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Abstract

We compare two different constructions of higher dimensional parallel transport. On the
one hand, there is the two dimensional parallel transport associated to 2-connections on 2-
bundles studied by Baez-Schreiber [3], Faria Martins-Picken [11] and Schreiber-Waldorf [12].
On the other hand, there are the higher holonomies associated to flat superconnections as
studied by Igusa [7], Block-Smith [4] and Arias Abad-Schätz [1]. We first explain how by
truncating the latter construction one obtains examples of the former. Then we prove that
the 2-dimensional holonomies provided by the two approaches coincide.
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1 Introduction

The purpose of this note is to compare two extensions of parallel transport to higher dimensional
objects. On the one hand, there is the parallel transport for flat 2-connections with values in
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crossed modules studied by Baez-Schreiber [3], Faria Martins-Picken [11] and Schreiber-Waldorf
[12]. The fundamental result in this approach is the construction of 2-dimensional holonomies.
This construction yields a map

Hol : Flat(M, g)→ Rep(π≤2(M),G),

that assigns to any flat 2-connection with values in the differential crossed module g a represen-
tation of the fundamental 2-groupoid of M . Here G is a Lie crossed module whose infinitesimal
counterpart is g.

On the other hand, there is the parallel transport of flat superconnections introduced recently
by Igusa [7] and subsequently studied by Block-Smith [4] and Arias Abad-Schätz [1]. The
fundamental result in this direction is that there is a weak equivalence of dg-categories between
the category Rep∞(TM) of flat superconnections on M and the category of ∞-representations
of the ∞-groupoid Rep∞(π∞(M)) of M . In particular, there is an integration A∞-functor∫

: Rep∞(TM)→ Rep∞(π∞(M)),

which associates to any flat superconnection on M an ∞-representation of the ∞-groupoid of
M . This integration procedure can be understood as a consequence of Gugenheim’s A∞-version
of de-Rham’s theorem [6].

We consider flat connections with values in a fixed finite dimensional complex (V, ∂), i.e. V is
concentrated in finitely many degrees and each of its homogeneous components is finite dimen-
sional. The integration functor

∫
restricts to a functor between the resulting full subcategories

of Rep∞(TM) and Rep∞(π∞(M)), denoted by Rep∞(TM, V ) and Rep∞(π∞(M), V ), respec-
tively. Given a flat superconnection α with values in (V, ∂), the integration functor associates
holonomies to any simplex in M . By construction, the holonomy associated to a path γ – seen
as a 1-simplex – coincides with ordinary parallel transport along γ and yields an automorphism
of (V, ∂). The holonomy Hol(σ) of an n-dimensional simplex σ is a linear endomorphism of V
of degree 1 − n. The fact that holonomies are built coherently is formalized by expressing the
commutator [∂,Hol(σ)] in terms of the holonomies associated to subsimplices of σ.

For the purpose of this paper we want to focus on 1 and 2-dimensional holonomies. To this
end, one factors out all the information related to simplices of dimension strictly larger than
2. More formally, the flat superconnection α is a sum of components of fixed form-degree and
we disregard all components of form-degree strictly larger than 2. Similarly, one can truncate
the ∞-groupoid π∞(M) of M which leads to the fundamental 2-groupoid π≤2(M) mentioned
above. Observe that, formally, we also ignore the categorical structure on Rep∞(TM, V ) and
Rep∞(π∞(M), V ) respectively, since we work on the level of objects only. We indicate this
transition with the change of notation from Rep∞ to Rep∞.

As mentioned above, the holonomies associated to paths are elements of the automorphism
group of (V, ∂). Hence one expects that the holonomies associated to 2-simplices should belong
to the automorphism 2-group of (V, ∂). One way to make this precise is to consider the Lie
crossed module GL(V ) associated to V and its infinitesimal version gl(V ). We show that the
truncation of a flat superconnection can be seen as a flat 2-connection on M with values in gl(V )
and that the 2-truncation of

∫
α ∈ Rep∞(π∞(M), V ) is a 2-representation of π≤2(M) on (V, ∂).
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Hence, we obtain a diagram of the form

Rep∞(TM, V )

∫
//

T≤2

��

Rep∞(π∞(M), V )

T≤2

��
Flat(M, gl(V )) Rep(π≤2(M),GL(V )).

This allows us to compare the integration functor
∫

to the 2-dimensional holonomies for flat
2-connections with values in a differential Lie crossed module, which specializes to

Hol : Flat(M, gl(V ))→ Rep(π≤2(M),GL(V )).

Our main result is that the above two diagrams are compatible, i.e. the 2-truncation of
∫
α

actually coincides with the holonomy construction proposed in [3, 11, 12]. More precisely:

Theorem 4.8. Let M be a smooth manifold and (V, ∂) a cochain complex of vector spaces of
finite type. Then the following diagram commutes:

Rep∞(TM, V )

∫
//

T≤2

��

Rep∞(π∞(M), V )

T≤2

��
Flat(M, gl(V ))

Hol
// Rep(π≤2(M),GL(V )).

Conventions. By ‘cochain complex’ we mean a finite dimensional cochain complex of vector
spaces over R, i.e. the differential increases the degree by 1, the vector space is supported in
finitely many degrees and each of its homogeneous components is finite-dimensional.

We denote the unit interval [0,1] by I. Moverover, in the square I2, we denote the horizontal
coordinate by t and the vertical coordinate by s.

The n-simplex is the subset of Rn given by ∆n := {(t1, . . . , tn) : 1 ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ 0}.
Given any map f : I ×X → Y we obtain maps

f(k) : ∆k ×X → Y ×k, (t1, . . . , tn, x) 7→ (f(t1, x), . . . , f(tn, x))

for any k ≥ 1.

Acknowledgements
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this manuscript.

2 Higher holonomies for superconnections

Here we briefly review the parallel transport for superconnections 1 introduced by Igusa [7] and
studied further by Block-Smith [4] and Arias Abad-Schätz [1].

1Although the prefix super usually denotes a Z/2Z grading, our vector bundles are Z-graded.
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2.1 Flat superconnections

Let E be a Z-graded vector bundle of finite rank over a manifold M , i.e. E =
⊕

k∈ZE
k, where

Ek is a finite-rank vector bundle over M for every k ∈ Z and Ek is required to be zero for
almost all k ∈ Z. The space Ω(M,E) = Γ(∧T ∗M ⊗ E) of differential forms with values in E is
a Z-graded module over the algebra Ω(M).

Definition 2.1. A superconnection on E is a linear operator

D : Ω(M,E)→ Ω(M,E),

of degree one which satisfies the Leibniz rule

D(α ∧ ω) = dα ∧ ω + (−1)|α|α ∧D(ω),

for all homogeneous α ∈ Ω(M) and ω ∈ Ω(M,E). A superconnection D is flat if D2 = 0.

Remark 2.2. The flat superconnections on M can be organized into a dg-category. A morphism
of degree k between two flat superconnections (E,D) and (E′, D′) on M is a degree k morphism
of Ω(M)-modules

φ : Ω(M,E)→ Ω(M,E′).

Notice that we do not require φ to be a chain map. The space of morphisms

Hom(E,E′) = ⊕k∈ZHomk(E,E′),

is a cochain complex with differential

∆(φ) := D′ ◦ φ− (−1)|φ|φ ◦D.

We will denote the resulting dg-category by Rep∞(TM).

Definition 2.3. Let (V, ∂) be a cochain complex and M be a manifold. A flat superconnection
on M with values in (V, ∂) is a flat superconnection on the trivial graded vector bundle M × V
such that the following diagram commutes:

Ωk(M,V p)
D //

∂ **

⊕
l≥k Ωl(M,V k+p−l+1)

π

��
Ωk(M,V p+1)

Lemma 2.4. Let (V, ∂) be a complex and M be a manifold. A superconnection on M with
values in (V, ∂) corresponds naturally to a differential form

α = α1 + α2 + α3 + . . . ,

where αi ∈ Ωi(M,End1−i(V )) = Ωi(M) ⊗ End1−i(V ). Moreover α is flat if and only if the
equation

[∂, αn] + dαn−1 +
∑
i+j=n

αi ◦ αj = 0

holds for each n ≥ 1. Here, the commutator [·, ·] operates only on the endomorphism part of
αn, while d is the covariant derivative assosiated to the trivial connection on End(V ). The
symbol ◦ denotes the multiplication on Ω(M)⊗End(V ) given by the wedge-product of forms and
composition of endomorphisms, respectively.
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2.2 Representation up to homotopy of simplicial sets

Let X• be a simplicial set with face and degeneracy maps denoted by

di : Xk → Xk−1 and si : Xk → Xk+1,

respectively. We will use the notation

Pi := (d0)k−i : Xk → Xi,

Qi := di+1 ◦ · · · ◦ dk : Xk → Xi,

for the maps that send a simplex to its i-th back and front face. The i-th vertex of a simplex
σ ∈ Xk will be denoted vi(σ), or simply vi, when no confusion can arise. In terms of the above
operations, one can write

vi = (P0 ◦Qi)(σ).

Suppose that E is a Z-graded vector bundle over X0, i.e. there is a Z-graded vector space Ex
associated to each vertex x ∈ X0. A cochain F of degree k on X• with values in E is a map

F : Xk → E,

such that Fk(σ) ∈ Ev0(σ). We denote by Ck(X,E) the vector space of normalized cochains, i.e.
those cochains which vanish on the images of si. The space of E-valued cochains is naturally
a Z-graded vector space. In case the vector bundle is the trivial line bundle R we will write
C(X) instead of C(X,R). The space C(X) is naturally a Z-graded dg-algebra with the usual
cup product and the simplicial differential defined by

δ(η)(σ) :=
k∑
i=0

(−1)id∗i (η)(σ),

for η ∈ Ck−1(X). Given any Z-graded vector bundle E over X0, the cup product gives the space
C(X,E) the structure of a right graded module over the algebra C(X).

Definition 2.5. A representation up to homotopy of X• consists of the following data:

1. A finite rank Z-graded vector bundle E over X0.

2. A linear map D : C(X,E)→ C(X,E) of degree 1 which is a derivation with respect to the
C(X)-module structure and squares to zero.

The cohomology of X• with values in E, denoted H(X,E), is the cohomology of the complex
(C(X,E), D).

Remark 2.6. The representations up to homotopy ofX• form a dg-category. Let (E,D), (E′, D′)
be two representations up to homotopy of X•. A degree k morphism φ ∈ Homk(E,E′) is a de-
gree k map of C(X)-modules φ : C(X,E) → C(X,E′). The space of morphisms is naturally a
Z-graded vector space

Hom(E,E′) =
⊕
k

Homk(E,E′)

with differential

∆ : Hom(E,E′) → Hom(E,E′)

φ 7→ D′ ◦ φ− (−1)|φ|φ ◦D.

We denote the resulting dg-category by Rep∞(X•).
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Definition 2.7. Let (V, ∂) be a cochain complex and X• be a simplicial set. A representation
up to homotopy of X• on (V, ∂) is a representation up to homotopy of X• on the trivial graded
vector bundle with constant fibre V such that the following diagram commutes:

Ck(X,V p)
D //

∂ **

⊕
l≥k C

l(X,V k+p−l+1)

π

��
Ck(X,V p+1)

Remark 2.8. In [1], an equivalent description of representations up to homotopy in terms of
endomorphism-valued cochains is given. As a special case, we obtain the following description
of a representation up to homotopy of X• on (V, ∂). Let (βn)n≥1 be a family of cochains of X•
with values in the graded algebra End(V ), where βn is a n-cochain that assigns to σ ∈ Xn a
linear map

βn(σ) : V → V

of degree 1− n. These operators are required to satisfy the following equations for n ≥ 1:

[∂, βn(σ)] =
n−1∑
j=1

(−1)jβn−1(djσ) +
n−1∑
j=1

(−1)j+1(βj ∪ βk−j)(σ). (1)

Here, ∪ is the multiplication on C(X)⊗ End(V ) given by the cup product of cochains and the
composition of endomorphisms, respectively. Moreover, the fact that we work with normalized
cochains translates into the conditions

β1(s0(σ)) = id for σ ∈ X0 and βn(si(σ)) = 0 for σ ∈ Xn−1 if n > 1.

These conditions in turn imply that the 1-dimensional holonomies are compatible with time
reversal:

β1(σ−1) = β1(σ)−1 for any 1-simplex σ.

2.3 Holonomies for superconnections

We discuss the notion of parallel transport for flat superconnections. It generalizes the fact
that a flat connection on a vector bundle corresponds to a representation of the fundamental
groupoid π1(M) of M . We denote the simplicial set of smooth simplices in M by π∞(M), that
is

π∞(M)k := C∞(∆k,M).

Remark 2.9. We use the following definition of ∆• as a cosimplicial space: The objects are
∆k := {(t1, · · · , tk) ∈ Rk : 1 ≥ t1 ≥ · · · ≥ tk ≥ 0}, and the structure maps are

∂i : ∆k → ∆k+1, (t1, . . . , tk) 7→


(1, t1, . . . , tk) for i = 0,

(t1, . . . , ti−1, ti, ti, ti+1, . . . , tk) for 0 < i < k + 1,

(t1, . . . , tk, 0) for i = k + 1.

and

εi : ∆k → ∆k−1, (t1, . . . , tk) 7→ (t1, . . . , ti−1, t̂i, ti+1, . . . , tk), respectively.

Correspondingly, the face and degeneracy maps on π∞(M) are given by di := ∂∗i and si := ε∗i .
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One of the central results of [1, 4, 7] is:

Theorem 2.10. There is an A∞-functor∫
: Rep∞(TM)→ Rep∞(π∞(M))

from the dg-category of flat superconnections on M and the dg-category of representations up to
homotopy of π∞(M).

Definition 2.11. Given a complex of vector spaces (V, ∂), we will denote by Rep∞(TM, V ) the
full subcategory of flat superconnections on M with values in (V, ∂) and by Rep∞(π∞(M), V ) the
full subcategory of representations up to homotopy of π∞(M) on (V, ∂). The integration functor∫

restricts to an A∞-functor∫
: Rep∞(TM, V )→ Rep∞(π∞(M), V ).

We denote the underlying map between the sets of objects by∫
: Rep∞(TM, V )→ Rep∞(π∞(M), V ).

Remark 2.12. We will not describe the details of the construction of the A∞-functor
∫

here,
the interested reader can find them in [7, 4, 1]. However, we briefly discuss those parts of the
construction that will be needed later on. Let α = α1 + α2 + · · · be a flat superconnection on
M with values in (V, ∂). The integration functor turns α into a ∞-representation of π∞(M),
which we denote by β = β1 + β2 + · · · .

We are interested in β1 and β2. It turns out that β1(γ) : V → V is just the parallel transport
with respect to α1 along the path t 7→ γ(1 − t), i.e. the invere of the usual holonomy along γ.
The interested reader can consult Remark 4.13 of [1], for instance.

Concerning β2, we first observe that the structure equations reduce to

[∂, β2(σ)] = −β1(d1σ) + (β1 ∪ β1)(σ),

which tells us that β2(σ) is a homotopy between the chain maps β1(t 7→ σ(t, t)) and β1(t 7→
σ(t, 0))β1(t 7→ σ(1, t)). To construct β2(σ), we fix a way to fold the square I2 onto the 2-
simplex ∆2 = {1 ≥ t ≥ s ≥ 1} along the principal diagonal. Let q : I2 → ∆2 be the map
q(t, s) = (max{t, s}, s) and λ : I2 → I2 be the map determined by the property that λ(−, s) is
the piecewise linear path which runs through the points (s, 1) → (s, 0) → (0, 0) and arrives at
(s, 0) at time t = 1/2. We denote the composition q ◦ λ by Θ and set:

• Θ(k) is the map ∆k × I → (∆2)×k, (t1, · · · , tk, s) 7→ (Θ(t1, s), · · · ,Θ(tk, s)),

• pi : (∆2)×k → ∆2 is the projection on the i-th factor.

With this notation the operator β2(σ) is defined by the infinite sum∑
m,n≥0

(−1)m+n+1

∫
∆m+n+1×I

Θ∗(m+n+1)(p
∗
1σ
∗α1∧· · ·∧p∗mσ∗α1∧p∗m+1σ

∗α2∧p∗m+2σ
∗α1∧· · ·∧p∗m+n+1σ

∗α1),

which can be checked to be absolutely convergent.
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Definition 2.13. Let M be a smooth manifold. A n-simplex σ in (π∞(M))n is thin if the map
σ : ∆n → M has rank < n. A representation up to homotopy β of π∞(M) is strongly unital at
level n if

βn(σ) = 0,

for each thin n-simplex σ in (π∞(M))n. We will say that β is well behaved if it is strongly unital
at level 2.

Lemma 2.14. Let M be a smooth manifold. A well behaved representation up to homotopy β
of π∞(M) is compatible with concatenation, i.e.

β1(γ ∗ σ) = β1(γ)β1(σ) for any two composable 1-simplices σ and γ.

Moreover, if α is a flat superconnection on M then the corresponding representation up to
homotopy

∫
(α) is well behaved.

Proof. For the first statement we consider the affine map π : ∆2 → ∆1 = [0, 1] that sends v0 to
0, v1 to 1

2 and v2 to 1. Let f : [0, 1] → M be the path γ ∗ σ and consider the 2-simplex f ◦ π.
Since β is well behaved β2(f ◦ π) = 0, and therefore:

β1(γ ∗ σ) = β1(γ)β1(σ).

It remains to prove that any representation up to homotopy of the form
∫

(α) is well behaved.
That is, we need to prove that

∫
(α)2(σ) = 0 for any thin 2-simplex σ. This follows from the

explicit formula given in Remark 2.12: since σ has rank one, the pull back of the two-form α2

gives zero, hence all the terms vanish. �

3 Surface holonomy

3.1 Lie Crossed modules

We will briefly review the definitions and basic facts regarding Lie crossed modules, following
closely Faria Martins-Picken [9, 10, 11].

Definition 3.1. A Lie crossed module is a Lie group homomorphism δ : E → G together with
a left action � of G on E by Lie group automorphisms such that:

1. For any g ∈ G and e ∈ E:
δ(g � e) = g(δe)g−1.

2. For any e, f ∈ E:
(δe) � f = efe−1.

The definition of a Lie crossed module might appear unmotivated. There is an alternative
way to think about cross modules that may be more enlightening: a Lie crossed module is the
same as a strict Lie 2-group.

Definition 3.2. A strict 2-group is a strict 2-category with one object, in which all 1-morphisms
and 2-morphisms are invertible.
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Given a Lie crossed module δ : E → G, one can define a strict two group G as follows. The
1-morphisms of G are the elements of G. If g and h are 1-morphisms, then a 2-morphismfrom h
to g is a diagram

∗ e ∗
h

ff

g

xx
(2)

where e ∈ E is such that δe = h−1g. There are horizontal and vertical composition operations
for 2-morphisms. The horizontal composition in G is always defined and is given by

∗ e ∗
h

ff

g

xx
e′ ∗
h′

ff

g′

xx
:= ∗ (h′−1 � e)e′ ∗

hh′

ii

gg′

uu

The vertical composition is only well defined if the lower edge of the first 2-morphism matches
the upper edge of the second. It is given by the formula

∗ e ∗
h

ff

g

xx

= ∗ e′e ∗
k

gg

g

ww

∗ e′ ∗
k

ff

h

xx

The axioms for a Lie crossed module precisely guarantee that these operations define a strict
2-group. For example, the fact that the horizontal composition is well defined follows from
condition (1). Given a diagram

∗ e ∗
h

ff

g

xx
e′

h′

ff

g′

xx

∗ f ∗
k

ff

h

xx
f ′

k′

ff

h′

xx

there are, in principle, two ways to compose: first horizontaly and then vertically, or the other
way around. The fact that these two compositions coincide follows from condition (2) in the
definition of a crosse module.

Definition 3.3. A differential Lie crossed module is a Lie algebra homomorphism δ : e → g
together with a left action � of g on e by Lie algebra derivations such that:

1. For any X ∈ g and v ∈ e:
δ(X � v) = [X, δv].
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2. For any v, w ∈ e:
(δv) � w = [v, w].

Remark 3.4.

1. Lie crossed modules differentiate to differential Lie crossed modules. If δ : E → G is a
Lie crossed module, the corresponding Lie algebra homomorphism together with the cor-
responding Lie algebra action form a differential Lie crossed module. Hence differentiation
yields a functor from Lie crossed modules to differential Lie crossed modules. We call this
functor the differentiation functor.

2. Differential Lie crossed modules can also be understood as incarnations of certain types
of differential graded Lie algebras. Given a differential Lie crossed module δ : e → g, one
considers δ as a 2-term complex with e in degree −1 and g in degree 0. The graded Lie
bracket is then defined in terms of the Lie bracket on g and the action of g on e.

3. In these notes we are interested in Lie crossed modules associated to complexes of vector
spaces. This can be done using the correspondence between special differential graded Lie
algebras and differential crossed Lie modules mentioned above: One first takes End(V )
and considers it as a differential graded Lie algebra with the commutator bracket [·, ·] and
the differential [∂, ·]. Next, one reduces this to a 2-term differential graded Lie algebra by
considering its 2-truncation. This yields the following result:

Lemma 3.5 (Faria Martins-Mikovic [8], Faria Martins-Picken [10]). Let (V, ∂) be a cochain
complex. There is a differential Lie crossed module gl(V ) =

(
δ : gl−1(V ) → gl0(V )

)
defined as

follows:

1. The Lie algebra gl0(V ) is the vector space of degree zero cochain maps V → V , endowed
with the commutator bracket.

2. The Lie algebra gl−1(V ) is the quotient Lie algebra

gl−1(V ) :=
End−1(V )

[∂,End−2(V ))]
,

where End−1(V ) is the space of degree −1 endomorphisms of V endowed with the Lie
bracket:

[s, t] = s∂t− t∂s+ st∂ − ts∂, (3)

and [∂,End−2(V ))] is the ideal of End−1(V ) which consists of elements of the form ∂h−h∂.

3. The homomorphism δ : gl−1(V )→ gl0(V ) is given by

δ(s) := ∂s+ s∂.

4. The action � of gl0(V ) on gl−1(V ) is given by:

φ� s := φs− sφ.

The following lemma appeared in [10]. We reproduce a proof for the convenience of the reader:
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Lemma 3.6. Let (V, ∂) be a cochain complex. Then there is a Lie crossed module

GL(V ) :=
(
δ : GL−1(V )→ GL0(V

)
,

defined as follows:

1. The Lie group GL0(V ) is the group of automorphisms of the cochain complex (V, ∂).

2. The Lie group GL−1(V ) is the quotient

GL−1(V ) :=
End−1(V )′

[∂,End−2(V )]
.

Here End−1(V )′ is the space of degree −1 endomorphisms s of V such that [∂, s] + id is
invertible. The group structure is given by the formula:

s ∗ t := s+ t+ s∂t+ st∂ = s+ t+ s[∂, t].

The space [∂,End−2] is a normal subgroup of End−1(V )′.

3. The homomorphism δ : GL−1(V )→ GL0(V ) is given by

δ(s) := [∂, s] + id.

4. The action � of GL0(V ) on GL−1(V ) is given by:

φ� s := φsφ−1.

Proof. First observe that End−1(V )′ is open in End−1(V ). Clearly, the operation ∗ is smooth.
Let us prove that it gives End−1(V )′ the structure of a Lie group. To check associativity we
compute:

(r ∗ s) ∗ t = (r + s+ r∂s+ rs∂) ∗ t
= r + s+ r∂s+ rs∂ + t+ (r + s+ r∂s)∂t+ (r + s+ r∂s+ rs∂)t∂

= r ∗ (s ∗ t).

Similarly, one easily checks that δ(s∗t) = δ(s)δ(t), which implies that End−1(V )′ is closed under
the operation ∗. It remains to prove the existence of inverses with respect to the operation ∗.
Direct computation shows that:

s ∗ (−sδ(s)−1) = (−sδ(s)−1) ∗ s = 0.

Since [∂,End−2(V )] is a closed subset of End−1(V ), it suffices to show that it is a normal
subgroup in order to establish that it is a normal Lie subgroup. To check that it is a subgroup
we compute

[∂, x] ∗ [∂, y] = [∂, x] + [∂, y] = [∂, x+ y].

Next, we need to prove that [∂,End−2(V )] is a normal subgroup. For this we observe that

r−1 ∗ [∂, x] ∗ r = [∂, xδ(r)].
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In order to prove that δ is a homomorphism we compute

δ(s ∗ t) = δ(s+ t+ s∂t+ st∂) = [∂, s+ t+ s∂t+ st∂] + id = ([∂, s] + id)([∂, t] + id) = δ(s)δ(t).

Finally, we need to check that conditions (1) and (2) in the definition of a Lie crossed module
are satisfied. For equation (1) we compute:

δ(φ� t) = δ(φtφ−1) = id + [∂, φtφ−1] = φ(id + [∂, t])φ−1 = φ� δ(t).

For equation (2) one needs to prove that

δ(r)sδ(r)−1 = r ∗ s ∗ r−1,

which is equivalent to
δ(r)s = (r ∗ s ∗ r−1)δ(r).

We then compute the right hand side:

(r ∗ s ∗ r−1)δ(r) = (r−1 + (r ∗ s)δ(r−1))δ(r) = r−1δ(r) + r + s+ r∂s+ rs∂

= −r + r + s+ r∂s+ rs∂ = s+ r∂s+ rs∂ = δ(r)s+ [∂, rs] = (δ(r)s) ∗ [∂, rs].

Since the equation only needs to hold in the quotient by [∂,End−2(V )], this concludes the proof.
�

Lemma 3.7. Let (V, ∂) be a cochain complex. The differential Lie crossed module gl(V ) is the
result of applying the differentiation functor to the Lie crossed module GL(V ).

Proof. Clearly, the Lie algebra of the group GL0(V ) of automorphisms of (V, ∂) is the Lie algebra
gl0(V ) of endomorphisms of (V, ∂). Next, let us compute the tangent space at the identity of

GL−1(V ) =
End−1(V )′

[∂,End−2(V )]
.

Since End−1(V )′ is open in End−1(V ), and [∂,End−2(V )] is a linear subspace, the tangent
space at the identity is

gl−1(V ) :=
End−1(V )

[∂,End−2(V ))]
.

In order to prove that the Lie bracket coincides with that on gl−1(V ) it suffices to prove that
the bracket on the Lie algebra of the group End−1(V )′ is given by the formula in equation (3).
To prove this, we observe that the exponential map in the Lie algebra End−1(V )′ is given by
the formula

exp(A) =
∑
i,j≥0

1

(i+ j + 1)!
(A∂)iA(A∂)j .

With this formula at hand, one can compute the bracket:
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[A,B] =
d

dt

∣∣∣∣
t=0

Adexp(tA)(B)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

exp(tA) ∗ exp(sB) ∗ exp(−tA)

=
d

ds

∣∣∣∣
s=0

(
d

dt

∣∣∣∣
t=0

exp(tA) ∗ exp(sB) +
d

dt

∣∣∣∣
t=0

exp(sB) ∗ exp(−tA)

)
=

d

ds

∣∣∣∣
s=0

(
A∂ exp(sB) +A exp(sB)∂ − exp(sB)∂A− exp(sB)A∂

)
= A∂B +AB∂ −B∂A−BA∂.

Next, we need to prove that the differential of the homomorphism δ : GL−1(V )→ GL0(V ) is the
homomorphism δ : gl−1(V )→gl0(V ). To check this we compute:

d

dt

∣∣∣∣
t=0

δ(tA) =
d

dt

∣∣∣∣
t=0

(t[∂,A] + id) = [∂,A].

Finally, it remains to show that by differentiating the action of GL0(V ) on GL−1(V ), one
obtains the corresponding infinitesimal action. Let us denote by �′ the infinitesimal action
obtained by differentiating the global one. Then, one computes:

A�′ B =
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

exp(tA) � exp(sB)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

exp(tA) exp(sB) exp(−tA)

=
d

ds

∣∣∣∣
s=0

(
d

dt

∣∣∣∣
t=0

exp(tA) exp(sB) +
d

dt

∣∣∣∣
t=0

exp(sB) exp(−tA)

)
=

d

ds

∣∣∣∣
s=0

(
A exp(sB)− exp(sB)A

)
= AB −BA.

�

Remark 3.8. Let δ : E → G be a Lie crossed module. We will use the following structures:

1. The action of G on E differentiates to an action of G on e, which we denote by �. In the
case of GL(V ), this action is simply given by conjugation.

2. If we fix an element e ∈ E, we have the left multiplication map

Le : E → E, e′ 7→ e · e′

and its differential (Le)∗ at 1 ∈ E, which is an isomorphism from T1E to TeE. In the case
of GL(V ), this map reads

(Le)∗(X) = X + e[∂,X].

Similarly, we have the right multiplication map Re and its differential (Re)∗.
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Definition 3.9. Let M be a smooth manifold and δ : e→ g a differential Lie crossed module. A
local 2-connection is a pair of differential forms (A,B), such that A ∈ Ω1(M, g), B ∈ Ω2(M, e)
and

δB = dA+
1

2
[A,A] =: FA.

The curvature 3-form of a 2-connection is the differential form

M(A,B) := dB +A ∧� B ∈ Ω3(M, e).

A local 2-connection is said to be flat if its curvature 3-form is zero.

Definition 3.10. Given a smooth manifold M and a differential crossed module g, we denote
by Flat(M, g) the set of all flat local 2-connections on M with values in g.

3.2 Holonomies with values in crossed modules

Given a flat connection on a trivial vector bundle M × V over a manifold M , the holonomy
construction gives a representation of the fundamental groupoid of M into GL(V ). Analogously,
given a crossed module δ : E → G, one may be interested in morphisms from the fundamental
2-groupoid of M to the 2-group G determined by δ : E → G. Since for our purposes it is
not necessary to discuss the definition of the fundamental 2-groupoid of a space, we will define
directly what such a representation is.

Definition 3.11. A 2-path in a manifold M is a piecewise smooth map Γ : I2 → M which is
constant on the vertical sides. There are (nonassociative!) horizontal and vertical compositions
defined for 2-paths in an obvious way, provided the appropriate edges match.

Remark 3.12. Given a 2-path Γ : I2 → M we use the following notation for the paths corre-
sponding to the horizontal edges:

Γ1(t) := Γ(t, 1); Γ0(t) := Γ(t, 0).

More generally, we write Γs : I → M for the path given by fixing the vertical coordinate to be
s ∈ I, i.e. Γs(t) := Γ(t, s).

Definition 3.13. Let M be a smooth manifold. A representation of the fundamental 2-groupoid
of M on a Lie crossed module δ : E → G consists of the following data:

• For every piecewise smooth path γ : I →M , there is an element Hol(γ) ∈ G.

• For every 2-path Γ : I2 →M , there is an element Hol(Γ) ∈ E.

This assignment satisfied the following conditions:

1. If γ is a constant path then Hol(γ) = 1.

2. If Γ is a constant 2-path then Hol(Γ) = 1.

3. If the 2-paths Γ and Γ′ are homotopic relative to the boundary then Hol(Γ) = Hol(Γ′).

4. If Γ is a 2-path then:
δ(Hol(Γ)) = Hol(Γ0)−1Hol(Γ1).

In other words, Hol(Γ) is a two morphism in ∂ : E → G from Hol(Γ0) to Hol(Γ1).
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5. The assignment preserves composition of paths and vertical and horizontal composition of
2-paths.

Definition 3.14. Given a Lie crossed module G and a manifold M , we denote by Rep(π≤2(M),G)
the set of representations of the fundamental 2-groupoid of M in G.

Generalizing the case of ordinary flat principal bundles, representations with values in Lie
crossed modules can be constructed from flat connections with values in the corresponding
differential Lie crossed modules. The following theorem has been established in [3, 8, 9, 11, 12].

Theorem 3.15. Let δ : E → G be a Lie crossed module and suppose that α = (A,B) is a flat
connection on M with values in the differential Lie crossed module δ : e → g. Then there is a
representation Holα of the fundamental 2-groupoid of M in δ : E → G defined as follows:

• The holonomy Holα(γ) ∈ G associated to a path γ is the usual holonomy associated to the
connection A, i.e. Holα(γ) is equal to gγ(1), where gγ : [0, 1] → G is the solution to the
differential equation

dgγ(t)

dt
= −(Rgγ(t))∗A

(
dγ

dt

)
with boundary condition gγ(0) = 1.

• The holonomy Holα(Γ) ∈ E associated to a 2-path Γ is h(1), where h : [0, 1] → E is the
solution to the differential equation

dh(s)

ds
= (Lh(s))∗

(∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt

)
, h(0) = 1,

and (Le)∗ is the differential at 1 ∈ E of the map given by left multiplication with e.

Definition 3.16. Suppose G is a Lie crossed module with differential Lie crossed module g. We
denote by

Hol : Flat(M, g) = {flat connections on M with values in g} → Rep(π≤2(M),G)

the holonomy assignment from Theorem 3.15.

Remark 3.17. The key observation concerning the definition of the holonomy of a 2-path Γ is
that the variation of Holα(Γs) : [0, 1]→ G satisfies the differential equation:

dHolα(Γs)

ds
= (LHol(Γs))∗

(∫ 1

0
AdgΓs (t)−1FA

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt

)
.

In the linear case, i.e. for GL(V ), one can find an integral formula for Holα(Γ):

Lemma 3.18. Let GL(V ) be the Lie crossed module associated to a cochain complex (V, ∂) and
α a flat 2-connection on M with values in gl(V ). Then the 2-holonomy of α associated to a
2-path Γ in M is given by

Holα(Γ) =

(∫ 1

0

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
Holα(Γs)

−1dtds

)
Holα(Γ1).
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Proof. By definition, Hol(Γ) is the time-1-solution to the differential equation

dh(s)

ds
= (Lh(s))∗

(∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt

)
=

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt

+h(s)

(∫ 1

0
AdgΓs (t)−1FA

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt

)
=

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt+ h(s)Hol(Γs)

−1dHolα(Γs)

ds
.

From this it follows that X(s) := h(s)Hol(Γs)
−1 satisfies the differential equation

dX(s)

ds
=

(∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt

)
Holα(Γs)

−1,

which integrates to

h(1) =

(∫ 1

0

(∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
dt

)
Holα(Γs)

−1ds

)
Holα(Γ1).

�

4 Relation between the two approaches

4.1 2-connections from superconnections

Here we compare flat superconnections with values in a cochain complex V to connections with
values in the corresponding associated differential Lie crossed module gl(V ).

Definition 4.1. Let α = α1 + α2 + α3 + . . . be a superconnection on M with values in (V, ∂),
i.e. αi ∈ Ωi(M,End1−i(V )). Let T≤2(α) = (A,B) be the pair of forms given by

A := α1, B := −π ◦ α2,

where π is the natural projection map End−1(V )→ End−1(V )/[∂,End−2(V )] = gl−1(V ).

Lemma 4.2. Let α = α1 +α2 +α3 + . . . be a superconnection on M with values in (V, ∂) which
is flat. Then T≤2(α) is a flat local 2-connection with values in gl(V ).

Proof. Since α is a flat superconnection, the differential forms αi satisfy the equations:

[∂, αn] + dαn−1 +
∑
i+j=n

αi ◦ αj = 0, (4)

for each n ≥ 1. In particular, for n = 1 this equation implies that α1 takes values in the Lie
subalgebra of chain maps, i.e. α ∈ Ω1(M, gl0(V )). Next, we need to prove the equation:

∂B = dA+
1

2
[A,A],
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which is equivalent to equation (4) for n = 2. In order to prove flatness we need to show that
the following equation holds:

dB +A ∧� B = 0.

This is a consequence of equation (4) for n = 3 and the fact that we work modulo [∂,End−2(V )].
�

The previous lemma provides an assignment

T≤2 : Rep∞(TM, V )→ Flat(M, gl(V )), α 7→ T≤2(α).

4.2 Recovering representations of π≤2(M)

In this section we establish a comparison result between representations up to homotopy of the
simplicial set π∞(M) of singular chains on M and representations of the 2-groupoid π≤2(M) on
crossed modules.

Definition 4.3. Let a and b be the following embeddings of the 2-simplex ∆2 = {1 ≥ t ≥ s ≥ 0}
into the square:

a(t, s) := (s, t) and b(t, s) := (t, s).

a

b

Given a map Γ : I2 →M , we denote the compositions Γ◦a and Γ◦b by Γa and Γb, respectively.

Remark 4.4. Recall from §2.3 that we denote the set of representations up to homotopy of
π∞(M) on a chain complex (V, ∂) by Rep∞(π∞(M), V ). Moreover, recall that for any 2-path
Γ : I2 →M , we defined

Γs(t) := Γ(t, s).

We will also use the notation Γd(t) := Γ(t, t).

The following technical lemma will be useful in proving the main result of this section.

Lemma 4.5. Let M be a smooth manifold, (V, ∂) a cochain complex and

β = β1 + β2 + . . . ,

a well behaved representation up to homotopy of π∞(M) in (V, ∂). Suppose that Γ,Γ′ are 2-paths
in M which are homotopic relative to their boundaries. Then:

β2(Γa)− β2(Γb) = β2(Γ′a)− β2(Γ′b) mod[∂,End−2(V )].
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Proof. We will use Equation (1) in Remark 2.8 for n = 3, which reads:

[∂, β3(σ)] = β1 ∪ β2(σ)− β2(d1(σ)) + β2(d2σ)− β2 ∪ β1(σ). (5)

This can be expressed graphically where a picture of a shaded simplex represents the holonomy
that is assigned to it. The equation above then reads:

∂, = − + − .

Since the left hand side lies in [∂,End−2(V )], the right hand side is also zero in the quotient.
The idea of the proof is very simple: Equation (5) gives relations between the holonomies
associated to the faces of a tetrahedron. By triangulating the cube and using this equation for
the simplices of the triangulation one obtains relations between holonomies associated to the
faces of the cube. We now considered the following picture which represents a cube seen from
above with the vertices numbered.

4

3

2

1

8

7

6

5

Suppose that H : [0, 1]2 → M is a homotopy between Γ and Γ′ relative to the boundary. If
i, j, k, l ∈ {1, 2, . . . , 8} we let Iijkl : ∆3 → [0, 1]2 be the unique affine map that sends v0 to i, v1

to j and so on. We also write Fijkl for the composition H ◦ Iijkl. Similarly, we write Iijk and Iij
for the unique affine maps from ∆2 ( respectively ∆1) to [0, 1]3 that sends v0 to i, v1 to j and
v2 to k. Finally, we set:

Tijk := β2(H ◦ Iijk) and Lij = β1(H ◦ Iij).

With this notation at hand, the proof amounts to applying Equation (5) to the simplices of
a triangulation of the cube, using the fact that some of the simplices are thin (because the
homotopies are relative to the boundary) and combining the resulting equations. The following
computations take place in the quotient space

End−1(V )

[∂,End2(V )]
.

By applying Equation (5) to the 3-simplex F5783 one obtains:

L57T783 − T583 + T573 − T578L83 = 0.

The tetrahedra I573 and I783 lie on the boundary of the cube and since the homotopy is relative
to the boundary, H ◦ I573 and H ◦ I783 are thin. Therefore T573 and T783 vanish. Moreover, L83

is the identity because it is the holonomies of a constant path. We conclude that

T578 + T583 = 0. (6)
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holds.
The same analysis can applied to the other tetrahedra. We sum up to corresponding relations

between the 2-holonomies below:

tetrahedron relation

(5783) T583 + T578 = 0
(5834) T534 − T584 + T583 = 0
(5134) T134 − T534 + T514 = 0
(2568) T568 + T258 = 0
(1248) T148 − T128 + T124 = 0
(1258) T258 − T158 + T128 = 0
(1584) T584 − T184 + T154 − T158 = 0
(5154) T154 + T514 = 0
(1848) T148 + T184 = 0

Replacing Equations (5154) and (1848) into Equation (1584) one obtains:

T158 + T514 − T148 − T584 = 0. (7)

Adding Equations (5834)) and (5134) and substracting Equation (5783) one obtains:

T578 − T134 = T514 − T584. (8)

Adding Equations (1248) and (1258) and substracting Equation (2568) one obtains:

T124 − T568 = T158 − T148. (9)

Adding Equations (8) and (9) one obtains:

T578 − T134 + T124 − T568 = T158 − T148 + T514 − T584. (10)

The right hand side of Equation (10) vanishes in view of Equation (7). On the other hand, the
left hand side is precisely

β2(Γ′a)− β2(Γ′b)− β2(Γa) + β2(Γb).

This completes the proof. �

Proposition 4.6. Let M be a smooth manifold, (V, ∂) a cochain complex and

β = β1 + β2 + . . . ,

a well behaved representation up to homotopy of π∞(M) in (V, ∂). There is a representation
T≤2(β) of the fundamental 2-groupoid of M in the crossed module GL(V ) given by:

• If γ is a path in M , we set
(T≤2β)(γ) := β1(γ−1).

• If Γ is a 2-path in M , we set

(T≤2β)(Γ) := (β2(Γb)− β2(Γa))β
1(Γ1

−1).
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Proof. Conditions (1) and (2) in Definition 3.13 are direct consequences of the last statement
in Remark 2.8. The fact that condition (3) is satisfied is precisely the content of Lemma 4.5.
Let us now prove that condition (4) holds. That is, we need to prove that for any 2-path Γ the
following equation holds:

δ(T≤2β(Γ)) = T≤2β(Γ0)−1T≤2β(Γ1).

Specializing Equation (1) in Remark 2.8 to n = 2 we obtain that:

[∂, β2(Γa)] = β1(Γ1)− β1(Γd),

and also
[∂, β2(Γb)] = β1(Γ0)− β1(Γd).

Using these two equations, we compute:

δ(T≤2β(Γ)) = [∂, β2(Γb)− β2(Γa)]β
1(Γ1)−1 + id

= (β1(Γ0)− β1(Γd)− β1(Γ1) + β1(Γd))β
1(Γ1)−1 + id

= β1(Γ0)β1(Γ1)−1 = T≤2β(Γ0)−1T≤2β(Γ1).

We need to prove that the assignment preserves composition. That it preserves composition
of 1-paths is a consequence of the fact that β is well behaved. So it remains to prove that the
assignment preserves horizontal and vertical compositions of 2-paths. In the rest of the proof we
will use the same notation as in the proof of Lemma 4.5. Let us begin with vertical composition.
Consider two 2-paths Γ and Γ′ which are vertically composable. We need to prove that if we
subdivide the square horizontally as follows:

2

4

6

1

3

5

e’

e

We set

e := (T431 − T421)L12, e′ := (T653 − T643)L34, e′′ := (T651 − T621)L12,

and claim that
e′′ = e′ ∗ e

holds.
By applying Equation (5) to the 3-simplex F6421 and using that β is well behaved and that

the vertical sides of the square are constant, one obtains:

T421 − T621 + T641 = 0. (11)

Similarly, applying Equation (5) to the 3-simplices F6531 and F6431 one obtains:

T631 − T651 + T653 = 0 and T431 − T631 + T641 − T643 = 0. (12)
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These equations combine to

−T421 + T653 − T643 + T431 = T651 − T621. (13)

We now use Equation (13) to compute:

e′ ∗ e = e′ + e+ e′[∂, e] = e′ + e+ e′(δ(e)− id) = e+ e′(L43L12)

= (T431 − T421)L12 + (T653 − T643)L12

= (T431 − T421 + T653 − T643)L12 = (T651 − T621)L12 = e′′.

This completes the proof that the assignment preserves vertical composition.
It only remains to prove that horizontal composition is preserved. Consider two 2-paths Γ

and Γ′ which are horizontally composable. We need to prove that if we subdivide the square
horizontally as follows

5

6

3

4

1

2

e e’

and set

e := (T643 − T653)L35, e′ := (T421 − T431)L13, e′′ := (T621 − T651)L15, h := L46,

then
e′′ = (h−1 � e′) ∗ e

holds.
As before, we evaluate Equation (5) on the 3-simplices F6421, F6531 and F6431 and obtain the

following relations:

L64T421 − T621 + T641 = 0, (14)

T631 − T651 + T653L31 = 0, (15)

L64T431 − T631 + T641 − T643L31 = 0. (16)

Substracting Equations (15) and (16) from Equation (14) one obtains:

T643L31 − L64T431 − T621 + L64T421 − T653L31 + T651 = 0 (17)

Multiplying Equation (17) on the right by L15 one obtains:

T643L35 − L64T431L15 + L64T421L15 − T653L35 = (T621 − T651)L15 (18)

We now use Equation (18) to compute:
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(h−1 � e′) ∗ e = (h−1e′h) ∗ e = (h−1e′h) + e+ (h−1e′h)[∂, e]

= (h−1e′h) + e+ (h−1e′h)(δ(e)− id) = e+ (h−1e′h)δ(e)

= (T643 − T653)L35 + L64(T421 − T431)L13L46L64L35

= (T643 − T653)L35 + L64(T421 − T431)L15 = (T621 − T651)L15 = e′′.

�

Definition 4.7. Let M be a manifold and (V, ∂) be a cochain complex. By the previous propo-
sition we have an assignment

T≤2 : Rep∞(π∞(M), V )→ Rep(π≤2(M),GL(V )), β 7→ T≤2(β).

4.3 Comparing the holonomies

In this section we combine our previous considerations and prove that by truncating the inte-
gration functor

∫
for representations up to homotopy one obtains the holonomy construction

for the fundamental 2-groupoid from Theorem 3.15. More precisely, we have the following:

Theorem 4.8. Let M be a smooth manifold and (V, ∂) a cochain complex. Then the diagram

Rep∞(TM, V )

∫
//

T≤2

��

Rep∞(π∞(M), V )

T≤2

��
Flat(M, gl(V ))

Hol
// Rep(π≤2(M),GL(V ))

is commutative, where T≤2 denotes the 2-truncations from §4.1 and §4.2,
∫

is the A∞ integration-
functor for representations up to homotopy from Theorem 2.10 and Hol is the holonomy con-
struction from Theorem 3.15.

Let α = α1 + α2 + · · · be a flat superconnection on M with values in (V, ∂). Denote the
∞-representation of π∞(M) obtained by integrating α by β = β1 + β2 + · · · . Recall that
the 2-truncation (A,B) of α is given by A = α1 and B = −π ◦ α2, where π : End−1(V ) →
End−1(V )/[∂,End−2(V )] is the quotient map.

Let γ be a path in M . By Remark 4.13. in [1], β1(γ) equals the ordinary holonomy of α1

along the reversal of γ. Hence (T2β)(γ) = β1(γ−1) is the ordinary holonomy of γ. By definition,
this coincides with HolT≤2α(γ).

Now let Γ : I2 →M be a 2-path. In Lemma 3.18 we established the formula

HolT≤2α(Γ) =

(∫ 1

0

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
Holα(Γs)

−1dtds

)
Holα(Γ1).

for the 2-holonomy of (A,B) along Γ. On the other hand, we defined

(T≤2β)(Γ) := (β2(Γb)− β2(Γa))β
1(Γ−1

1 ).
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Hence Theorem 4.8 reduces to the identity

β2(Γb)− β2(Γa) =

∫ 1

0

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
Holα(Γs)

−1dtds.

To establish this, we start by rewriting the left-hand side in terms of iterated integrals. We rely
on the following standard facts about linear ODEs and iterated integrals:

Lemma 4.9. Let γ : [0, 1] → M be a smooth path and A ∈ Ω(M, gl(V )) the connection 1-form
of a trivial prinicipal GL(V )-bundle over M , where V is a finite-dimensional vector space.

We define the holonomy Hol(γ) to be the time-1-solution to the differential equation

dgγ(t)

dt
= −Aγ(t)

(
dγ(t)

dt

)
gγ(t), gγ(0) = 1.

Let a(t) be the gl(V )-valued function on [0, 1] given by γ∗A = a(t)dt.

1. The family gγ(t) can be represented by

gγ(t) = id +
∑
n≥1

(−1)n
∫
t≥t1≥···tn≥0

a(t1) · · · a(tn)dt1 · · · dtn.

2. The family gγ(t)−1 can be represented by

gγ(t)−1 = id +
∑
n≥1

∫
0≤t1≤···≤tn≤t

a(t1) · · · a(tn)dt1 · · · dtn.

3. The family gγ−1(t) can be represented by

gγ−1(t) = id +
∑
n≥1

∫
t≥t1≥···≥tn≥0

a(1− t1) · · · a(1− tn)dt1 · · · dtn.

This immediately yields a representation of∫ 1

0

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
Holα(Γs)

−1dtds

in terms of iterated integrals:

Lemma 4.10. Let Γ : I2 → M be a 2-paths and (A,B) a 2-connection on M with values
in gl(V ), V a cochain complex. Define as(t) to be the gl(V )0-valued function on I2 given by
AΓ(t,s)(

∂Γ
∂t ). Moreover, let bs(t) be the gl(V )−1-valued function on I2 given by BΓ(t,s)

(
∂
∂tΓs(t),

∂
∂sΓs(t)

)
.

The integral ∫ 1

0

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
Holα(Γs)

−1dtds

can be represented by

Z(Γ) :=
∑
m,n≥0

∫
∆m+n+1×I

as(1−t1) · · · as(1−tm)bs(1−tm+1)as(1−tm+2) · · · as(1−tm+n+1)dt1 · · · dtm+n+1ds.
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Proof. As a straightforward consequence of the previous lemma, we obtain that∫ 1

0

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
Holα(Γs)

−1dtds

can be represented by∑
m,n≥0

∫
∆̃m+n+1×I

as(t1) · · · as(tm)bs(tm+1)as(tm+2) · · · as(tm+n+1)dt1 · · · dtm+n+1ds.

where ∆̃k denotes the standard simplex of dimension k, i.e. ∆̃k := {0 ≤ t1 ≤ · · · ≤ tk ≤ 1}.
Then one applies the diffeomorphism

∆k → ∆̃k, (t1, . . . , tk) 7→ (1− t1, . . . , 1− tk).

�

Applying Lemma 4.10 to a 2-connection, which is the 2-truncation of a flat superconnection
α, yields

Proposition 4.11. Let α be a flat superconnection on M with values in (V, ∂). Denote the cor-
responding flat 2-connection with values in the differential Lie crossed module GL(V ) by (A,B).
The integral ∫ 1

0

∫ 1

0
gΓs(t)

−1 �B

(
∂

∂t
Γs(t),

∂

∂s
Γs(t)

)
Holα(Γs)

−1dtds

can be written as∑
m,n≥0

(−1)m+n

∫
∆m+n+1×I

µ∗(m+n+1)(p
∗
1Γ∗α1∧· · ·∧p∗mΓ∗α1∧p∗m+1Γ∗α2∧p∗m+2Γ∗α1∧· · ·∧p∗m+n+1Γ∗α1),

where µ(k) is the map

µ(k) : ∆k × I → (I2)×k, (t1, . . . , tk, s) 7→ ((1− t1, s), . . . , (1− tk, s)).

Recall from Subsection 2.3 that β2(σ) of a 2-simplex σ is given by∑
m,n≥0

(−1)m+n+1

∫
∆m+n+1×I

Θ∗(m+n+1)(p
∗
1σ
∗α1∧· · ·∧p∗mσ∗α1∧p∗m+1σ

∗α2∧p∗m+2σ
∗α1∧· · ·∧p∗m+n+1σ

∗α1).

We want to apply this to Γb and Γa, where Γ is a 2-path and a and b denote the maps from the
2-simplex ∆2 to the square I2 given by b(t, s) = (t, s) and a(t, s) = (s, t).

To simplify the computations, we make use of the homotopy invariance of Hol(A,B)(Γ) and
T≤2(β), see Theorem 3.15 and Proposition 4.6, respectively. We replace Γ by a 2-path which is
obtained by shrinking the square and moving it into its lower right quarter. In more detail, we
use an approprate isotopy φτ of R2 to push I2 into its own interior in such a way that, at time
τ = 1, φ1(I2) is contained in the (interior of the) lower right quarter of I2. Denote the image of
I2 under φτ by Qτ . For each τ , replace Γ with Γ̃τ , where Γ̃τ := Γ ◦ φ−1

τ on Qτ and extend Γ̃τ
to all of I2 be letting it be constant along the flow lines from ∂I2 to ∂Qτ . It is straight forward
to check that this can be achieved such that Γ̃τ is a homotopy relative endpoints.2 A schematic
picture of the situation looks like this:

2One can further smooth Γ̃τ so as to stay within the smooth category.
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We now redefine Γ to be the 2-path Γ̃1. Observe that for this 2-path, the rank has the following
properties:

• it can be 2 only inside the small square,

• it is zero inside the shaded regions to the left and to the right of the small square.

We call a 2-path with such a behaviour well-supported. It easily follows that β2(Γa) vanishes for
every well-supported 2-path.

Proposition 4.12. Let Γ be a well-supported 2-path in M and α = α1 + α2 + · · · a flat super-
connection on M with values in (V, ∂). The two elements of GL−1(V ) represented by

Z(Γ) =
∑
m,n≥0

(−1)m+n

∫
∆m+n+1×I

µ∗(m+n+1)Ωm,n

and

X(Γ) =
∑
m,n≥0

(−1)m+n+1

∫
∆m+n+1×I

Θ∗(m+n+1)(b
×m+n+1)∗Ωm,n

coincide, where

Ωm,n = p∗1Γ∗α1 ∧ · · · ∧ p∗mΓ∗α1 ∧ p∗m+1Γ∗α2 ∧ p∗m+2Γ∗α2 ∧ · · · ∧ p∗m+n+1Γ∗α1.

Proof.
Step 1: replace I2 by ∆2

Recall from §2.3 that Θ : I2 → ∆2 is the composition Θ = q ◦ λ, with λ : I2 → I2 some
map defined via a one-parameter family of piecewise linear paths inside I2 and q : I2 → ∆2

the projection map. We define r := b ◦ q to be the map that first collapses the square on the
2-simplex, and then embeds the 2-simplex into I2. By definition b ◦ Θ = r ◦ λ. Moreover, we
claim that Z(Γ) does not change if we replace µ∗(m+n+1)Ωm,n with µ∗(m+n+1)(r

×m+n+1)∗Ωm,n.

This is a consquence of the fact that the pull back of Ωm,n along r×m+n+1 coincides with Ωm,n

on ∆m+n+1
2 ⊂ (I2)×m+n+1. And since Γ is well-supported, only the preimage of (∆2)×m+n+1

under µ(m+n+1) contributes to the integral.
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To sum up, we can rewrite Z(Γ) and X(Γ) as follows:

Z(Γ) =
∑
m,n≥0

(−1)m+n

∫
∆m+n+1×I

µ∗(m+n+1)Ω̃m,n,

X(Γ) =
∑
m,n≥0

(−1)m+n+1

∫
∆m+n+1×I

λ∗(m+n+1)Ω̃m,n,

where Ω̃m,n = (r×m+n+1)∗Ωm,n.

Step 2: find a homotopy
We claim that there is a homotopy H : I2 × I → I2 relative to the boundary ∂I2 between µ

and λ ◦ f , where f is the flip with respect to the coordinate s, i.e.

f : I2 → I2, (t, s) 7→ (t, 1− s).

Recall that µ is just given by (t, s) 7→ (1− t, s), while λ(−, s) is the piecewise linear path which
runs from (s, 1) to (s, 0), and finally to (0, 0).

We first homotop λ to λ̃(t, s) = (s, 1− t). This can be achieved by running along λ(−, s), but
only up to some time τ (and the rescaling of the time variable t). Hence λ ◦ f is homotopic to
(s, 1− t) 7→ (1− s, 1− t).

After a change of variables such that the square is centered at the origin, the problem is to find
a homotopy between the identity and (t, s) 7→ (−s, t), seen as maps from [−1/2, 1/2]×[−1/2, 1/2]
to itself. Clearly, this can be done – for instance, one can use the homoeomorphism between
the square and the disk, and apply a rotation of π/2 to the latter. For the sake of concreteness,
and for the better understanding of the regularity of the obtained homotopy, we choose to work
directly on the square:

• We define two subsets of [−1/2, 1/2]× [−1/2, 1/2] as follows:

A := {(x, y) : x > 0, |y| < |x|} ∪ {(x,−x) : x ≥ 0},
B := {(x, y) : y > 0, |y| > |x|} ∪ {(x, x) : x ≥ 0}.

Observe that A, B, −A and −B cover the square and only intersect in (0, 0).

• We define X to be the vector field on the square given by

X =

{
+2x ∂

∂y on A ∪ −A
−2y ∂

∂x on B ∪ −B.
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Notice that X is smooth when it is restricted to any of the subsets A, B, −A or −B, but
is not even continuous along the diagonals.

• The homotopy G between the identity and the map (t, s) 7→ (−s, t) is defined to be the
time-τ -flow along X. This is indeed a continuous map, which is continuously differentiable
on a dense and open subset of I2×I. Moreover, the derivatives of G are bounded. Finally,
for each fixed τ , Gτ is a self-homeomorphism of the square and it is easy to check that
G0 = id and G1(t, s) = (−s, t) holds. For later, we also note that the pull back of a
differential form α along G is well-defined on a dense and open subset and the integral of
G∗α is a well-defined real number.

To sum up, we proved existence of an appropriate homotopy H between µ and λ◦f where
f is the flip (t, s) 7→ (t, 1− s).

Step 3: apply Stokes Theorem
The homotopy H from Step 2 yields a homotopy

H(m+n+1) : ∆m+n+1 × I × I → (I2)×m+n+1,

((t1, . . . , tm+n+1), s, τ) 7→ (Hτ (t1, s), . . . ,Hτ (tm+n+1, s))

between µ(m+n+1) and (λ ◦ f)(m+n+1). We observe that the last map equals

λ(m+n+1) ◦ (id× f) : ∆m+n+1 × I → (I2)×m+n+1.

As a consequence, the integral of the pull back of a differential form along (λ ◦ f)(m+n+1) equals
−1 the integral of the pull back along λ(m+n+1).

After these preparations, we are in position to prove that, modulo [∂,End−2(V )] ⊂ End−1(V ),
the elements

Z(Γ) =
∑
m,n≥0

(−1)m+n

∫
∆m+n+1×I

µ∗(m+n+1)Ω̃m,n

and

X(Γ) =
∑
m,n≥0

(−1)m+n+1

∫
∆m+n+1×I

λ∗(m+n+1)Ω̃m,n

=
∑
m,n≥0

(−1)m+n

∫
∆m+n+1×I

(λ ◦ f)∗(m+n+1)Ω̃m,n

are equal. To this end we apply Stokes Theorem to the differential forms H∗(m+n+1)(dΩ̃m,n), i.e.
we evaluate the equation∑
m,n≥0

(−1)m+n

∫
∆m+n+1×I×I

H∗(m+n+1)(dΩ̃m,n) =
∑
m,n≥0

(−1)m+n

∫
∂(∆m+n+1×I×I)

H∗(m+n)Ω̃m,n.
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Let us first look at the terms arising at the left hand side of the equation:

(D1) Suppose d is applied to a factor with α1. We replace this factor using the relation dα1 +
α1 ∧ α1 + [∂, α2] = 0.

(D2) If we apply d to the factor with α2, we get no contribution, since dα2 is a 3-form, which
we pull back by a map from the square.

We now look at the codimension one boundary strata of ∂(∆m+n+1 × I × I):

(∂1) There are the boundaries of the second interval, which correspond to setting the parameter
τ to either 0 or 1. These two boundary strata just yield the difference between Z(Γ) and
X(Γ).

(∂2) There are the boundaries of the first interval, which corresponds to setting the parameter
s to either 0 or 1. These two boundary strata do not contribute, since the restriction of Γ
to them has rank at most 1, but we integrate a wedge-product containing the pull back of
a 2-form along Γ as one of its factors.

(∂3) There are the codimension one boundary strata of the simplex ∆(m+n+1). These yield
integrals over ∆(m+n) × I × I of forms obtained by multiplying two consecutive factors in

Ω̃m,n.

We claim that the contributions from the codimension one boundary strata of ∆(m+n+1) (∂3)
cancel exactly with the ones obtained from (D1). One can easily see that, in fact, this is the case
up to signs. For a careful discussion of signs, which can be adapted to the current setting, we
refer the interested reader to §3.1 of [1], and in particular to the proof of Theorem 3.10 therein.

Apart from Z(Γ)−X(Γ), the only other remaining terms in Stokes Theorem come from (D1)
and are given by the sum of integrals of ±H∗(k+m+n+2)((−1)kUk,m,n + (−1)k+m+1Vk,m,n) over
∆k+m+n+2 × I × I, where

Uk,m,n = p∗1(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k(Γ ◦ r)∗α1︸ ︷︷ ︸
k

∧p∗k+1(Γ ◦ r)∗[∂, α2] ∧ · · ·

· · · ∧ p∗k+2(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k+m+1(Γ ◦ r)∗α1︸ ︷︷ ︸
m

∧p∗k+m+2(Γ ◦ r)∗α2 ∧ · · ·

· · · ∧ p∗k+m+3(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k+m+n+2(Γ ◦ r)∗α1︸ ︷︷ ︸
n

,

Vk,m,n = p∗1(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k(Γ ◦ r)∗α1︸ ︷︷ ︸
k

∧p∗k+1(Γ ◦ r)∗α2 ∧ · · ·

· · · ∧ p∗k+2(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k+m+1(Γ ◦ r)∗α1︸ ︷︷ ︸
m

∧p∗k+m+2(Γ ◦ r)∗[∂, α2] ∧ · · ·

· · · ∧ p∗k+m+3(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k+m+n+2(Γ ◦ r)∗α1︸ ︷︷ ︸
n

.

We now see that the difference Z(Γ) − X(Γ) can be written as the sum of integrals over
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∆k+m+n+2 × I × I of the forms [∂,Wk,m,n] given by

Wk,m,n = p∗1(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k(Γ ◦ r)∗α1︸ ︷︷ ︸
k

∧p∗k+1(Γ ◦ r)∗α2 ∧ · · ·

· · · ∧ p∗k+2(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k+m+1(Γ ◦ r)∗α1︸ ︷︷ ︸
m

∧p∗k+m+2(Γ ◦ r)∗α2 ∧ · · ·

· · · ∧ p∗k+m+3(Γ ◦ r)∗α1 ∧ · · · ∧ p∗k+m+n+2(Γ ◦ r)∗α1︸ ︷︷ ︸
n

.

Since, up to sign, [∂,−] and integration commute, we conclude that Z(Γ) differs from X(Γ)
by a term in [∂,End−2(V )]. �
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