
INVARIANCE OF THE BFV–COMPLEX

FLORIAN SCHÄTZ

Abstract. The BFV-formalism was introduced to handle classical sys-
tems, equipped with symmetries. It associates a differential graded
Poisson algebra to any coisotropic submanifold S of a Poisson mani-
fold (M,Π).

However the assignment (coisotropic submanifold) ; (differential
graded Poisson algebra) is not canonical, since in the construction sev-
eral choices have to be made. One has to fix: 1. an embedding of
the normal bundle NS of S into M as a tubular neighbourhood, 2. a
connection ∇ on NS and 3. a special element Ω.

We show that different choices of a connection and an element Ω – but
with the tubular neighbourhood fixed – lead to isomorphic differential
graded Poisson algebras. If the tubular neighbourhood is changed too,
invariance can be restored at the level of germs.

1. Introduction

The Batalin-Vilkovisky-Fradkin complex (BFV-complex for short) was
introduced in order to understand physical systems with complicated sym-
metries ([BF], [BV]). The connection to homological algebra was made
explicit in [St] later on. We focus on the smooth setting, i.e. we want
to consider arbitrary coisotropic submanifolds of smooth finite dimensional
Poisson manifolds. Bordemann and Herbig found a convenient adaptation
of the BFV-construction in this framework ([B], [He]): One obtains a dif-
ferential graded Poisson algebra associated to any coisotropic submanifold.
In [Sch] a slight modification of the construction of Bordemann and Herbig
was presented. It made use of the language of higher homotopy structures
and provided in particular a conceptual construction of the BFV-bracket.

Note that in the smooth setting the construction of the BFV-complex
requires a choice of the following pieces of data: 1. an embedding of the
normal bundle of the coisotropic submanifold as a tubular neighbourhood
into the ambient Poisson manifold, 2. a connection on the normal bundle,
3. a special function on a smooth graded manifold, called a BFV-charge.

We apply the point of view established in [Sch] to clarify the dependence
of the resulting BFV-complex on these data. If one leaves the embedding
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fixed and only changes the connection and the BFV-charge, one simply
obtains two isomorphic differential graded Poisson algebras, see Theorem
1 in Section 3. Note that the dependence on the choice of BFV-charge
was well understood, see [St] for instance. Dependence on the embedding
is more subtle. We introduce the notion of “restriction” of a given BFV-
complex to an open neighbourhood of the coisotropic submanifold inside its
normal bundle (Definition 2) and show that different choices of embeddings
lead to isomorphic restricted BFV-complexes – see Theorem 2 in Section
4. As a Corollary one obtains that a germ-version of the BFV-complex is
independent of all the choices up to isomorphism (Corollary 4).

It turns out that the differential graded Poisson algebra associated to a
fixed embedding of the normal bundle as a tubular neighbourhood, yields
a description of the moduli space of coisotropic sections in terms of the
BFV-complex – see [Sch2].

Acknowledgement. I thank Alberto Cattaneo for remarks on a draft of
this work. Moreover, I thank the referee for helpful comments.

2. Preliminaries

The purpose of this Section is threefold: to recollect some facts about the
theory of higher homotopy structures, to recall some concepts concerning
Poisson manifolds and coisotropic submanifolds and to outline the construc-
tion of the BFV-complex. More details on these subjects can be found in
Sections 2 and 3 of [Sch] and in the references cited therein. We assume the
reader to be familiar with the theory of graded algebras and smooth graded
manifolds.

2.1. L∞-algebras: Homotopy Transfer and Homotopies. Let V be a
Z-graded vector space over R (or any other field of characteristic 0); i.e.,
V is a collection (Vi)i∈Z of vector spaces Vi over R. The homogeneous
elements of V of degree i ∈ Z are the elements of Vi. We denote the degree
of a homogeneous element x ∈ V by |x|. A morphism f : V → W of
graded vector spaces is a collection (fi : Vi → Wi)i∈Z of linear maps. The
nth suspension functor [n] from the category of graded vector spaces to
itself is defined as follows: given a graded vector space V , V [n] denotes the
graded vector space corresponding to the collection V [n]i := Vn+i. The nth
suspension of a morphism f : V → W of graded vector spaces is given by
the collection (f [n]i := fn+i : Vn+i → Wn+i)i∈Z. The tensor product of two
graded vector spaces V and W over R is the graded vector whose component
in degree k is given by

(V ⊗W )k :=
⊕
r+s=k

Vr ⊗Ws.

The denote this graded vector space by V ⊗W .
The structure of a flat L∞[1]-algebra on V is given by a family of multi-

linear maps (µk : V ⊗k → V [1])k≥1 that satisfies:
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(1) µk(· · · ⊗ a ⊗ b ⊗ · · · ) = (−1)|a||b|µk(· · · ⊗ b ⊗ a ⊗ · · · ) holds for all
k ≥ 1 and all homogeneous elements a, b of V .

(2) The family of Jacobiators (Jk)k≥1 defined by

Jk(x1 · · ·xn) :=

=
∑
r+s=k

∑
σ∈(r,s)−shuffles

sign(σ)µs+1(µr(xσ(1)⊗· · ·⊗xσ(r))⊗xσ(r+1)⊗· · ·⊗xσ(n))

vanishes identically. Here sign(·) is the Koszul sign, i.e. the rep-
resentation of Σn on V ⊗n induced by mapping the transposition
(2, 1) to a ⊗ b 7→ (−1)|a||b|b ⊗ a. Moreover (r, s)-shuffles are permu-
tations σ of {1, . . . , k = r + s} such that σ(1) < · · · < σ(r) and
σ(r + 1) < · · · < σ(k).

Since we are only going to consider flat L∞[1]-algebras we will suppress
the adjective “flat” from now on. In this case the vanishing of the first
Jacobiator implies that µ1 is a coboundary operator. We remark that an
L∞[1]-algebra structure on V is equivalent to the more traditional notion of
an L∞-algebra structure on V [−1], see [MSS] for instance.

Given an L∞-algebra structure (µk)k≥1 on V , there is a distinguished
subset of V1 that contains elements v ∈ V1 satisfying the Maurer-Cartan
equation (MC-equation for short)∑

k≥1

1

k!
µk(v ⊗ · · · ⊗ v) = 0.

This set is called the set of Maurer-Cartan elements (MC-elements for short)
of V .

Let V be equipped with an L∞-algebra structure such that the cobound-
ary operator µ1 decomposes into d+δ with d2 = 0 = δ2 and d◦δ+δ ◦d = 0.
i.e. (V, d, δ) is a double complex. Then – under mild convergence assump-
tions – it is possible to construct an L∞-algebra structure on H(V, d) that
is “isomorphic up to homotopy” to the original L∞-algebra structure on V
([GL]). More concretely, one has to fix an embedding i of H(V, d) into V , a
projection pr from V to H(V, d) and a homotopy operator h (of degree −1)
which satisfies

d ◦ h+ h ◦ d = idV − i ◦ pr.

We will also impose the following side-conditions for the sake of simplicity:
1.)h ◦ h = 0, 2.)pr ◦ h = 0 and 3.)h ◦ i = 0. Then explicit formulae for the
structure maps for an L∞-algebras on H(V, d) can be written down. These
are given in terms of rooted planar trees, see [Sch] for a review. We will
explain the construction in more detail later on for the examples which are
relevant for our purpose.

Furthermore one obtains L∞-morphisms between H(V, d) and V that
induce inverse maps on cohomology. Such L∞-morphisms are called L∞
quasi-isomorphisms.
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Consider the differential graded algebra (Ω([0, 1]), dDR,∧) of smooth forms
on the interval I := [0, 1]. The inclusions of a point {∗} as 0 ≤ s ≤ 1 in-
duces a chain map evs : (Ω(I), dDR) → (R, 0) that is a morphisms of alge-
bras. Given any L∞-algebra structure on V there is a natural L∞-algebra
structure on V ⊗ Ω(I) defined by

µ̃1(v ⊗ α) := µ1(v)⊗ α+ (−1)|v|v ⊗ dDRα

and

µ̃k((v1 ⊗ α1)⊗ · · · ⊗ (vk ⊗ αk)) := (−1)#µk(v1 ⊗ · · · ⊗ vk)⊗ (α1 ∧ · · · ∧ αk)

for k ≥ 2. Here # denotes the sign one picks up by assigning (−1)|vi+1||αi|

to passing αi from the left-hand side of vi+1 to the right-hand side (and
replacing αi+1 by αi ∧ αi+1).

Following [MSS], we call two morphisms f and g from an L∞-algebra A
to B homotopic if there exists an L∞-morphism F from A to B⊗Ω(I) such
that

• (id⊗ ev0) ◦ F = f and
• (id⊗ ev1) ◦ F = g hold.

This defines an equivalence relation on the set of L∞-morphisms from A to
B.

Let F be an L∞-morphism from A to B⊗Ω(I). Consequently fs := evs◦F
is an L∞ morphism between A and B for any s ∈ I. Given a MC-element v
in A one obtains a one-parameter family of MC-elements

ws :=
∑
k≥1

1

n!
(fs)k(v ⊗ · · · ⊗ v)

of B. Here (fs)k denotes the kth Taylor component of fs.
In the main body of this paper we are only interested in the following

particular case: B is a differential graded Lie algebra (i.e. only the first and
second structure maps are non-vanishing). Denote the graded Lie bracket by
[·, ·]. Furthermore we assume that the differential D is given by the adjoint
action of a degree +1 element Γ that satisfies [Γ,Γ] = 0. The MC-equation
for an element w of (B,D = [Γ, ·], [·, ·]) reads

[Γ + w,Γ + w] = 0.

From the one-parameter family of MC-elements ws in B one obtains a one-
parameter family of differential graded Lie algebras on B by setting

Ds(·) := [Γ + ws, ·]

while leaving the bracket unchanged.
How are the differential graded Lie algebras (B,Ds, [·, ·]) related for differ-

ent values of s ∈ I? To answer this question we first apply the L∞ morphism
F : A; B⊗Ω(I) to v and obtain a MC-element w(t) +u(t)dt in B⊗Ω(I).

4



It is straightforward to check that w(s) = ws for all s ∈ I. Moreover the
MC-equation in B ⊗ Ω(I) splits up into

[Γ + w(t),Γ + w(t)] = 0

and
d

dt
w(t) = [u(t),Γ + w(t)].

The second equation implies that whenever the adjoint action of u(t) on
B can be integrated to a one-parameter family of automorphisms (U(t))t∈I ,
U(s) establishes an automorphism of (B, [·, ·]) that maps Γ+w(0) to Γ+w(s)
(for any s ∈ I). Consequently:

Lemma 1. Let A and (B, [Γ, ·], [·, ·]) be differential graded Lie algebras, v a
MC-element in A and F an L∞ morphism from A to B ⊗ Ω(I) such that∑

k≥1

1

k!
Fk(v ⊗ · · · ⊗ v)

is well-defined in B ⊗Ω(I). Denote this element by w(t) + u(t)dt. Further-
more the flow equation

X(0) = b,
d

dt
|t=sX(t) = [u(s), X(s)], s ∈ I

is assumed to have a unique solution for arbitrary b ∈ B.
Then the one-parameter family U(t) of automorphisms of B that inte-

grates the adjoint action by u(t) maps Γ + w(0) to Γ + w(t). In particular
U(s) is an isomorphims of differential graded Lie algebras

(B, [Γ + w(0), ·], [·, ·])→ (B, [Γ + w(s), ·], [·, ·])
for arbitrary s ∈ I.

2.2. Coisotropic Submanifolds. We essentially follow [W], where more
details can be found. Let M be a smooth, finite dimensional manifold. The
bivector field Π on M is Poisson if the binary operation {·, ·} on C∞(M)
given by (f, g) 7→< Π, df ∧ dg > satisfies the Jacobi identity, i.e.

{f, {g, h}} = {{f, g}, h}+ {g, {f, h}}
holds for all smooth functions f , g and h. Here <−,−> denotes the
natural pairing between TM and T ∗M . Alternatively one can consider
the graded algebra V(M) of multivector fields on M equipped with the
Schouten-Nijenhuis bracket [·, ·]SN . A bivector field Π is Poisson if and only
if [Π,Π]SN = 0.

Associated to any Poisson bivector field Π on M there is a vector bundle
morphism Π# : T ∗M → TM given by contraction. Consider a submanifold
S of M . The annihilator N∗S of TS is a subbundle of T ∗M . This subbundle
fits into a short exact sequence of vector bundles:

0 // N∗S // T ∗M |S // T ∗S // 0 .
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Definition 1. A submanifold S of a smooth, finite dimensional Poisson
manifold (M,Π) is called coisotropic if the restriction of Π# to N∗S has
image in TS.

There is an equivalent characterization of coisotropic submanifolds: define
the vanishing ideal of S by

IS := {f ∈ C∞(M) : f |S = 0}.
A submanifold S is coisotropic if and only if IC is a Lie subalgebra of
(C∞(M), {·, ·}).

2.3. The BFV-Complex. The BFV-complex was introduced by Batalin,
Fradkin and Vilkovisky with application in physics in mind ([BF], [BV]).
Later on Stasheff ([St]) gave an interpretation of the BFV-complex in terms
of homological algebra. The construction we present below is explained
with more details in [Sch]. It uses a globalization of the BFV-complex for
arbitrary coisotropic submanifolds found by Bordemann and Herbig ([B],
[He]).

Let S be a coisotropic submanifold of a smooth, finite dimensional Poisson
manifold (M,Π). We outline the construction a differential graded Poisson
algebra, which we call a BFV-complex for S in (M,Π). The construction
depends on the choice of three pieces of data: 1. an embedding of the normal
bundle of S into M as a tubular neighbourhood, 2. a connection on NS
and 3. a special smooth function, called the charge, on a smooth graded
manifold.

Denote the normal bundle of S inside M by E. Consider the graded
vector bundle E∗[1]⊕ E[−1]→ S over S and let E∗[1]⊕ E [−1]→ E be the
pull back of E∗[1]⊕ E[−1]→ S along E → S.

We define BFV (E) to be the space of smooth functions on the graded
manifold which is represented by the graded vector bundle E∗[1] ⊕ E [−1]
over E. In terms of sections one has BFV (E) = Γ(

∧
(E) ⊗

∧
(E∗)). This

algebra carries a bigrading given by

BFV (p,q)(E) := Γ(∧pE ⊗ ∧qE∗).
In physical terminology p / q is referred to as the ghost degree / ghost-
momentum degree respectively. One defines

BFV k(E) :=
⊕
p−q=k

BFV (p,q)(E)

and calls k the total degree (in physical terminology this is the “ghost num-
ber”).

The smooth graded manifold E∗[1]⊕E [−1] comes equipped with a Poisson
bivector field G given by the natural fibre pairing between E and E∗, i.e. it
is defined to be the natural contraction on Γ(E)⊗ Γ(E∗) and extended to a
graded skew-symmetric biderivation of BFV (E).
Choice 1. Embedding.
Fix an embedding ψ : E ↪→ M of the normal bundle of S into M . Hence
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the normal bundle E inherits a Poisson bivector field which we also denote
by Π. (Keep in mind that Π depends on ψ!)
Choice 2. Connection.
Next choose a connection on the vector bundle E → S. This induces a
connection on ∧E⊗∧E∗ → S and via pull back one obtains a connection ∇
on ∧E⊗∧E∗ → E. We denote the corresponding horizontal lift of multivector
fields by

ι∇ : V(E)→ V(E∗[1]⊗ E [−1]).

It extends to an isomorphism of graded commutative unital associative al-
gebras

ϕ : A := C∞(T ∗[1]E ⊕ E∗[1]⊕ E [−1]⊕ E [0]⊕ E∗[2])→ V(E∗[1]⊕ E [−1]).

Using ϕ we lift Π to a bivector field on E∗[1] ⊕ E [−1]. Since ϕ fails in
general to be a morphism of Gerstenhaber algebras, ϕ(Π) is not a Poisson
bivector field. Similarly the sum G + ϕ(Π) fails to be a Poisson bivector
field in general. However the following Proposition provides an appropriate
correction term:

Proposition 1. Let E be a finite rank vector bundle with connection ∇
over a smooth, finite dimensional manifold E. Consider the smooth graded
manifold E∗[1] ⊕ E [−1] → E and denote the Poisson bivector field on it
coming from the natural fibre pairing between E and E∗ by G.

Then there is an L∞ quasi-isomorphism L∇ between the graded Lie algebra

(V(E)[1], [·, ·]SN )

and the differential graded Lie algebra

(V(E∗[1]⊕ E [−1])[1], [G, ·]SN , [·, ·]SN ).

A proof of Proposition 1 can be found in [Sch]. It immediately implies

Corollary 1. Let E → E be a finite rank vector bundle with connection ∇
over a smooth, finite dimensional Poisson manifold (E,Π). Consider the
smooth graded manifold E∗[1]⊕E [−1]→ E and denote the Poisson bivector
field on it coming from the natural fibre pairing between E and E∗ by G.

Then there is a Poisson bivector field Π̂ on E∗[1]⊕ E [−1] such that

Π̂ = G+ ϕ(Π) +4 for 4 ∈ V(1,1)(E∗[1]⊕ E [−1]).

For a proof we refer the reader to [Sch] again.

We remark that V(1,1)(E∗[1] ⊕ E [−1]) is the ideal of V(E∗[1] ⊕ E [−1])
generated by multiderivations which map any tensor product of functions of
total bidegree (p, q) to a function of bidegree (P,Q) where P > p and Q > q.

In general, let V(r,s)(E∗[1]⊕E [−1]) be the ideal generated by multiderivations
of C∞(E∗[1] ⊕ E [−1]) with total ghost degree larger than or equal to r and
total ghost-momentum degree larger than or equal to s, respectively.

The bivector field Π̂ from Corollary 1 equips E∗[1]⊕E [−1] with the struc-
ture of a graded Poisson manifold. Consequently BFV (E) inherits a graded
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Poisson bracket which we denote by [·, ·]BFV . It is called the BFV-bracket.
Keep in mind that the BFV-bracket depends on the connection on E → S
we have chosen.
Choice 3. Charge.
The last step in the construction of the BFV-complex is to provide a special
solution to the MC-equation associated to (BFV (E), [·, ·]BFV ), i.e. one
constructs a degree +1 element Ω that satisfies

[Ω,Ω]BFV = 0.

Additionally, one requires this element Ω to contain the tautological section
of E → E as the lowest order term. To be more precise, recall that

BFV 1(E) =
⊕
k≥0

Γ(∧kE ⊗ ∧k−1E∗).

Hence any element of BFV 1(E) contains a (possibly zero) component in
Γ(E). One requires that the component of Ω in Γ(E) is given by the tau-
tological section of E → E. A MC-element satisfying this requirement is
called a BFV-charge.

Proposition 2. Let (E,Π) be a vector bundle equipped with a Poisson bivec-
tor field and denote its zero section by S. Fix a connection on E → S and
equip the ghost/ghost-momentum bundle E∗[1]⊕ E [−1]→ E with the corre-
sponding BFV-bracket [·, ·]BFV .

(1) There is a degree +1 element Ω of BFV (E) whose component in
Γ(E) is given by the tautological section Ω0 and that satisfies

[Ω,Ω]BFV = 0

if and only if S is a coisotropic submanifold of (E,Π).
(2) Let Ω and Ω′ be two BFV-charges. Then there is an automorphism

of the graded Poisson algebra (BFV (E), [·, ·]BFV ) that maps Ω to
Ω′.

See [St] for a proof of this proposition.
Given a BFV-charge Ω one can define a differential DBFV (·) := [Ω, ·]BFV ,

called BFV-differential. It is well-known that the cohomology with respect
to D is isomorphic to the Lie algebroid cohomology of S (as a coisotropic
submanifold of (E,Π)).

By the second part of Proposition 2, different choices of the BFV-charge
lead to isomorphic differential graded Poisson algebra structures onBFV (E).
In the next Section we will establish that different choices of connection on
E → S lead to differential Poisson algebras that lie in the same isomorphism
class. The dependence on the embedding of the normal bundle of S is more
subtle and will be clarified in Section 4.
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3. Choice of Connection

Consider a vector bundle E equipped with a Poisson bivector field Π
such that that zero section S is coisotropic. The aim of this Section is
to investigate the dependence of the differential graded Poisson algebra
(BFV (E), DBFV , [·, ·]BFV ) constructed in Subection 2.3 on the choice of
a connection ∇ on E → S.

Recall that in order to lift the Poisson bivector field Π to a bivector
field on E∗[1] ⊕ E [−1], a connection ∇ on E → S was used. Further-
more the L∞ quasi-isomorphism between (V(E)[1], [·, ·]SN ) and (V(E∗[1] ⊕
E [−1])[1], [G, ·]SN , [·, ·]SN ) in Proposition 1 depends on ∇ too. Consequently
so does the graded Poisson bracket [·, ·]BFV .

Let ∇0 and ∇1 be two connections on a smooth finite rank vector bun-
dle E → E. By Proposition 1 we obtain two L∞ quasi-isomorphisms L∇0

and L∇1 from (V(E)[1], [·, ·]SN ) to (V(E∗[1]⊕E [−1])[1], [G, ·]SN , [·, ·]SN ). Al-
though these morphisms depend on the connections, this dependence is very
well-controlled:

Proposition 3. Let E be a smooth finite rank vector bundle over a smooth,
finite dimensional manifold E equipped with two connections ∇0 and ∇1.
Denote the associated L∞ quasi-isomorphisms between (V(E)[1], [·, ·]SN ) and
(V(E∗[1]⊕E [−1]), [G, ·]SN , [·, ·]SN ) from Proposition 1 by L0 and L1 respec-
tively.

Then there is an L∞ quasi-isomorphism

L̂ : (V(E)[1], [·, ·]SN ) ; (V(E∗[1]⊕ E [−1])⊗ Ω(I), [G, ·]SN + dDR, [·, ·]SN )

such that (id⊗ ev0) ◦ L̂ = L0 and (id⊗ ev1) ◦ L̂ = L1 hold.

Proof. Given two connections ∇0 and ∇1, one can define a family of con-
nections ∇s := ∇0 + s(∇1−∇0) parametrized by the closed unit interval I.
Consequently we obtain a one-parameter family of isomorphisms of graded
algebras

ϕs : A := C∞(T ∗[1]E ⊕ E∗[1]⊕ E [−1]⊕ E [0]⊕ E∗[2])
∼=−→ V(E∗[1]⊕ E [−1]),

extending the horizontal lifting with respect to the connection ∇s ⊕ ∇∗s.
Via this identification, A inherits a one-parameter family of Gerstenhaber
brackets which we denote by [·, ·]s. and a differential Q̃ which can be checked
to be independet from s in local coordinates.
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For arbitrary s ∈ I these structures fit into the following commutative
diagram:

(A[1], Q̃, [·, ·]0)

Pr

uulllllllllllll
ϕ0

++VVVVVVVVVVVVVVVVVVV

(V(E)[1], [·, ·]SN ) (V(E∗[1]⊕ E [−1])[1], [G, ·]SN , [·, ·]SN )

(A[1], Q̃, [·, ·]s)
Pr

iiRRRRRRRRRRRRR ϕs

33hhhhhhhhhhhhhhhhhhh

ψs

OO

where ψs := ϕ−1
0 ◦ ϕs is a morphism of differential graded algebras and of

Gerstenhaber algebras. Pr denotes the natural projection.
It is straightforward to show that the cohomology of (A, Q̃) is V(E) and

that the induced L∞ algebra coincides with (V(E)[1], [·, ·]), see the proof
of Proposition 1 in [Sch]. Hence we obtain a one-parameter family of L∞
quasi-isomorphisms Js : (V(E)[1], [·, ·]SN ) ; (A[1], Q̃, [·, ·]s). Composition
with ψs yields a one-parameter family of L∞ quasi-isomorphisms

Ks : (V(E)[1], [·, ·]SN ) ; (A[1], Q̃, [·, ·]0).

We remark that the composition of Js with ϕs yields the L∞ quasi-isomorphism
Ls between (V(E), [·, ·]SN ) and (V(E∗[1] ⊕ E[−1]), [G, ·]SN , [·, ·]SN ) associ-
ated to the connection ∇s from Proposition 1. Consequently L0 (L1) is the
composition of K0 (K1) with ϕ0.

Next, consider the differential graded Lie algebra (A[1]⊗Ω(I), Q̃+dDR, [·, ·]0).

To prove Proposition 1, a homotopy H̃ for Q̃ was constructed in [Sch] such
that

Q̃ ◦ H̃ + H̃ ◦ Q̃ = id− ι ◦ Pr

is satisfied. Here, ι denotes the natural inclusion V(E) ↪→ A. One defines a

one-parameter family of homotopies H̃s := ψs ◦ H̃ ◦ ψ−1
s and checks that

Q̃ ◦ H̃s + H̃s ◦ Q̃ = id− ψs ◦ ι ◦ Pr

holds.
We define P̂ r : A⊗Ω(I)→ V(E)⊗Ω(I) to be Pr⊗id and ι̂ : V(E)⊗Ω(I)→

A ⊗ Ω(I) to be ι̂ := (ψs ◦ ι) ⊗ id. Clearly P̂ r ◦ ι̂ = id and H̃s provides a

homotopy between id and ι̂ ◦ P̂ r. Moreover the side-conditions H̃s ◦ H̃s = 0,
P̂ r ◦ H̃s = 0 and H̃s ◦ ι̂ = 0 are still satisfied. We summarize the situation
in the following diagram:

(V(E)⊗ Ω(I), 0)
ι̂s //

(A⊗ Ω(I), Q̃)
P̂ r

oo , H̃s.
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Following Subsection 2.1 these data can be used to perform homological
transfer. The input consists of the differential graded Lie algebra

(A[1]⊗ Ω(I), Q̃+ dDR, [·, ·]0).

To construct the induced structure maps, one has to consider oriented rooted
trees with bivalent and trivalent interior vertices. The leaves (the exterior

vertices with the root excluded) are decorated by ι̂, the root by P̂ r, the
interior bivalent vertices by dDR, the interior trivalent vertices by [·, ·]0 and
the interior edges (i.e. the edges not connected to any exterior vertices) by

−H̃s. One then composes these maps in the order given by the orientation
towards the root. The associated L∞ quasi-isomorphism is constructed in
the same manner, however, the root is not decorated by P̂ r but by −H̃s

instead.
Recall that V(r,s)(E∗[1]⊕E [−1]) is the ideal generated by multiderivations

of C∞(E∗[1] ⊕ E [−1]) with total ghost degree larger than or equal to r and
total ghost-momentum degree larger than or equal to s, respectively. One
can check inductively that trees decorated with e copies of −H̃s increase the
filtration index by (e, e). Moreover trees containing more than one interior
bivalent vertex do not contribute since dDR increases the form-degree by
1. These facts imply that 1. the induced structure is given by (V(E)[1] ⊗
Ω(I), dDR, [·, ·]SN ) and 2. there is an L∞ quasi-isomorphism

(V(E)[1]⊗ Ω(I), dDR, [·, ·]SN ) ; (A[1]⊗ Ω(I), Q̃+ dDR, [−,−]0).

We define

K̃ : (V(E)[1], [·, ·]SN ) ; (V(A[1]⊗ Ω(I), Q̃+ dDR, [·, ·]SN )

to be the composition of this L∞ quasi-isomorphism and the obvious L∞
quasi-isomorphism (V(E)[1], [·, ·]SN ) ↪→ (V(E)[1]⊗ Ω(I), dDR, [·, ·]SN ).

The composition of K̂ with id⊗ evs : A⊗Ω(I)→ A can be computed as
follows: first of all only trees without any bivalent interior edges contribute
since all elements of form-degree 1 vanish under id⊗evs. Using the identities
ψ−1
s ([ψs(−), ψs(−)]0) = [−,−]s, H̃s = ψs ◦ H̃ ◦ ψ−1

s and ι̂ = ψs ◦ ι it is a

straightforward to show that (id⊗ evs) ◦ K̂ = ψs ◦ Ks. Hence

ϕ0 ◦ (id⊗ evs) ◦ K̂ = ϕs ◦ Ks = Ls.

Finally, we define the L∞ quasi-isomorphism L̂ between (V(E)[1], [·, ·]SN )

and (V(E∗[1]⊕ E [−1])[1]⊗Ω(I), [G, ·]SN + dDR, [·, ·]SN ) to be (ϕ0 ⊗ id) ◦ K̂.

By construction (id⊗ev0)◦ L̂ = L0 and (id⊗ev1)◦ L̂ = L1 are satisfied. �

We remark that Propositions 1 and 3 seem to permit “higher analogous”,
where one incorporates the differential graded algebra of differential forms
on the n-simplex Ω(4n) instead of just Ω({∗}) = R (Proposition 1) or Ω(I)
(Proposition 3) – see [Co], where this idea was worked out in the context of
the BV-formalism.
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Corollary 2. Let E be a finite rank vector bundle over a smooth, finite
dimensional Poisson manifold (E,Π). Suppose ∇0 and ∇1 are two con-
nections on E → E. Denote the associated L∞ quasi-isomorphisms between
(V(E)[1], [·, ·]SN ) and (V(E∗[1]⊕E [−1])[1], [G, ·]SN , [·, ·]SN ) from Proposition
1 by L0 and L1, respectively. Applying these L∞ quasi-isomorphisms to Π
yields two MC-elements Π̃0 and Π̃1 of (V(E∗[1]⊕E [−1])[1], [G, ·]SN , [·, ·]SN ).

Hence Π̂0 := G + Π̃0 and Π̂1 := G + Π̃1 are MC-elements of (V(E∗[1] ⊕
E [−1])[1], [·, ·]SN ), i.e. Poisson bivector fields on E∗[1]⊕ E [−1].

There is a diffeomorphism of the smooth graded manifold E∗[1] ⊕ E [1]

such that the induced automorphism of V(E∗[1] ⊕ E [−1]) maps Π̂0 to Π̂1.
Moreover, this diffeomorphism induces a diffeomorphism of the base E which
coincides with the identity.

Proof. Apply the L∞ quasi-isomorphism L̂ from Proposition 3 to Π and add
G to obtain a MC-element Π̂+Ẑdt of (V(E∗[1]⊕E [−1])[1]⊗Ω(I), dDR, [·, ·]SN ).
Let Ls denote the L∞ quasi-isomorphism from Proposition 1 constructed
with the help of the connection ∇0 +s(∇1−∇0). Recall that (id⊗evs)◦L̂ =
Ls holds for all s ∈ I.

We set Π̂s := (id ⊗ evs)(Π̂) and Ẑs := (id ⊗ evs)(Ẑ). Proposition 3

implies that this definition of Π̂s is compatible with Π̂0 and Π̂1 defined in
the Corollary.

We want to apply Lemma 1 to A := (V(E)[1], [·, ·]SN ), B := (V(E∗[1] ⊕
E [−1])[1], [G, ·]SN , [·, ·]SN ) and F := L̂. To do so, it remains to show that

the flow of Ẑs is globally well-defined for s ∈ [0, 1]. Recall that Ẑ is the one-
form part of the MC-element constructed from the Poisson bivector field
Π on E with help of the L∞ quasi-isomorphism L̂ : (V(E)[1], [·, ·]SN ) ;

(V(E∗[1]⊕E [−1])⊗Ω(I), [G, ·]SN+dDR, [·, ·]SN ). Only trees with exactly one
bivalent interior vertex give non-zero contributions because the form degree
must be one. Consequently there is at least one homotopy in the diagram
and by the degree estimate in the proof of Proposition 3 this implies that Ẑ
is contained in V(1,1)(E∗[1]⊕E [−1])⊗Ω(I). Hence the derivation [Ẑ,−]SN is
nilpotent and can be integrated. Furthermore the degree estimate directly
implies the last claim of the Corollary. �

The following is an immediate consequence of the previous Corollary:

Corollary 3. Let (E,Π) be a vector bundle E → S equipped with a Poisson
structure Π such that S is a coisotropic submanifold. Fix two connections
∇0 and ∇1 on E → S and denote the corresponding graded Poisson brackets
on BFV (E) by [·, ·]0BFV and [·, ·]1BFV respectively.

There is an isomorphism of graded Poisson algebra

(BFV (E), [·, ·]0BFV )
∼=−→ (BFV (E), [·, ·]0BFV ).

Moreover the induced automorphism of C∞(E) coincides with the identity.

Combining Proposition 2 and Corollary 3 we obtain
12



Theorem 1. Let E be a vector bundle equipped with a Poisson bivector Π
such that the zero Section S is a coisotropic submanifold. Recall that the
pull back of E → S by E → S is denoted by E → E and

BFV (E) := C∞(E∗[1]⊕ E [−1]) = Γ(∧E ⊗ ∧E∗).

Different choices of a connection ∇ on E → S and of a degree +1 element
Ω of (BFV (S), [−,−]BFV ) satisfying

(1) the lowest order term of Ω is given by the tautological Section Ω0 of
E → E and

(2) [Ω,Ω]∇BFV = 0,

lead to isomorphic differential graded Poisson algebras

(BFV (E), [Ω, ·]∇BFV , [·, ·]∇BFV ).

Proof. Pick two connections∇0 and∇1 on E → S and consider the two asso-
ciated graded Poisson algebras (BFV (E), [·, ·]0BFV ) and (BFV (E), [·, ·]1BFV ),
respectively. By Corollary 3 there is an isomorphism of graded Poisson al-
gebras

γ : (BFV (E), [·, ·]0BFV )
∼=−→ (BFV (E), [·, ·]1BFV ).

Moreover the induced automorphism of C∞(E) is the identity.

Assume that Ω and Ω̃ are two BFV-charges of (BFV (E), [·, ·]0BFV ) and
(BFV (E), [·, ·]1BFV ), respectively. Applying the automorphism γ to Ω yields
another element of (BFV (E), [·, ·]1BFV ), which can be checked to be a BFV-
charge again. By Proposition 2 this implies that there is an inner automor-
phism β of (BFV (E), [·, ·]1BFV ) which maps γ(Ω) to Ω̃.

Hence

β ◦ γ : (BFV (E), [·, ·]0BFV )
∼=−→ (BFV (E), [·, ·]1BFV )

is an isomorphism of graded Poisson algebras which maps Ω to Ω̃. �

4. Choice of Tubular Neighbourhood

Let S be a coisotropic submanifold of a smooth, finite dimensional Poisson
manifold (M,Π). Throughout this Section, E denotes the normal bundle of
S inside M . As explained in subsection 2.3, the first step in the construction
of the BFV-complex for S inside (M,Π) is the choice of an embedding
ψ : E ↪→M . Such an embedding equips E with a Poisson bivector field Πψ,
which is used to construct the BFV-bracket on the ghost/ghost-momentum
bundle, see Subsection 2.3.

Let us first consider the case where the embedding is changed by compo-
sition with a linear automorphism of the normal bundle E:

Lemma 2. Let

(BFV (E), [Ω, ·]BFV , [·, ·]BFV )
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be a BFV-complex corresponding to some choice of tubular neighbourhood
ψ : E ↪→M , while

(BFV (E), [Ωg, ·]gBFV , [·, ·]
g
BFV )

is a BFV-complex corresponding to the embedding ψ ◦ g : E ↪→ M , where
g : E → E is a vector bundle isomorphism covering the identity.

Then there is an isomorphism of graded Poisson algebras

(BFV (E), [·, ·]BFV )→ (BFV (E), [·, ·]gBFV )

which maps Ω to Ωg.

Proof. Let Π / Πg be the Poisson bivector field on E obtained from ψ : E ↪→
M / ψ ◦ g : E ↪→M , respectively. Clearly Πg = (g)∗(Π).

Choose some connection ∇ of E, which is used to construct the L∞ quasi-
isomorphism

L : (V(E)[1], [·, ·]SN ) ; (V(E∗[1]⊕ E [−1])[1], [−,−]SN , [G,−]SN ).

Plugging in Π results into the BFV-bracket [·, ·]BFV . On the other hand,
we can use ∇g := (g−1)∗∇ to construct another L∞ quasi-isomorphism Lg.
Plugging in Πg results into another BFV-bracket [·, ·]gBFV .

We claim that [·, ·]BFV and [·, ·]gBFV are isomorphic graded Poisson brack-
ets. First, observe that the isomorphism g : E → E lifts to an vector bundle
isomorphism

E
ĝ //

��

E

��
E

g // E,

such that the tautological section gets mapped to itself under (ĝ)∗. We
denote the induced automorphism of E∗[1]⊕ E[−1] by ĝ as well.

By naturality of the pull back of connections, we obtain the commutative
diagram

V(E)
ι∇ //

(g)∗
��

V(E∗[1]⊕ E[−1])

(ĝ)∗
��

V(E)
ι∇g // V(E∗[1]⊕ E[−1]),

where ι∇ (ι∇g) is the horizontal lift induced by ∇ (∇g). Using this together
with the explicit description of the L∞ quasi-isomorphism L from Propo-
sition 1 contained in [Sch], or in the proof of Proposition 3, one concludes
that

(Lg)k = (ĝ)∗ ◦ (L)k ◦
(
(g)−1
∗ ⊗ · · · ⊗ (g)−1

∗
)
.

Here, (L)k denotes the kth structure map of the L∞ quasi-isomorphism L.
14



This immediately implies that ĝ induces an isomorphism between [·, ·]BFV
and [·, ·]gBFV , respectively. Moreover, since ĝ maps the tautological section
to itself, it maps any BFV-charge to another one.

Finally, Theorem 1 implies the statement of Lemma 2. �

In general, a different choice of embedding can cause drastic changes in
the associated BFV-complexes. Consider S = {0} inside M = R2 equipped
with the smooth Poisson bivector field

Π(x, y) :=

{
0 x2 + y2 ≤ 4

exp (− 1
x2+y2−4

) ∂
∂x ∧

∂
∂y x2 + y2 ≥ 4

.

Let ψ0 be the embedding of E ∼= R2 into R2 given by the identity and ψ1

the embedding given by

(x, y) 7→ 1√
1 + x2 + y2

(x, y).

The image of ψ1 is contained in the disk of radius 1. Hence Πψ1 vanishes
identically whereas Πψ0 does not.

The ghost/ghost-momentum bundle E∗[1] ⊕ E [−1] is of the very simple
form

R2 ×
(
(R2)∗[1]⊕ R2[−1]

)
→ R2.

Denote the Poisson bivector field coming from the natural pairing between
(R2)∗[1] and R2[−1] by G. We choose the standard flat connection on the
bundle R2 → 0. Then the Poisson bivector fields for the BFV-brackets
[·, ·]0BFV and [·, ·]1BFV are simply given by the sums G + Πψ0 and G + Πψ1 ,
respectively.

Any isomorphism of graded Poisson algebras between (BFV (E), [·, ·]0BFV )
and (BFV (E), [·, ·]1BFV ) yields an induced isomorphism of Poisson algebras
between (C∞(R2), {·, ·}Πψ0 ) and (C∞(R2), {·, ·}Πψ0 ). Since Πψ1 vanishes, the
induced automorphism would have to map something non-vanishing to 0,
which is a contradiction. Hence there is no isomorphism of graded Poisson
algebras between (BFV (E), [·, ·]0BFV ) and (BFV (E), [·, ·]1BFV ).

Although different choices of embeddings can lead to differential graded
Poisson algebras that are not isomorphic, it is always possible to find ap-
propriate “restrictions” of the BFV-complexes such that the corresponding
differential graded Poisson algebras are isomorphic. To this end we define

Definition 2. Let E be a finite rank vector bundle over a smooth manifold
S. Assume E is equipped with a Poisson bivector field Π such that S is a
coisotropic submanifold of E. Moreover let (BFV (E), DBFV , [·, ·]BFV ) be a
BFV-complex for S in (E,Π) and U an open neighbourhood of S inside E.

Then the restriction of the BFV-complex on U is the differential graded
Poisson algebra

(BFV U (E), DU
BFV (·) = [ΩU , ·]UBFV , [·, ·]UBFV )

given by the following data:
15



(a) BFV U (E) is the space of smooth functions on the graded vector
bundle (E∗[1]⊕ E [−1])|U fitting into the following Cartesian square:

E∗[1]⊕ E [−1]|U //

��

E∗[1]⊕ E [−1]

��
U // E.

(b) BFV U (E) inherits a graded Poisson bracket [·, ·]UBFV from BFV (E):
one restricts the Poisson bivector field corresponding to [·, ·]BFV to
the graded submanifold (E∗[1]⊕ E [−1])|U of E∗[1]⊕ E [−1].

(c) An element ΩU of BFV U (E) is called a restricted BFV-charge if
it is of degree +1, [ΩU ,ΩU ]UBFV = 0 holds and the component of
ΩU in Γ(E|U ) is equal to the restriction of the tautological section
Ω0 ∈ Γ(E) to U .

Proposition 4. Let S be a coisotropic submanifold of a smooth, finite di-
mensional Poisson manifold (M,Π). Denote the normal bundle of S by E
and fix a connection ∇ on E. Moreover let ψ0 and ψ1 be two embeddings of
E into M as tubular neighbourhoods of S.

Using these data one constructs two graded Poisson algebra structures
on BFV (E) following subsection 2.3 (in particular one applies Proposition
1). Denote the two corresponding graded Poisson brackets by [·, ·]0BFV and
[·, ·]1BFV respectively.

Then there are two open neighbourhoods A0 and A1 of S in E such that
an isomorphism of graded Poisson algebras

(BFV A0(E), [·, ·]0,A0

BFV )
∼=−→ (BFV A1(E), [·, ·]1,A1

BFV )

exists.

Proof. We make use of the fact that any two embeddings of E as a tubular
neighbourhood are homotopic up to inner automorphisms of E, i.e. given
two embeddings ψ and φ of E into M as a tubular neighbourhood, one can
find

• a vector bundle isomorphism g of E and
• a smooth map F : E × I →M

satisfying

• F |E×{0} = ψ and F |E×{1} = φ ◦ g,
• ψs := F |E×{s} : E →M is an embedding for all s ∈ I and
• ψs|S = idS for all s ∈ I.

The construction of F can be found in [Hi] for instance.
Since vector bundle automorphisms of E yield isomorphic BVF-complexes

by Lemma 2, we can assume without loss of generality that the two embed-
dings ψ := ψ0 and φ =: ψ1 are homotopic (i.e. g = id).

Denote the images of ψs by Vs. Since ψs is an embedding of a manifold of
the same dimension as M , the image Vs is an open subset of M . Moreover
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S ⊂ Vs holds for arbitrary s ∈ I, i.e. Vs is an open neighbourhood of S in
M . Because F is continuous, one can find an open neigbourhood V of S in
M which is contained in

⋂
s∈I Vs.

One defines F̂ : E × I → M × I, (e, t) 7→ (F (e, t), t) and checks that

F̂ is an embedding, hence its image is a submanifold W of M × I and
F̂ is a diffeomorphism between E × I and W . Consider the restriction of

F̂−1 : W
∼=−→ E × I to V × I which we denote by G. If one restricts G to

“slices” of the form V × {s} one obtains ψ−1
s |V . The images of ψ−1

s |V are
denoted by Ws. By continuity of G there is an open neighbourhood W of S
in E which is contained in

⋂
s∈IWs.

We define the following one-parameter family of local diffeomorphisms of
E:

φs : W0

ψ0|W0−−−−→ V
(ψs|V )−1

−−−−−−→Ws.

Moreover E inherits a one-parameter family of Poisson bivector fields defined
by Πs := (ψs|−1

Vs
)∗(Π|Vs). The restriction Πs|Ws is equal to (ψs|−1

V )∗(Π|V ).
Consequently

Πs|Ws = (φs)∗(Π0|W0)(1)

holds for all s ∈ I.
Differentiating φs yields a smooth one-parameter family of local vector

fields (Ys)s∈I on E. By (1) the smooth one-parameter family

Πt|W − Yt|Wdt

is a MC-element of (V(W )[1]⊗ Ω(I), dDR, [·, ·]SN ).
The L∞ quasi-isomorphism

L∇ : (V(E)[1], [·, ·]SN ) ; (V(E∗[1]⊕ E [−1])[1], [G, ·]SN , [·, ·]SN )

from Proposition 1 restricts to an L∞ quasi-isomorphism

L∇|W : (V(W )[1], [·, ·]SN ) ; (V((E∗[1]⊕ E [−1])|W )[1], [G, ·]SN , [·, ·]SN ).

Hence we obtain an L∞ quasi-isomorphism

L∇|W ⊗ id : (V(W )[1]⊗ Ω(I), dDR, [·, ·]SN ) ;

(V(E∗[1]⊕ E [−1]|W )[1]⊗ Ω(I), dDR + [G, ·]SN , [·, ·]SN ).

Applying L∇|W ⊗ id to the MC-element Πt|W −Yt|Wdt and adding G yields

a MC-element Π̂t − Ŷtdt of (V(E∗[1]⊕ E [−1]|W )[1]⊗ Ω(I), dDR, [·, ·]SN ).

It is straightforward to check that Π̂s is the restriction of L∇(
∑

k≥1
1
k!Π
⊗k
s )

to W and that Ŷs is the sum of the horizontal lift ι∇(Ys) of Ys with respect

to ∇ restricted to W plus a part in V(1,1)(E∗[1] ⊕ E [−1]) (that acts as a
nilpotent derivation).

Using parallel transport with respect to ∇, (ι∇(Yt))t∈I can be integrated
to a one-parameter family of vector bundle automorphisms

φ̂s : E∗[1]⊕ E [−1]|W0 → E∗[1]⊕ E [−1]|Ws
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covering φs : W0 → Ws for arbitrary s ∈ I. Similar to the construction of
V and W one finds an open neighbourhood A0 of S in W such that φt|A0 :

A0
∼=−→ At with

⋃
s∈I As ⊂ W . So the restriction of φ̂s to E∗[1] ⊕ E [−1]|A0

has image E∗[1] ⊕ E [−1]|As which is a submanifold of E∗[1] ⊕ E [−1]|W for
arbitrary s ∈ I.

Hence the one-parameter family of local vector fields

(ι∇(Yt)|(E∗[1]⊕E[−1])|At )t∈I

can be uniquely integrated to a one-parameter family of local diffeomor-
phisms (φ̂t)t∈I and consequently the one-parameter family of local vector

fields (Ŷt|At)t∈I can be uniquely integrated to a one-parameter family of
local diffeomorphisms which we denote by

ϕs : (E∗[1]⊕ E [−1])|A0 → (E∗[1]⊕ E [−1])|As
for s ∈ I.

Applying Lemma 1 shows that Π̂s|As = (ϕs)∗(Π̂0|A0) holds for all s ∈ I.
Hence

(ϕ1)∗ : C∞(E∗[1]⊕ E [−1]|A0)→ C∞(E∗[1]⊕ E [−1]|A1)

is an isomorphism of Poisson algebras. �

Theorem 2. Let S be a coisotropic submanifold of a smooth, finite dimen-
sional Poisson manifold (M,Π). Suppose (BFV (E), D0

BFV , [·, ·]0BFV ) and
(BFV (E), D1

BFV , [·, ·]1BFV ) are two BFV-complexes constructed with help of
two arbitrary embeddings of E into M , two arbitrary connections on E → S
and two arbitrary BFV-charges.

Then there are two open neighbourhoods B0 and B1 of S in E such that
an isomorphism of differential graded Poisson algebras

(BFV B0(E), D0,B0

BFV , [·, ·]
0,B0

BFV )
∼=−→ (BFV B1(E), D1,B1

BFV [·, ·]1,B1

BFV )

exists.

Proof. By Theorem 1 we can assume without loss of generality that the
two chosen connections coincide. Furthermore it suffices to prove that
there is an isomorphism of graded Poisson algebras from some restriction of
(BFV (E), [·, ·]0BFV ) to some restriction of (BFV (E), [·, ·]0BFV ) which maps
a restricted BFV-charge to another restricted BFV-charge. This is a conse-
quence of the fact that Theorem 1 holds also in the restricted setting as long
as the open neighbourhood U of S in E, to which we restrict, is contractible
to S along the fibres of E.

By Lemma 2, we may assume without loss of generality that the two
embeddings under consideration are homotopic. Hence there is a smooth
one-parameter family of isomorphisms of graded Poisson algebras

(ϕs)∗ : (BFV A0(E), [·, ·]0,A0

BFV )→ (BFV As(E), [·, ·]s,AsBFV ),
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which we constructed in the proof of Proposition 4. The smoothness of this
family and the fact that the zero section S is fixed under (ϕs)s∈I imply that
there is a open neighbourhood A of S in E satisfying A ⊂

⋂
s∈I As.

Fix a restricted BFV-charge Ω of (BFV A0(E), [·, ·]0,A0

BFV ). The restriction
of

(Ω(t) := (ϕt)∗(Ω))t∈I

to A yields a smooth one-parameter family of sections of
∧
E ⊗

∧
E∗|A.

Although [Ω(s)|A,Ω(s)|A]s,ABFV = 0 holds for all s ∈ I, Ω(s)|A is in general
not a BFV-charge since its component in Γ(E|W ) is Ω0(s) := (ϕs)∗(Ω0) which
does not need to be equal to Ω0 as required – see Definition 2. In particular
Ω(1) might not be a restricted BFV-charge of (BFV (E), [·, ·]1BFV ). However
we will show that Ω(1) can be “gauged” to a BFV-charge in the remainder
of the proof.

We have to recall some of the ingredients involved in the proof of Propo-
sition 2: The first observation is that δ := [Ω0, ·]G is a differential. Here
Ω0 denotes the tautological section of E → E, G is the Poisson bivector
field associated to the fibre pairing between E and E∗, and [·, ·]G denotes
the graded Poisson bracket on BFV (E) corresponding to G. Second it is
possible to construct a homotopy h for δ, i.e. a degree −1 map satisfying

δ ◦ h+ h ◦ δ = id− i ◦ pr(2)

where i is an embedding of the cohomology of δ into BFV (E) and pr is
a projection from BFV (E) onto cohomology. We remark that h does not
restrict to arbitrary open neighbourhoods of S in E. However one can check
that it does restrict to open neighbourhoods that can be contracted to S
along the fibres of E. Without loss of generality we can assume that A has
this property.

We are interested in the smooth one-parameter family

h(Ω0(s)) ∈ Γ(E ⊗ E∗|A) ∼= Γ(End(E|A))

with s ∈ I. Since Ω0 intersects the zero section of E → E transversally at S,
so does Ω0(s) for arbitrary s ∈ I. This implies 1.) the evaluation of Ω0(s)
at S is zero and 2.) h(Ω0(s))|S ∈ Γ(E ⊗ E∗|S) is fibrewise invertible, i.e. it
is an element of Γ(GL(E|S)).

For any s ∈ I we have δ(Ω0(s)) = [Ω0,Ω0(s)]G = 0 since both Ω0 and
Ω0(s) are sections of E|A and G is the Poisson bivector given by contraction
between E and E∗. Moreover (i ◦ pr)(Ω0(s)) = 0 since the projection pr
involves evaluation of the section at S, where Ω0(s) vanishes. Consequently
(2) reduces to δ(h(Ω0(s))) = Ω0(s) for all s ∈ I. However this means that if
we interpret h(Ω0(s)) as a fibrewise endomorphism of E|A the image of Ω0

under −h(Ω0(s)) is Ω0(s).
We define Ms := −h(Ω0(s)) – as already observed, (Mt)t∈I is a smooth

one-parameter family of sections of End(E|A) and the restriction to S is
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a smooth one-parameter family of GL(E|S). By smoothness of the one-
parameter family it is possible to find an open neighbourhood B of S in E
such that the restriction of (Mt)t∈I to B is always fibrewise invertible. Since
M0 = id|A we know that (Mt|B)t∈I is a smooth one-parameter family of
sections in GL+(E|B), i.e. fibrewise invertible automorphisms of E|B with
positive determinante. In particular M1 ∈ Γ(GL+(E|B)).

Consider the smooth one-parameter family (mt)t∈I of sections of End(E|B)
given by

mt := −M−1
t ◦

(
d

dt
Mt

)
.

It integrates to a smooth one-parameter family of sections of GL+(E|B) that

coincides with (Mt)t∈[0,1]. The adjoint action of mt on (BFV B(E), [·, ·]1,BBFV )

can be integrated to an automorphism of (BFV B(E), [·, ·]1,BBFV ) and this
automorphism maps the restriction of Ω0(1) to B to the restriction of Ω0 to
B. Hence (exp(m) ◦ (ϕ1)∗) maps the restricted BFV-charge Ω to another

restricted BFV-charge of (BFV B(E), [·, ·]1,BBFV ). �

Definition 3. Let (BFV (E), DBFV , [·, ·]BFV ) be a BFV-complex associated
to a coisotropic submanifold S of a smooth Poisson manifold (M,Π). We
define a differential graded Poisson algebra (BFV g(E), Dg

BFV , [·, ·]
g
BFV ) as

follows:

(a) BFV g(E) is the algebra of equivalence classes of elements of BFV (E)
under the equivalence relation: f ∼ g :⇔ there is a open neighbour-
hood U of S in E such that f |U = g|U .

(b) Dg
BFV ([·]) := [DBFV (·)] where [·] denotes the equivalence class of ·

under ∼.
(c) [[·], [·]]gBFV := [[·, ·]BFV ].

Given a differential graded Poisson algebra with unit (A,∧, d, [·, ·]) we de-
fine the corresponding abstract differential graded Poisson algebra with unit
[(A,∧, d, [·, ·])] to be the isomorphism class of (A,∧, d, [·, ·]) in the category of
differential graded Poisson algebras with unit. In particular [(A,∧, d, [·, ·])]
is a object in the category of differential graded Poisson algebras with unit
up to isomorphisms.

Theorem 2 immediately implies

Corollary 4. Consider a coisotropic submanifold S of a smooth, finite di-
mensional Poisson manifold (M,Π) and let (BFV (E), DBFV , [·, ·]BFV ) be a
BFV-complex associated to S inside (M,Π).

The abstract differential graded Poisson algebra

[(BFV g(E), Dg
BFV , [·, ·]

g
BFV )]

is independent of the specific choice of a BFV-complex and hence is an
invariant of S as a coisotropic submanifold of (M,Π).
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