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Abstract. We define the notion of a formal connection for a smooth family of
star products with fixed underlying symplectic structure. Such a formal con-
nection allows one to relate star products at different points in the family. This
generalizes the formal Hitchin connection which was introduced by the first
author. We establish a necessary and sufficient condition that guarantees the
existence of a formal connection, and we describe the space of formal connec-
tions for a family as an affine space modelled on the formal symplectic vector
fields. Moreover we show that if the parameter space has trivial first cohomol-
ogy group, any two flat formal connections are related by an automorphism of
the family of star products.

1. Introduction

1.1. Quantization and the Hitchin connection. In his seminal paper [Wit89]
Witten investigated quantum Chern-Simons theory, a 3-dimensional topological
quantum field theory (TQFT). As the 2-dimensional part of this theory he proposed
the geometric quantization of the moduli space of flat connections on a Riemann
surface Σ. This moduli space has a natural symplectic structure ω and admits a pre-
quantum line bundle, i.e. a Hermitian line bundle L with a compatible connection,
whose curvature is given by the symplectic form.

The Teichmüller space T of the surface Σ parametrizes complex structures on
the moduli space, so for each point σ ∈ T and each natural number k, called the
level of quantization, we have the quantum state space of geometric quantization,
which is the space

Qk(σ) = H0(Mσ;Lk)
of holomorphic sections of the k-th tensor power of the prequantum line bundle.
These form the fibres of a vector bundle Q over T , called the Verlinde bundle,
and it was shown independently by Hitchin [Hit90] and Axelrod, Della Pietra and
Witten [ADPW91] that this bundle admits a natural projectively flat connection,
which we shall call the Hitchin connection (see also [And12] for a purely finite
dimensional differential geometric approach to this connection). Consequently,
the quantum spaces associated with different complex structures are identified,
as projective spaces, through the parallel transport of this connection. By the
work of Lazslo [Las98] combined with the work of the first author and Ueno,
[AU07b, AU07a, AU12, AU15], this provides a geometric construction of the vec-
tor spaces the Witten-Reshetikhin-Turaev TQFT associates to a closed oriented
surface [RT90, RT91, Tur94].

1.2. Formal connections. On a Poisson manifoldM , a deformation quantization,
or star product, is a C[[h]]-linear product on the space C∞(M)[[h]] that is associa-
tive, reduces to the pointwise product modulo h, and such that the component of
degree 1 in h of its commutator is the Poisson bracket.
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The first named author of this paper has studied the asymptotic relationship
between Toeplitz operators and the Hitchin connection in [And06], and extended
this asymptotic analysis to higher orders [And12], which led him to define the
following notion.

Definition 1.1. Let M be a symplectic manifold equipped with a smooth family
of star products {?σ}σ∈T parametrized by a manifold T . A formal connection for
{?σ}σ∈T is a connection on the bundle T × C∞(M)[[h]]→ T of the form:

(1) DV f = V [f ] +A(V )(f),

where A is a smooth 1-form on T with values in differential operators on M such
that A = 0 modh, f is a smooth section of the bundle, V is any smooth vector field
on T , and V [f ] denotes the derivative of f along V .

The formal connection is called compatible with the family of star products
{?σ}σ∈T , if it is a derivation of the products for any vector field V on T , i.e.

(2) DV (f ?σ g) = DV (f) ?σ g + f ?σ DV (g),

for all σ ∈ T and all smooth sections f and g of T × C∞(M)[[h]]→ T .

Recall that on a Kähler manifold M one can consider the Berezin-Toeplitz star
product ?BT , which can be constructed via the theory of Toeplitz operators, see
[Sch00]. This leads us to consider the following class of examples of families of star
products:

Definition 1.2. Let M be a symplectic manifold with a family of compatible
almost complex structures parametrized by a complex manifold T , so that for any
σ ∈ T , the manifold Mσ is a Kähler manifold, and let {?BTσ }σ∈T be the associated
family of Berezin-Toeplitz star products. A formal Hitchin connection on M is a
formal connection that is compatible with this family of star products and that is
flat.

In [And12] a particular formal Hitchin connection that is associated to the
Hitchin connection from geometric quantization was studied, and it was shown
that the projective flatness of the Hitchin connection implies the flatness of this
formal Hitchin connection. An explicit expression for the 1-form Ã(V ) for the for-
mal Hitchin connection associated to the Hitchin connection was given in [And12,
AG11]. The formula reads

(3) Ã(V )(f) = −V [F ]f + V [F ] ?BT f + h(E(V )(f)−H(V ) ?BT f).

where E is a 1-form on T with values in differential operators onM , H is the 1-form
with values in C∞(M) given by H(V ) = E(V )(1), and F is the Ricci potential of
the family. The construction will be recalled in more detail in Section 3.

It was furthermore noticed in [And12], that – provided certain cohomology
groups of the mapping class group vanish – any formal Hitchin connection could
be used to obtain a mapping class group equivariant deformation quantization on
the moduli space. The first author has further applied these constructions to the
WRT-TQFT using the geometric description of the TQFT vector spaces described
above in [And08, And10]. See also [And05] and [AB11], where the first author gave
an explicit expression for the parallel transport of formal Hitchin connection in the
abelian case.

With this motivation in mind, we return to the general case.

1.3. Existence and classification of formal connections. Let (M,ω) be a sym-
plectic manifold with a family of natural star products {?σ}σ∈T that is parametrized
by T .
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We first establish the following necessary and sufficient condition for the existence
of a compatible formal connection:

Theorem 1.3. There exists a formal connection compatible with {?σ}σ∈T if and
only if the characteristic class [cl(?σ)] of the star products is locally constant on T .

In fact, we show that even more is true: we provide a natural way to associate
a formal connection to every trivialization for the family of characteristic 2-forms
associated to the family of star products and establish a formula for its curvature.
The proof relies on Fedosov’s geometrical construction of star products [Fed94].

This result specializes to the case of a symplectic manifold equipped with a
smooth family of compatible Kähler structures, where we take the family of Berezin-
Toeplitz star products associated with them. In this situation Theorem 1.3 yields
the existence of a compatible formal connection.

Theorem 1.4. Let (M,ω) be a compact, symplectic manifold, and let T be a com-
plex manifold parametrizing a family of compatible Kähler structures Iσ on M , with
σ ∈ T . The family of Berezin-Toeplitz star products associated with the family has
constant characteristic class, and therefore admits a compatible formal connection.

Let us assume in the following that a family of star products {?σ}σ∈T admits a
compatible formal connection. We want to understand the space of all such formal
connections. Relying on a result of Gutt and Rawnsley, [GR99], we obtain:

Theorem 1.5. Let M be a symplectic manifold equipped with a smooth family of
star products {?σ}σ∈T parametrized by T . The space F(M,?σ) of formal connec-
tions on M that are compatible with the family of star products is an affine space
over the space of 1-forms on T with values in formal symplectic vector fields on M ,
and it can then be written as:

F(M,?σ) = D0 + Ω1(T , hΓsym(M)[[h]])

for a fixed formal connection D0, where Γsym(M) denotes the space of symplectic
vector fields on M .

Furthermore, if we assume that H1(M ;R) vanishes, all symplectic vector fields
are Hamiltonian, and therefore all derivations of a star product onM are essentially
inner, therefore they are parametrized by elements of C̃∞h (M), the space of formal
functions on M modulo constants.

1.4. Gauge transformations of formal connections. We study the action of
gauge transformations on the space of formal connections F(M,?σ). The trans-
formations which we consider are differential self-equivalences of the family of star
products, since the gauge transformations have to preserve the compatibility with
the family of star products. If we assume that the parameter space T of the family
of star products has trivial first cohomology group, i.e. H1(T ,R) = 0, we obtain
the following result.

Theorem 1.6. Let M be a symplectic manifold with a family of star products
{?σ}σ∈T parametrized by a smooth manifold T with trivial first cohomology group.
Let D,D′ ∈ F(M,?σ) be formal connections for the family and let us assume that
they are flat. Then they are gauge equivalent via a self-equivalence of the family of
star products P ∈ C∞(T ,Dh(M)), meaning that

(4) D′V = P−1DV P,

for any vector field V on T .

This implies the following corollary:



4 JØRGEN ELLEGAARD ANDERSEN, PAOLO MASULLI, AND FLORIAN SCHÄTZ

Corollary 1.7. Let T be a smooth manifold with trivial first cohomology group,
i.e. H1(T ,R) = 0. If there exists a formal Hitchin connection D in the bundle
T × C∞(M)[[h]] over T , then it is unique up to gauge-equivalence.

1.5. The formal Hitchin connection at low orders. As mentioned above, a
formal connection is called compatible with a family of star products if it is a deriva-
tion with respect to the star products. Our main example of a formal connection is
the formal Hitchin connection defined in [And12], which is known to be a derivation
with respect to the family of Berezin-Toeplitz star products, [And12]. This fact re-
lies on the existence of the Hitchin connection in geometric quantization, as well as
the link between geometric and deformation quantization via Toeplitz operators.

This result assumes the existence of a Hitchin connection in geometric quanti-
zation, which puts several constraints on the objects involved in the construction,
among them the condition that the family of Kähler structures be holomorphic and
rigid, which are quite strong requirements.

On the other hand, the explicit expression (3) that was obtained in [And12]
makes sense in a more general situation, and therefore we can ask whether that
expression in general gives a derivation of the Berezin-Toeplitz star product. This
is a difficult question, because it involves the coefficients of the star product, which
are in general hard to understand. But we can give an affirmative answer if we
restrict our attention to the first order in the formal parameter. Moreover it is easy
to check that the expression (3) defines a flat formal connection up to first order,
and we conclude that the expression obtained in [And12] gives a formal Hitchin
connection up to order one.

Proposition 1.8. Let M be a symplectic manifold with a family of compatible
Kähler structures parametrized by a complex manifold T . Then the expression
(3) defines a formal connection that, module h2, is a derivation of the family of
Berezin-Toeplitz star products on M and flat. Therefore it defines a formal Hitchin
connection in the sense of our definition above, modulo terms of order h2.

We plan to investigate the relationship between the formal Hitchin connection
studied by the first named author of this paper and the formal connections obtained
from Theorem 1.3 more closely in the future.

2. Deformation quantization

2.1. Star products. Let M be a Poisson manifold. We let C[[h]] denote the ring
of formal power series with complex coefficients, and C∞h (M) = C∞(M)[[h]] the
algebra of formal functions on M , which are formal power series with coefficients
in C∞(M). Then C∞h (M) is an algebra over C[[h]], and we can extend the Poisson
bracket linearly to make C∞h (M) into a Poisson algebra. This allows us to formulate
the following definition.

Definition 2.1. Let (M, {·, ·}) be a Poisson manifold. A (formal) star product on
(or deformation quantization of) M is a C[[h]]-bilinear map

? : C∞h (M)× C∞h (M)→ C∞h (M)
written as

f ? g =
∞∑
k=0

ck(f, g)hk,

where, for k ∈ N, the maps ck : C∞(M)×C∞(M)→ C∞(M) are bilinear and called
the coefficients of ?. A star product is required to satisfy the following conditions:

(1) associativity: (f1 ? f2) ? f3 = f1 ? (f2 ? f3),
(2) unitality: f ? 1 = f = 1 ? f ,
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(3) c0(f1, f2) = f1f2,
(4) c1(f1, f2)− c1(f2, f1) = i{f1, f2},

for all f1, f2, f3 ∈ C∞(M).

A star product is said to be differential if the coefficients ck are bidifferential
operators, in the sense that, for a fixed f ∈ C∞(M), both ck(f, ·) and ck(·, f) are
differential operators for all k ∈ N.

Definition 2.2. Two star products ?, ?′ on M are said to be equivalent if there is
a formal power series of linear maps

T =
∞∑
k=0

Tk, Tk : C∞h (M)→ C∞h (M), k ∈ N,

such that T0 = Id and T (f1) ?′ T (f2) = T (f1 ? f2), for f1, f2 smooth functions on
M .

In the following, we will restrict attention to natural star products. These are
differential star products that satisfy the requirement that the coefficient ck is a
bidifferential operator of order at most k. All star products which we will encounter
are of this type.

2.2. Fedosov star products. We review the main ingredients of Fedosov’s geo-
metric construction of star products [Fed94]. In Section 5, we will make use of Fe-
dovo’s framework to construct formal connections. Our exposition follows [Fed94]
and Waldmann’s book [Wal07].

Let (M,ω) be a symplectic manifold of dimension m = 2n. Since any tangent
space TxM is a symplectic vector space, we can consider the associated Weyl alge-
bra.

Definition 2.3. The formal Weyl algebra Wx associated to TxM , for x ∈ M , is
the associative C-algebra with unit, whose elements are formal power series in h,
with formal power series on TxM as coefficients. This means that an element in
Wx has the form:

a(y, h) =
∑
k∈N

∑
α

hkak,αy
α,

where (y1, . . . , ym) are local coordinates on TxM and α = (α1, . . . , αm) is a multi-
index.

The formal Weyl algebra is equipped with the following Moyal-Weyl product:

(5) a ◦MW b =
∞∑
k=0

(
ih

2

)k 1
k!π

i1j1 · · ·πikjk ∂ka

∂yi1 · · · ∂yik
∂kb

∂yi1 · · · ∂yik
,

where π =
∑
i<j π

ij ∂
∂yi ∧

∂
∂yj is the Poisson bivector dual to ωx. The Moyal-Weyl

product is a deformation quantization of the linear symplectic space (TxM,ωx).
LetW = ∪x∈MWx. This defines a bundle of algebras overM , which is called the

Weyl bundle. The space of smooth sections of this bundle, ΓW , gives an associative
algebra with fibre-wise multiplication. This space of section can be thought of as
a “quantized tangent bundle” of M . Note that the centre of ΓW is formed by
the elements that do not contain any yi, and therefore is naturally identified with
C∞h (M) = C∞(M)[[h]].

We next define a useful degree on the Weyl algebra, called the total degree. It is
given by assigning degree 1 to all the yi, i.e. deg yi = 1 for any i, and deg h = 2.
The Moyal-Weyl product is additive with respect to the total degree.
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A differential form on M with values in W is a section of W ⊗ΛqT ∗M , and can
be expressed as:

a(x, y, h, dx) =
∑

hkak,i1,...,ip,j1,...,jqy
i1 . . . yipdxj1 ∧ · · · ∧ dxjq

in local coordinates, where the coefficients ak,i1,...,ip,j1,...,jq are symmetric in the i’s
and anti-symmetric in the j’s. We denote the space of these differential forms by
Ω(M,W ).

Note that the Moyal-Weyl product on ΓW extends to Ω(M,W ). On the latter
space we define an operator δ in the following way:

δ(a) =
∑
i

dxi ∧ ∂a

∂yi
, for all a ∈W ⊗ ΛqT ∗M .

This operator can also be written as

δ(a) = −
[
i

h
ωijdy

idxj , a

]
= − i

h
ad(ω̃),

where the commutator is with respect to the Moyal-Weyl product and ω̃ is ω, seen
as a section of T ∗M ⊗ T ∗M ⊂W ⊗ ∧T ∗M .

An alternative interpretation of δ is as follows: we can define two commuting
derivations δ and δ∗ on Ω(M,W ) by considering the identity morphism TM → TM
as a section of TM⊗T ∗M . We can now insert the TM -part into either ΛT ∗M orW
and multiply the T ∗M -part with the other factor, using the pointwise product on
W . The operator δ corresponds to the latter case. We define δ∗ to be the operator
corresponding to the former.

The operators δ and δ∗ are differentials, i.e. they square to zero. Moreover,
one can use δ∗ as a homotopy operator for δ, which leads to the result that the
cohomology of δ is concentrated in form-degree 0 and that H0(Ω(M,W ), δ) =
C∞h (M).

Definition 2.4. A symplectic connection on a symplectic manifold (M,ω) is a
linear connection ∇ that is torsion-free and such that ω is parallel with respect to
∇, i.e. ∇ω = 0.

Let us fix a symplectic connection ∇ on M . Its curvature tensor is contracted
with ω to yield an element R ∈ Ω2(M,W ). As usual, ∇ extends to the covariant
derivative d∇ on Ω(M,TM), which we dualize and extend to Ω(M,W ). It turns
out that d∇ is also a derivation for the fibre-wise Moyal-Weyl product. Moreover,
d∇ commutes with δ and squares to − i

h ad(R).
Fedosov’s idea is to correct the non-flatness of −δ+d∇ by finding an appropriate

r ∈ Ω1(M,W ) such that the total operator

(6) Dr := −δ + d∇ + i

h
ad(r)

squares to zero. Regardless of flatness, an operator of the form of Dr is a derivation
of the Moyal-Weyl product defined above, i.e.

Dr(a ◦MW b) = Dr(a) ◦MW b+ a ◦MW Dr(b)

holds. Using Fedosov’s ansatz for Dr, one computes

D2
r = i

h
ad
(
−ω − δr +R+ d∇r + i

h
r ◦MW r

)
.

Hence the flatness of Dr is equivalent to the fact that

(7) α = ω + δr −R− d∇r −
i

h
r ◦MW r
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lies in the center of Ω(M,W ), which coincides with Ω(M)[[h]], where we see ordinary
differential forms to be fibrewise constant polynomials on the tangent spaces.

We call a connection of the form (6) abelian if α satisfies this condition, i.e. if
it is a scalar 2-form. If this is the case, then by the Bianchi identity we have that
dα = Drα = 0, and so α is closed (i.e. α ∈ Z2(M)[[h]]) and is called the Weyl
curvature of Dr.

The following theorem shows how to construct the appropriate r in order to
obtain an abelian Dr.

Theorem 2.5. (Fedosov) Let ∇ be a symplectic connection on M and

α = ω + hα1 + h2α2 + · · · ∈ Z2(M)[[h]]

be a closed formal 2-form that is a perturbation of the symplectic form. Then
there exists a unique r ∈ Ω2(M,W ), such that the Dr given by (6) is an abelian
connection with Weyl curvature α and δ∗r = 0.

We are now in position to define the Fedosov star product corresponding to a
given Fedosov connection. One first shows that every element f ∈ C∞(M)[[h]]
extends uniquly to an element

τ(f) ∈ Ω0(M,W )[[h]]

which is parallel with respect to the Fedosov connection Dr. The proof amounts
to breaking up the equation Drτ(f) = 0 into its homogeneous pieces with respect
to the total degree. Cohomological considerations similar to the ones in the proof
of Theorem 2.5 guarantee that the extension τ(f) exists and is unique.

The Fedosov star product ?∇,α associated to the closed formal 2-form α and to
the symplectic connection ∇ on M is given by the following formula:

(8) f ?∇,α g := p(τ(f) ◦MW τ(g)),

where p : Γ(W ) → C∞h (M) is the projection of a section of the Weyl bundle
to its fibrewise constant part. Since Dr is a derivation with respect to ◦MW , this
defines an associative product and one checks inductively that one actually obtains a
natural star product, i.e. ?∇,α is given by bidifferential operators whose component
of order hk is of differential-order at most k in each argument.

Definition 2.6. The characteristic 2-form of a Fedosov star product ?∇,α is

cl(?∇,α) = α ∈ Z2(M ;R)[[h]],

where α is the Weyl curvature of the corresponding Fedosov connection Dr.
The class of cl(?∇,α) is called the characteristic class of ?∇,α.

The definition of the characteristic class of Fedosov star products generalizes to
arbitrary differential star products since every differential star product is equivalent
to one of Fedosov type and two Fedosov star products are equivalent if and only if
their characteristic classes coincide. Hence one just defines the characteristic class of
an arbitrary differential star product to be the characteristic class of an equivalent
star product of Fedosov type. For a more extended treatment of classification
results, we refer the reader to [Del95], [GR99] as well as the exposition in [Wal07].

We note that if we restrict attention to natural star products, a stronger state-
ment holds, se [GR03, Theorem 4.1]: every such star product is equivalent to a
preferred Fedosov star product through a preferred equivalence. This allows one
to assign not only a characteristic class, but a characteristic 2-form to a natural
star product – just take it to be the characeristic 2-form of the preferred equivalent
Fedosov star product.
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2.3. The Berezin-Toeplitz star product. We describe the link between geo-
metric quantization and deformation quantization due to [Sch00].
Definition 2.7. A prequantum line bundle over a symplectic manifold (M,ω) is
the data of a complex line bundle L, equipped with a Hermitian metric h and a
compatible connection ∇ whose curvature satisfies:

F∇ = −iω.
We say that a symplectic manifold is prequantizable if it admits a prequantum

line bundle. If we assume that M is a compact prequantizable Kähler manifold we
can make the following definition.

Definition 2.8. Let f ∈ C∞(M). The Toeplitz operator T
(k)
f : C∞(M ;Lk) →

H0(M ;Lk) is the map defined by

T
(k)
f (s) = π(k)(fs),

mapping a smooth section s on Lk to its projection onto the subspace of holomorphic
sections.

Schlichenmaier showed in [Sch00] that any compact Kähler manifold admits a
natural star product on it, namely the Berezin-Toeplitz star product.
Theorem 2.9 (Schlichenmaier). There exists a unique star product ?BT for M ,
called the Berezin-Toeplitz star product, which is expressed by:

f1 ?
BT f2 =

∞∑
k=0

c(k)(f1, f2)hk,

with c(k)(f1, f2) ∈ C∞(M) determined by the requirement that for all f1, f2 ∈
C∞(M) and for any positive integer L the following estimate holds:∥∥∥∥∥T (k)

f1,σ
T

(k)
f2,σ
−

L∑
l=0

T
(k)
c

(l)
σ (f1,f2),σ

k−l

∥∥∥∥∥ = O(k−(L+1)).

Karabegov and Schlichenmaier proved [KS01] that the Berezin-Toeplitz star
product is of Wick type. This means that for any locally defined functions f and g
with f anti-holomorphic and g holomorphic, and any function h one has

f ? h = fh and h ? g = hg.

Remark 2.10. A star product is said to be with separation of variables if it has
the same property characterizing star products of Wick type, but with the roles of
holomorphic and anti-holomorphic switched. For any star product ?, we can define
the opposite star product ?o by setting f ?o g := g ? f . Therefore, if ? is a of Wick
type, then ?o is with separation of variables.

Gammelgaard [Gam14] showed that star products with separation of variables
can be expressed locally in a graph theoretical way, with weights determined by the
automorphisms of the graphs.

The formal Hitchin connection that we define in the next section is closely related
to the Berezin-Toeplitz star product.

3. The Hitchin connection

Here we review briefly the construction of the Hitchin connection, in the dif-
ferential geometric version of [And12]. The Hitchin connection was introduced by
Hitchin in [Hit90] as a connection over the Teichmüller space in the bundle one ob-
tains by applying geometric quantization to the moduli spaces of flat SU(n) connec-
tions. Furthermore Hitchin proved that this connection is projectively flat, which
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was also proved independently by Axelrod, Della Pietra and Witten [ADPW91].
Hitchin’s construction was motivated by Witten’s study [Wit89] of quantum Chern-
Simons theory in 2+1 dimensions. In [And12] a differential geometric construction
of the Hitchin connection which works for a more general class of manifolds was
provided.

3.1. Smooth families of Kähler structures. Let (M,ω) be a symplectic mani-
fold and let T be a smooth manifold that parametrizes smoothly a family of Kähler
structures on M . This means that we have a smooth map

I : T → C∞(M,End(TM))

that associates to each σ ∈ T an integrable and compatible almost complex struc-
ture on M . The requirement that the map I is smooth means that it defines a
smooth section of the pullback bundle

π∗M (End(TM))→ T ×M,

where πM : T ×M →M denotes the canonical projection map.
The symplectic form ω is non-degenerate, therefore we obtain from it an iso-

morphism iω : TMC → TM∗C by contraction in the first entry. We can use this
isomorphism to define the bivector field:

ω̃ = −(i−1
ω ⊗ i−1

ω )(ω),

which satisfies the identity ω · ω̃ = ω̃ · ω = Id, where the dot indicates contraction
of tensors in their entries closest to the dot, which is relevant when working with
non-symmetric tensors. For example ω · ω̃ means that the right-most entry of ω is
contracted with the left-most one of ω̃.

Similarly we obtain a type-interchanging isomorphism igσ : TMC → TM∗C, in-
duced by the Kähler metric on Mσ. The two isomorphisms are related by the
equation: igσ = Iσiω. From the fact that g and ω have type (1, 1) it follows that
these two isomorphisms exchange types. As done for ω, we can define the inverse
metric tensor by

g̃ = (i−1
g ⊗ i−1

g )(g),

which gives a symmetric bivector field satisfying the relation g · g̃ = g̃ · g = Id. This
bivector field is related to the bivector field associated to ω by ω̃ = I · g̃.

On an (almost) complex manifold M we have a natural decomposition of the
complexified tangent bundle:

TMC = T ′MI ⊕ T ′′MI ,

where the two summands are the eigenspaces of the endomorphism I for the eigen-
values i and −i, respectively:

T ′MI = ker(I − i Id), T ′′MI = ker(I + i Id).

Sections of the first subspace are said to be vector fields of type (1, 0), and sections of
the second subspace are vector fields of type (0, 1). The decomposition is explicitly
given by the projections to the two subspaces:

π1,0
I = 1

2(Id−iI), π0,1
I = 1

2(Id +iI),

and for a vector field X we denote its decomposition by X = X ′I +X ′′I .
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3.2. A symmetric bivector field. We now assume that (M,ω) is a symplectic
manifold equipped with a smooth family of compatible almost complex structures
I, parametrized by T . We can define a bivector field G̃(V ) ∈ C∞(M,TMC⊗TMC)
by requiring that the relation

(9) V [I] = (Id⊗ iω)(G̃(V ))

holds for all vector fields V . If we differentiate the identity g̃ = −I · ω̃ along a vector
field V on T , we get that

V [g̃] = −V [I] · ω̃ = −G̃(V ),

and since g̃ is a symmetric bivector field, so is G̃(V ). Moreover, because of the
types of V [I] and ω̃, we get a decomposition

G̃(V ) = G(V ) + Ḡ(V ),

where G(V )σ ∈ C∞(M,S2(T ′Mσ)) and Ḡ(V )σ ∈ C∞(M,S2(T ′′Mσ)).
Recalling the identity g = ω · I, we obtain a formula for the variation of the

Kähler metric:
V [g] = ω · V [I] = ω · G̃(V ) · ω,

and the (1, 1)-part of V [g] vanishes because of the types of ω and G̃(V ).
Before defining the Hitchin connection, we need to define a certain differential

operator associated to a bivector field. From a symmetric holomorphic bivector
field Z ∈ C∞(M,S2(T ′Mσ)) we can obtain a holomorphic bundle map Z : T ′M∗σ →
T ′Mσ by contraction. We define the operator ∆Z to be the composition:

C∞(M,Lk) ∇
(1,0)
σ−−−−→ C∞(M,T ′M∗σ ⊗ Lk) Z⊗Id−−−→ C∞(M,T ′Mσ ⊗ Lk)
∇̃(1,0)
σ ⊗Id + Id⊗∇(1,0)

σ−−−−−−−−−−−−−−→ C∞(M,T ′M∗σ ⊗ T ′Mσ ⊗ Lk)→ C∞(M,Lk),

where ∇̃(1,0)
σ is the holomorphic part of the Levi-Civita connection, and the last

arrow is the trace.
This operator can be expressed in a more concise way as follows. Define the

operator
∇2
X,Y = ∇X∇Y −∇∇XY ,

which is tensorial and symmetric in the vector fields X and Y . Hence it can be
evaluated on a symmetric bivector field and we have:

∆Z = ∇2
Z +∇δ(Z),

where δ(Z) denotes the divergence of the bivector field Z.
The previous construction can be done for any line bundle L over M . In partic-

ular, if we consider the trivial line bundle over M with the trivial connection, then
the sections are just functions on M , and the operator ∆g̃ (where g̃ denotes the
bivector field obtained by raising both indices of the metric tensor) coincides with
the Laplace–Beltrami operator ∆.

3.3. Holomorphic and rigid families. The explicit construction of a Hitchin
connection in [And12] is for a compact symplectic manifold equipped with a smooth
family of Kähler structures that satisfy two additional properties, which we shall
explain below.

Assuming that the manifold T has a complex structure, it makes sense to require
the family I is a holomorphic map from T to the space of complex structures. We
make this requirement precise as follows:
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Definition 3.1. Let T be a complex manifold, and I a family of Kähler structures
on M that is parametrized by T . We say that I is holomorphic if:

V ′[I] = V [I]′ and V ′′[I] = V [I]′′,

for any vector field V on T .

The second condition is the rigidity of the family of Kähler structures.

Definition 3.2. We say that the family I of Kähler structures on M is rigid if

(10) ∇X′′G(V ) = 0,

for all vector fields V on T and X on M .

In other words, the family I is rigid if G(V ) is a holomorphic section of S2(T ′M),
for any vector field V on T .

Remark 3.3. The expression rigid family is used in this context for the following
reason (the notion was first introduced in [And12]): it might be possible to extend a
rigid family to a bigger family of rigid structures whose dimension at σ in the family
is given by dimH0(M,S2(T ′M)), but beyond this the family does not deform any
further. Thus it is rigid in this sense.

3.4. The Hitchin connection. The prequantum space Pk = C∞(M,Lk) forms
the fibre of a trivial vector bundle over T of infinite rank,

(11) P̂k = T × Pk.

Let ∇t denote the trivial connection on this bundle.

Definition 3.4. A Hitchin connection in the bundle P̂k is a connection of the form

(12) ∇ = ∇t + a,

where a ∈ Ω1(T ,D(M,Lk)) is a one-form on T with values in the space of differ-
ential operators on sections of Lk, such that ∇ preserves the quantum subspaces

Qk(σ) = H0(Mσ,Lk)

of holomorphic sections of the k-th power of the prequantum line bundle, inside
each fibre of P̂k.

The existence of a Hitchin connection in the bundle P̂k implies that the subspaces
Qk(σ) form a subbundle Q̂k, because it can be trivialized locally through parallel
transport by ∇.

We are now ready to state the main result of [And12], showing the existence of
the Hitchin connection.

Theorem 3.5 (Andersen). Let (M,ω) be a compact, prequantizable, symplectic
manifold and assume that H1(M ;R) = 0 as well as that there is an n ∈ Z such that
the first Chern class of (M,ω) coincides with n

[
ω
2π
]
∈ H2(M ;Z). Moreover suppose

that I is a rigid holomorphic family of Kähler structures on M , parametrized by a
complex manifold T . Then there exists a Hitchin connection in the bundle Q̂k over
T , given by the following expression:

∇̂V = ∇tV + 1
4k + 2n{∆G(V ) + 2∇G(V )·dF + 4kV ′[F ]},

where ∇tV is the trivial connection in P̂k, and V is any smooth vector field on T .
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4. Formal connections

The idea of formal connections arises as a generalization of the formal Hitchin
connection that was defined in [And12] as the analogue of the Hitchin connection
from geometric quantization. In that paper it was shown that the formal Hitchin
connection is flat under certain conditions. Its trivialization up to first order has
been given by the first named author of this paper together with Gammelgaard in
[AG11].

Let M be a symplectic manifold and T a smooth manifold parametrizing a
family of star products on M . We let Ch be the trivial fibre bundle over T with
fibre C∞(M)[[h]], i.e.

Ch = T × C∞(M)[[h]].
Let D(M) denote the space of differential operators on M , and let Dh(M) =

D(M)[[h]] denote formal differential operators onM , which are formal power series
with coefficients in D(M).

Definition 4.1. A formal connection D is a connection in the bundle Ch over T
that can be written as
(13) DV f = V [f ] +A(V )(f),
where A is a smooth 1-form on T with values in Dh(M) such that A = 0 modh, f
is a smooth section of Ch, V is any smooth vector field on T , and V [f ] denotes the
derivative of f along V .

The operator A(V )(f) can be expressed as a series of differential operators

A(V )(f) =
∞∑
k=1

Ak(V )(f)hk,

where each Ak is a smooth 1-form on T with values in D(M).
Normally we are interested in looking at formal connections in the presence

of a family of star products on the manifold, and then we require the following
compatibility:

Definition 4.2. Let {?σ}σ∈T be a family of star products on M . We say that a
formal connection D is compatible with the family of star products {?σ}σ∈T if DV

is a derivation of ?σ for every vector field V and every σ ∈ T , that is, the following
equality holds:
(14) DV (f ?σ g) = DV (f) ?σ g + f ?σ DV (g)
for all smooth sections f and g of Ch.

If the family of star products is natural, we also require the 1-form A to consist
of natural differential operators, i.e. the degree as a differential operator of the
component Ak is bounded by k.

4.1. The formal Hitchin connection associated to geometric quantization.

Definition 4.3. Let M be a symplectic manifold with a family of compatible
almost complex structures parametrized by a complex manifold T , so that for any
σ ∈ T , the manifold Mσ is Kähler. Let {?BTσ }σ∈T be the associated family of
Berezin-Toeplitz star products, see Subsection 2.3. A formal Hitchin connection
for T is a formal connection which is compatible with {?BTσ }σ∈T and which is flat.

The Hitchin connection ∇̂ in Q̂k which we discussed in the previous section
induces a connection ∇̂e in the endomorphism bundle End(Q̂k). The following
result establishes the existence of a formal Hitchin connection under the same
assumptions as in Theorem 3.5.



FORMAL CONNECTIONS FOR FAMILIES OF STAR PRODUCTS 13

Theorem 4.4 (Andersen). There is a unique formal connection D, written as
DV = V + Ã(V ), which satisfies

(15) ∇̂eV T
(k)
f ∼ T (k)

(DV f)(1/(2k+n))

for all smooth sections f of Ch and all smooth vector fields V on T . Here the
symbol ∼ has the following meaning: for any positive integer L we have that∥∥∥∥∥∇̂eV T (k)

f −

(
T

(k)
V [f ] +

L∑
l=1

T
(k)
Ã

(l)
V
f

1
(2k + n)l

)∥∥∥∥∥ = O(k−(L+1))

uniformly over compact subsets of T for all smooth maps f : T → C∞(M).

In [And12] the following explicit formula for Ã is given:

(16) Ã(V )(f) = −V [F ]f + V [F ] ?BT f + h(E(V )(f)−H(V ) ?BT f),

where E is a 1-form on T with values in D(M) and H is a 1-form with values in
C∞(M) given by H(V ) = E(V )(1). This result has been further refined by the first
named author of this paper and Gammelgaard, who obtained an explicit formula
for E in [AG11] which reads:

(17) E(V )(f) = −1
4(∆G̃(V )(f)− 2∇G̃(V )dF (f)− 2∆G̃(V )(F )f − 2nV [F ]f).

From this equation we immediately get an expression for H:

H(V ) = E(V )(1) = 1
2(∆G̃(V )(F ) + nV [F ]).

We can summarize the previous results by writing the following formula for the
formal Hitchin connection studied by Andersen:

DV f =V [f ]− 1
4h∆G̃(V )(f) + 1

2h∇G̃(V )dF (f) + V [F ] ?BT f − V [F ]f

− 1
2h(∆G̃(V )(F ) ?BT f − nV [F ] ?BT f −∆G̃(V )(F )f − nV [F ]f).

(18)

The following two propositions, proved in [And12], assert that the formal connec-
tion constructed in Theorem 3.5 is a derivation with respect to the Berezin-Toeplitz
star product (thus it is compatible with the family of Berezin-Toeplitz star prod-
ucts) and that it is flat whenever the Hitchin connection is projectively flat.

Proposition 4.5. The formal operator DV is a derivation with respect to the star
product ?BTσ for each σ ∈ T , meaning that it satisfies the relation:

(19) DV (f1 ?
BT f2) = DV (f1) ?BT f2 + f1 ?

BT DV (f2)

for all f1, f2 ∈ C∞(M).

Proposition 4.6. If the Hitchin connection ∇̂ in Q̂k is projectively flat, then the
formal Hitchin connection DV = V + Ã(V ) associated to it is flat.

Remark 4.7. Proposition 4.5 relies on the theory of geometric quantization and
Toeplitz operators, and their link to deformation quantization. Consequently its
validity can be traced back to the existence of a Hitchin connection in geometric
quantization, which puts many requirements on the objects involved – in particular,
one needs the compatible Kähler structures to be rigid and holomorphic. That is,
if we adopt the assumptions of Theorem 3.5 and if the Hitchin connection ∇̂ is
projectively flat, the previous two propositions imply that formal Hitchin connection
from [And12] is a formal Hitchin connection according to Definition 4.3.
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4.2. Low orders of the formal Hitchin connection. The explicit expression of
the formal Hitchin connection (18) makes sense in a more general setting. There-
fore the question arises to which extent this expression actually defines a formal
connection compatible with the Berezin-Toeplitz star products. In other words, we
wonder whether it defines a derivation of the Berezin-Toeplitz star products for a
general family of Kähler structures.

Here we shall answer this question up to order one by a direct computation, for
which we need not assume that a Hitchin connection in the framework of geometric
quantization exists. We include two preliminary lemmata concerning the coefficients
of the Berezin-Toeplitz star product.

Recall that we use the special notation c(k) for the coefficients of ?σ, when we
consider a Berezin-Toeplitz star product.

Lemma 4.8. Let M be a symplectic manifold with a family of compatible Kähler
structures parametrized on M , by a manifold T , and let c(k) denote the coefficients
of the Berezin-Toeplitz star product associated to the complex structure for a certain
σ ∈ T . Then we have:

(20) V [c(1)](f, g) = 1
4

(
∆G̃(V )(fg)−∆G̃(V )(f)g −∆G̃(V )(g)f

)
.

Proof. By a result of Karabegov [Kar96] we know that the degree 1 coefficient of
the Berezin-Toeplitz star product can be written as:
(21) c(1)(f, g) = g(∂f, ∂̄g) = i∇X′′

g
(f),

for any functions f, g ∈ C∞(M), where Xf is the Hamiltonian vector field associ-
ated to f .

By differentiating equation (21), we get the following relation:

(22) V [c(1)](f, g) = 1
2dfG̃(V )dg = 1

2∇G̃(V )dg(f).

The operator ∆G̃(V ) is written as ∆G̃(V ) = ∇2
G̃(V ) +∇δG̃(V ), thus we get that

∆G̃(V )(fg)−∆G̃(V )(f)g −∆G̃(V )(g)f = ∇2
G̃(V )(fg)−∇2

G̃(V )(f)g −∇2
G̃(V )(g)f,

since the sum of the order one terms vanishes. We can express the symmetric
bivector field G̃(V ) as

∑
j(Xj ⊗ Yj) for vector fields Xj and Yj , and rewrite the

right hand side of (20) as:

1
4

∑
j

∇Xj∇Yj (fg)− g
∑
j

∇Xj (∇Yjf)− f
∑
j

∇Xj (∇Yjg)


= 1

4
∑
j

(
∇Yj (f)∇Xj (g) +∇Xj (f)∇Yj (g)

)
= 1

2
∑
j

(
∇Xj (f)∇Yj (g)

)
= 1

2dfG̃(V )dg,

where we use the symmetry of the bivector field. This concludes the proof. �

Remark 4.9. Let us note that the expression we obtained for V [c(1)] also shows
that it is symmetric in the two variables.

We remark that because the Berezin-Toeplitz star product is natural, the first
oder coefficient c(1) is a differential operator of order 1 and hence is a derivation
with respect to both arguments.

We now show that the expression (18) gives a derivation of the Berezin-Toeplitz
star product up to order 1 in h. The derivation relation (19) can be written as:
(23) f V [?BT ] g = Ã(V )(f) ?BT g + f ?BT Ã(V )(g)− Ã(V )(f ?BT g),
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where V [?BT ] denotes the product with coefficients V [c(k)]. Modulo h2 and using
Ã0 = 0, we arrive at the following condition that has to hold for all vector fields V
on T and smooth functions f and g on M :

(24) V [c(1)](f, g) = −Ã1(V )(fg) + Ã1(V )(f)g + fÃ1(V )(g).

To check this, we extract the expression for Ã1 from (18), which gives us the
following:

Ã1(V )(f) = −1
4∆G̃(V )(f) + c(1)(V [F ], f) + V [c(1)](F, f).

We can now substitute this into the right-hand side of equation (24) and get:
1
4

(
∆G̃(V )(fg)− g∆G̃(V )(f)− f∆G̃(V )(g)

)
.

Observe that the second and third terms in Ã1(V ) do not appear, since they are
differential operators of order 1 and hence automatically satisfy Leibniz rule. We
finally observe that what we obtained is precisely the expression from Lemma 4.8,
and so we have checked that the formal connection corresponding to Ã1 is compat-
ible with ?BT modulo terms of order h2.

Moreover we can check that the expression (18) defines a formal connection that
is flat up to order one in h. This amounts to showing that its curvature vanishes
modulo h2. Note that the only terms we see when we compute the curvature modulo
h2 are those coming from dT Ã

1, since the commutator terms in the curvature are
of order at least h2. Therefore Ã1 defines a flat connection up to order one if an
only if it is closed with respect to dT . The closeness is most easily established by
defining the 0-form P1 = 1

4 ∆ − c(1)(F, f) and checking that V [−P1] = Ã1(V ) for
any vector field on T .

The discussion above can be summed up in the following proposition.

Proposition 4.10. Let M be a symplectic manifold with a family of compatible
Kähler structures parametrized by a complex manifold T . Then expression (18)
defines a formal connection that, up to order one in the formal parameter, is a
derivation of the family of Berezin-Toeplitz star products on M and flat . Therefore
it defines a formal Hitchin connection in the sense of Definition 4.3 modulo terms
of order h2.

4.3. Derivations of star products. We shall now put aside the formal Hitchin
connection and look at formal connections in general. We aim at describing the
space of formal connections on a symplectic manifold.

We begin by studying the space of derivations of a star product. Recall that a
map B : C∞h (M)→ C∞h (M) is a derivation with respect to a fixed star products if
it satisfies the relation:
(25) B(f ? g) = B(f) ? g + f ? B(g),
for any f, g smooth (formal) functions on M . Let us now introduce some notation
that will be useful in the following.

Gutt and Rawnsley showed the following proposition in [GR99]:

Proposition 4.11. On a symplectic manifold (M,ω) with a star product ?, any
derivation B of ? can be written as B =

∑
k∈NBkh

k where each Bk corresponds to
a symplectic vector field Yk on M . The correspondence can be made explicit on any
contractible open subset U ⊂M by the following relation:

Bk(f)|U = 1
h

(bk ? f − f ? bk),

where bk ∈ C∞(U) is such that Yk(f)|U = {bk, f}|U .
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We say that a formal symplectic vector field is a formal series Y =
∑
k∈N Ykh

k,
where Yk is a symplectic vector field for all k. Then the proposition above is telling
us that derivations correspond to formal symplectic vector fields and that locally a
derivation can be written as 1

h ad? b for a formal smooth function b.
In general we have an isomorphism:

Γsym(M)/ΓHam(M) ∼= H1(M ;R),

where Γsym(M) and ΓHam(M) denote the space of symplectic and Hamiltonian
vector fields on M , respectively. Therefore, if H1(M ;R) = 0, all symplectic vector
fields are Hamiltonian, and hence, every derivation corresponds to a formal Hamil-
tonian vector field Xb =

∑
k∈NXbkh

k, for a formal smooth function b in that case.
More explicitly, any derivation can be written globally in the form 1

h ad? b for a
formal function b. Observe that ther kernel of b 7→ 1

h ad? b are exactly the constant
formal functions.

4.4. The affine space of formal connections. Let D and D′ be two formal
connections on M for the same family of star products parametrized by T . It is
immediate to see that

D′V −DV = A′(V )−A(V ) = (A′ −A)(V ).

Hence their difference is a 1-form on T with values in the derivations of the star
products of the family, and it is zero modulo h. In the following Der(M,?) denotes
the space of derivations of the star product ? on M and Der0(M,?) denotes the
subset of derivations that are trivial modulo h.

Given a symplectic manifoldM equipped with a family of star products {?σ}σ∈T
parametrized by T , we denote by F(M,?σ) the space of the formal connections that
are compatible with the family. We see that F(M,?σ) is an affine space over the
space of 1-forms on T with values in Der0(M,?), and thus can be written as:

(26) F(M,?σ) = D0 + Ω1(T ,Der0(M,?σ)),

for a fixed formal connection D0, which is compatible with {?σ}σ∈T .
As remarked above, the derivations of ? correspond to formal symplectc vector

fields on M , therefore we can rewrite (26) in the following way:

F(M,?σ) = D0 + Ω1(T , hΓsym(M)[[h]]).

If we assume that H1(M ;R) vanishes, all derivations of ? are essentially inner,
and therefore they are parametrized by an element in C̃∞h (M), the space of formal
functions onM modulo the constants. Therefore the compatible formal connections
form an affine space modelled on the 1-forms on T with values in hC̃∞h (M).

F(M,?σ) ∼= D0 + Ω1(T , hC̃∞h (M)),

for a fixed compatible formal connection D0.

4.5. Gauge transformations of formal connections. We shall study gauge
transformations on the space of formal connections F(M,?σ). The transformations
we consider are self-equivalences of the family of star products, since the connections
should still act as derivations after we transform them. This means that we look
at P ∈ C∞(T ,Dh(M)) with P = id mod h such that

(27) Pσ(f ?σ g) = Pσ(f) ?σ Pσ(g),

for any σ ∈ T and any smooth function f and g.
We are now ready to prove the following theorem.
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Theorem 4.12. Let M be a symplectic manifold with a family of star products
{?σ}σ∈T parametrized by a smooth manifold T with H1(T ,R) = 0. Let D,D′ ∈
F(M,?σ) be formal connections for the family and let us assume that they are flat.
Then they are gauge equivalent via a self-equivalence of the family of star products
P ∈ C∞(T ,Dh(M)), meaning that

(28) D′V = P−1DV P,

for any vector field V on T .

Proof. As usual we can write the formal connections in the form:

DV = V +A(V )
DV = V +A′(V ),

for two 1-forms A,A′ ∈ Ω(T ,Dh(M)) with values in formal differential operators
on M , and any vector field V on T . Then we can rewrite (28) by plugging in a
section f of the bundle as:

V [f ] +A′(V )(f) = P−1(V +A(V ))P (f)
= P−1 (V [P ](f) + P (V [f ]) +A(V )(P (f))) .

(29)

Therefore if we apply P on both sides we get the following equation:

(30) V [P ] = PA′(V )−A(V )P.

If we can find a P =
∑
k∈N Pkh

k that solves the equation, then we get the wanted
gauge transformation. To do so we proceed inductively. By definition we have P0 =
id and hence V [P0] = 0. Let us assume that we have determined P (l) =

∑
k≤l Pkh

k

such that
V [P (l)] = P (l)A′(V )−A(V )P (l) +O(hl+1).

This can be written as:

(31) Bl+1(V )hl+1 = V [P (l)]− (P (l)A′(V )−A(V )P (l)) +O(hl+2),

where Bl+1 is a 1-form on T with values in differential operators on M . Let
us define a 1-form αl on T with values in formal differential operators on M by
αl(V ) = (P (l)A′(V )−A(V )P (l)). We want to show that αl is closed modulo hl+2.
Let V and W be two commuting vector fields on T . Then we have that:

dT αl(V,W )
= V [α(W )]−W [α(V )]

= V [P (l)A′(W )−A(W )P (l)]−W [P (l)A′(V )−A(V )P (l)]

= P (l) (A′(V )A′(W )−A′(W )A′(V ) + V [A′(W )]−W [A′(V )])

− (A(V )A(W )−A(W )A(V ) + V [A(W )]−W [A(V )])P (l)

+ hl+1(Bl+1(V )A′(W )−A(W )Bl+1(V )−Bl+1(V )A′(V ) +A(V )Bl+1(V )),

(32)

where we substituted the expression for V [P (l)] andW [P (l)] again in order to obtain
the last equality. Note also that the following expression, which appears in the last
line of the equation,

Bl+1(V )A′(W )−A(W )Bl+1(V )−Bl+1(V )A′(V ) +A(V )Bl+1(V )

is of oder h. Let us now compute the expressions for the curvature of D, which we
are assuming is flat:

0 = FD(V,W ) = DVDW −DWDV −D[V,W ].
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The last summand vanishes because we chose commuting vector fields, hence we
get, for any section:

0 = A(V )A(W )(f)−A(W )A(V )(f)−W [A(V )(f)]
+A(V )W [f ] + V [A(W )(f)]−A(W )V [f ]

= A(V )A(W )(f)−A(W )A(V )(f)−W [A(V )](f) + V [A(W )](f),
(33)

which is the same as:
0 = FD(V,W ) = A(V )A(W )−A(W )A(V ) + V [A(W )]−W [A(V )].

By computing the curvature in the same way for D′ we obtain:
0 = FD′(V,W ) = A′(V )A′(W )−A′(W )A′(V ) + V [A′(W )]−W [A′(V )].

By comparing with (32), we see that dT αl = 0 (mod hl+2), and therefore, by (31),
we also have that dT Bl+1 = 0. Since H1(T ;R) is trivial, we can find a smooth
function Pl+1 : T → D(M) such that V [Pl+1h

l+1] = −Bl+1h
l+1.1 We now set

P (l+1) = P (l) + Pl+1h
l+1 as the notation suggests. To conclude the inductive step

and the proof it is enough to show that:

V [P (l+1)]− (P (l+1)A′(V )−A(V )P (l+1)) = 0 (mod hl+2).
By expanding the left-hand side we get:

V [P (l)]− (P (l)A′(V )−A(V )P (l))− hl+1Bl+1 + hl+1(Pl+1A
′(V )−A(V )Pl+1),

which is a multiple of hl+2 since Pl+1A
′(V )−A(V )Pl+1 is of order h. �

Remark 4.13. At first glance Theorem 4.12 seems too strong, since one might
naively expect the vanishing of the fundamental group, instead of the first coho-
mology, to be the relevant condition. However two factors improve the situation:
First of all, the bundle under consideration Ch is assumed to be trivial. Second,
the Lie algebra in which our connection takes values in is the Lie algebra of formal
differential operators which vanish modulo h. This Lie algebra is filtered by those
formal differential operators which start at order hk. The associated graded Lie
algebra is easily seen to be abelian. This two facts show that we are effectively
dealing with the case of connection with values in an abelian Lie algebra. Hence
flatness reduces to closedness and gauge-equivalence reduces to a shift by an exact
one-form. This explains the purely cohomological nature of our result.

We record the following consequence of our considerations:

Corollary 4.14. Let T be a manifold with trivial first cohomology group, i.e.
H1(T ,R) = 0. If there exists a formal Hitchin connection D in the bundle Ch =
T × C∞h (M) on T , then it is unique up to gauge equivalence.

5. Existence of formal connections

In this section we study the question of existence of formal connections on a
symplectic manifold (M,ω), equipped with a smooth family of natural star products
{?σ}σ∈T . As we will see, this problem can be reduced to a cohomological condition
in terms of the corresponding family cl(?σ) of characteristic 2-forms, see Subsection
2.2.

1 The existence of Pl+1 follows from the existence of an operator

d∗ : d(Ωk−1(T )) → Ωk−1(T ),

called the anti-differential, such that dd∗β = β holds, and which maps smooth families to smooth
families. For T compact, d∗ might be constructed using Hodge-theory. For arbitrary T one can
use the Čech-de Rham double complex to construct such an operator, as is done in [AG14].
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We briefly review the Hochschild complexHC•(A,A) of an algebra A with values
in itself, relying on [Ger63, Wal07]. It is given by

HCk(A,A) := Hom(A⊗k, A),

the space of multilinear maps from A to itself. The graded vector space HC•(A,A)
comes equipped with the Gerstenhaber bracket [·, ·]G. For ψ ∈ HCr+1(A,A) and
ϕ ∈ HCs+1(A,A), it is given by

[ψ,ϕ](a0, . . . , ar+s) :=
r∑
i=0

(−1)isψ(a0, . . . , ai−1, ϕ(ai, . . . , ai+s), ai+s+1, . . . , ar+s)

−(−1)rs
s∑
j=0

(−1)jrϕ(a0, . . . , aj−1, ψ(aj , . . . , aj+r), aj+r+1, . . . , ar+s).

The bracket [·, ·]G makes HC(A,A) into a graded Lie algebra if we assign to an
element ψ ∈ HCr+1(A,A) the degree r. Moreover, the associativity of the product
m : A⊗A→ A of A can be rewritten as

[m,m]G = 0.

As a consequence, the map dH(ϕ) := [m,ϕ]G defines a coboundary operator on
HC•(A,A), which is referred to as the Hochschild differential. The cohomology
of HC•(A,A) with respect to dH is called the Hochschild cohomology of A and is
known to control the infinitesimal deformations of the algebra A.

We will be interested in the case of A being C∞h (M), seen as a module over C[[h]].
To get a reasonable cohomology theory, one has to take the Fréchet-topology into
account (thus modifying the tensor product and the space of homomorphisms).
Alternatively, one can restrict to the space of multi-differential operators Dm(M),
where m is the number of arguments. The Gerstenhaber bracket [·, ·]G and the
Hochschild differential dH restrict to D•(M) = ⊕m≥0Dm(M). We will also con-
sider the space of formal multi-differential operators D•h(M) and the C[[h]]-linear
extensions of [·, ·]G and dH to D•h(M), respectively.

Let {?σ}σ∈T be a family of star products for (M,ω), smoothly parametrized by
T . Given a vector field V on T , we write V [?σ] for the product whose i-th coefficient
is V [ci], i.e. the variation of {?σ}σ∈T in the direction of V . The operator

BV (f, g) = fV [?σ]g

can be seen as a family of elements in D2
h(M). Since associativity of {?σ}σ∈T can

be written as
[?σ, ?σ]G = 0,

we obtain
dHBV = [?σ, V [?σ]]G = 1

2V ([?σ, ?σ]G) = 0,

i.e. BV is closed with respect to the Hochschild differential associated to the family
of star products {?σ}σ∈T .

We now reconsider the compatibility requirement between a formal connection
D and {?σ}σ∈T from Definition 4.2. Using the decomposition DV = V +A(V ), the
compatibility can be written as

(34) A(V )(f) ?σ g + f ?σ A(V )(g)−A(V )(f ?σ g) = fV [?σ]g.

We see that the above equation can be further rewritten as

dHA(V ) = V [?σ]

and we arrive at the following interpretation of (34):
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Proposition 5.1. Let (M,ω) be a symplectic manifold, equipped with a family of
natural star products {?σ}σ∈T on M , smoothly parametrized by T .

There is a one-to-one correspondence between:
(1) Formal connections DV = V +A on T which are compatible with {?σ}σ∈T .
(2) Families of formal differential operators A(V ) ∈ D1

h(M), with A(V ) =
0 modh that satisfy

dHA(V ) = V [?σ],
where dH denotes the Hochschild coboundary operator with respect to the
family of star products {?σ}σ∈T .

In particular, a family of star products {?σ}σ∈T admits a compatible formal
connection if and only if the family of cocycles given by B(σ, V ) = V [?σ] is exact.

By work of Weinstein-Xu [WX98], the Hochschild cohomology of C∞h (M) with
respect to a star product is isomorphic to the de Rham cohomology hH•(M,R)[[h]].
Consequently, one expects that the cohomological condition on V [?σ] from Propo-
sition 5.1 translates into a cohomological condition on the characteristic 2-forms
cl(?σ). We will show that this is indeed the case. Instead of applying the results
of [WX98], we directly work in Fedosov’s framework, which we modify for our pur-
poses. More precisely, we aim at showing that every choice of trivialization for the
family of characteristic 2-forms cl(?σ) leads to a compatible formal connection of
the corresponding star products ?σ. We introduce

P := {β ∈ Ω1(T ,Ω1(M)[[h]]) | dM iV β = V [cl(?σ)]},
which we regard as the space of trivializations of all variations of cl(?σ) and

C := {A ∈ hΩ1(T ,D1
h(M)) | dH iVA = V [?σ]},

the space of trivializations of all variations of the family ?σ in D2
h(M).

Theorem 5.2. Let (M,ω) be a symplectic manifold which is equipped with a family
of natural star products {?σ}, smoothly parametrized by T . There is a natural map

C : P → C

The proof of Theorem 5.2 is postponed to the next subsection. If we combine
Theorem 5.2 and Proposition 5.1, we obtain

Theorem 5.3. Let (M,ω) be a symplectic manifold which is equipped with a family
of natural star products {?σ}, smoothly parametrized by T .

Then the following statements are equivalent:
(1) The cohomology class of the family of characteristic 2-forms cl(?σ) is locally

constant in T .
(2) There is a 1-form A ∈ Ω1(T , hD1

h(M)) with values in formal differential
operators on M such that for any vector field V on T , and any smooth
functions f and g on M the identity

fV [?]g = A(V )(f) ? g + f ? A(V )(g)−A(V )(f ? g)
holds.

(3) The family of star products admits a formal connection.

Proof. We start with the implication (1) ⇒ (2). Assuming Theorem 5.2, the only
part of this statement that needs additional arguing is that, given family of closed
2-forms ασ := cl(?σ) with locally constant cohomology class, one can find a smooth
1-form β on T with values in Ω1(M) such that for all vector fields V on T the
identity

dM iV β = V [ασ]
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holds. To this end, we assume without loss of generality that T is connected. We
fix a base-point t0 ∈ T and consider the family

α− αt0 ,

which is exact. Hence there is a family of 1-forms γ on M such that

dMγ = α− αt0
holds. If we apply the Lie derivative with respect to a vector field V on T , we
obtain:

−dM iV (dT γ) = V [α].
Hence β := −dT γ is the desired 1-form on T with values in Ω1(M).

The implication (2)⇒ (3) is precisely the content of Proposition 5.1.
The implication (3) ⇒ (1) relies on the parallel transport of the connection

DV = V + A(V ). Given two points σ and σ′ in the same connected component of
T , we can choose a smooth path γ which starts at σ and ends at σ′. We pull back
the family ?σ and the connection DV along γ. We claim that the parallel transport
Φ(t) of DV along γ exists and is unique. If we consider a fixed order of h, this
reduces to the existence and uniqueness of solutions to an ODE of the form

d

dt
F (t) = G(t),

with G(t) a given smooth one-parameter family of differential operators on M .
Modulo constants (with respect to t) there is cleary a unique solution, given by
integration over t.

We can now consider the family of star products

Φ(t) ◦ ?σ ◦ Φ(t)−1 ⊗ Φ(t)−1.

At t = 0, it coincides with ?γ(t) and satisfies the same ordinary differential equation,
which is

d

dt
?γ(t) = ?γ(t) ◦ (A

(
dγ

dt

)
⊗ id + id⊗A

(
dγ

dt

)
)−A

(
dγ

dt

)
◦ ?γ(t).

By uniqueness of the solution to this ODE, we conclude

?γ(t) = Φ(t) ◦ ?σ ◦ Φ(t)−1 ⊗ Φ(t)−1.

In particular, ?σ and ?σ′ are equivalent star products. Consequently their charac-
teristic classes coincide. �

The discussion above specializes to the case of a compact symplectic manifoldM
with a family of compatible Kähler structures parametrized by T . As in Subsection
2.3, one can consider the family of Berezin-Toeplitz star products {?σ}σ∈T . The
characteristic class of ?σ is proportional to the first Chern class of M , see [Haw00].
Since the first Chern class is independent of the compatible complex structure σ, we
may apply Theorem 5.3 to the family {?σ}σ∈T and obtain the existence of a formal
connection which is compatible with {?σ}σ∈T . Even better, we might directly apply
Theorem 5.2: The only input data is a family βσ of 1-forms on T with values in
Ω(M)1[[h]] such that the condition from Theorem 5.2 holds. Using Hodge-theory
with respect to the family of Kähler metrics yields a preferred such family. We
hence obtain the following result:

Theorem 5.4. Let (M,ω) be a compact, symplectic manifold equipped with a family
of compatible Kähler structures parametrized by a manifold T . Let us consider the
corresponding family of Berezin-Toeplitz star products {?σ}σ∈T . Then the family
admits a preferred formal connection.



22 JØRGEN ELLEGAARD ANDERSEN, PAOLO MASULLI, AND FLORIAN SCHÄTZ

The details of the proof will be given in future work. There, we also hope to
compare more closely the formal connection from Theorem 5.4 to the expression
for the formal Hitchin connection given in Equation (18), Subsection 4.1.

5.1. Proof of Theorem 5.2. This subsection contains the proof of Theorem 5.2.
We will use Fedosov’s framework for the deformation quantization of symplectic
manifolds, which we reviewed in Subsection 2.2. The first step of the proof is in
fact the reduction to families of Fedosov star products via [GR03, Theorem 4.1]:
Gutt and Rawnsley show there that every natural star product is equivalent to a
preferred star product of Fedosov-type through a preferred equivalence. Hence we
assume from now on without loss of generality that each member ?σ of the family
of star products which we consider equals ?∇σ,ασ , where:

• ∇σ is a symplectic connection for (M,ω),
• ασ is an element of ω + hZ2(M,R)[[h]].

Moreover, these data fit together into smooth families parametrized by T .
Our aim is to understand the dependence of Fedosov’s construction from Sub-

section 2.2 on the data {∇σ, ασ}σ∈T . As in the proof of Theorem 5.2 we can fix a
1-form β on T with values in Ω1(M)[[h]] such that for all vector fields V on T the
equation

dM iV β = V [ασ]
holds.

We now go through Fedosov’s construction, seen as fibred over the parameter
space T . In the first step, we realize each star product ?∇σ,ασ with the help of a
Fedosov connection Dr(σ). In the following, we interpret r as a family of elements
in Ω2(M,W ). Recall that W denotes the Weyl bundle over M . By definition, the
star product ?∇σ,ασ is given by

f ?∇σ,ασ g = p(τr(σ)(f) ◦MW τr(σ)(g)),

where τr(σ)(f) is the unique extension of f to Γ(W ) which is constant with respect
to the connection Dr(σ) and p is the canonical projection Γ(W )→ C∞h (M).

We claim that there is a 1-form s on T with values in Ω0(M,W ) such that the
operator

D̂s := dτ + i

h
ad(s)

commutes with Dr in the graded sense, i.e.

[D̂s, Dr] := D̂s ◦Dr +Dr ◦ D̂s = 0.

Using the form of Dr and our ansatz for D̂s, we obtain the following expression
for the graded commutator

iV [D̂s, Dr] = i

h
ad (−Dr(iV s) + V [r]) + V [d∇σ ],

where V is an arbitrary vector field on T . Recall that ∇σ is a family of symplectic
connections. These form an affine space over the subspace S of Ω1(M,End(TM))
which corresponds to totally symmetric contravariant 3-tensors after contraction
with ω. Hence the variation of ∇σ is encoded by a 1-form Sσ on T with values
in S. In the following we use ω to turn Sσ into a 1-form on T with values in
Ω1(M,W ).

Lemma 5.5. The variation V [d∇σ ] of the covariant derivative d∇σ on Ω(M,W )
can be expressed as

V [d∇σ ] = i

2h ad(iV Sσ).
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Proof. If we consider a ∈W which does not depend on h, only odd powers of h will
appear in the adjoint action ad(a) under the Moyal-Weyl product. Hence we only
need to compute ad(iV Sσ) to first order, which is essentially given by contracting
iV Sσ by the Poisson bivector field dual to ω, just undoing the contraction by ω
that occurred before. �

Thanks to the lemma, we arrive at the following formula for the commutator:

iV [D̂s, Dr] = i

h
ad
(
−Dr(iV s) + V [r] + 1

2 iV Sσ
)
.

Our strategy is now the same as in Fedosov’s construction: we have to choose s
such that the expression in the bracket on the right hand side of the above equation
lies in the center of Ω(M,W ), which is Ω(M)[[h]], i.e. we impose

(35) −Dr(iV s) + V [r] + 1
2 iV Sσ = iV β

for β a 1-form on T with values in Ω1(M). One finds a necessary condition for
Equation (35) which reads

V [ασ] = dM iV β,

and coincides with the condition we imposed on β at the beginning.
We have the following analogon to Theorem 2.5:

Proposition 5.6. There is a unique s ∈ Ω1(T ,Ω1(M,W )) such that

−Dr(iV s) + V [r] + 1
2 iV Sσ = iV β

and δ∗(iV s) = 0 hold for all vector fields V on T .

Proof. We rewrite the equation as

Dr(iV s) = V [r] + 1
2 iV Sσ − iV β.

By general cohomological considerations, it suffices to now prove that the right
hand side of the above equation is closed with respect to Dr.

By 0 = [Dr, [dT , Dr]] = ± i
h ad(Dr(V [r]+ 1

2 iV Sσ−iV β)), we know thatDr(V [r]+
1
2 iV Sσ−iV β) is central. If we compute the component of this element in the center,
we obtain V [ασ]− dM iV β, which vanishes by assumption.

We now know that there is an appropriate solution iV s. The condition δ∗(iV s) =
0 singles out a unique one. �

Lemma 5.7. Let V be a vector field on T . The variation of τr(f) in the direction
of V is given by

V [τr(f)] = i

h
(τ ◦ p− id) ([iV s, τr(f)]) .

Proof. Let us define µ(f) to be D̂sτr(f). Since Dr and D̂s commute, µ(f) is closed
with respect to Dr. Moreover, the image under p computes to

p(µ(f)) = p((dT + i

h
ad(s))τr(f)) = i

h
p([s, τr(f)]).

Since Dr-closed elements are determined by their image under p, we obtain

µ(f) = i

h
(τ ◦ p)([s, τr(f)]).

Inserting µ(f) = (dT + i
h ad(s))τr(f) into the equality yields

dT τr(f) = i

h
(τ ◦ p− id)([s, τr(f)]). �
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Proposition 5.8. Let s ∈ Ω1(T ,Ω0(M,W )) be as in Proposition 5.6.
Then

A(V ) := i

h
p ([iV s, τr(·)])

defines a 1-form on T with values in D1
h(M) that satisfies the following:

(1) If Xf denotes the Hamiltonian vector field of f and β1 is the component of
β of order h, we have

A(V )(f) = −h(iV iXfβ1) (mod h2).

(2) The identity
dH iVA(V ) = V [?∇σ,ασ ]

holds.

Proof. That A(V ) is a differential operator follow from the fact that the value of
τr(f) at x depends only on the jet of f at x and that the Moyal-Weyl product only
acts fibrewise.

To verify the claim about the lowest order terms of A(V ), we have to consider the
lowest orders of s and τr(f) with respect to the total degree, which is given by the
polynomial degree in the Weyl-algebra plus twice the power in h. The expansion
up to order 1 of τr(f) is f + df , where df is seen as a function on T with values in
W . Since f ∈ C∞(M) lies in the center of the Weyl-algebra, only the term df is
relevant for our considerations.

Concerning s, we notice that we only need to consider its component in T ∗M ⊂
W because we are only interested in p([s, df ]), and all other components lead to
terms that project to zero under p. Inspecting this component in lowest order, we
find an element a which is uniquely determined by

−δ(iV a) = −hiV β1, and δ∗a = 0,

where β1 is the term of order h in β. The solution to this equation is given by

a = hδ∗iV β1.

In total, we obtain that the lowest order term of A(V ) is given by
i

h
ad(a)(df) = i[δ∗iV β1, df ] = −h(iV iXfβ1),

where Xf denotes the Hamiltonian vector field of f .
It remains to verify that the image of A(V ) under the Hochschild differential dH

is V [?σ]. In fact we compute:

V [f ?∇σ,ασ g] = p(V [τr(f)] ◦MW τr(g)) + p(τr(f) ◦MW V [τr(g)]).

We now use the expression for the variation of τr(f) and τr(g) we obtained in
Lemma 5.7 and arrive at

V [f ?∇σ,ασ g] = A(V )(f) ?∇σ,ασ g − f ?∇σ,ασ A(V )(g)−A(V )(f ?∇σ,ασ g),

which is exactly V [?∇σ,ασ ] = dHA(V ). �

Combining Proposition 5.6 and 5.8, we obtain an assignment

C : C → P

and thereby complete the proof of Theorem 5.2.
The following result expresses the curvature of the formal connection DV =

V +A(V ) in terms of the element s:
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Proposition 5.9. Let A(V ) := i
hp([iV s, τr(·)]) be the connection 1-form associated

to the element s from Proposition 5.6. The curvature of the formal connection
DV = V + A(V ) equals the 2-form Ωs on T with values in formal differential
operators on M given by

Ωs(f) := i

h
p([dT s+ i

h
s ◦MW s, τr(f)]).

Proof. We first compute (dT A)(f) = dT
i
hp([s, τr(f)]). By Lemma 5.7, we obtain

i

h
p([dT s, τr(f)]− [s, i

h
(τ ◦ p− id)[s, τr(f)]]).

On the other hand, applying A ∧A to f yields(
i

h

)2
p([s, τrp([s, τr(f)])]),

which cancels with one of the terms from (dT A)(f). The remaining terms are
i

h
p([dT s, τr(f)] + i

h
[s, [s, τr(f)]]).

In order to arrive at the claimed expression, we apply the identity [s, [s,X]] =
1
2 [[s, s], X] = [s ◦MW s,X]. �
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