
A SURVEY ON STABILITY AND RIGIDITY RESULTS

FOR LIE ALGEBRAS*

MARIUS CRAINIC, FLORIAN SCHÄTZ, AND IVAN STRUCHINER

Abstract. We give simple and unified proofs of the known stability
and rigidity results for Lie algebras, Lie subalgebras and Lie algebra
homomorphisms. Moreover, we investigate when a Lie algebra homo-
morphism is stable under all automorphisms of the codomain (including
outer automorphisms).

1. Introduction

In this paper we address the following well known, classical problems
about the stability/rigidity of Lie algebras:

Problem 1 (Rigidity of Lie algebras). Given a Lie bracket µ on a vector
space g, when is it true that every Lie bracket µ′ sufficiently close to µ is of
the form µ′ = A · µ for some A ∈ GL(g) close to the identity?

In the problem above, (A · µ)(u, v) := Aµ(A−1u,A−1v). A Lie algebra
which satisfies the condition above will be called rigid.

Problem 2 (Rigidity of Lie algebra homomorphisms). Given a Lie algebra
homomorphism ρ : h→ g, when is it true that every Lie algebra homomor-
phism ρ′ : h→ g sufficiently close to ρ is of the form ρ′ = Ad g ◦ ρ for some
g ∈ G close to the identity?

A Lie algebra homomorphism satisfying the condition above will be called
a rigid homomorphism.

Problem 3 (Rigidity of Lie subalgebras). Given a Lie subalgebra h ⊂ g,
when is it true that every subalgebra h′ ⊂ g sufficiently close to h is of the
form h′ = Ad g(h) for some g ∈ G close to the identity?

A subalgebra satisfying the condition above will be called a rigid subal-
gebra.

Problem 4 (Stability of Lie algebra homomorphisms). Given a Lie algebra
homomorphism ρ : h → g, when is it true that for every Lie algebra g′

sufficiently close to g, there exists a homomorphism ρ′ : h→ g′ close to ρ?

A homomorphism satisfying the condition above will be called stable.

Problem 5 (Stability of Lie subalgebras). Given a Lie subalgebra h ⊂ g,
when is it true that for every Lie algebra g′ sufficiently close to g, there
exists a Lie subalgebra h′ ⊂ g′ close to h?
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A subalgebra satisfying the condition above will be called a stable sub-
algebra.

As a consequence of the formalism used to address these stability prob-
lems, we will give an answer also to the following problem:

Problem 6. Given a Lie algebra g, when is a neighborhood of g smooth in
the space of all Lie algebra structures?

Answers to these problems are given in [5, 6, 7, 8, 9]. Our solutions rely
on the following analytic tools:

(1) A version of the implicit function theorem (Proposition 4.3), which
guarantees that an orbit of a group action is locally open.

(2) A stability result for the zeros of a vector bundle section (Proposition
4.4).

(3) Kuranishi’s description of zero sets.

Our approach – which has been inspired by [2, 3] in the rigidity results,
and by [1] in the stability results – allows us to answer Problems 1 to 6
in a simple and unified manner. Moreover the solution of an extension of
Problem 2 (Theorem 5.10) is not present in these papers. In forthcoming
work of the authors, infinite-dimensional versions of tools 1. and 2. – which
are Proposition 4.3 and Proposition 4.4, respectively – will be used to prove
stability/rigidity results in the context of Lie algebroids.

As a preparation for answering the problems mentioned above, we first
review the infinitesimal deformation theory of Lie algebras, Lie subalgebras,
and Lie algebra homomorphisms, respectively.

2. Lie algebra cohomology

Infinitesimally, rigidity and stability problems translate into linear algebra
problems, which take place in chain complexes associated to Lie algebras and
their homomorphisms. We briefly recall the construction of these complexes.
For more details, see [4] and references therein.

Given a Lie algebra g and a representation r : g → gl(V ), one obtains
a chain complex called the Chevalley-Eilenberg complex of g with
coefficients in V as follows: the cochains Ck(g, V ) of degree k are given
by Hom(∧kg, V ), with differential δr : Ck(g, V )→ Ck+1(g, V ) given by

δrω(u0, . . . , uk) :=

k∑
i=0

(−1)ir(ui) · ω(u0, . . . , ûi, . . . uk)

+
∑
i<j

(−1)i+jω([ui, uj ], u0, . . . , ûi, . . . , ûj . . . uk).

Whenever necessary to avoid confusion, we will denote a Lie algebra by
a pair (g, µ), where µ : ∧2g → g denotes the bracket [ , ] on g. Also, the
differential described above will be denoted by δµ,r, when necessary. For any
Lie bracket µ and representation r, the differential satisfies δ2 = 0 and the
resulting cohomology

ker(δk)/im(δk−1)
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is denoted Hk(g, V ) (or Hk
µ,r(g, V ), whenever necessary).

Note that the expression for δr makes sense even when r : g → gl(V )
is merely a linear map (not necessarily a representation), and when µ is
an arbitrary skew-symmetric bilinear map on g to itself (not necessarily
satisfying Jacobi identity). In this case, even though δ2 6= 0, we will continue
to denote the corresponding maps by δµ,r.

There are three examples that will be extremely important in our treat-
ment of the rigidity/stability problems stated above:

Example 2.1. When V = g equipped with the adjoint representation, the
differential depends only on the Lie bracket of g. In this case the differential
will be denoted by δ = δµ whenever there is no risk of confusion, and the

cohomology will be denoted by Hk(g, g).

Example 2.2. When ρ : h → g is a homomorphism of Lie algebras, r =
ad g ◦ ρ : h→ gl(g) is a representation of h. In this case, the differential will
be denoted by δρ = δµ,ρ and the cohomology by Hk(h, g).

Example 2.3. When h ⊂ g is a Lie subalgebra, the adjoint representation
of g induces a representation of h on g/h. The corresponding differential
will be denoted by δh = δµ,h, and the resulting cohomology by Hk(h, g/h).

3. Deformation Theory: algebraic aspects

In this section we illustrate the relevance of the cohomologies introduced
in Examples 2.1, 2.2, and 2.3 to the study of deformation problems.

3.1. Deformations of Lie Brackets. We begin with the cohomology of g
with values in its adjoint representation, and its relation to the deformations
of the Lie bracket µ = [ , ] on the vector space underlying g.

Definition 3.1. A deformation of (g, µ) is a smooth one parameter family
of Lie brackets µt on g such that µ0 = µ.

Two deformations µt and µ′t are equivalent if there exists a smooth family
of Lie algebra isomorphisms ϕt : (g, µt)→ (g, µ′t) such that ϕ0 = id.

Proposition 3.2. Let µt be a deformation of (g, µ). Then µ̇0 = d
dt |t=0µt

is a cocycle in C2(g, g). Moreover, if µ′t is another deformation which is
equivalent to µt, then [µ̇0] = [µ̇′0] in H2(g, g).

Proof. Let J : ∧2g∗ ⊗ g→ ∧3g∗ ⊗ g denote the Jacobiator

J (η)(u, v, w) = η(η(u, v), w) + cyclic permutations.

Then, for all t one has that
J (µt) = 0.

Differentiating this expression at t = 0 on both sides we obtain

µ̇0([u, v], w) + [µ̇0(u, v), w] + cyclic permutations = 0,

or in other words, δµ(µ̇0) = 0.
Now, assume that µ′t is another deformation which is equivalent to µt,

and let ϕt ∈ C∞([0, 1],GL(g)) denote the equivalence. We differentiate both
sides of

ϕt(µt(u, v)) = µ′t(ϕt(u), ϕt(v))



4 MARIUS CRAINIC, FLORIAN SCHÄTZ, AND IVAN STRUCHINER

at t = 0 to obtain

µ̇0(u, v)− µ̇′0(u, v) = [u, ϕ̇0(v)] + [ϕ̇0(u), v]− ϕ̇0([u, v]).

This shows that µ̇0 − µ̇′0 = δµϕ̇0. �

Remark 3.3. One should interpret the previous proposition as stating that,
formally, H2(g, g) should be identified with the tangent space at [µ] to the
space of Lie brackets on g modulo the natural action of GL(g). In Theorem
5.3 we will prove a partial converse to the proposition above, which states
that if H2(g, g) = 0, then [µ] is an isolated point in the moduli space of Lie
brackets on g.

In view of the previous remark, a natural question which arises is the
following: under which conditions does a cocycle ξ ∈ C2(g, g) actually de-
termine a deformation of µ? Let us denote by Zk(g, g) = ker δµ the set of

closed elements of Ck(g, g), and by Bk(g, g) the set of those elements which
are coboundaries. We consider the Kuranishi map

Φ : Z2(g, g)→ H3(g, g), Φ(η) = J (η) modB3(g, g).

Proposition 3.4. If there exists a deformation µt of g such that µ̇0 = ξ ∈
Z2(g, g), then Φ(ξ) = 0.

Proof. Consider the Taylor expansion

µt = µ+ tξ +
1

2
t2η + o(t3)

of µt around t = 0.
Since J (µt) = 0, we obtain

0 = J (µt) = J (µ) + tδµξ + t2(J (ξ) + δµη) + o(t3),

and it follows that J (ξ) = −δµη. �

Remark 3.5. As a consequence of Theorem 5.4, it follows that if H3(g, g)
vanishes, then every ξ ∈ Z2(g, g) does indeed give rise to a deformation of
g.

3.2. Deformations of Homomorphisms. We now describe the formal
deformation theory of Lie algebra homomorphisms. Let ρ : h → g be a
homomorphism.

Definition 3.6. A deformation of ρ is a smooth family ρt : h→ g of Lie
algebra homomorphisms such that ρ0 = ρ.

Two deformations ρt and ρ′t are equivalent if there exists a smooth curve
gt in G, starting at the identity, such that ρ′t = Ad gt ◦ ρt. Here, G denotes
the unique simply connected Lie group which integrates g.

Proposition 3.7. If ρt is a deformation of ρ then ρ̇0 = d
dt |t=0ρt is a cocycle

in C1(h, g). Moreover, if ρ′t is equivalent to ρt, then [ρ̇0] = [ρ̇′0] in H1(h, g).

Proof. We differentiate both sides of

ρt([u, v]) = [ρt(u), ρt(v)]

at t = 0 to obtain

ρ̇0([u, v]) = [u, ρ̇0(v)] + [ρ̇0(u), v].
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It follows that δρρ̇0 = 0.
Now, assume that ρ′t(u) = Ad gt ◦ ρt(u) for all u ∈ h. Differentiating both

sides at t = 0 we obtain

ρ̇′0(u) = ρ̇0(u) + [ġ0, ρ(u)],

or in other words ρ̇0 − ρ̇′0 = δρġ0. �

Remark 3.8. Again we interpret this proposition as stating that, formally,
H1(h, g) can be identified with the tangent space at [ρ] to the space of all
Lie algebra homomorphisms from h to g, modulo the adjoint action of G.
This should be compared to the statement of Theorem 5.9.

This remark suggests the following problem: When is a cocycle ξ ∈
C1(h, g) tangent to a deformation of ρ? To obtain a partial answer to this
question we consider the Kuranishi map

Φ : Z1(h, g)→ H2(h, g), Φ(ξ) =
1

2
[ξ, ξ] modB2(h, g),

where 1
2 [ξ, ξ](u, v) = [ξ(u), ξ(v)]g.

Proposition 3.9. If there exists a deformation ρt of ρ such that ρ̇0 = ξ,
then Φ(ξ) = 0.

Proof. Consider the Taylor expansion

ρt = ρ+ tξ + t2η + o(t3).

It follows from [ρt(u), ρt(v)]− ρt([u, v]) = 0 that

0 = [ρ(u), ρ(v)]− ρ([u, v]) + t ([ξ(u), ρ(v)] + [ρ(u), ξ(v)]− ξ([u, v]))

+ t2 ([ρ(u), η(v)] + [η(u), ρ(v)] + [ξ(u), ξ(v)]− η([u, v])) + o(t3)

and thus, in particular, 1
2 [ξ, ξ] = −δρη. �

Remark 3.10. As a consequence of Theorem 5.12 it will follow that if
H2(h, g) = 0, then every ξ ∈ Z1(h, g) is indeed tangent to a deformation of
ρ.

3.3. Deformations of Subalgebras. Finally, we describe the infinitesimal
deformation theory for Lie subalgebras.

Let h be a k-dimensional subalgebra of g and denote by Grk(g) the Grass-
mannian of k-dimensional subspaces of g, i.e.

Grk(g) = {V ⊂ g : V is a k-dimensional subspace of g}.

Definition 3.11. A deformation of h inside g is a smooth curve ht ∈
C∞([0, 1],Grk(g)) such that h0 = h, and ht is a Lie subalgebra of g for all t.

Two deformations ht and h′t of h inside g are said to be equivalent if
there exists a smooth curve gt in G, starting at the identity, and such that
h′t = Ad gtht.

Proposition 3.12. If ht is a deformation of h inside of g, then ḣ0 = d
dt |t=0ht

is a cocycle in C1(h, g/h) = h∗ ⊗ g/h. Moreover, if ht is equivalent to h′t,

then [ḣ0] = [ḣ′0] in H1(h, g/h).
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Remark 3.13. In the statement of the proposition above we have used
the canonical identification of ThGrk(g) with h∗ ⊗ g/h which is obtained
as follows: If ht is a curve in Grk(g) starting at h, we can find a curve

at in GL(g) starting at the identity and such that ht = at(h). Then ḣ0 is
represented by

η ∈ h∗ ⊗ g/h, η(u) :=
d

dt
|t=0at(u) mod h.

Proof. Let ht be a deformation of h inside of g. As in the remark above,
fix a curve at in GL(g), starting at the identity, and such that at(h) = ht.
Denote by

āt : g/h −→ g/ht

the induced isomorphism. Then, since for each t the subspace ht is a Lie
subalgebra, we have that

σt ∈ ∧2h∗ ⊗ g/h, σt(u, v) := ā−1t ([at(u), at(v)] mod ht)

vanishes identically for all t ∈ R, and all u, v ∈ h. Note however, that by
definition,

σt(u, v) = ā−1t ([at(u), at(v)] mod ht) = (a−1t ◦ [at(u), at(v)]) mod h,

and thus, by differentiating at t = 0 we obtain

(−ȧ0[u, v] + [ȧ0(u), v] + [u, ȧ0(v)]) mod h = 0.

This is just the cocycle condition for η = ȧ0 mod h.
Next, assume that h′t = Ad gtht. Then a′t = Ad gt ◦ at is a curve in GL(g)

which maps h to h′t. By differentiating both sides of this expression and
taking the quotient by h, we obtain that

ȧ′0(u) mod h = (ȧ0(u) + [α, u]) mod h,

where α = ġ0 ∈ g. This concludes the proof. �

Remark 3.14. Once more we interpret this proposition as stating that,
formally, H1(h, g/h) can be identified with the tangent space at [h] to the
space of all Lie subalgebras of dimension k in g, modulo the adjoint action
of G. This should be compared to the statement of Theorem 5.16.

This leads us to the following question: Given a cocycle ξ ∈ C1(h, g/h),
does it induce a deformation of h inside of g?

First, observe that the exact sequence

h // g // g/h

induces a long exact sequence in cohomology

· · · // H1(h, h) // H1(h, g) // H1(h, g/h) // H2(h, h) // · · · .

The connecting homomorphism H1(h, g/h)→ H2(h, h) measures how much
an infinitesimal deformation of h as a Lie subalgebra effects the Lie bracket
that h inherits from g. On the level of cocycles, the connecting homomor-
phism can be realized by choosing a splitting

σ : g/h→ g
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and setting

Ωσ : Z1(h, g/h)→ Z2(h, h), Ωσ(η) := δ(σ ◦ η).

We remark that, a priori, Ωσ(η) is a map from ∧2h to g. But because η is
a cocycle, Ωσ(η) is annihilated by the projection g → g/h, and hence takes
values in h. Observe that, as an element of Hom(∧2h, h), Ωσ(η) is closed,
but not necessarily exact.

We now define
Φσ : Z1(h, g/h)→ Z2(h, g/h)

by
Φσ(η)(u, v) := [(σ ◦ η)(u), (σ ◦ η)(v)] mod h− η(Ωσ(η)(u, v)).

As above, σ denotes a splitting of the short exact sequence h → g → g/h.
We leave it to the reader to check the following two facts:

(1) Φσ(η) is indeed a cocycle.
(2) If one chooses another splitting, say σ′, Φσ(η) and Φσ′(η) differ by

δ(η ◦ µ ◦ η), where µ := σ′ − σ.

Hence the Kuranishi map

Φ : Z1(h, g/h)→ H2(h, g/h), Φ(η) := [Φσ(η)]

is well-defined.

Proposition 3.15. If there exists a deformation ht of h such that ḣ0 = η,
then Φ(η) = 0.

Proof. We fix a splitting σ : g/h→ g as before. This choice yields a chart

ψσ : Hom(h, g/h)→ Grk(g)

around h ∈ Grk(g), which associates to each map η : h → g/h the graph of
ησ = σ ◦ η. Observe that the differential of ψσ at zero is the identity (here
we use the identification ThGrk(g) ∼= Hom(h, g/h) explained above).

Suppose we have a deformation ht of h. Using the chart ψσ, ht yields a
family ηt ∈ C∞([0, 1],Hom(h, g/h)), which we expand up to second order in
t, i.e.

ηt ∼ tη + t2ρ+ · · · .
We know that the graph of ηt is a Lie subalgebra for all t, i.e. for arbitrary
x, y ∈ h,

[x+ ηt(x), y + ηt(y)]

is again an element of the graph of ηt. If one expands this condition in
powers of t, one obtains the following requirements:

• t0: h is a Lie subalgebra,
• t1: η is a cocycle of Hom(h, g/h),
• t2: The cocycle Φσ(η) : ∧2h→ g/h which represents the cohomology

class Φ(η) is equal to −δρ, hence Φ(η) = 0.

In the last item, we used that Φσ(η) can also be written as

Φσ(η)(u, v) := [(σ◦η)(u), (σ◦η)(v)]−(η◦πσh ) ([(σ ◦ η)(u), v] + [u, (σ ◦ η)(v)]) ,

where πσh is the projection g → h induced by the splitting σ, i.e. πσh =
id− σ ◦ πg/h.

�
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4. Analytic tools

4.1. Openess of orbits. Let E be a vector bundle over M . Suppose a Lie
group G acts on E in a smooth fashion. We will always assume that the
action preserves the zero-section Z : M ↪→ E. It follows that M inherits a
G-action.

Definition 4.1. A section σ : M → E is called equivariant if

σ(g · x) = g · σ(x)

holds for all g ∈ G and x ∈M .

Observe that the zero section Z : M → E is always equivariant. Also,
notice that the zero set of any equivariant section is mapped into itself under
the G-action.

Definition 4.2. Let σ be an equivariant section of the vector bundle E →
M . A zero x ∈M of σ is called non-degenerate if the sequence

g
dµx // TxM

dvertσ // Ex

is exact, where:

• g is the Lie algebra of G, seen as the tangent space of G at the
identity.
• µx : G → M is the map µx(g) := g · x and dµx denotes the tan-

gent map from g to TxM (i.e., the infinitesimal Lie algebra action
computed at x).
• dvertσ is the vertical derivative of σ at x, which is defined as the

composition of the usual differential dxσ : TxM → T0xE with the
canonical projection T0xE

∼= TxM ⊕ Ex → Ex.

Proposition 4.3. Suppose σ is an equivariant section of the vector bundle
E → M and let x be a non-degenerate zero of σ. Then there is an open
neighborhood U of x and a smooth map h : U → G such that for all y ∈ U
with σ(y) = 0, one has h(y) · x = y. In particular, the orbit of x under the
G-action and the zero set of σ coincide in an open neighborhood of x.

Proof. To simplify the notation, we denote the map µx(g) := g · x by α.
Observe that by restricting to an open neighborhood of x, we can assume E
to be trivial, i.e. E = M×V . The section σ then becomes a map β : M → V .
The vertical differential of σ at x translates to the usual differential of β.

Recall that the map which associates to each point of G (respectively M)
the rank of the differential of α (respectively β) is lower semicontinuous, and
thus it follows that

rank (dg′α) ≥ rank (didα) for all g′ ∈ G close enough to id

and

rank (dx′β) ≥ rank (dxβ) for all x′ ∈M close enough to x.

On the other hand, the assumption that β ◦ α is zero implies im dg′α ⊆
ker dα(g′)β and thus

rank (dα(g′)β) + rank (dg′α) ≤ dimM = rank (dα(g′)β) + dim ker(dα(g′)β)
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for all g′ sufficiently close to id ∈ G. Finally, from ker dxβ = im didα and
the inequalities above, we conclude that

rank (dα(g′)β) = rank (dxβ) and rank (dg′α) = rank (didα)

for all g′ ∈ G close enough to id. Thus, there exists a neighborhood W of
id ∈ G such that α has constant rank on W and β|imα has constant rank
on α(W ).

We set m := dimG, r := rank (didα), and s := rank (dxβ), and use the
constant rank theorem to identify locally G = Rr×Rm−r and M = Rr×Rs
in such a way that

α(y, z) = (y, 0) and β(y, 0) = 0.

Now consider the map

ψ : Rr × Rs → Rr × V, ψ(y, w) = (y, β(y, w)).

We note that it has constant (maximal) rank equal to r + s. In fact, we

already know that the rank of dβ|(y,0)=imα is s, and since ∂β
∂yi

(y, 0) = 0 it

follows that the matrix ( ∂β
l

∂wj
) must be of maximal rank (= s). Thus, from

the Implicit Function Theorem it follows that ψ(y, w) = (y, 0) implies w = 0.
Let h : U ⊂M ' Rr×Rs → G ' Rr×Rm−r be given by h(y, w) = (y, 0).

Then for β(x′) = 0 we have that x′ = (y, 0), and thus (α ◦ h)(y′) = y′. �

4.2. Stability of Zeros.

Proposition 4.4 (Stability of Zeros). Let E and F be vector bundles over
M . Let σ ∈ Γ(E) be a section and φ ∈ Γ(Hom(E,F )) a vector bundle map
satisfying φ ◦ σ = 0. Suppose that x ∈M is such that σ(x) = 0, and

(4.1) TxM
dvertx σ // Ex

φx // F

is exact.
Then the following statements hold true:

(1) σ−1(0) is locally a manifold around x of dimension equal to the di-
mension of ker(dvert

x σ).
(2) If σ′ is another section of Γ(E) which is C0-close to σ, and φ′ is

another vector bundle map E → F which is C0-close to φ and such
that φ′ ◦ σ′ = 0, then there exists x′ ∈ M close to x such that
σ′(x′) = 0.

(3) If moreover σ′ is C1-close to σ, then σ′−1(0) is also locally a manifold
around x′ of the same dimension as σ−1(0).

Proof. First of all, since the statements in the theorem are all local, we can
assume that both E and F are trivial, and thus σ and φ are just smooth
maps

σ : M → V, and φ : M → Hom(V,W )

for vector spaces V and W . Note that in this local description the vertical
derivative of the section σ at x becomes the usual derivative of σ as a map
M → V .

Let A = im dxσ, and choose a complement B to A in V , i.e.,

V = A⊕B.
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By exactness of (4.1), φ(x)|B is injective, and σ intersects B transversely
at σ(x) = 0. Since injectivity of φ(x)|B is an open condition (it can be
expressed as a minor of φ(x) having non-zero determinant), it follows that
for every φ′ : M → Hom(V,W ) close to φ, and for every x′ close to x, the
map φ′(x′)|B is injective.

Note that this already implies the first statement. In fact, if x′ is close
enough to x, and σ(x′) ∈ B, then σ(x′) = 0 because φ(x′)(σ(x′)) = 0, and
φ(x′) is injective on B. Thus, close to x we have that σ−1(0) = σ−1(B), and
the smoothness follows from the fact that σ is transverse to B.

Next, we claim that if σ′ is C0-close to σ, then there exists an x′ close to
x for which σ′(x′) ∈ B. In order to see this, let us decompose σ in

σA : M → A, and σB : M → B.

Then, by the definition of A, σA is a submersion, and thus we may choose
coordinates on M and on A such that σA(u, v) = u. If σ′ = (σ′A, σ

′
B) is close

to σ, then locally σ′A can be written as

σ′A(u, v) = u+ f(u, v)

for some f : M → A such that ||f(u, v)|| < ε for all (u, v) ∈ M , and we
must show that there exists (u, v) close to (0, 0) such that σ′A(u, v) = 0.

Assume that such a pair (u, v) does not exist. Then, for each v, we get a
well defined map

gv : Sa−1 −→ Sa−1, u 7−→ u+ f(u, v)

||u+ f(u, v)||
,

where Sa−1 denotes the unit sphere of dimension a− 1 = dimA− 1.
On the one hand, gv has degree one, since it is homotopic to the identity

map through the homotopy

gv(t, u) =
u+ tf(u, v)

||u+ tf(u, v)||
.

On the other hand, gv has degree zero since it is homotopic to a constant
map via

gv(t, u) =
tu+ f(tu, v)

||tu+ f(tu, v)||
,

which is well defined because we assumed that σ′A does not vanish at any
point.

We thus have obtained a contradiction and it follows that we can find
x′ close to x for which σ′(x′) ∈ B. This immediately implies the second
statement in the theorem, for if σ′(x′) ∈ B, it follows from the injectivity of
φ′(x′)|B, and from φ′(x′) ◦ σ′(x′) = 0 that σ′(x′) = 0.

Finally, in order to prove the last statement, we note that if σ′ is C1-close
to σ, then it also intersects B transversely at σ′(x′) = 0, and thus we can
apply again the same argument used to prove the first statement of the
theorem. �
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4.3. Kuranishi’s description of zero sets. We reconsider the setting of
the previous subsection: Let E and F be vector bundles over M , and σ a
section of E. Suppose φ ∈ Γ(Hom(E,F )) is a vector bundle map from E to
F satisfying φ ◦ σ = 0. In addition, we assume that a Lie group G acts on
E in such a way that 1) the zero section Z : M → E is preserved and 2) the
section σ is equivariant.

Proposition 4.5 (Kuranishi models). Suppose that x is a zero of the section
σ. Let µx : G→M be the map µx(g) := g · x.

Then there is

(1) a submanifold S of M , containing x and of dimension dim ker(dvert
x σ)−

dim im (dµx),

(2) a subbundle Ẽ of E|S of rank dim ker(φx)− dim im (dvertx σ),

(3) a section σ̃ of Ẽ,

such that the following conditions are satisfied:

(1) The zero sets of σ̃ and of σ|S coincide.
(2) If x′ is a zero of σ sufficiently close to x, then x′ lies in the G-orbit

of a zero of σ̃.
(3) The section σ̃ vanishes at x to second order.

In the course of the proof of Proposition 4.5, we will use the following
lemma:

Lemma 4.6. Let f : Rm → Rn be a smooth function that maps zero to zero.
Then there is

(1) a submanifold Z of Rm of dimension dim ker(d0f),
(2) a linear subspace C ⊂ Rn of dimension n− dim im (d0f)

(3) and a smooth map f̃ : Z → C

such that

(1) The zero sets of f̃ and of f coincide in a neighborhood of 0.

(2) The map f̃ vanishes at 0 to second order.

Proof. Choose a direct sum decomposition Rn = im d0f ⊕ C. Since f is
transverse to C at 0, there is a neighborhood U of 0 ∈ Rm such that f−1(C)∩
U is a smooth submanifold. One now finishes the proof by defining Z to be
this submanifold and f̃ to be the restriction of f to Z. �

Remark 4.7. Observe that, although Z and f̃ do depend on the choice of
a complement C to d0f , one can extract the following invariants:

• The tangent space of Z at 0 is canonically isomorphic to ker d0f .
• Given v ∈ ker d0f , we choose a curve γ, which starts at 0 in the

direction of v. We associate to it the vector

lim
t→0

f(γ(t))

t2
∈ Rn.

The class of this vector in Rn/im d0f is independent of the choice
of γ. Hence we obtain a quadratic form on T0Z with values in
Rn/im d0f , which coincides with the second jet of f̃ at 0 ∈ Z.

We now prove Proposition 4.5:
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Proof. We first fix a transversal τ to the orbit of x under G, i.e.

Txτ ⊕ Tx(G · x) = TxM.

Since
G× τ →M, (g, y) 7→ g · y

is submersive at (x, id), the orbit of τ under G contains an open neighbor-
hood of x. From now on, we work over τ and replace E, F , σ and φ by
their restrictions to τ . We fix local trivializations of E and F near x, i.e.
E = τ × V and F = τ ×W . Then σ and φ correspond to smooth maps
f : τ → V and g : τ → Hom(V,W ), respectively.

Let K be a complement to the image of gx : V → W . For x′ sufficiently
close to x, gx will be transverse toK as well, hence g−1x′ (K) forms a subbundle

Ê of E if we let x′ vary in a neighborhood of x. By φ ◦ σ = 0, we know
that σ actually takes values in Ê. We trivialize Ê in a neighborhood of x,
i.e. Ê ∼= τ × V̂ and obtain a smooth map f̂ : τ → Ṽ which encodes σ (as a

section of Ê).

Applying Lemma 4.6 to f̂ : M → V̂ yields a submanifold S of τ and
a function f̃ : S → Ṽ such that the zero sets of f̃ and f̂ coincide in a
neighborhood of x and with f̃ vanishing to second order at x. We define σ̃
to be the section corresponding to f̃ .

Now suppose x′ is a zero of the original map f (and hence of the section
σ). If x′ is sufficiently close to x, it lies in the orbit of an element y ∈ τ .

Since σ is equivariant, y is also a zero of f and hence of f̂ = f |τ . Since the

zero sets of f̂ and f̃ coincide in a neighborhood of x, it follows that x′ lies
in the orbit of a zero of f̃ .

We leave the verification of the dimension of S and of the rank of Ẽ :=
τ × Ṽ to the reader. �

Remark 4.8. As in the local case, the construction of S, Ẽ and σ̃ depends
on auxiliary choices. Nevertheless, the following data are invariant:

(1) The tangent space of S at x is canonically isomorphic to ker dvert
x σ/im dµx.

(2) The fiber of Ẽ at x is canonically isomorphic to kerφx/im dvert
x σ.

(3) There is a quadratic form on TxS with values in Ẽx, which encodes
the second jet of σ̃ at x.

5. Solutions to the Problems

5.1. Lie Brackets. Proposition 4.5 yields a local description of the moduli
space of Lie brackets on g in a neighborhood of a given one:

Theorem 5.1. Let (g, [·, ·]) be a Lie algebra. There is an open neighborhood
U of 0 ∈ H2(g, g) and a smooth map Φ : U → H3(g, g) with the following
properties:

(1) Φ and its derivative vanish at the origin.
(2) The zeros of Φ parametrize Lie brackets on g, with 0 corresponding

to the original bracket [·, ·].
(3) The union of the GL(g)-orbits passing through Lie brackets parametrized

by Φ contains an open neighborhood of [·, ·] in the space of all Lie
brackets on g (topologized as a subset of Hom(∧2g, g)).
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Proof. We apply Proposition 4.5 as follows: First, note that GL(g) acts
naturally on M = Hom(∧2g, g). This action extends to the trivial vector
bundles over M with fibers Hom(∧3g, g) and Hom(∧4g, g), which we denote
by E and F , respectively. For the section σ : M → E of Proposition 4.5 we
take the Jacobiator

J (η)(u, v, w) = η(η(u, v), w) + cyclic permutations.

Observe that the moduli space of interest is J −1(0)/GL(g).
For the vector bundle morphism φ : E → F consider

φ(η) = δη : Hom(∧3g, g)→ Hom(∧4g, g),

where we use the formula for the Lie algebra differential with η in place of
the bracket [·, ·] and with the map

r(u) := η(u, ·) : g→ g

in the place of the representation.
A simple computation shows that dvert

µ J = δµ, which concludes the proof.
�

Theorem 5.1 was established by Nijenhuis and Richardson in [6] (Theorem
B).

Remark 5.2.

(1) The second jet of Φ at 0 is given by the Kuranishi map from Sub-
section 3.1.

(2) One can also apply Theorem 5.1 to solve Problem 1 (Rigidity of
Lie algebras). One obtains that if H2(g, g) = 0, then (g, µ) is rigid.
Moreover, one can apply Proposition 4.3, which yields a smooth map
that associates to each Lie bracket µ′ close to µ an isomorphism
A ∈ GL(g), such that A · µ = µ′:

Theorem 5.3 (Rigidity of Lie Brackets). Let (g, µ) be a Lie algebra. If
H2(g, g) = 0, then there exists an open neighborhood U ⊂ ∧2g∗⊗g of µ, and
a smooth map h : U → GL(g) such that h(µ′) · µ = µ′ for every Lie bracket
µ′ ∈ U . In particular, (g, µ) is rigid.

Proof. Again we denote by M = Hom(∧2g, g), by E the trivial vector bundle
with fibers Hom(∧3g, g) and by J the section of E given by the Jacobiator.
We consider also the natural action of GL(g) on Hom(∧2g, g). The rigidity

problem can be reformulated as “when is it true that for every µ′ ∈ M̃ close
to µ, and such that J (µ′) = 0, there exists A ∈ GL(g) close the identity
map such that A · µ = µ′?”.

We apply Proposition 4.3. A simple computation shows that a Lie bracket
µ is a non-degenerate zero of J iff the sequence

Hom(g, g)
δµ // Hom(∧2g, g)

δµ // Hom(∧3g, g) ,

is exact, i.e. iff H2(g, g) = 0. �

Finally, by applying Proposition 4.4 we can solve Problem 6, i.e., we
obtain a local smoothness result for the space of Lie brackets:
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Theorem 5.4. Let (g, µ) be a Lie algebra. If H3(g, g) = 0 then the space of
Lie algebra structures on g is a manifold in a neighborhood of µ of dimension
equal to the dimension of Z2(g, g).

Remark 5.5. We observe that as a consequence of this theorem, one obtains
that if H3(g, g) = 0, then for every ξ ∈ Z2(g, g) there exists a smooth family
of Lie bracket µt on g such that d

dt

∣∣
t=0

µt = ξ.

Proof. Let M = Hom(∧2g, g), E = M×Hom(∧3g, g), F = M×Hom(∧4g, g)
and consider the section J ∈ Γ(E) and the vector bundle map µ 7→ δµ ∈
Γ(Hom(E,F )). Then δµ(J (µ)) = 0 for all µ ∈M , and by differentiating at
µ one obtains

Hom(∧2g, g)
δµ // Hom(∧3g, g)

δµ // Hom(∧4g, g),

which is exact if and only if H3(g, g) = 0.
Thus, in this case, by the first statement of Proposition 4.4, one obtains

that the space of Lie algebra structures is smooth in a neighborhood of
µ. �

Remark 5.6. Observe that Theorem 5.4 can also be obtained from Proposi-
tion 4.5: Reconsider the setting of the proof of Theorem 5.1 with the GL(g)-
action replaced by the trivial group action. The corresponding Kuranishi
model consists of a smooth map from an open neighborhood of Z2(g, g) to
H3(g, g). If the latter space is trivial, it follows that the space of Lie brackets
is locally a manifold modeled on the vector space Z2(g, g).

5.2. Homomorphisms of Lie Algebras. We use Proposition 4.5 to ob-
tain a local description of the moduli space of Lie algebra homomorphisms.

Theorem 5.7. Let ρ : h→ g be a Lie algebra homomorphism. There is an
open neighborhood U of 0 ∈ H1(h, g) and a smooth map Φ : U → H2(h, g)
with the following properties:

(1) Φ and its derivative vanish at the origin.
(2) The zeros of Φ parametrize Lie algebra homomorphisms from h to

g, with 0 corresponding to ρ.
(3) The union of G-orbits passing through homomorphisms parametrized

by Φ contains an open neighborhood of ρ in the space of all Lie
algebra homomorphisms (topologized as a subset of Hom(h, g)).

Proof. Let M = Hom(h, g), and E and F be the trivial vector bundles over
M with fiber Hom(∧2h, g) and Hom(∧3h, g), respectively. Let G be a Lie
group which integrates g, and consider the adjoint action of G on M and E.

Let K ∈ Γ(E) be given by

K(ϕ)(u, v) = [ϕ(u), ϕ(v)]g − ϕ([u, v]h),

and note that the zero set of K is the space of all Lie algebra homomorphisms
from h to g. Thus, the moduli space of interest is K−1(0)/G. Consider also
the bundle map

φ : E → F, φ(ϕ)(η) = δϕ(η),

which makes sense even if ϕ is not a homomorphism.



STABILITY AND RIGIDITY RESULTS FOR LIE ALGEBRAS 15

A straightforward computation shows that

φ(ϕ)(K(ϕ)) = 0 for all ϕ ∈M.

Moreover, one has that dvert
ρ K = δρ. Thus, a direct application of Proposi-

tion 4.5 concludes the proof. �

Remark 5.8.

(1) The second jet of Φ at 0 is given by the Kuranishi map from Sub-
section 3.2.

(2) One can apply Theorem 5.7 to solve Problem 2 (Rigidity of Lie
algebra homomorphisms). One obtains that if H1(h, g) = 0, then ρ
is rigid. One can also apply Proposition 4.3, which yields a smooth
map that associates to each Lie algebra homomorphism ρ′ close to
ρ an element g ∈ G, such that Ad g ◦ ρ = ρ′.

The following Theorem is Theorem A of [7].

Theorem 5.9 (Rigidity of Lie Algebra Homomorphisms). Let ρ : h→ g be a
Lie algebra homomorphism. If H1(h, g) = 0, then there exists a neighborhood
U ⊂ Hom(h, g) of ρ, and a smooth map h : U → G such that ρ′ = Ad h(ρ′)◦ρ,
for every Lie algebra homomorphism ρ′ ∈ U . In particular, ρ is rigid.

Proof. Again we set M = Hom(h, g), E = M×Hom(∧2h, g), and we consider
the curvature map

K : Hom(h, g) −→ Hom(∧2h, g)

defined in the proof of Theorem 5.7, and the G action on Hom(h, g) via the
adjoint representation.

The rigidity problem can be reformulated as “when is it true that for
every ρ′ ∈ M close to ρ, and such that K(ρ′) = 0, there exists g ∈ G, close
the identity, such that Ad g ◦ ρ = ρ′?”.

We apply Proposition 4.3 to this situation. A simple computation shows
that the homomorphism ρ is a non-degenerate zero of K iff the sequence

g
δρ // Hom(h, g)

δρ // Hom(∧2h, g) ,

is exact, i.e. iff H1(h, g) = 0. �

The action of G on Hom(h, g) factors through an action by the automor-
phism group Aut(g) of the Lie algebra g, i.e.

Aut(g) := {A ∈ GL(g) : A · µ = µ}.

One can ask for a condition which implies that ρ : h→ g is rigid with respect
to the action of Aut(g) on the space of Lie algebra homomorphisms.

As a slight variation of Theorem 5.9 we obtain:

Theorem 5.10. Let ρ : h→ g be a Lie algebra homomorphism. If

H1(ρ∗) : H1(g, g)→ H1(h, g)

is surjective, ρ is rigid with respect to the action of Aut(g).
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Proof. Since Aut(g) is a closed subgroup of the Lie group GL(g), it is a Lie
subgroup and its tangent space aut(g) is given by

{a ∈ End(g) : [a(x), y] + [x, a(y)] = a([x, y]) ∀x, y ∈ g}.

This is exactly the kernel Z1(g, g) of δ : Hom(g, g)→ Hom(∧2g, g).
We apply Proposition 4.3. A simple computation shows that ρ is a non-

degenerate zero of K (with respect to the action of Aut(g)) iff

Z1(g, g)
ρ∗ // Hom(h, g)

δρ // Hom(∧2h, g) ,

is exact, where ρ∗ : Hom(∧kg, g) → Hom(∧kh, g) is the chain map defined
by

(ρ∗ω)(v1, · · · , vk) := ω(ρ(v1), · · · , ρ(vk)).

Hence, non-degeneracy of ρ is equivalent to ρ∗ mapping Z1(g, g) surjectively
onto the kernel of δρ : Hom(h, g) → Hom(∧2h, g). This condition is equiva-
lent to the surjectivity of the map

H1(ρ∗) : H1(g, g)→ H1(h, g)

induced on cohomology. �

Remark 5.11. If one takes the action by Aut(g) on Hom(h, g) into account,
one obtains a Kuranishi model whereH1(h, g) is replaced byH1(h, g)/imH1(g, g).
Observe that also the last statement of Theorem 5.7 changes, since the G-
orbits are replaced by the larger Aut(g)-orbits.

By applying Proposition 4.4 we can solve also Problem 4 (Stability of Lie
algebra homomorphisms):

Theorem 5.12 (Stability of Lie Algebra Homomorphisms). Let ρ : h → g
be a homomorphism of Lie algebras. If H2(h, g) = 0, then ρ is stable.
Moreover, in this case the space of Lie algebra homomorphisms from h to g
is locally a manifold of dimension equal to the dimension of Z1(h, g).

Proof. We apply Proposition 4.4. Again, let M = Hom(h, g), and E and F
be the trivial vector bundles overM with fiber Hom(∧2h, g) and Hom(∧3h, g),
respectively.

Denote by Λ the space of all Lie algebra structures on g. Then for each
µ ∈ Λ we obtain a section Kµ ∈ Γ(E) given by

Kµ(ϕ)(u, v) = µ(ϕ(u), ϕ(v))− ϕ([u, v]),

and a bundle map

φµ : E → F, φµ(ϕ)(η) = δµ,ϕ(η),

which makes sense even if ϕ is not a homomorphism. Note that the map

Λ −→ Γ(E)× Γ(Hom(E,F )), µ 7−→ (Kµ, φµ)

is continuous if we endow the space of sections with the C1-topology.
Just as in the proof of Theorem 5.7, a straightforward computation shows

that

φµ(ϕ)(Kµ(ϕ)) = 0 for all ϕ ∈M.
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In order to apply Proposition 4.4, we must check when the linear sequence

TρM
dvertρ K

// Eρ
φρ // Fρ

is exact. But this sequence is precisely

Hom(h, g)
δµ,ρ // Hom(∧2h, g)

δµ,ρ // Hom(∧3h, g),

which is exact if and only if H2(h, g) = 0.
Thus, by Proposition 4.4, for each µ′ ∈ Λ sufficiently close to µ, there

exists a ρ′ ∈ M close to ρ such that Kµ′(ρ′) = 0. This concludes the
proof. �

Theorem 5.12 was proven by Richardson in [9] (Theorem 7.2).

Remark 5.13. The stability problems are more subtle than the rigidity
ones. To justify this statement, we present here a straightforward approach
to the stability problem for homomorphisms which leads to an infinitesimal
condition. However, we are not able to prove that this condition implies
stability (and we do not know if it is true or not).

Let Λ be the space of all Lie brackets on g, and let N be the space
of all pairs (η, ϕ) consisting of a Lie bracket η on g, and a homorphism
ϕ : h→ (g, η). Then the stability problem can be rephrased as: “is the map
pr1 : N → Λ locally surjective in a neighborhood of (µ, ρ)?”.

Note that Λ sits inside Λ̃ = Hom(∧2g, g) as the zero set of the Jacobiator

J : Λ̃ −→ Hom(∧3g, g),

and N sits inside Ñ = Hom(∧2g, g)×Hom(h, g) as the zero set of a map

Φ : Ñ −→ Hom(∧3g, g)×Hom(∧2h, g)

given by Φ(µ, ρ) = (J (µ),Kµ(ρ)), where

Kµ(ρ)(u, v) = µ(ρ(u), ρ(v))− ρ([u, v]).

The infinitesimal condition for stability is the surjectivity of the map

d(µ,ρ) pr1 : ker d(µ,ρ)Φ→ ker dµJ .
We already know that dµJ = δµ. If we compute d(µ,ρ)Φ we obtain

d(µ,ρ)Φ(η, ϕ) = (δµη, ρ
∗η + δρ(ϕ)).

Thus, the surjectivity of pr1 amounts to finding for each η ∈ Hom(∧2g, g),
which is δµ-closed, a map ϕ ∈ Hom(h, g) such that

ρ∗η = δρ(ϕ).

In other words, dµ,ρ pr1 is surjective if and only if

(5.1) H2(ρ∗) : H2(g, g) −→ H2(h, g)

is trivial.
However we do not know how to show (or whether it is true) that the

vanishing of (5.1) implies that ρ is stable (this is very closely related to a
conjecture in [10], and conjecture 3 in [1]). Instead, we have shown that if
H2(h, g) = 0, then ρ is stable. Note that when H2(g, g) = 0, it is trivial to
verify that ρ is stable, because in this case g is rigid by Theorem 5.3.
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5.3. Lie Subalgebras. Let h ⊂ g be a Lie subalgebra of dimension k. We
begin by giving the Kuranishi description of the local moduli space of Lie
subalgebras near h.

Theorem 5.14. Let h ⊂ g be a Lie subalgebra of dimension k. There is
an open neighborhood U of 0 ∈ H1(h, g/h) and a smooth map Φ : U →
H2(h, g/h) with the following properties:

(1) Φ and its derivative vanish at the origin.
(2) The zeros of Φ parametrize Lie subalgebras of g of dimension k, with

0 corresponding to h.
(3) The union of the G-orbits passing through the Lie subalgebras parametrized

by Φ contains an open neighborhood of h in the space of all k-
dimensional Lie subalgebras of g (topologized as a subset of the Grass-
mannian of g).

Proof. We apply Proposition 4.5. Let M be the Grassmannian of k-planes
in g, and let E and F be the vector bundles with fiber over V ⊂ g given
by EV = Hom(∧2V, g/V ) and FV = Hom(∧3V, g/V ). Finally, fix an inner
product on g, which – for each subspace V ⊂ g – yields a splitting s : g/V →
g of the exact sequence

0 // V // g
π // g/V // 0.

We denote the corresponding projection of g on V by ωs = idg − s ◦ π.
Consider the action of G on M and on E induced by the adjoint repre-

sentation, and the section

σ : M −→ E, σ(V )(u, v) = π([u, v]).

Note that a subspace V is a Lie subalgebra iff σ(V ) = 0, and thus the moduli
space of interest is σ−1(0)/G.

Next, consider the vector bundle map

φ : E −→ F

given by

φ(V )(η)(u, v, w) = π([s(η(u, v)), w])+η(ωs([u, v]), w)+ cyclic permutations.

It follows from the Jacobi identity that

φ(V )(σ(V )) = 0 for all V ⊂ g.

Moreover, by differentiating at h ∈M , we obtain

dvert
h σ = δh,

from where the proof follows. �

The construction of the Kuranishi model for Lie subalgebras is explained
in [5], Section 8.

Remark 5.15.

(1) The second jet of Φ at 0 is given by the Kuranishi map from Sub-
section 3.3.
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(2) One can apply Theorem 5.14 to solve Problem 3 (Rigidity of Lie
subalgebras). In fact, one obtains that if H1(h, g/h) = 0, then h is
rigid. Moreover, one can apply Proposition 4.3 in order to obtain a
smooth map from an open neighborhood of h in the Grassmannian
Grk(g) of k-planes in g to G which associates to each Lie subalgebra
h′ close to h an element h(h′) ∈ G, such that Ad h(h′)(h) = h′:

Theorem 5.16. Let h ⊂ g be a Lie subalgebra. If H1(h, g/h) = 0, then
there exists a neighborhood U of h in the Grassmannian Grk(g) of k-planes
in g, and a smooth map h : U → G such that h′ = Ad h(h′)(h), for every Lie
subalgebra h′ ∈ U . In particular, h is a rigid subalgebra.

Proof. Again we let M denote the Grassmannian of k-planes in g, E →
M the vector bundle whose fiber over a subspace V is given by EV =
Hom(∧2V, g/V ) and consider the section σ of E given by

σ(V )(u, v) = [u, v]g modV,

and the adjoint action of G on M .
The rigidity problem can be reformulated as “when is it true that for

every h′ ∈ M̃ close to h, and such that σ(h′) = 0, there exists g ∈ G close
the identity map such that Ad g(h) = h′?”.

We apply Proposition 4.3. A simple computation shows that h is a non-
degenerate zero of σ iff the sequence

g // Hom(h, g/h)
δh // Hom(∧2h, g/h)

is exact. The first map factors through δh : g/h → Hom(h, g/h) and the
linear sequence is exact if and only if H1(h, g/h) = 0. �

Theorem 5.16 corresponds to Theorem 11.4 and Corollary 11.5 of [8].

Remark 5.17. The main difference between this problem and the rigidity
problem for the inclusion of h in g is that in the subalgebra problem one
does not impose a priori that h′ is isomorphic to h.

Finally, we apply Proposition 4.4 to solve Problem 5 (Stability of Lie
subalgebras). This result was established by Richardson in [9] (Theorem
6.2).

Theorem 5.18. Let h be a Lie subalgebra of g. If H2(h, g/h) = 0, then h is
a stable subalgebra of g. Moreover, in this case the space of k-dimensional
Lie subalgebras of g is locally a manifold of dimension equal to the dimension
of Z1(h, g/h).

Proof. We use the same notation as in the proof of Theorem 5.14.
For each Lie bracket µ on g, we obtain a section

σµ : M −→ E, σµ(V )(u, v) = πµ(u, v),

and a vector bundle map

φµ : E −→ F

given by

φµ(V )(η)(u, v, w) = πµ(s(η(u, v)), w)+η(ωs(µ(u, v)), w)+ cyclic permutations.
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It follows from the Jacobi identity for µ that

φµ(V )(σµ(V )) = 0 for all V ⊂ g.

Moreover, by differentiating at h ∈M , we obtain

Hom(h, g/h)
δµ,h // Hom(∧2h, g/h)

δµ,h // Hom(∧3h, g/h),

which is exact if and only if H2(h, g/h) = 0.
Thus, Proposition 4.4 applies to this problem, and for each Lie bracket µ′

on g close to µ, there exists a h′ ∈M close to h such that σµ′(h
′) = 0. This

concludes the proof. �
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