
Security@Runtime: A Flexible MDE Approach

to Enforce Fine-grained Security Policies

Yehia Elrakaiby, Moussa Amrani, and Yves Le Traon

University of Luxembourg, 4 Alphonse Weicker L-2721, Luxembourg
{yehia.elrakaiby,moussa.amrani,yves.letraon}@uni.lu

Abstract. In this paper, we present a policy-based approach for au-
tomating the integration of security mechanisms into Java-based business
applications. In particular, we introduce an expressive Domain Specific
modeling Language (Dsl), called Security@Runtime, for the specification
of security configurations of targeted systems. The Security@Runtime
Dsl supports the expression of authorization, obligation and reaction
policies, covering many of the security requirements of modern appli-
cations. Security requirements specified in security configurations are
enforced using an application-independent Policy Enforcement Point
(Pep)- Policy Decision Point (Pdp) architecture, which enables the run-
time update of security requirements. Our work is evaluated using two
systems and its advantages and limitations are discussed.

Keywords: Java Security, Security Policies, Security Domain Specific
Language, Access Control, Obligations.

1 Introduction

Integrating security mechanisms into applications is necessary to ensure data
confidentiality, data integrity and users’ privacy preservation. Security is a cross-
cutting concern affecting most parts of an application and, therefore, decoupling
security requirements from the code implementing system functionalities is desir-
able to achieve code modularity and simplify the correct development of systems
and their maintenance. Previous works primarily focus on the separate specifica-
tion of access control requirements and integration of access control enforcement
mechanisms into applications using either Aspect Oriented Programming (AOP)
[9] [4–8] or using a model-based approach [11–13]. In the former approach, access
control enforcement mechanisms are automatically weaved into the application
at compilation time, whereas in the latter approach, the system and its access
control requirements are abstractly specified using models, from which imple-
mentation code is generated. Neither of these approaches allows for the runtime
updating of security requirements.

The dynamic nature of modern applications and their sophistication requires
however more than just static access control, typically the only security require-
ment covered in existing approaches (see Section 6 for a detailed discussion of

J. Jürjens, F. Piessens, and N. Bielova (Eds.): ESSoS 2014, LNCS 8364, pp. 19–34, 2014.
© Springer International Publishing Switzerland 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31225705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

20 Y. Elrakaiby, M. Amrani, and Y. Le Traon

current approaches and their features). In particular, security requirements typi-
cally reflect regulatory and internal mandates, which are naturally dynamic and
could change with time. Also, many systems today have requirements that go
beyond access control such as usage control [1], which extends traditional access
control by enabling specification of obligations that users must fulfill before,
while or after access, and privacy obligations [3, 2], which dictate duties and
expectations on how users’ personal data should be handled.

In this paper, we propose a Domain Specific modeling Language (Dsl) and
an architecture for securing Java-based business applications to address the
aforementioned issues. The Dsl supports the expression of fine-grained contex-
tual authorization, obligation, sanction and reaction policies, thus covering the
expression of many of the sophisticated security requirements of modern appli-
cations. Security policies specified using the Dsl are enforced into target appli-
cations using an application-independent architecture, which follows the Policy
Enforcement Point (PEP) / Policy Decision Point (PDP) paradigm. The pro-
posed architecture enforces security requirements into target applications in a
non-intrusive manner using Aspect-Oriented Programming (Aop) [9], enabling
a clean separation between the application’s functional and non-functional re-
quirements. Furthermore, the architecture supports the update of security re-
quirements at runtime.

The remainder of the paper is organized as follows. Section 2 describes S@R
(for Security@Runtime), our Dsl for dealing with the identified challenges and
its enforcement architecture. Section 3 illustrates our approach by presenting
a complete application example. Section 4 describes the implementation of our
tool prototype. Section 5 shows performance results of the prototype for two
real-life systems. Section 6 presents related work; and Section 7 concludes the
paper and discusses future work.

2 The Security@Runtime Approach

At the center of our approach is the Security@Runtime (S@R) Dsl, used for the
configuration of the security enforcement mechanisms. This Section starts by
presenting our Pdp/Pep architecture for enforcing S@R security configurations,
then describes each S@R component in detail.

2.1 Architecture Overview

Figure 1 shows the main components of the security enforcement architecture,
namely the (i) Pap, (ii) Pep and (iii) Pdp. The Policy Administration Point
(Pap) allows the specification of a S@R configuration for the Pep and the Pdp.
The Pep monitors the application, using Aop [9] (in our case, AspectJ), and
filters out information that is irrelevant to policy enforcement based on the con-
figuration. Three events are monitored by the Pep: instance creation, instance
field updates and method calls. If an event is relevant to policy management or
enforcement, then the Pep notifies the Pdp to update the effective security pol-
icy accordingly, e.g. activate a new obligation. When an event corresponds to a

Security@Runtime: A Flexible MDE Approach 21

JAVA
RUNTIME

Interception &
Monitoring

Layer

Policy
Representation

Layer

Dynamic
State

Security
Rules

Binding
Rules

Policy
Decision

Logic

PEP

PDP

Policy
State

Security@Runtime
Configuration

PAP

Filtering Layer

Policy-relevant Information

Fig. 1. Architecture Overview

Fig. 2. The S@R Metamodel

method call, the Pdp computes an access decision. If access is granted, then ex-
ecution proceeds; otherwise, different actions are possible: (1) a runtime security
exception is raised with an appropriate message, (2) the system is stopped, or
(3) the method execution is skipped. In our current prototype’s implementation,
a security exception is raised after access denial.

Figure 2 shows the four building blocks of S@R: (1) DynamicState, (2) Dec-
larations, (3) SecurityRules and (4) DynamicMappingRules. The Dynamic State
is a partial representation of the runtime state of the application and is auto-
matically maintained and managed by the Pdp. The other blocks define the
configuration of the security mechanisms and are presented successively in the
following: SecurityRules are introduced in Section 2.2; then Declarations and Dy-
namicMappingRules are described in Section 2.3. A comprehensive example is
given in Section 3 to illustrate the specification of security configurations.

2.2 Security Rules (SR)

A security policy is a set of security rules specifying what subjects, i.e. active
entities in the system, are permitted, prohibited and obliged to do in the system.
A security rule is contextual, i.e. it may apply only under certain conditions. A
security rule includes the following elements:

– An Identifier of the security rule.

22 Y. Elrakaiby, M. Amrani, and Y. Le Traon

Fig. 3. Security Rules

– A Role representing a set of system users or resources (we choose to abstract
resources using roles, similarly to subjects/users, to minimize the number of
basic policy entities).

– An Action representing an interaction between users and resources.
– A Context denoting a set of system state conditions.

Figure 3 shows the metamodel for security rules. Each SecurityRule has a
unique identifier RuleId, a subject and a target role, and an activation context.
The activation context defines the rule’s applicability condition: a rule is active
only if the evaluation of the boolean ContextExpression is true. A security rule is
either a Permission, a Prohibition, or an Obligation and may be either ActionBased
or StateBased. An ActionBased rule specifies that its subject role is permitted,
prohibited or obliged to execute an Action on its target role. A StateBased

rule specifies that its subject role is obliged or prohibited to maintain a required
Context. An Obligation defines a violationContext that specifies under which
conditions the obligation, after its activation, should be considered violated.

A ContextExpression is a boolean expression language constituted of Basic-
Expressions that can be composed with the usual boolean connectives. A Basic-
Expression is either a DefaultContext, a ContextRef, or a Delay. A DefaultContext
is a special context that is always true. A Delay is a context that is true after the
elapse of the time period specified in it. Finally, a ContextExpression can be an
Interval, denoted [lhr, rhs]. An interval context holds since the left-hand side
lhs holds until the right-hand side rhs holds.

2.3 Declarations and Dynamic Security Rules

Security policies are defined on the abstract level on roles, actions and con-
texts, allowing the use of the same policies in different systems. Declarations and
DynamicMappingRules link elements of security rules to target applications by
defining a mapping between these elements and the application classes, instances
and method calls.

Declarations define aliases for the application classes and methods to simplify
referring to them in security rules instead of using fully qualified names. A

Security@Runtime: A Flexible MDE Approach 23

Fig. 4. Dynamic State

Declaration (cf. Fig. 2) is either a ClassDeclaration or an ActionDecla-

ration. A ClassDeclaration provides an alias for one application class and
may optionally specify a list of the Fields of the class that are relevant to the
enforcement of the security policy. This list improves system efficiency: only the
updates of the relevant instance fields will be notified to the Pdp, as opposed to
notifying the Pdp about changes of the value of every field of declared classes (see
implementation details in Section 4). An ActionDeclaration provides an alias
for one of the application methods or for every method in a sequence of (nested)
methods. Declarations indicate which parts of the application are relevant to the
security policy, therefore they are used by the Pep to filter information about
changes in the application state that are being notified to the Pdp.

Dynamic Mapping Rules describe the mapping between the policy enti-
ties (roles, actions and contexts) and the application entities (instances, fields,
methods and their parameters). A RoleRule specifies which instances in the ap-
plication are assigned to which role in the policy. An OperationRule specifies a
correspondence between method calls and policy actions. A ContextRule defines
a policy context as a condition on the application state: the context holds if its
MatchingExpression holds on the application state. In the following, we describe
the representation of the application and policy states (which compose together
the Pdp state) in S@R. Then, we explain how elements of the application state
are mapped to elements of the policy state using dynamic mapping rules.

Application State At runtime, the state of an application consists of the set of
active objects (or instances), the field instance values, and the stack of method
calls. To correctly manage the security policy, e.g. activate contextual obliga-
tions, changes in the application state that are relevant to the enforcement of
the policy need to be monitored. In our architecture, shown in Figure 1, these
changes are monitored by the aspect layer within the Pep, which notifies the
Pdp when a relevant change is detected. Using the Pep’s notifications, the Pdp
maintains a partial representation of the application state. Concretely, this state
takes the form of a set of First-Order Logic (Fol) facts, allowing the specifica-
tion of security policies in Fol. This state is metamodelled in Figure 4 (left): an
InstanceFact represents a class instance; a FieldFact represents an instance field;

24 Y. Elrakaiby, M. Amrani, and Y. Le Traon

Fig. 5. Rule Condition Language

a MethodCallFact, together with ParamFacts, represents a method call. In S@R’s
concrete syntax, these facts are written as follows:

– instance of(i,r): i is an instance of class r.
– field of(i,f,v): v is the value of the field f of the instance i.
– call of(c,m): c is a call of the method m.
– param of(c,p,v): v is the value of parameter p in the method call c.

Two special parameters, this and target, are systematically added to the nor-
mal parameter list of a method call to denote the calling and called instance
respectively.

Policy State is managed by the Pdp based on the application state. A PolicyState
contains security rules that are applicable, or effective at a given time. Effective
security rules are the set of ACTIVE permissions and the set of ACTIVE, FUL-
FILLED or VIOLATED obligations (all values of the State enumeration in Fig. 4).
In S@R’s concrete syntax, a policy state is represented using facts having one of
the following forms:

– permitted(r,s,a,o): rule r authorizes subject s to take action a on o.
– prohibited(r,s,a,o): rule r prohibits s to take a on o.
– obliged(r,s,a,o,t): rule r obliges s to take a on o.
– obliged(r,s,c,o,t): rule r obliges s to maintain c on o.

Dynamic Mapping Rules If the MatchingExpression of a DynamicMappingRule
holds on the application and policy states for some instantiation, i.e. a variable
substitution making the MatchingExpression true, then the DynamicMappingRule
holds for this instantiation. For example, a RoleRule of the form role of(I,

role name) <- instance of(I,class name) assigns an instance x to the role
role name when instance of(x,class name) holds in the current state. Fig-
ure 5 shows the MatchingExpression’s metamodel: it includes a matching expres-
sion for matching a class instance, a field value, a method call, or any logical
combination of these elements. Note that data operators can be used for the
FieldOf and ParamOf expressions. For example, field of(D,age,≤,18)means
that D is any instance whose value for the field age is less or equal than 18.

Security@Runtime: A Flexible MDE Approach 25

Table 1. Security Requirements for Hospital X

R1 A doctor can read the medical files of the patients he’s treating [Access Control]

R2 A doctor should fill and submit a case evaluation report for each of his patients within
one week [Non-persistent Obligation]

R3 A doctor should fill and submit a check-up report when he is assigned a patient within
two days [Persistent Obligation]

R4 If the doctor does not submit the report, then he has to fill and submit a “violation of
duty” report within one week [Sanctions]

R5 Meanwhile, his access to all files are suspended [Reactions]

R6 A doctor has to delete his patients’ files that are private and not vital within two years
[Privacy]

R7 A medical file has to be stored encrypted at most one minute after its creation by its
creator [Confidentiality]

3 Example: The Medical System (MS)

Consider as an example the information system of Hospital X. The hospital needs
to comply with some internal and regulatory mandates governing the activities
of its personnel in order to protect the privacy of patients and guarantee the
confidentiality and integrity of its information system. In Hospital X, a secu-
rity policy should be specified to govern interactions between Doctors, Patients,
Reports and Files, each of these roles being implemented into a simple class in
the application. Table 1 describes this policy informally. The policy specifies one
access control requirement (R1), a non-persistent obligations (R2), i.e. an obli-
gation that may be cancelled after it is activated, persistent obligations (R3),
i.e. an obligation that cannot be cancelled, sanctions (R4) and reactions (R5) to
compensate the violation of obligations, and the obligations R6 and R7 to satisfy
some privacy and confidentiality requirements respectively.

To enforce these requirements, the security officer of Hospital X should define
a security configuration for the information system of Hospital X as follows: (i)
declare the monitored aspects of the information system using Declarations; (ii)
specify how application entities aremapped to policy entities using DynamicMap-
pingRules; and (iii) define the SecurityRules formalizing the regulatory mandates.

Declarations are simply specified by defining aliases for classes and methods
that need to be referenced in other parts of the configuration (dynamic mapping
rules and security rules). The following example creates an alias “doctor” for the
class *.Person.Doctor, declaring its field patients as the only policy relevant field
(when the attribute clause is absent, all fields are considered relevant). Note
that class aliases can then be used directly as role names (cf. Fig. 3). Similarly,
an alias “read” is created for the method *.Server.readFile(String). Finally,
the actions “readServer” and “readFile” are used as aliases for the method calls
appearing in the sequence (denoted by ->) of the method calls readFileServer
followed by readFile.

26 Y. Elrakaiby, M. Amrani, and Y. Le Traon

class alias doctor method id read
class *.Person.Doctor method sig *.Server.readFile(String)
attributes ArrayList<Patient>: method id readServer,readFile

patients method sig *.Server.readFileServer(String)
->*.File.readFile()

Security Rules are defined according to the Security Requirements (cf. Tab. 1).
Here, each requirement is expressed using one security rule. Rule r3 has doctor,
submit and report as its subject, action and target respectively. The rule’s activa-
tion context is an Interval, thus r3 is activated when the context assigned doctor

becomes true, and is never cancelled (because the Interval’s rhs is false). Rule
r2 is non-persistent because its activation context is aBasicExpression: in this case,
the obligation is activated when assigned doctor holds, i.e. when a doctor is as-
signed to some patient, and it is cancelled when the activation context no longer
holds, i.e. if this patient is no longer treated by this doctor.

permission(r1,doctor,read,file, assigned doctor)
action obl(r2,doctor,submit,report,assigned doctor,delay<1:w>)
action obl(r3,doctor,submit,report,[assigned doctor,false],delay<2:d>)
action obl(r4,doctor,submit,viol report,violation r2,delay<1:w>)
prohibition(r5,doctor,read,file,violation r2)
action obl(r6,doctor,delete,file,private & !vital, delay<2:y>)
state obl(r7,doctor,file encrypted,file,file created,delay<1:m>)

Dynamic Mapping Rules are defined as follows. The first mapping rule is
a RoleRule: it says that any instance of the class report whose field type has
the value of ‘violation report’ is assigned to the role of viol report. The
second mapping rule is an OperationRule: it says that if an instance (denoted
here by S) calls the method read method on a file (denoted by F), then the
policy action “read” has subject S and target F (note the use of the special
parameters this and target for the calling/callee instances). The fourth rule
is a ContextRule that specifies that the context private holds for any file F

whose field classification has the value of ‘‘private’’. The ContextRule
violation r2 is different, because it depends on the policy state: violation r2

holds for a doctor D for which r2 is in the VIOLATED state.

role of(R,viol report) ← instance of(R,report) & field of(R,type,’violation report’)

operation(S,read,F) ← call of(read method) & param of(read method,this,S) &
param of(read method,target,F)

operation(S,delete,F) ← call of(delete method) & param of(delete method,this,S) &
param of(delete method,target,F)

hold(, ,F,private) ← instance of(F,file) & field of(F,classification,’private’)

hold(D, , ,violation r2) ← violated(r2,D,submit,report) field of(F,type,’vital’)

hold(D, , ,file created) ← instance of(F,file) & field of(F,creator,D) & instance of(D,doctor)

hold(D, ,P,assigned doctor) ← instance of(D,doctor) &
field of(D,patients,contains,P) & instance of(P,patient)

hold(, ,F,file encrypted) ← instance of(F,file) & field of(F,encrypted,true)

Security@Runtime: A Flexible MDE Approach 27

One could also define the action read differently: an instance S reads F whenever
readServer and ReadFile are called sequentially; then S is matched to the caller
instance of the method aliased to readServer (precisely, *.Server.readFile-
Server(String), as declared before) and F to the target instance for the method
aliased to readFile (declared previously as being *.File.readFile()).

operation(S,read,F) ← call of(read server) & call of(read file) &
param of(read server,this,S) & param of(read file,target,F)

4 Implementation

The architecture described in Fig. 1 is implemented using AspectJ for monitoring
the target application, XSB Prolog [34] for computing access control decisions
and policy management and Java/interProlog [35] for the communication be-
tween the Pep and the Pdp. EmfText [33] is used for parsing S@R’s concrete
syntax and creating models.

4.1 Application Monitoring Layer

Each activity affecting the application state (instance creation, field update
or method call) is monitored using an aspect. When an instance is created,
if its class type is part of the Declarations within the S@R configuration, the
aspect RelevantClassObserver detects the object using a pointcut of the form
execution(*.new (..)), and passes it to the representation layer.

Field value update detection is more sophisticated: pointcuts of the form
set(* *) only works for Java primitive types (strings, integers, booleans and
so on). To monitor changes within the other supported data structures (like
ArrayLists), a specific pointcut is defined to detect the execution of all meth-
ods altering the contents of the data structure (for example, ArrayList.clear
or ArrayList.set). The pointcut below is specifically defined for the class
ArrayList. Currently, our implementation supports fields whose type is a prim-
itive type and unidimensional structures (Vectors, HashSets and ArrayList).
It is however straightforward to support more data structures.

Finally, method calls are intercepted using a pointcut of the form (call(public
* *(..))). This aspect is of type around, i.e. the call is not executed until the
aspect code is executed. This allows verification of the policy state at the Pdp
before allowing the execution of the method.

28 Y. Elrakaiby, M. Amrani, and Y. Le Traon

4.2 Policy Representation Layer

The policy representation layer consists of a recursive algorithm that processes
Java objects and method calls in order to represent them using the facts de-
scribed in Figure 4. For example, consider an instance of the declared class
doctor with a field age of type Integer and another field patients of type
ArrayList of Patient. Class Patient has a single field name of type String.
Suppose there are two patients P1 and P2 in the treated patients list of doctor
X. These objects would be represented as follows:

– instance of(X,doctor) representing the instance,
– field of(X,age,18) if the value of age of X is 18,
– field of(X,patients,Y) where Y is an identifier of the ArrayList of patients,
– field of(Y,e,P1) where P1 is an identifier of the first Patient, this fact denotes

that P1 is an element of the ArrayList of patients,
– field of(Y,e,P2) where P2 is an identifier of the second Patient,
– field of(P1,name,’John’) if the name of the first Patient is John,
– field of(P2,name,’Ben’) if the name of the second Patient is Ben.

A method call is represented using a fact of the form call of(method id) where
method id is the method alias. Methods are processed similarly to class in-
stances. However, param of facts use the parameter position instead of attribute
names: for example, a fact param of(delete method,1,X) means that X is the first
parameter of the method call delete method. Method calls have two additional
parameters, namely the this and target parameters denoting the calling and called
instances of the method call respectively. AspectJ enables an easy identification
of these instances for intercepted method calls.

4.3 The Policy Decision Point (PDP)

The Pdp is a policy engine implemented in Prolog. It computes a decision for
access control requests and manages obligations in the policy according to noti-
fications received from the Pep as follows: for an instance creation notification,
new Prolog facts representing the instance are inserted into the engine’s knowl-
edge base; for a field update notification, old facts specifying the field’s value
are retracted and replaced by new facts specifying the new value; for a method
call notification, new facts corresponding to the call and its parameters’ value
(which works just as for instance fields) are inserted and the authorization policy
is checked. An access control decision is then returned to the Pep and the facts
corresponding to the call are retracted from the engine. After each notification,
the Pdp also updates the state of obligations.

Access Control After a method call is attempted, the call is interpreted by
the Pep. An access is granted if it is permitted and not prohibited, i.e. the
prohibitions are given an implicit priority over permissions for the resolution of
potential conflicts between them. This access control policy evaluation strategy
is specified using Prolog rules as follows:

Security@Runtime: A Flexible MDE Approach 29

Table 2. Obligation Management Rules

Action Conditions

1 assert(obliged(I,S,A,T,[Ca,Cd],Cv,active))

action obligation(I,R,A,Rt,[Ca,Cd],Cv)
instance of(S,R)
instance of(T,Rt)
hold(S,A,T,Ca)

2
retract(obliged(I,S,A,T,[Ca,Cd],Cv,active))
assert(obliged(I,S,A,T,[Ca,Cd],Cv,violated))

obliged(I,S,A,T,[Ca,Cd],Cv,active)
hold(S,A,T,Cv)

3
retract(obliged(I,S,A,T,[Ca,Cd],Cv,active))
assert(obliged(I,S,A,T,[Ca,Cd],Cv,fulfilled))

obliged(I,S,A,T,[Ca,Cd],Cv,active)
operation(S,A,T)

4 retract(obliged(I,S,A,T,[Ca,Cd],Cv,))
obliged(I,S,A,T,[Ca,Cd],Cv,)
hold(S,A,T,Cd)

5
retract(obliged(I,S,Cf,T,[Ca,Cd],Cv,active))
assert(obliged(I,S,Cf,T,[Ca,Cd],Cv,fulfilled))

obliged(I,S,Cf,T,[Ca,Cd],Cv,active)
hold(S, ,T,Cf)

allow operation(S,A,T) ← operation(S,A,T), permitted(,S,A,T), ¬ prohibited(,S,A,T).

permitted(I,S,A,T) ← permission(I,Rs,A,Rt,C), instance of(S,Rs), action(A),
instance of(T,Rt), hold(S,A,T,C).

prohibited(I,S,A,T) ← prohibition(I,Rs,A,Rt,C), instance of(S,Rs), action(A),
instance of(T,Rt), hold(S,A,T,C).

Obligations The Pdp manages the state of obligations by detecting their ac-
tivation, cancellation, fulfillment and violation. We unify the representation of
obligation activation contexts using Intervals: every activation context c is rep-
resented using an interval [c, !c].

An obligation is managed as follows: it is instantiated when its activation
context holds. It is then fulfilled when its required action (context) is detected,
otherwise the obligation is violated if its violation context holds. An obligation is
canceled at any time when its deactivation context holds. Table 2 shows the con-
ditions for the detection of the activation, cancellation, fulfillment and violation
of obligations and the update actions taken by the Pdp when these conditions
are detected. For example, Line 3 specifies that when the state of an obliga-
tion is active, its state is updated to violated when its violation context becomes
true. State obligations (Line 5) are managed similarly, however their fulfillment
is detected when their required context holds.

Support of Quaternary Predicates One advantage of using predicate logic to
represent the application state is that it simplifies the definition of predicates
for the expression of sophisticated state conditions. For example, the rules below
specify the contains operator for data structures like ArrayLists, the less than or
equals operator for numbers and the derivation of violated facts from obligation
facts respectively.

30 Y. Elrakaiby, M. Amrani, and Y. Le Traon

Fig. 6. Performance Results

field of(Id,Name,<=,Val) ← field of(Id,Name,V), number(V), V =< Val.

field of(Id,Name,includes,Val) ← field of(Id,Name,V), field of(V,e,Val).

violated(Id,S,A,O) ← obliged(Id,S,A,O,[Ca,Cd],Cv,violated).

4.4 Policy Update

A runtime update of Security Rules is managed by simply adding (or retracting)
the Security Rules from the policy engine (and their associated facts), i.e. if an
obligation rule is removed then all its activated instances are also removed. When
a new class is added (or removed) to the declarations part of the configuration,
then the instances of this class are added to (or removed from) the knowledge
base of the Pdp as discussed in Section 4.2. Similarly, when an attribute is added
(or removed), then the facts representing it are added (or retracted). A method
call that is declared (undeclared) starts (ceases) to be monitored by the Pep.
To handle these updates to declared classes and attributes, we need to keep a
map of the class instances of the application at the Pep level.

5 Validation

To validate our approach, we considered two use case applications, namely our
MS running example of Section 3, and an Auction Sales Management System
(Asms). The Asms consists of 122 classes, 797 methods and about 11 kLoC.
The Asms implements an Auction system, where users can buy or sell products
online, after joining an auction and placing bids. Users can also post, or read,
comments from the Auction session. In the evaluation, we specifically targeted
performance-related research questions:

– does the tool perform sufficiently well to be used in practice?
– what are the main factors impacting the tool performance?

To answer these questions, we defined a security policy for each example appli-
cation and ran a scenario covering the different policy management operations,

Security@Runtime: A Flexible MDE Approach 31

Table 3. Comparison of S@R with Existing MDS approaches

DM SM CS SC CG

SecureUML[19] UML Profiles OCL AC �
UMLsec[20] UML Profiles × C,IF,AC ×
secureMDD[21] UML Profiles × AC �
ModelSec[31] UML SecML ◦ MC �
SECTET[32] SE-UML Profiles SE-PL AC ◦
XACML[36] × XACML XACML AC,OB ×
S@R UML S@R S@R AC,OB �

AC: Access Control, C: Confidentiality,
IF: Information Flow, OB: Obligations, MC: Multiple Concerns

DM: System Modeling, SM: Security Modeling, CL: Contextual Security
SC: Security Concerns, CG: Code Generation

i.e. obligation activation, violation, access control, etc. We evaluated three fac-
tors: the time necessary to perform policy management operations, to evaluate
an access request, and to update the (obligation) policy state, for different sizes
of the application and policy states (number of activated obligations).

Figure 6 shows the results: policy management operations and access request
evaluations are performed in a few milliseconds, and represent an almost con-
stant overhead. On the other hand, obligation processing time increases with
the number of (activated) obligations in the system: the activated obligations’
contexts have to be verified individually to check whether they are canceled,
violated or fulfilled, after each state update. We are currently investigating ways
to improve this processing time.

6 Discussion and Related Work

Since the seminal contributions of Lodderstedt and Basin with SecureUml [10],
and Jürgens with UmlSec [20] back in 2002, model-based development of secure
systems has been an active research area. In Table 3, we compare several contri-
butions with respect to several dimensions: system (DM) and security modeling
(SM); contextual security (CS); security concerns (SC) (i.e. what kind of security
properties can be expressed); and code generation (CG).

Domain and Security Modeling. Uml is the most common way to de-
fine the target application domain, as shown in the first column of Table 3.
UML-based approaches annotate the business Uml model with their security
requirements. Conceptually, our approach is different since we introduce the
S@R DSL to specify security requirements and their mapping to target systems.
One advantage of our approach is that it cleanly separates security from system

32 Y. Elrakaiby, M. Amrani, and Y. Le Traon

specification making a true separation of concerns, as opposed to the use of OCL
constraints to specify contextual policies when Uml profiles are used. Note that
Xacml does not assume any specific domain modeling language and, therefore,
it does not provide means to systematically integrate security mechanisms for
enforcing Xacml policies in targeted systems.

Expressivity of Security Languages is a major challenge since it is necessary
to cover the specification of many practical security concerns. Many systems to-
day have security requirements that go beyond access control, as recognized by
Basin, Clavel and Egea in [13] where they pointed out the need to add support
for obligations. To the best of our knowledge, S@R is the first Dsl that sup-
ports management and enforcement of both authorizations and obligations. The
specification of obligations is supported in Xacml [36]. However, obligations in
Xacml are syntactic elements without formal semantics. Furthermore, Xacml
does not provide management and enforcement support for obligations.

Violation Monitoring and Policy Runtime Updating. Runtime policy up-
dating and security rule violation monitoring are not, to the best of our knowl-
edge, present in any of the current approaches.

Security Infrastructure. Despite the use of automated transformations in
Mds, it is still difficult to enable full code generation from high-level require-
ments. SecureUml [19] supports the generation of secure systems for two target
architectures (Enterprise JavaBeans and Microsoft DotNet), but the generating
mechanism relies on pre-existing security mechanisms. In Sectet, the infor-
mation relevant for authorizations are specified using the tool’s language, and
transformed into Xacml specifications. In [31], security and business are com-
posed into a model from which Java code is generated. Our approach generates
Prolog code from security policies defined within S@R, whereas the rest (i.e.,
aspects monitoring and policy interpretation) is application-independent.

7 Conclusion

This paper proposes an approach for securing Java-based business applications
using security policies. Our approach cleanly separates between security and
business concerns, allowing the separate development and specification of busi-
ness and security aspects. It also enables the specification of fine-grained contex-
tual permissions and obligations and supports their management, enforcement
and their update at runtime. We have demonstrated the expressiveness of our
security policy language using a comprehensive example and validated our ap-
proach by using it to secure two different systems. We have identified some lim-
itations of our framework, namely its scalability when the number of activated
obligations in the system increases. Therefore, we plan to study optimization
techniques to improve the tool’s performance. We also intend to provide support
for more advanced usage controls and more Java data structures.

Security@Runtime: A Flexible MDE Approach 33

References

1. Sandhu, R., Park, J.: The UCON ABC usage control model. ACM Transactions
on Information and System Security (TISSEC) 7(1), 128–174 (2004)

2. Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies
and privacy policies. In: SACMAT 2008, p. 133 (2008)

3. Mont, M.: Dealing with privacy obligations in enterprises. In: ISSE 2004 Securing
Electronic Business Processes, pp. 28–30 (2004)

4. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies. In: NSPW,
pp. 87–95 (2000)

5. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. ACM
SIGPLAN Notices 40(6), 305 (2005)

6. de Oliveira, A.S., Wang, E.K., Kirchner, C., Kirchner, H.: Weaving rewrite-based
access control policies. In: FMSE, pp. 71–80 (2007)

7. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: PLAS,
p. 11 (2008)

8. Hussein, S., Meredith, P., Rolu, G.: Security-policy monitoring and enforcement
with JavaMOP. In: PLAS, pp. 1–11 (2012)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier,
J.M., Irwin, J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

10. Lodderstedt, T., Basin, D.: SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In: Proceedings of the 5th International Conference on
The Unified Modeling Language, pp. 426–441 (2002)

11. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based framework
for security policy specification, deployment and testing. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
537–552. Springer, Heidelberg (2008)

12. Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., Jézéquel, J.M.:
Security-driven model-based dynamic adaptation. In: ASE 2010 (2010)

13. Basin, D., Clavel, M., Egea, M.: A decade of model-driven security. In: SACMAT
2011, pp. 1–10 (2011)

14. Basin, D., Clavel, M., Doser, J., Egea, M.: A Metamodel-Based Approach for Ana-
lyzing Security-Design Models. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 420–435. Springer, Heidelberg (2007)

15. May, M., Gunter, C., Lee, I.: Privacy APIs: Access control techniques to analyze
and verify legal privacy policies. In: 19th IEEE Computer Security Foundations
Workshop, CSFW 2006 (2006)

16. Barth, A., Datta, A., Mitchell, J., Nissenbaum, H.: Privacy and contextual in-
tegrity: framework and applications. In: IEEE Symposium on Security and Privacy
(2006)

17. Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy and Utility in Business
Processes. In: 20th IEEE Computer Security Foundations Symposium, pp. 279–294
(2007)

18. Lam, P.E., Mitchell, J.C., Sundaram, S.: A formalization of HIPAA for a medical
messaging system. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.)
TrustBus 2009. LNCS, vol. 5695, pp. 73–85. Springer, Heidelberg (2009)

19. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology (TOSEM) 15(1), 39–91 (2006)

34 Y. Elrakaiby, M. Amrani, and Y. Le Traon

20. Jürjens, J.: UMLsec: Extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

21. Moebius, N., Stenzel, K., Grandy, H., Reif, W.: SecureMDD: a model-driven de-
velopment method for secure smart card applications. In: International Conference
on Availability, Reliability and Security, ARES 2009, pp. 841–846 (March 2009)

22. Cuppens, F., Miège, A.: Modelling contexts in the Or-BAC model. In: ACSAC,
pp. 416–425 (2003)

23. Elrakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: Formal enforcement and man-
agement of obligation policies. In: Data & Knowledge Engineering, pp. 1–21 (2011)

24. Jajodia, S., Samarati, P., Subrahmanian, V.: A logical language for expressing
authorizations. In: Proceedings of 1997 IEEE Symposium on Security and Privacy,
pp. 31–42 (1997)

25. Kagal, L., Finin, T.: A policy language for a pervasive computing environment.
In: IEEE 4th International Workshop on Policies for Distributed Systems and
Networks, pp. 63–74 (2003)

26. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification. Addison-Wesley Longman (2013)

27. Ben-Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Bouhoula, A.: A del-
egation model for extended RBAC. International Journal of Information Secu-
rity 9(3), 209–236 (2010)

28. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High Level Conflict Manage-
ment Strategies in Advanced Access Control Models. Electronic Notes in Theoret-
ical Computer Science 186, 3–26 (2007)

29. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma, C.: Motorbac 2: a security
policy tool. In: 3rd Conference on Security in Network Architectures and Informa-
tion Systems (SAR-SSI 2008), Loctudy, France, pp. 273–288 (2008)

30. Kateb, D.E., Mouelhi, T., Traon, Y.L., Hwang, J., Xie, T.: Refactoring access
control policies for performance improvement. In: ICPE, pp. 323–334 (2012)

31. Molina, F., Toval, A., Sánchez, O., Garca-Molina, J.: ModelSec: A Genera-
tive Architecture for Model-Driven Security. Journal of Universal Computer Sci-
ence 15(15), 2957–2980 (2009)

32. Breu, R., Popp, G., Alam, M.: Model based development of access policies. Inter-
national Journal on Software Tools for Technology Transfer 9(5-6), 457–470 (2007)

33. emfText, http://www.emftext.org/index.php/EMFText
34. XSB Porlog, http://xsb.sourceforge.net
35. interProlog, http://www.declarativa.com/interprolog
36. Extensible Access Control Markup Language (XACML) version 3.0,

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

http://www.emftext.org/index.php/EMFText
http://xsb.sourceforge.net
http://www.declarativa.com/interprolog
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

	Security@Runtime: A Flexible MDE Approachto Enforce Fine-grained Security Policies
	1 Introduction
	2 The Security@Runtime Approach
	2.1 Architecture Overview
	2.2 Security Rules (SR)
	2.3 Declarations and Dynamic Security Rules

	3 Example: The Medical System (MS)
	4 Implementation
	4.1 Application Monitoring Layer
	4.2 Policy Representation Layer
	4.3 The Policy Decision Point (PDP)
	4.4 Policy Update

	5 Validation
	6 Discussion and Related Work
	7 Conclusion
	References

