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Abstract. We show that deformations of a coisotropic submanifold inside a �brewise
entire Poisson manifold are controlled by the L∞-algebra introduced by Oh-Park (for
symplectic manifolds) and Cattaneo-Felder. In the symplectic case, we recover results
previously obtained by Oh-Park. Moreover we consider the extended deformation problem
and prove its obstructedness.
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Introduction

We consider deformations of coisotropic submanifolds inside a �xed Poisson manifold
(M,π), with π a �brewise entire Poisson structure, see De�nition 1.6.

We build on work of Oh and Park [6], who realized that deformations of a coisotropic
submanifold inside a symplectic manifold are governed by an L∞[1]-algebra. The construc-
tion of the L∞[1]-algebra structure was extended [1] to arbitrary coisotropic submanifolds
of Poisson manifolds by Cattaneo and Felder. The L∞[1]-algebra depends only on the∞-jet
of π along the coisotropic submanifold C, so it has too little information to codify π near C
in general. In particular it does not encode the coisotropic submanifolds of (M,π) nearby
C, see [7, Ex. 3.2 in �4.3] for an example of this.

In this note we show that if the identi�cation between a tubular neighbourhood of C
in M and a neighbourhood in its normal bundle NC is chosen so that π corresponds to
a �brewise entire bivector �eld on NC, the L∞[1]-algebra structure encodes coisotropic
submanifolds of (M,π) nearby C; see �1. For instance, such an identi�cation exists for
coisotropic submanifolds of symplectic manifolds; see �2. Further, we show that the problem
of deforming simultaneously the Poisson structure π and the coisotropic submanifold C is
formally obstructed; see �3.
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1. Deformations in the fibrewise entire case

We introduce the notion of a �brewise entire (multi)vector �eld on a vector bundle E →
C. Then we show that whenever E is equipped with a �brewise entire Poisson structure
such that C is coisotropic, the L∞[1]-algebra structure associated to C encodes coisotropic
submanifolds su�ciently close to C (in the C1-topology).

1.1. Fibrewise entire multivector �elds. Let E → C be a vector bundle throughout
this subsection.

De�nition 1.1. The set Cω(E) of locally de�ned �brewise entire functions on E contains
those smooth functions f : U → R which are de�ned on some tubular neighborhood U of C
in E and whose restriction to each �bre Ux = U ∩Ex is given by a convergent power series.

Given f ∈ Cω(E), we denote by dom(f) the tubular neighbourhood on which f is de�ned.

Remark 1.2.

(1) To be more accurate, �entire� should read �real entire� in the above de�nition. We
will usually also drop the term �locally de�ned� and simply refer to Cω(E) as the
�brewise entire functions on E.

(2) The set Cω(E) forms an algebra under the usual multiplication of functions.

De�nition 1.3. The set χω(E) of �brewise entire vector �elds contains those smooth vector
�elds X which are de�ned on some tubular neighborhood U of C in E and whose actions
on (locally de�ned) functions sends �brewise polynomial functions to Cω(E).

GivenX ∈ χω(E), we denote by dom(X) the tubular neighborhood on whichX is de�ned.

We state two other descriptions of χω(E):

Lemma 1.4. Given X a smooth vector �eld de�ned on some tubular neighborhood U of C
in E, the following assertions are equivalent:

(1) X is �brewise entire.
(2) If (xi)m

i=1 are local coordinates on W ⊂ C and (yj)n
j=1 are �bre coordinates on E|W ,

then X reads
m∑

i=1

hi(x, y)∂xi +
n∑

j=1

gj(x, y)∂yj

on E|W with (hi)m
i=1 and (gj)n

j=1 �brewise entire functions.

Proof. Since being �brewise entire is a local property with respect to the base manifold C,
the equivalence of (1) and (2) can be easily checked in coordinates. �

Remark 1.5. The requirement that a vector �eld X be �brewise entire seems not to be
equivalent to the requirement that the action of X on smooth functions preserves the sub-
algebra Cω(E). The di�erence between these two requirements should already be visible in
the simplest case: there should be a smooth function

f : R2 → R
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in two variables x and y such that for each �xed x, the function y 7→ f(x, y) is globally
analytic, i.e. its Taylor expansion around 0 converges to f(x, y), while its partial derivative
∂f
∂x is not globally analytic. Note that ∂f

∂x is X(f) for the �brewise entire vector �eld ∂x.

De�nition 1.6. The set χ•ω(E) of �brewise entire multivector �elds contains those smooth
multivector �elds Z, de�ned on some tubular neighborhood U of C in E, whose action on
(locally de�ned) functions sends �brewise polynomial functions to Cω(E).

Given Z ∈ χ•ω(E), we denote by dom(Z) the tubular neighborhood on which Z is de�ned.

As for vector �elds, one can give di�erent, but equivalent, characterizations of �brewise
entire multivector �elds:

Lemma 1.7. Given Z a smooth k-vector �eld de�ned on some tubular neighborhood U of
C in E, the following assertions are equivalent:

(1) Z is �brewise entire.
(2) If (xi)m

i=1 are local coordinates on W ⊂ C and (yj)n
j=1 are �bre coordinates on E|W ,

then Z reads∑
r+s=k

∑
i1,...,ir,j1,...,js

hi1...irj1...js(x, y)∂xi1
∧ · · · ∧ ∂xir

∧ ∂yj1
∧ · · · ∂yjs

on E|W with (hi1...irj1...js) in Cω(E).
(3) Z can be written as the sum of wedge products of elements of χω(E).

Remark 1.8. Notice that in particular a Poisson bivector �eld π lies in χ2
ω(E) i� the Poisson

bracket {f, g} = π(df, dg) of �brewise polynomial functions lies in Cω(E).

1.2. Deformation of coisotropic submanifolds. For more background information and
examples, the reader is advised to consult [8].

De�nition 1.9. A submanifold C of a Poisson manifold (M,π) is coisotropic if the restric-
tion of the bundle map

π] : T ∗M → TM, ξ 7→ π(ξ, ·)
to the conormal bundle N∗C := TC◦ takes values in TC.

De�nition 1.10. An L∞[1]-algebra is a Z-graded vector space W , equipped with a col-
lection of graded symmetric brackets (λk : W⊗k −→ W )k≥1 of degree 1 which satisfy a
collection of quadratic relations [5] called higher Jacobi identities.

The Maurer-Cartan series of an element α of W of degree 0 is the in�nite sum

MC(α) :=
∑
k≥1

1
k!
λk(α⊗k).

Remark 1.11.

(1) Let E → C be a vector bundle. We denote by P : χ•(E) → Γ(∧E) the map given
by restriction to C, composed with the projection ∧(TE)|C → ∧E induced by the
splitting (TE)|C = E ⊕ TC. The zero section C of E is coisotropic if and only if
the image of π under P is zero.

(2) Suppose that E is equipped with a Poisson structure π with respect to which C is
coisotropic. As shown in [6] and [1], the space Γ(∧E)[1] is equipped with a canonical
L∞[1]-algebra structure. We denote the structure maps of this L∞[1]-algebra by

λk : Γ(∧E)[1]⊗k → Γ(∧E)[1].
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Evaluating λk on α⊗k for α ∈ Γ(E) yields

λk(α⊗k) := P
(
[[. . . [π, α], α] . . . ], α]

)
,

where α is interpreted as a �brewise constant vertical vector �eld on E. Hence the
Maurer-Cartan series of α reads MC(α) = P (e[·,α]π).

The aim of this subsection is to prove:

Theorem 1.12. Let E → C be a vector bundle and π a �brewise entire Poisson structure
which is de�ned on a tubular neighborhood U = dom(π) of C in E. Suppose that C is
coisotropic with respect to π.

Given a section α of E for which graph(−α) is contained in U , the Maurer-Cartan series
MC(α) converges and its limit is P ((φα)∗π), where φα the time-1-�ow of α.

Hence, for such α, the following two statements are equivalent:

(1) The graph of −α is a coisotropic submanifold of (U, π).
(2) The Maurer-Cartan series MC(α) of α converges to zero.

Proof. We know from Proposition 1.15 below that e[·,α]π restricted to C converges and the
limit is ((φα)∗π)|C . This implies that MC(α) converges as well and the limit is P ((φα)∗π).

To prove the second part of the theorem, recall that φα : E → E is just translation by α.
Clearly graph(−α) is coisotropic (for π) iff φα(graph(−α)) = C is coisotropic for (φα)∗π.
The latter conditions is equivalent to P ((φα)∗π) = 0 by Remark 1.11 (1). �

The equation MC(α) = 0 is the Maurer-Cartan equation associated to the L∞[1]-algebra
structure on Γ(∧E)[1], see Remark 1.11. Theorem 1.12 asserts that for α su�ciently C0-
small, the Maurer-Cartan equation is well-de�ned and its solutions correspond to coisotropic
submanifolds which are su�ciently close to C in the C1-topology.

Remark 1.13.

(1) The convergence of MC(α) is meant pointwise, i.e. if we consider the sequence of
sections βn ∈ Γ(E) de�ned by

βn :=
n∑

k=1

1
k!
λk(α⊗k),

convergence of MC(α) means that for each x ∈ C, the sequence (βn(x))n ⊂ Ex

converges.
(2) In [2, �5.1] the above Theorem is claimed for �brewise polynomial Poisson bivector

�elds.

We devote the rest of this subsection to Proposition 1.15 and its proof. We �rst need:

Lemma 1.14. (i) Let α ∈ Rn, and denote by φα : Rn → Rn the time-1 �ow of α, i.e.
φα is just translation by α. Let U be a neighborhood of the origin in Rn, such that
α ∈ U .

Then, for any entire function f de�ned on U , the series

(eαf)(0) :=
∑
k≥0

1
k!

([α, [. . . [α, [α, f ]] . . . ]])(0)

converges to ((φα)∗f)(0).
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(ii) Let E → C ′ be a trivial vector bundle, (xi)m
i=1 coordinates on C

′ and (yj)n
j=1 �brewise

linear functions on E, so that (xi, yj) is a coordinate system on E. View α ∈ Γ(E)
as a vertical vector �eld on E and denote by φα its time-1-�ow. Then the series

e[·,α]∂xi :=
∑
k≥0

1
n!

[[. . . [[∂xi , α], α] . . . ], α] and e[·,α]∂yj

are �nite sums and equal (φα)∗∂xi and (φα)∗∂yj , respectively, at all points of E.

Proof. (i) Denote by (yj)n
j=1 the canonical coordinates on Rn. We may assume that α = ∂y1 .

We have

(eαf)(0) =
∞∑

n=0

1
n!

((∂y1)
nf)|0 = f(0 + e1) = ((φα)∗f)(0).

where e1 is �rst basis vector and we used Taylor's formula in the second equality.

(ii) Let us write in coordinates α =
∑n

j=1 fj(x)∂yj . Then [∂xi , α] =
∑n

j=1
∂fj

∂xi
(x)∂yj , so

in particular the series e[·,α]∂xi is �nite, more precisely

e[·,α]∂xi = ∂xi + [∂xi , α] = ∂xi +
n∑

j=1

∂fj

∂xi
(x)∂yj .

On the other hand,

(φα)∗∂xi = ∂xi +
n∑

j=1

∂fj

∂xi
(x)∂yj .

The same reasoning applies to e[·,α]∂yj . �

Proposition 1.15. Let E → C be vector bundle, and let π ∈ χ2
ω(E) be a �brewise entire

bivector �eld, de�ned on a tubular neighborhood U = dom(π) of C. Let α ∈ Γ(E) such that
graph(−α) is contained in U .

Then the series

e[·,α]π :=
∑
k≥0

1
k!

[[. . . [[π, α], α] . . . ], α]

converges pointwise on C towards ((φα)∗π)|C , where φα is the time-1-�ow of α.

Proof. Choose local coordinates (xi)m
i=1 on W ⊂ C and �brewise linear functions (yj)n

j=1 on

E|W , so that (xi, yj) is a coordinate system on E|W . On the open subset U |W of E, write
π in these coordinates:

π = E + F +G =
∑
i,i′

gii′(x, y)∂xi ∧ ∂xi′ +
∑
i,j

hij(x, y)∂xi ∧ ∂yj +
∑
j,j′

kjj′(x, y)∂yj ∧ ∂yj′ .

Since π is �brewise entire, the functions gii′(x, y), hij(x, y), kjj′(x, y) are in Cω(U |W ).
Hence, in a neighborhood of W in U |W , the pushforward bivector �eld (φα)∗π is equal to∑

i,i′

(φ−1)∗gii′ · φ∗∂xi ∧ φ∗∂xi′ +
∑
i,j

(φ−1)∗hij · φ∗∂xi ∧ φ∗∂yj +
∑
j,j′

(φ−1)∗kjj′ · φ∗∂yj ∧ φ∗∂yj′ ,

where we write φ := φα. Restriction to C and Lemma 1.14 yield, for all x ∈W ,(
(φα)∗π

)
|(x,0) = E′

x + F ′
x +G′

x =
∑
i,i′

(e−αgii′)(x, 0) · e[·,α]∂xi |(x,0) ∧ e[·,α]∂xi′ |(x,0) + · · · .
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We claim that

E′
x = (e[·,α]E)|(x,0), F ′

x = (e[·,α]F )|(x,0) and G′
x = (e[·,α]G)|(x,0),

and hence
(
(φα)∗π

)
|(x,0) =

(
e[·,α]π

)
|(x,0).

Observe that the power series e[·,α](g∂xi) can be written as the Cauchy-product of the

power series e−αg and the �nite sum e[·,α]∂xi . Hence
(
e[·,α](g∂xi)

)
|(x,0) converges to

(
e−αg

)
|(x,0)·(

e[·,α]∂xi

)
|(x,0). The analogous statement for g∂yj holds as well. The claims about E′

x, F
′
x

and G′
x immediately follow.

�

2. The symplectic case

Throughout this section, C is a coisotropic submanifold of a symplectic manifold (M,ω).
We �rst recall Gotay's normal form theorem for coisotropic submanifolds inside symplectic
manifolds from [4]. Then we show that it allows us to apply Theorem 1.12 to recover the
fact that, in the symplectic world, the coisotropic submanifolds su�ciently close to a given
one are encoded by an L∞[1]-algebra (Theorem 2.8).

De�nition 2.1. A 2-form on a manifold is pre-symplectic if it is closed and its kernel has
constant rank.

Remark 2.2. Let C be a coisotropic submanifold of (M,ω). The pullback of ω under the
inclusion C ↪→M is a pre-symplectic form which we denote by ωC .

On the other hand, starting from a pre-symplectic manifold (C,ωC) one can construct

a symplectic manifold (C̃, ω̃) which contains C as a coisotropic submanifold in such a way
that ω̃ pulls back to ωC . The construction works as follows: Denote the kernel of ωC by E
and its dual by π : E∗ → C. Fixing a complement G of E inside TC yields an inclusion
j : E∗ → T ∗C. The space E∗ carries a two-form

Ω := π∗ωC + j∗ωT ∗C .

Here ωT ∗C denotes the canonical symplectic form on the cotangent bundle. It is straightfor-
ward to check that Ω pulls back to ωC and that it is symplectic on a tubular neighborhood
U of the zero section C ⊂ E∗. We set (C̃, ω̃) equal to (U,Ω) and refer to it as the local
model associated to the the pre-symplectic manifold (C,ωC).

Theorem 2.3 (Gotay [4]). Let C be a coisotropic submanifold of a symplectic manifold
(M,ω).

There is a symplectomorphism ψ between a tubular neighborhood of C inside M and a
tubular neighborhood of C inside its local model (C̃, ω̃). Moreover, the restriction of ψ to C
is the identity.

De�nition 2.4. A di�erential form ω on a vector bundle E → C is called �brewise homo-
geneous of degree k if the following holds: given any local coordinates (xi)m

i=1 on W ⊂ C
and any �bre coordinates (yj)n

j=1 on E|W , the di�erential form ω reads∑
ωi1···irj1···js(x, y)dxi1 · · · dxirdyj1 · · · dyjs

on E|W with ωi1···irj1···js(x, y) monomials in the �bre coordinates such that

deg(ωi1···irj1···js) + s = k.

In other words, the number of y's and dy's appearing in each summand is exactly k.
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We denote the vector space of �brewise homogeneous di�erential forms of degree k on E
by Ω(k)(E) and set Ω(≤k)(E) := ⊕l≤kΩ(l)(E).

Remark 2.5.

(1) If a di�erential form ω on a vector bundle E satis�es the condition of De�nition 2.4
with respect to some coordinate system and some choice of �brewise linear coordi-
nates, it also satis�es the condition with respect to any other choice of coordinate
system and �bre coordinates de�ned on the same open.

Hence it su�ces to check the condition of De�nition 2.4 for an atlas (Wi, φi) of
C and a collection of trivializations of E|Wi .

(2) The space Ω(0)(E) coincides with the image of the pullback π∗ : Ω(C) → Ω(E).
(3) The spaces Ω(k)(E) are closed under the de Rham di�erential and the pullback along

vector bundle maps.
(4) Clearly, one can extend De�nition 2.4 to Ω(k)(U) and Ω(≤k)(U) for U some tubular

neighborhood of C ⊂ E.

Lemma 2.6. Let C be a coisotropic submanifold of a symplectic manifold (M,ω).
There is a di�eomorphism between a tubular neighborhood V of C inside NC := TM |C/TC

and a tubular neighborhood of C inside M such that the pullback of ω to V lies in Ω(≤1)(V ).

Proof. Let C be a coisotropic submanifold with local model (U,Ω). By Theorem 2.3, it is
enough to prove that the symplectic form Ω lies in Ω≤1(U). By de�nition

Ω = π∗ωC + j∗ωT ∗C .

Clearly, π∗ωC lies in Ω(0)(U). Further, writing ωT ∗C in canonical coordinates shows that it
lies in Ω(1)(T ∗C), hence j∗ωT ∗C ∈ Ω(1)(U). �

Corollary 2.7. Let C be a coisotropic submanifold of a symplectic manifold (M,ω).
There is a di�eomorphism between a tubular neighborhood V of C inside NC and a tubular

neighborhood of C inside M such that the pullback of the Poisson structure ω−1 to V is a
�brewise entire Poisson structure on NC.

Proof. Let C be a coisotropic submanifold with local model (U,Ω). By Lemma 2.6, it
su�ces to prove that the inverse Ω−1 of the symplectic form yields a �brewise entire Poisson
structure.

Since Ω lies in Ω(≤1)(U), it reads∑
1≤i<j≤m

(
fij(x) +

n∑
k=1

ykg
k
ij(x)

)
dxidxj +

∑
1≤i≤m
1≤k≤n

hik(x)dxidyk

on E|W , where (xi)m
i=1 are coordinates onW ⊂ C and (yk)n

k=1 are �bre coordinates on E|W .
We de�ne square matrices A, Bk of size m+ n by writing them as follows in block-form:

A =
(

f(x) h(x)
−h(x)T 0

)
, Bk =

(
gk(x) 0

0 0

)
.

It is clear that the problem of determining the dependence of Ω−1 on the �bre coordinates
reduces to the following problem: Given an invertible matrix A and a tuple of matrices
(B1, . . . , Bn) of the same size, de�ne

M(λ) := A+
n∑

k=1

λkBk
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for λ = (λ1, . . . , λn) su�ciently close to the origin of Rn, and show that the function

λ 7→M−1(λ)

is entire on an open neighborhood of the origin.
This in turn holds since the general linear group is analytic. More explicitly, using the

matrix version of the geometric series (1− x)−1 =
∑∞

r=0 x
r, one has

M−1(λ) =
∞∑

r=0

(−
n∑

k=1

λkA
−1Bk)rA−1,

which is clearly entire near the origin. �

Thanks to Corollary 2.7 we can apply Theorem 1.12 and recover the following result,
which is � partly in an implicit manner � contained in [6]:

Theorem 2.8. Let C be a coisotropic submanifold of a symplectic manifold (M,ω).
There is a di�eomorphism ψ between a tubular neighborhood V of C inside NC and a

tubular neighborhood of C insideM such that for any α ∈ Γ(NC), with graph(−α) contained
in (V, ψ∗ω), the Maurer-Cartan series MC(α) is convergent.

Furthermore, for any such α the following two statements are equivalent:

(1) The graph of −α is a coisotropic submanifold of (V, ψ∗ω).
(2) The Maurer-Cartan series MC(α) of α converges to zero.

Theorem 2.8 asserts that in the symplectic world, any coisotropic submanifold C admits
a tubular neighborhood such that the L∞[1]-algebra structure on Γ(∧NC)[1] (see Remark
1.11) controls the deformations of C which are su�ciently close to C with respect to the
C1-topology.

3. Simultaneous deformations and their obstructedness

Up to now we considered coisotropic submanifolds close to a given one C, inside a manifold
with a �xed �brewise entire Poisson structure π. Now we allow the Poisson structure to vary
inside the class of �brewise entire Poisson structures. We show that pairs (π′, C ′), consisting
of a �brewise entire Poisson structure π′ �close� to π and a submanifold C ′ close to C and
coisotropic with respect to π′, are also encoded by an L∞[1]-algebra. Then we show that
the problem of deforming simultaneously C and π is formally obstructed. In particular, we
show that there is a �rst order deformation of C and π which can not be extended to a
(smooth, or even formal) one-parameter family of deformations.

3.1. Simultaneous deformations. Thanks to Theorem 1.12, we can improve [2, Corollary
5.3], extending it from polynomial to �brewise entire Poisson structures.

Corollary 3.1. Let E → C be a vector bundle and U a �xed tubular neighborhood of the
zero section.

There exists an L∞[1]-algebra structure on χ•ω(U)[2]⊕ Γ(∧E)[1] with the following prop-
erty: for all π ∈ χ2

ω(E) and α ∈ Γ(E) such that graph(−α) ⊂ U ,{
π is a Poisson structure

graph(−α) is a coisotropic submanifold of (U, π)

⇔ (π[2], α[1]) is a Maurer-Cartan element of χ•ω(U)[2]⊕ Γ(∧E)[1].
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Explicitly, the L∞[1]-algebra structure is given by the following multibrackets (all others
vanish):

λ1(X[1]) = P (X),

λ2(X[1], Y [1]) = (−1)|X|[X,Y ][1],

λn+1(X[1], a1, . . . , an) = P ([. . . [X, a1], . . . , an]) for all n ≥ 1,

where X,Y ∈ χ•ω(U)[1], a1, . . . , an ∈ Γ(∧E)[1], and [·, ·] denotes the Schouten bracket on
χ•ω(U)[1].

Proof. Use Theorem 1.12 in order to apply [2, Corollary 1.13]. �

3.2. Obstructedness. We review what it means for a deformation problem to be formally
obstructed in an abstract setting:

• Let W0 be a topological vector space and G a subset (so the elements of G are
distinguished among elements of W0). Let x ∈ G. A deformation of x is just an
element of G (usually though of being �nearby� x in some sense).

• We say that an L∞[1]-algebra (W, {λk}k≥1), whose degree zero component is exactly
the above vector space, governs the deformation problem of x if the following is
satis�ed: y ∈W0 satis�es1 the Maurer-Cartan equation iff x+ y is a deformation of
x.

De�nition 3.2. Suppose a certain deformation problem is governed by the L∞[1]-algebra
(W, {λk}k≥1). The deformation problem is said to be formally unobstructed if for any class
A ∈ H1(W ) there is a sequence {zk}k≥1 ⊂ W0, with z1 being λ1-closed and representing
the class A, so that

∑
k≥1 zkt

k is a (formal) solution of the Maurer-Cartan equation for

(W, {λk}k≥1). Here H(W ) is the cohomology of the complex (W,λ1), and t is a formal
variable.

Later on, to show the formal obstructedness, we will use the criteria [6, Theorem 11.4],
which reads as follows:

Theorem 3.3. Suppose a certain deformation problem is governed by the L∞[1]-algebra
(W, {λk}k≥1). De�ne the Kuranishi map

(1) Kr: H1(W ) → H2(W ), [z] 7→ [λ2(z, z)].

If A ∈ H1(W ) satis�es Kr(A) 6= 0, then there is no formal solution
∑

k≥1 zkt
k of the

Maurer-Cartan equation with [z1] = A. In particular, if the Kuranish map is not identically
zero, the deformation problem is formally obstructed.

3.3. Obstructedness of the extended deformation problem. Given a symplectic man-
ifold (M,ω) and a coisotropic submanifold C of (M,ω), Oh-Park [6, �11] showed that the
problem of deforming C to nearby coisotropic submanifolds of (M,ω) is formally obstructed.
Oh-Park ask whether the deformation problem remains formally obstructed if one allows
both the symplectic form ω and the submanifold C to vary (they refer to this as �extended
deformation problem� [6, �13, p. 355]). In this subsection we answer this question in the set-
ting of �brewise entire Poisson structures, showing that the extended deformation problem
is formally obstructed too, see Corollary 3.6.

Let E → C be a vector bundle and π a �brewise entire Poisson structure which is de�ned
on a tubular neighborhood U = dom(π) of C in E. Suppose that C is coisotropic with

1By de�nition, this means that the Maurer-Cartan series MC(y) converges to zero.
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respect to π. These conditions are equivalent to2 (π[1], 0) satisfying the Maurer-Cartan
equation in the L∞[1]-algebra of Corollary 3.1.

The L∞[1]-algebra governing the deformations of the coisotropic submanifold C and the
Poisson structure π is obtained from the L∞[1]-algebra of Corollary 3.1, by twisting it by
the Maurer-Cartan element (π[1], 0) ([3, Proposition 4.4], see also [2, �1.3]). Hence it is
χ•ω(U)[2]⊕ Γ(∧E)[1], with multi-brackets:

λ1(X[1]) = (−[π,X][1], P (X)),

λ1(a) = (0, P ([π, a])),

λ2(X[1], Y [1]) = (−1)|X|[X,Y ][1],

λn(a1, . . . , an) = P ([. . . [π, a1], . . . , an]) for all n ≥ 1,

λn+1(X[1], a1, . . . , an) = P ([. . . [X, a1], . . . , an]) for all n ≥ 1,

where X,Y ∈ χ•ω(U)[1], a1, . . . , an ∈ Γ(∧E)[1]. We denote the above L∞[1]-algebra by
W (C, π).

De�nition 3.4. Let π be a �brewise entire Poisson structure on E → C. Suppose that C
is coisotropic with respect to π. The extended deformation problem of C is the deformation
problem governed by the L∞[1]-algebra structure W (C, π).

We are now ready to display an example showing that, in general, the extended deforma-
tion problem (with the requirement that the Poisson structures involved be �brewise entire)
is formally obstructed. The example is exactly the one previously used by the second author
[9] and by Oh-Park [6, Ex. 11.4].

Proposition 3.5. Let C = R4/Z4 be the 4-dimensional torus with coordinates (y1, y2, q1, q2).
Set E = R2×C, and denote by p1, p2 the coordinates on R2. Consider the Poisson structure
π on E obtained by inverting the symplectic form

Ω := dy1dy2 + (dq1dp1 + dq2dp2).

There exists a ∈ Γ(E)[1] such that the class A ∈ H1(W (C, π)) represented by (0[1], a)
satis�es Kr(A) 6= 0.

Corollary 3.6. The extended deformation problem for the coisotropic submanifold C in the
symplectic manifold (E,Ω) as in Proposition 3.5 is formally obstructed.

Proof of Proposition 3.5. Recall that the Poisson structure π on E makes T ∗E into a Lie
algebroid over E with anchor map ] given by ](γ) := π(γ, ·). Because π is symplectic, the
anchor ] is an isomorphism of Lie algebroids from T ∗E to TE. Dually, we obtain a vector
bundle isomorphism

]∗ : ∧ T ∗E → ∧TE
which intertwines the Lie algebroid di�erentials ddR and [π, ·].

Since C is coisotropic with respect to π, its conormal bundle (TC)◦ ∼= E∗ is a Lie
subalgebroid of T ∗E. The Lie algebroid isomorphism ] restricts to an isomorphism of Lie
subalgebroids ]̃ : E∗ → F , where F = span{∂q1 , ∂q2} is the kernel of the pullback of Ω to C.
By dualizing we obtain

]̃∗ : Γ(∧F ∗) → Γ(∧E)

2Here we view π as an element of χ•ω(U)[1] (notice the degree shift).
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which intertwines the Lie algebroid di�erentials dF = ddR|Γ(∧F ∗) and P ([π, ·]). Notice that

(2) P ◦ ]∗ = ]̃∗ ◦ ι∗ : Γ(∧T ∗E) → Γ(E),

where ι : F → TE is the inclusion.
Now let a ∈ Γ(E)[1] such that (0[1], a) is a λ1-closed element of W (C, π), i.e. such that

P ([π, a]) = 0. Suppose that A = [(0[1], a)] satis�es Kr(A) = 0. In other words, assume that
there are τ ∈ χ2

ω(U)[1] and b ∈ Γ(E)[1] such that

λ1(τ [1], b) = (−[π, τ ][1], P (τ + [π, b])) != λ2((0[1], a), (0[1], a)) = (0[1], P ([[π, a], a])),

holds, i.e. so that

[π, τ ] = 0, and(3)

P (τ + [π, b]) = P ([[π, a], a])(4)

are satis�ed.
Let

β := (]̃∗)−1(P [[π, a], a]) ∈ Γ(∧2F ∗)
and consider the submanifolds Σy = {(y, q) : q ∈ R2/Z2} and Σy′ of C, corresponding to
two �xed points y and y′ of R2/Z2. Let ∆y,y′ := {(y+ t(y′− y), q) : t ∈ [0, 1], q ∈ R2/Z2}, a
3-dimensional submanifold of C with boundary Σy∪Σy′ , where the bar indicates orientation
reversal. Using equation (4) to rewrite β, we see that β satis�es∫

Σy∪Σy′

β =
∫

Σy∪Σy′

(]̃∗)−1Pτ =
∫

Σy∪Σy′

ι∗((]∗)−1τ) =
∫

∆y,y′

ddR((]∗)−1τ) = 0,

where

• in the �rst equation we used that (]̃∗)−1 maps P ([π, b]) to dF ((]̃∗)−1b), and Stokes'
theorem on Σy ∪ Σy′ ,

• in the second we used eq. (2),
• in the third we used Stokes' theorem on ∆y,y′ ,
• in the fourth we used that (]∗)−1 maps τ to a ddR-closed form (a consequence of
equation (3)).

We conclude that the function F : R2/Z2 → R, y 7→
∫
Σy
β induced by the section a is a

constant function.
Now we make a speci�c choice for a ∈ Γ(E)[1], namely we choose it to be given by

(5) (a1, a2) : C → R2, (y1, y2, q1, q2) 7→ (sin(2πy1), sin(2πy2)).

The condition P ([π, a]) = 0 is equivalent to (]̃∗)−1a being dF -closed, which is satis�ed, as

(]̃∗)−1a = − sin(2πy1)dq1 − sin(2πy2)dq2.
Now, a direct computation shows

P ([[π, a], a]) = 2
(
∂a1

∂y1

∂a2

∂y2
− ∂a1

∂y2

∂a2

∂y1

)
∂p1 ∧ ∂p2 = 8π2 cos(2πy1) cos(2πy2)∂p1 ∧ ∂p2 .

The function F is therefore given by

F (y) =
∫

Σy

β = 8π2 cos(2πy1) cos(2πy2),

so in particular it is not a constant function and we deduce that the speci�c choice of a as
in equation (5) satis�es Kr(A) 6= 0. �
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