineering perspec-
tive. For example, Breaux et al. [15] proposed a rule-based
framework that enables executives, business managers, and
developers to distribute legal obligations. van Engers et al.
[7] applied a methodology based on UML for modeling the
Dutch tax legislation to facilitate the communication between

developers and legal experts. Nevertheless, the aforementioned
work also share the same limitations observed for work from
the artificial intelligence community. Unlike the modeling
approach that we proposed in [16], these strands of work lack
operationalization means to support the automated analysis
targeted in our context, i.e., simulation and testing. Further-
more, our modeling methodology provides guidance on how
to efficiently build policy formalization from scratch. Our
modeling notation also manages traceability between the legal
text, the detailed legislature that elaborate and interpret the
law, and the underlying software system. This enables us, for
instance, to locate the system components that are impacted
by a change in the law.
Legal policy simulation. Several legal policy simulation tools
were proposed in the area of applied economics [1]–[3]. Nev-
ertheless, these tools do not adequately address the expertise
gap between legal experts and system analysts. Policies are
usually implemented using software code, logical expressions
or equations. For example, EUROMOD [2] uses a combination
of spreadsheets and C++ to operationalize legal policies.
Thus, the implemented interpretation of the law cannot be
understood by legal experts. Our framework addresses this
gap by providing a more abstracted way to specify legal
policies, so that the resulting specifications would be palatable
to legal experts with a reasonable amount of training. The
second limitation of the above-mentioned tools concerns the
simulation data. These tools assume that complete and precise
simulation data is given as input. This is a strong requirement
that is not always feasible in practice. For instance, when
new policies are being introduced, no real historical data may
be available. In contrast, our simulation framework comes
equipped with a built-in data generator that produces, if
needed, hypothetical but realistic simulation data, based on
historical aggregate distributions and/or expert estimates.
Legal compliance verification. Several methods were pro-
posed to ensure business processes compliance with legal poli-
cies in domains such as healthcare [17], [18] and finance [4].
For instance, Ghanavati et al. [17] tracks legal compliance by a
framework based on combining goal, use case and privacy goal
models. Hassan and Logrippo [4] provide a semi-automatic
method for checking compliance of enterprise requirements
with respect to legal requirements using formal logic.

Few strands address compliance for software systems. Ex-
isting work on regulatory compliance for software is geared
towards corporate governance, privacy, and security [19]–[21].
In contrast, our research targets specific aspects of compliance
that are proper to procedural legal policies that are the scope
of this project (see Section I). A major concern in prescriptive
laws is ensuring that the software systems are performing all
calculations, e.g., tax deductions, only for eligible individuals
and as specified by the underlying provisions.

III. PROPOSED SOLUTION

This section provides an overview of the approach we
propose to enable automated analysis of legal policies while
addressing the aforementioned gaps (see Sections I and II).

2



The proposed solution, shown in Fig. 1, consists on a frame-
work based on model driven engineering techniques [22],
where models are the main development artifacts. We opted
for such solution because we believe that models are a more
structured, precise, and yet intuitive way to formalize policies
in comparison with plain text, logical expressions and code.
Below, we briefly describe the steps of the framework.

In Step one, Model legal policies, models of policies to
analyze are built by analysts with help from legal experts.
This step has two outputs: (1) a domain model, and (2) policy
models that capture the procedures envisaged by the law. These
models will be further detailed in Section IV.

Step two, Generate code, is a transformation that derives
executable code from policy models. This code constitutes
the core of the analyzer engine of Step five. The appropriate
language to use and the analyzer’s components that need to be
completed are determined according to the type of the analysis.
For example, Matlab code is derived for simulation and OCL-
based oracle functions are derived for testing.

Both steps, three and four, create an instance model from
the domain model. This instance model encapsulates data
that will be processed by Step five. Step three, Use existing
data, creates an instance model based on exiting data, e.g.,
historical data. If such data is not available, then Step four,
Generate data, creates an instance model based on one of the
predefined generation strategies. The appropriate strategy is
selected according to the type of the analysis to perform. For
simulation, a probabilistic generator is used to create data
that is statistically aligned to the real population. Whereas
for testing, search based techniques are used to meet other
objectives, such as maximizing code coverage.

Step five, Run analysis, uses an engine to perform automated
analysis over legal policies. First, the engine executes the code
generated by Step two over the instance model created in
the previous step (step three or four). Then, outputs/traces
of policy models execution are gathered and analyzed for
performing a particular simulation scenario or for compliance
verification. For example, one simulation scenario is to quan-
tify the impact of introducing new policies on variables of
interest, e.g., taxpayers’ net incomes. As shown in Fig. 1,
an extra input is used by this step when performing software
verification. This input is the outputs/traces of executing the
system under test over the same data used for simulation. The
system is deemed compliant if and only if outputs/traces from
both executions (system under test and policy models) are
identical, once mapped to the same level of granularity and
precision. Finally, results are plotted and displayed to the user.

IV. PRELIMINARY WORK

So far, three main milestones have been reached: (1) a mod-
eling approach for formalizing legal policies, (2) a transforma-
tion that enables semantic execution of policy models created
using our modeling methodology, and (3) a probabilistic data
generator that creates representative simulation samples with
respect to a given population.

Relevant legal texts

Domain model

Policy 
models

 

 

 
 

 
 

Results report 

Is data 
available?

Yes

No

Instance
 model from 
existing data

Generate 
data

Use    
existing data

Generate 
code 

Executable 
code

Run 
analysis

≠
Æ

Ø

∞

System
under 
test

Outputs/traces 

Instance
 model from 

generated data

[System 
verification]

Model legal 
policies ¨

Fe
ed

ba
ck

Fig. 1. Model-based Framework for Analyzing Legal Policies

Modeling approach We developed a modeling methodology
to formalize legal policies [16]. As introduced in Section III,
the application of our modeling methodology yields two types
of models: (1) a UML class diagram representing the domain
model, and (2) policy models that capture the procedures
defined within the law. We use standard practices for domain
modeling to build the class diagram. The class diagram in
our methodology is an instrument for defining the inputs
that policy models use. As for policy models, they are UML
activity diagrams extended with additional semantics captured
by a UML profile [23]. We opted to use activity diagrams
partly because they are well-documented and widely used, but
mainly because government agents, including legal experts, are
familiar with simple conceptual models and business process
models from earlier exposure and training.

An example of a policy model that calculates the tax
deduction granted to a taxpayer for disability is depicted in
Fig. 2. Gray boxes, at the left side of the model, represent
input parameters involved in the calculation of this particular
deduction, e.g., is_disabled. The core of this policy model en-
compasses three alternative deduction calculations, denoted by
the actions with the «calculate» stereotype. Each calculation
is defined by a corresponding formula («formula»). Based on
the taxpayer’s eligibility, assessed through decisions (having
«decision» stereotype), the appropriate calculation is applied.
For instance, if a given taxpayer is not disabled, this policy
yields a value of zero; otherwise, another alternative is selected
based on disability type, e.g., Standard deduction. In addition
to the above described elements, the policy model contains
an operation, marked by the «assert» stereotype, that specifies
properties to test during a compliance checking analysis. For
instance, the assert operation in Fig. 2 verifies that the outcome
produced by system implementing the deduction for disability
policy matches the outcome envisaged by the policy model.
Policy models operationalization We developed a rule-based

3



OCL: 
FromAgent.
TAX_YEAR

no

   
    

: Real

«intermediate» 
expected_amount

«calculate» 
Deduction specific to 

vision disability 

«assert» 
Check correctness of 

deduction granted to taxpayer

«iterative» 

inc: Income

«context»  TaxPayer

OCL: 
self.incomes->
select(i:Income | 
i.year = tax_year 
and i.taxCard
.oclIsUndefined()) 

incomes

tax_year

«calculate» 
Standard 
deduction

«formula» 

yes

yes

no 

is_disability_vision
«decision»  

   
    

«statement» 
actual_amount = 

expected_amount

prorata_period * 
vision_deduction

   
    

«formula» 
prorata_period * 12 * 
adequate_flat_rate

   
    

   
    

«formula» 
0

is_disabled
«decision»  

OCL: 
self.disabilityType 
<> Disability::None  

is_disabled

OCL: 
self.disabilityType
= Disability::Vision  

is_disability_vision

vision_deductionValue: 1455 €

adequate_flat_rate

OCL: 
inc.prorata_period

prorata_period

actual_amount
OCL: 
inc.taxCard.
invalidity

OCL: 
FromLaw.
invalidityFlatRate
(self.disabilityRate)

«calculate» 
No 

deduction
«fromrecord»  

«fromagent»  

«fromrecord»  

«fromrecord»  

«fromlaw»  

«fromrecord»  

«fromrecord»  

«fromlaw»  

Fig. 2. Policy Model for Calculating Invalidity Tax Deduction (Simplified)

transformation algorithm [16], [24]. This transformation gives
policy model execution semantic to enable their automated
analysis. This model-to-text transformation was built on top of
Papyrus (eclipse.org/papyrus/) and was encoded using Acceleo
(eclipse.org/acceleo/). Further tool support details and exam-
ples of generated code can be found in [24]. At this stage,
the transformer supports three target languages, i.e., Java,
OCL, and Matlab. As discussed in Section III, the appropriate
language is used based on the type of desired analysis, e.g.,
OCL invariants for testing.
Probabilistic simulation data generation To be able to faith-
fully capture the properties of the population that is subject
to simulation, we proposed in [25] a UML profile (not
to be confused with the profile for policy models). This
profile extends class diagrams with a variety of probabilistic
notions, including probabilistic attributes, multiplicities and
specializations, as well as conditional probabilities. Using this
profile one could indicate, for instance, that values of a given
attribute should be drawn from a normal distribution. Such
statistical information is available from census data or can
be elicited from domain experts. We have also developed
an automated data generator that uses the above described
profile to generate realistic simulation data samples. Further
information, such as the generation strategy we developed to
satisfy the multiplicity constraints, can be found in [25].

V. EXPECTED CONTRIBUTIONS

A modeling methodology for expressing legal policies: We
propose a modeling methodology that: (1) raises the level
of abstraction for specifying legal policies, (2) provides a
clear interpretation of the law, and (3) maintains traceability
between models, legal texts and software systems. We believe
that a higher level of abstraction mitigates the expertise gap
that legal experts are facing (discussed in Sections I and II).
A model-based probabilistic data generator: We introduce a
UML-class diagram instantiator that is based on a new UML
profile for capturing the probabilistic characteristics of a given

population. As described in Section III, it is important to
provide several generation strategies that maximize the fitness
of the generated data with regards to the analysis to perform.
For instance, one objective to meet when simulating policies
is to generate data that is likely to be sampled from the real
population. However, when performing testing, an objective
should be to maximize the number of detected faults.
A framework for analyzing legal policies: Our ultimate
expected contribution is to propose a framework that sup-
ports various forms of policy analysis. Our framework should
overcome the limitations discussed in Sections I and II while
enabling: (1) the estimation of variables of interest, e.g., ex-
pected revenue from a given set of policies (2) change impact
analysis activities, to determine the impact that a modification
in the law would have on development artifacts or on variables
of interest, (3) consistency checking, to identify undesirable
situations that would violate operating principles, and (4) legal
compliance checking, to detect defects in software systems
implementing the policies. We believe that the executable
semantics of our policy models combined with search-based
techniques would provide the adequate infrastructure to sup-
port the aforementioned analysis.

VI. PLAN FOR EVALUATION AND VALIDATION

To assess the soundness, effectiveness and efficiency of the
proposed solutions in addressing the problem of Section I, we
rely mainly on industrial case studies.

As mentioned in Section I-B, this project places a lot of
emphasis on case studies conducted in collaboration with
industry. The validation has started at an early stage of
the project as some milestones were already reached. For
instance, we conducted a case study over the Luxembourgish
personal income tax law to a verify that: (1) the level of
effort required to build policy models is reasonable, and (2)
policy models built using our methodology are less complex
than policies specified using OCL– evaluated through several
structural complexity factors from [26]. Results of this case
study were promising and suggest that our solution tackles
to a large extent the policy formalization challenge described
in Section I. We further plan to conduct a usability study to
assess how convenient to use our developed tools are, e.g., the
probabilistic data generator and the policy models simulator.

VII. CURRENT STATUS

An overview of the planned activities alongside expected
completion dates is given in Fig. 3. Outcomes from activities
one and two were presented in Section I and Section II,
respectively. Status of activities three to five is presented in
Section IV. Below, we outline our current and future activities.

We have taken a number of concrete steps towards gener-
ating hypothetical but yet realistic simulation data (Activity
5). We developed a probabilistic data generator aimed at
producing a large instance model from a given UML class
diagram while respecting the probabilistic characteristics of
the underlying population [25]. The key enablers of this
generator are: (1) a UML profile that captures the probabilities

4

http://www.eclipse.org/papyrus/
http://www.eclipse.org/acceleo/


1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25-27 28-30 31-33 34-36

1

2

3

4

5

6

7

8

11/2013 - 
07/2014 

02/2014 - 01/2015

02/2015-12/2015

05/2015-02/2016

11/2014-
04/2015 

Dissertation writing 
and defense

Operationalization of  
legal policy models

Duration in months (PhD started in 11/2013)

Field study and 
problem formulation
Literature review
Modeling notation and 
methodology definition

Test and simulation 
data generation

02/2016-11/2016

Legal policy models 
simulation

Planed activities 

11/2013 - 07/2015

Tools building and 
evaluation 05/2014-02/2016

Fig. 3. Planned Activities and their Timeline for Completion

to respect (described in Section IV), and (2) an efficient gen-
eration strategy. For example, our generation strategy includes
a slicing mechanism that improves scalability by narrowing
the generation to only what is relevant for the policy models
to analyze. However, our current generation strategy does not
consider additional constraints, e.g., OCL constraints attached
to the UML class diagram elements, that need to be satisfied
for consistency. To overcome this limitation, we plan to
investigate how our generator can be enhanced with constraint
solving capabilities, e.g., by integrating an OCL solver [27].

Currently, our policy simulator only supports basic simula-
tion scenarios such as result differencing, i.e., when an original
and a modified set of policies are executed over the same
simulation data; then the simulation results are compared to
quantify the impact of the proposed changes. In the future, we
would like to investigate search-based techniques in order to
incorporate more advanced simulation scenarios such as the
identification of undesirable situations, e.g., the identification
of exploitable loop-holes or operating principles that may be
violated by legal means.
Acknowledgment. I thank my PhD supervisors, Dr. Mehrdad
Sabetzadeh and Prof. Dr. Lionel Briand for their guidance
and support. I am grateful to members of Luxembourg Inland
Revenue Office, in particular Thierry Prommenschenkel, for
sharing their legal knowledge with me. I acknowledge financial
support from Centre des technologies de l’information de
l’Etat and Fonds National de la Recherche under grants
FNR/P10/03 and FNR9242479.

REFERENCES

[1] L. Canova, L. Piccoli, and A. Spadaro, “SYSIFF 2006: A microsimu-
lation model for the french tax system,” MicroSimula - Paris School of
Economics, Technical report, 2009.

[2] F. Figari, A. Paulus, and H. Sutherland, “Microsimulation and policy
analysis,” in Handbook of Income Distribution. Elsevier, 2015, vol. 2,
pp. 2141–2221.

[3] S. Hohls, “How to support (political) decisions?” in Electronic Govern-
ment. Springer, 2013, pp. 111–122.

[4] W. Hassan and L. Logrippo, “Requirements and compliance in legal
systems: a logic approach,” in Proceedings of 1st International Workshop
on RE and Law (RELAW’08), 2008, pp. 40–44.

[5] K. Petersen, “The regulation of assisted reproductive technology: a
comparative study of permissive and prescriptive laws and policies,”
Journal of law and medicine, vol. 9, no. 4, pp. 483–497, 2002.

[6] T. Bench-Capon et al., “A history of AI and Law in 50 papers: 25 years
of the International Conference on AI and Law,” Artificial Intelligence
and Law, vol. 20, no. 3, pp. 215–319, 2012.

[7] T. van Engers, R. Gerrits, M. Boekenoogen, E. Glassée, and P. Kordelaar,
“POWER: using UML/OCL for modeling legislation - an application
report,” in Proceedings of 8th International Conference on Artificial
Intelligence and Law (ICAIL’08), 2001, pp. 157–167.

[8] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 742–762, 2010.

[9] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A model for
technology transfer in practice,” IEEE Software, vol. 23, no. 6, pp. 88–
95, 2006.

[10] L. C. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue,
“Research-based innovation: A tale of three projects in model-driven
engineering,” in Proceedings of the 15th International Conference
on Model-Driven Engineering Languages and Systems (MODELS’12),
2012, pp. 793–809.

[11] J. Stelmach and B. Brożek, Methods of legal reasoning. Springer, 2006.
[12] E. Melz and A. Valente, “Modeling the tax code,” in Proceedings of 2nd

International Workshop on Regulatory Ontologies (WORM’04), 2004,
pp. 652–661.

[13] E. Rissland and D. Skalak, “CABARET: Rule interpretation in a hybrid
architecture,” International Journal of Man-Machine Studies, vol. 34,
no. 6, pp. 839–887, 1991.

[14] L. Bibel, “AI and the conquest of complexity in law,” Artificial Intelli-
gence and Law, vol. 12, no. 3, pp. 159–180, 2004.

[15] T. Breaux, “Exercising due diligence in legal requirements acquisition:
A tool-supported, frame-based approach,” in Proceedings of 17th IEEE
International Requirements Engineering Conference (RE’09), 2009, pp.
225–230.

[16] G. Soltana, E. Fourneret, M. Adedjouma, M. Sabetzadeh, and L. C.
Briand, “Using UML for modeling procedural legal rules: Approach
and a study of luxembourg’s tax law,” in Proceedings of the 17th
International Conference on Model-Driven Engineering Languages and
Systems (MODELS’14), 2014, pp. 450–466.

[17] S. Ghanavati, D. Amyot, and L. Peyton, “Towards a framework for
tracking legal compliance in healthcare,” in Proceedings of 19th In-
ternational Conference on Advanced Information Systems Engineering
(CAiSE 2007), 2007, pp. 218–232.

[18] S. Goedertier and J. Vanthienen, “Designing compliant business pro-
cesses with obligations and permissions,” in Proceedings of 7th Work-
shop on Business Process Management (BPM’06), 2006, pp. 5–14.

[19] T. Breaux and A. Anton, “Analyzing regulatory rules for privacy and
security requirements,” IEEE Transactions on Software Engineering,
vol. 34, no. 1, pp. 5–20, 2008.

[20] S. Islam, H. Mouratidis, and J. Jürjens, “A framework to support align-
ment of secure software engineering with legal regulations,” Software
and System Modeling, vol. 10, no. 3, pp. 369–394, 2011.

[21] S. Ingolfo, A. Siena, J. Mylopoulos, A. Susi, and A. Perini, “Arguing
regulatory compliance of software requirements,” Data & Knowledge
Engineering, vol. 87, pp. 279–296, 2013.

[22] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Future of Software Engineering
(FOSE’07), 2007, pp. 37–54.

[23] Object Management Group, “UML 2.2 superstructure specification,”
2009.

[24] G. Soltana, E. Fourneret, M. Adedjouma, M. Sabetzadeh, and L. Briand,
“Using UML for modeling legal rules: Approach and a study of
luxembourg’s tax law,” Interdisciplinary Centre for Security, Relia-
bility and Trust (SnT), Technical report no. TR-SnT-2014-3, 2014,
http://people.svv.lu/soltana/Models14.pdf.

[25] G. Soltana, N. Sannier, M. Sabetzadeh, and L. C. Briand, “A model-
based framework for probabilistic simulation of legal policies,” in
Proceedings of the 18th International Conference on Model-Driven
Engineering Languages and Systems (MODELS’15), 2015, (to appear).

[26] L. Reynoso, M. Genero, and M. Piattini, “Towards a metric suite
for OCL expressions expressed within UML/OCL models,” Journal of
Computer Science and Technology, vol. 4, no. 1, pp. 38–44, 2004.

[27] S. Ali, M. Zohaib Iqbal, A. Arcuri, and L. Briand, “Generating test data
from OCL constraints with search techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 10, pp. 1376–1402, 2013.

5

http://people.svv.lu/soltana/Models14.pdf

	Problem Statement and research methodology
	Problem Statement
	Research methodology

	Related Work
	Proposed solution
	Preliminary work
	Expected contributions
	Plan for evaluation and validation
	Current status
	References

