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Abstract. We propose a tool 1 for automatic search for differential trails in ARX ciphers. By introducing the
concept of a partial difference distribution table (pDDT) we extend Matsui’s algorithm, originally proposed for
DES-like ciphers, to the class of ARX ciphers. To the best of our knowledge this is the first application of
Matsui’s algorithm to ciphers that do not have S-boxes. The tool is applied to the block ciphers TEA, XTEA,
SPECK and RAIDEN. For RAIDEN we find an iterative characteristic on all 32 rounds that can be used to
break the full cipher using standard differential cryptanalysis. This is the first cryptanalysis of the cipher in
a non-related key setting. Differential trails on 9, 10 and 13 rounds are found for SPECK32, SPECK48 and
SPECK64 respectively. The 13 round trail covers half of the total number of rounds. These are the first public
results on the security analysis of SPECK. For TEA multiple full (i.e. not truncated) differential trails are
reported for the first time, while for XTEA we confirm the previous best known trail reported by Hong et al. .
We also show closed formulas for computing the exact additive differential probabilities of the left and right
shift operations.
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1 Introduction

A broad class of symmetric-key cryptographic algorithms are designed by combining a small set of simple
operations such as modular addition, bit rotation, bit shift and XOR. Although such designs have been
proposed as early as the 1980s, only recently the term ARX (from Addition, Rotation, XOR) was adopted
in reference to them.

Some of the more notable examples of ARX algorithms, ordered chronologically by the year of proposal
are: the block cipher FEAL [37] (1987), the hash functions MD4 [34] (1990) and MD5 [35] (1992), the
block ciphers TEA [40] (1994), RC5 [36] (1994), XTEA [30] (1997), XXTEA [31] (1998) and HIGHT [15]
(2006), the stream cipher Salsa20 [4] (2008), the SHA-3 [28] finalists Skein [13] and BLAKE [2] (2011) and
the recently proposed hash function for short messages SipHash [1] (2012).

By combining linear (XOR, bit shift, bit rotation) and non-linear (modular addition) operations, and
iterating them over multiple rounds, ARX algorithms achieve strong resistance against standard crypt-
analysis techniques such as linear [24] and differential [5] cryptanalysis. Additionally, due to the simplicity
of the underlying operations, they are typically very fast in software.

Although ARX designs have many advantages and have been widely used for many years now, the
methods for their rigorous security analysis are lagging behind. This is especially true when compared to
algorithms such as AES [9] and DES [29]. The latter were designed using fundamentally different principles,
based on the combination of linear transformations and non-linear substitution tables or S-boxes.

1 The source code of the tool is publicly available as part of a larger toolkit for the analysis of ARX at the following address:
https://github.com/vesselinux/yaarx .
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Since a typical S-box operates on 8 or 4-bit words, it is easy to efficiently evaluate its differential (resp.
linear) properties by computing its difference distribution table (DDT) (resp. linear approximation table
(LAT)). In contrast, ARX algorithms use modular addition as a source of non-linearity, rather than S-
boxes. Constructing a DDT or a LAT for this operation for n-bit words would require 23n × 4 bytes of
memory and would clearly be infeasible for a typical word size of 32 bits.

In this paper we demonstrate that although the computation of a full DDT for ARX is infeasible, it
is still possible to efficiently compute a partial DDT containing (a fraction of) all differentials that have
probability above a fixed threshold. This is possible due to the fact that the probabilities of XOR (resp.
ADD) differentials through the modular addition (resp. XOR) operation are monotonously decreasing with
the bit size of the word.

Based on the concept of partial DDT-s we develop a method for automatic search for differential trails
in ARX ciphers. It is based on Matsui’s branch-and-bound algorithm [23], originally proposed for S-box
based ciphers. While other methods for automatic search for differential trails in ARX designs exist in
literature [12, 25, 20] they have been exclusively applied to the analysis of hash functions where the key
(the message) is known and can be freely chosen. With the proposed algorithm we address the more general
setting of searching for trails in block ciphers, where the key is fixed and unknown to the attacker.

Beside the idea of using partial DDT-s another fundamental concept at the heart of the proposed
algorithm is what we refer to as the highways and country roads analogy. If we liken the problem of finding
high probability differential trails in a cipher to the problem of finding fast routes between two cities on
a road map, then differentials that have high probability (w.r.t. a fixed threshold) can be thought of as
highways and conversely differentials with low probability can be viewed as slow roads or country roads.
To further extend the analogy, a differential trail for n rounds represents a route between points 1 and n
composed of some number of highways and country roads. A search for high probability trails is analogous
to searching for a route in which the number of highways is maximized while the number of country roads
is minimized.

The differentials from the pDDT are the highways on the road map from the above analogy. Beside those
highways, the proposed search algorithm explores also a certain number of country roads (low probability
differentials). While the list of highways is computed offline prior to the start of the search, the list of country
roads is computed on-demand for each input difference to an intermediate round that is encountered during
the search. Of all possible country roads that can be taken at a given point (note that there may be a
huge number of them), the algorithm considers only the ones that lead back on a highway. If such are not
found, then the shortest country road is taken (resp. the maximum probability transition). This strategy
prevents the number of explored routes from exploding and at the same time keeps the total probability
of the resulting trail high.

Due to the fact that it uses a partial, rather than the full DDT, our algorithm is not guaranteed to find
the best differential trail. However experiments 2 on small word sizes of 11, 14 and 16 bits show that the
probabilities of the found trails are within a factor of at most 2−3 from the probability of the best one.

We demonstrate the proposed tool on block ciphers TEA [40], XTEA [30], SPECK [3] and RAIDEN [32].
Beside being good representatives of the ARX class of algorithms, these ciphers are of interest also due to
the fact that results on full (i.e. not truncated) differential trails on them either do not exist (as is the case
for TEA, RAIDEN and SPECK) or are scarce (in the case of XTEA). For TEA specifically, in [16, Sect. 1]
the authors admit that it is difficult to find a good differential characteristic.

2 For 11 and 14 bits 50 experiments were performed, while for 16 bits 20 experiments were performed. In each experiment a
new fixed key was chosen uniformly at random. More details are provided in Appendix A.2.



By applying our tool, we are able to find multiple differential characteristics for TEA. They cover
between 15 and 18 rounds, depending on the value of the key and have probabilities ≈ 2−60. The 18 round
trail, in particular, has probability ≈ 2−63 for approx. 2116 (≈ 0.1%) of all keys. To put those results
in perspective, we note that the best differential attack on TEA covers 17 rounds and is based on an
impossible differential [8] while the best attack overall applies zero-correlation cryptanalysis and is on 23
rounds but requires the full codebook [6]. For XTEA, we confirm the best previously known full differential
trail based on XOR differences [16], but this time it was found in a fully automatic way.

For RAIDEN an iterative characteristic on 3 rounds with probability 2−4 is reported. When iterated
over all 32 rounds a characteristic with probability 2−42 on the full cipher is constructed that can be used
to fully break RAIDEN using standard differential cryptanalysis. This is the first analysis of the cipher in
a non-related key setting.

We also present results on versions of the recently proposed block cipher SPECK [3] with word sizes 16,
24 and 32 bits resp. SPECK32, SPECK48 and SPECK64. For SPECK64 the best trail found by the tool
covers half of the total number of rounds (13 out of 26) and has probability 2−58. The best found trails for
16 and 24 bits cover resp. 9 and 10 rounds out of 22/23 with probabilities resp. 2−31 and 2−45.

Table 1. Maximum number of rounds covered by single (truncated) differential trails used in existing differential attacks on
TEA, XTEA, SPECK and RAIDEN compared to the best found trails reported in this paper.

Cipher Type of #Rounds #Rounds Ref.
Trail Covered Total

TEA Trunc. 5 64 [26]
Trunc. 7 [8]
Trunc. 8 [16, 6]
Full 18 Sect. 8

XTEA Trunc. 6 64 [26]
Trunc. 7 [8]
Trunc. 8 [16, 6]
Full 14 [16]
Full 14 Sect. 8

SPECK32 Full 9 22 Sect. 8
SPECK48 Full 10 22/23 Sect. 8
SPECK64 Full 13 26/27 Sect. 8

RAIDEN Full 32 32 Sect. 8

In Table 1 we provide a comparison between the number of rounds covered by single (truncated)
differential trails used in existing attacks (where applicable) on TEA, XTEA, SPECK and RAIDEN to the
number of rounds covered by the trails found with the tool.

An additional contribution is that the paper is the first to report closed formulas for computing the
exact additive differential probabilities of the left and right shift operations. These formulas are derived in a
similar way as the ones for computing the DP of left and right rotation reported by Daum [11, Sect. 4.1.3].
Note that Fouque et al. [14] have previously analyzed the propagation of additive differences through the
shift operations, but not the corresponding differential probabilities.

The outline is as follows. In Sect. 4 we define partial difference distribution tables (pDDT) and present
an efficient method for their computation. Our extension of Matsui’s algorithm using pDDT, referred to
as threshold search, is presented in Sect. 5. It is followed by the description of a general methodology for



automatic search for differential trails in ARX ciphers with Feistel structure in Sect. 6. A brief description
of block ciphers TEA, XTEA, SPECK and RAIDEN is given in Sect. 7. In Sect. 8 we apply our methods
to search for differential trails in the studied ciphers and we show the most relevant experimental results.
Finally, in Sect. 9 are discussed general problems and limitations arising when studying differential trails in
ARX ciphers. Sect. 10 concludes the paper. Proofs of all theorems and propositions and more experimental
results are provided in Appendix.

A few words on notation: with x[i] is denoted the i-th bit of x; x[i : j] represents the sequence of bits
x[j], x[j + 1], . . . , x[i] : j ≤ i where x[0] is the least-significant bit (LSB); xn denotes the n-bit word x
(equivalent to x[n− 1 : 0], but more concise); #A denotes the number of elements in the set A and x|y is
the concatenation of the bit strings x and y.

2 The Differential Probabilities of ADD and XOR

In this section we recall the definitions of the differential probabilities of the operations XOR and modular
addition. Before we begin – a brief remark on notation: in the same way as XOR is used to denote both the
XOR operation and an XOR difference, we use ADD to denote both the modular addition operation and an
additive difference.

Definition 1. Let α, β and γ be fixed n-bit XOR differences. The XOR differential probability (DP) of addition
modulo 2n (xdp+) is the probability with which α and β propagate to γ through the ADD operation, computed
over all pairs of n-bit inputs (x, y):

xdp+(α, β → γ) = 2−2n ·#{(x, y) : ((x⊕ α) + (y ⊕ β))⊕ (x+ y) = γ} . (1)

The dual of xdp+ is the probability adp⊕ and is defined analogously:

Definition 2. Let α, β and γ be fixed n-bit ADD differences. The additive DP of XOR (adp⊕) is the probability
with which α and β propagate to γ through the XOR operation, computed over all pairs of n-bit inputs (x, y):

adp⊕(α, β → γ) = 2−2n ·#{(x, y) : ((x+ α)⊕ (y + β))− (x+ y) = γ} . (2)

The probabilities xdp+ and adp⊕ have been studied in [21] and [22] respectively, where methods for
their efficient computation have been proposed. In [21] is also described an efficient algorithm for the
computation of xdp+ maximized over all output differences: maxγ xdp

+(α, β → γ). In [27] the methods for
the computation of xdp+ and adp⊕ are further generalized using the concept of S-functions. Finally, in [39,
Appendix C, Algorithm 1] a general algorithm for computing the maximum probability output difference
for certain types of differences and operations is described. It is applicable to both maxγ xdp

+(α, β → γ)
and maxγ adp

⊕(α, β → γ).

3 The Additive DP of Left and Right Shift

Definition 3. For fixed input and output ADD differences resp. α and β, the additive differential probability
of the operation right bit shift (RSH) by r positions is defined over all n-bit (n ≥ r) inputs x as:

adp≫r(α→ β) = 2−n ·#{x : ((x+ α)≫ r)− (x≫ r) = β} . (3)

Analogously, the additive differential probability of the operation left bit shift (LSH) by r positions is
defined as in (3) after replacing ≫ r with ≪ r.



Theorem 1. The LSH operation is linear with respect to ADD differences i.e. ((x + α) ≪ r) − (x ≪ r) =
(α≪ r), where x, α and r are as in Definition 3. It follows that

adp≪r(α→ β) =

{
1 , if (β = α≪ r) ,

0 , otherwise .
. (4)

Proof. Appendix E.2.

In contrast to LSH, the RSH operation is not linear w.r.t. ADD differences. The following theorem provides
expressions for the computation of adp≫r.

Theorem 2. Let α be a fixed n-bit input ADD difference to an RSH operation with shift constant r ≤ n.
Then there are exactly four possibilities for the output difference β. The four differences together with their
corresponding probabilities computed over all n-bit inputs are:

adp≫r(α→ β) =





2−n(2n−r − αL)(2
r − αR) , β = (α≫ r) ,

2−nαL(2
r − αR) , β = (α≫ r)− 2n−r ,

2−nαR(2
n−r − αL − 1) , β = (α≫ r) + 1 ,

2−n(αL + 1)αR , β = (α≫ r)− 2n−r + 1 .

, (5)

where αL and αR denote respectively the (n− r) most-significant (MS) bits and the r least-significant (LS)
bits of α so that: α = αL2

r+αR and additions and subtractions are performed modulo 2n. If α : β = βi = βj
for some 0 ≤ i 6= j < 4 then adp≫r(α→ β) = adp≫r(α→ βi) + adp≫r(α→ βj).

Proof. Appendix E.3.

4 Partial Difference Distribution Tables

In this section as well as in the rest of the paper with xdp+ and adp⊕ are denoted respectively the XOR

differential probability (DP) of addition modulo 2n and the additive DP of XOR. Similarly, the additive
differential probability of the operations right bit shift (RSH) and left bit shift (LSH) are denoted resp. with
adp≫r and adp≪r. Due to space constrains the formal definition and details on the efficient computation
of those probabilities are given in Appendix 2 and Appendix 3.

Definition 4. A partial difference distribution table (pDDT) D for the ADD (resp. XOR) operation
is a DDT that contains all XOR (resp. ADD) differentials (α, β → γ) whose probabilities are larger than or
equal to a pre-defined threshold pthres:

(α, β, γ) ∈ D ⇐⇒ DP(α, β → γ) ≥ pthres . (6)

If a DDT contains only a fraction of all differentials that have probability above a pre-defined threshold, it
is an incomplete pDDT.

The following proposition is crucial for the efficient computation of a pDDT:

Proposition 1. The DP of ADD and XOR (resp. xdp+ and adp⊕) are monotonously decreasing with the
word size n of the differences α, β, γ:

pn ≤ . . . ≤ pk ≤ pk−1 ≤ . . . ≤ p1 ≤ p0 , (7)

where pk = DP(αk, βk → γk), n ≥ k ≥ 1, p0 = 1, and xk denotes the k LSB-s of the difference x i.e.
xk = x[k − 1 : 0].



Proof. Appendix E.1.

For xdp+, the proposition follows from the following result by Lipmaa et al. [21]: xdp+(α, β → γ) =

2−
∑n−2

i=0 ¬eq(α[i],β[i],γ[i]), where eq(α[i], β[i], γ[i]) = 1 ⇐⇒ α[i] = β[i] = γ[i]. Proposition 1 is also true for
adp⊕.

Due to Proposition 1 a recursive procedure for computing a pDDT for a given probability threshold
pthres can be defined as follows. Starting at the least-significant (LS) bit position k = 0 recursively assign
values to bits α[k], β[k] and γ[k]. At every bit position k : n > k ≥ 0 check if the probability of the
partially constructed (k+1)-bit differential is still bigger than the threshold i.e. check if pk = DP(αk, βk →
γk) ≥ pthres holds. If yes, then proceed to the next bit position, otherwise backtrack and assign other
values to (α[k], β[k], γ[k]). This process is repeated recursively until k = n, at which point the differential
(αn, βn → γn) is added to the pDDT together with its probability pn. A pseudo-code of the described
procedure is listed in Algorithm 1. The initial values are: k = 0, p0 = 1 and α0 = β0 = γ0 = ∅.

Algorithm 1 Computation of a pDDT for ADD and XOR.
Input: n, pthres, k, pk, αk, βk, γk.
Output: pDDT D: (α, β, γ) ∈ D : DP(α, β → γ) ≥ pthres.
1: procedure compute pddt(n, pthres, k, pk, αk, βk, γk) do
2: if n = k then
3: Add (α, β, γ)← (αk, βk, γk) to D
4: return
5: for x, y, z ∈ {0, 1} do
6: αk+1 ← x|αk, βk+1 ← y|βk, γk+1 ← z|γk .
7: pk+1 = DP(αk+1, βk+1 → γk+1)
8: if pk+1 ≥ pthres then
9: compute pddt(n, pthres, k + 1, pk+1, αk+1, βk+1, γk+1)

The correctness of Algorithm 1 follows directly from Proposition 1. After successful termination the
computed pDDT contains all differentials with probability equal to or larger than the threshold. The
complexity of Algorithm 1 depends on the value of the threshold pthres. Some timings for both ADD and
XOR differences for different thresholds are provided in Table 2. As can be seen from the data in the table
it is infeasible to compute pDDT-s for XOR differences for values of the threshold pthres ≤ 0.01 = 2−6.64,
while for ADD differences this is still possible, but requires significant time (more than 17 hours).

Table 2. Timings on the computation of pDDT for ADD and XOR on 32-bit words using Algorithm 1. Target machine: IntelR©

CoreTM i7-2600, 3.40GHz CPU, 8GB RAM.

ADD XOR

pthres #elements in pDDT Time #elements in pDDT Time

0.1 252 940 36 sec. 3 951 388 1.23 min.

0.07 361 420 37 sec. 3 951 388 2.29 min.

0.05 3 038 668 5.35 min. 167 065 948 44.36 min.

0.01 2 715 532 204 17.46 hours ≥ 72 589 325 174 ≥ 29 days



5 Threshold Search

In his paper from 1994 [23] Matsui proposed a practical algorithm for searching for the best differential
trail (and linear approximation) for the DES block cipher. The algorithm performs a recursive search
for differential trails over a given number of rounds n ≥ 1. From knowledge of the best probabilities
B1, B2, . . . , Bn−1 for the first (n − 1) rounds and an initial estimate Bn for the probability for n rounds
it derives the best probability Bn for n rounds. For the estimate the following must hold: Bn ≤ Bn. As
already noted, Matsui’s algorithm is applicable to block ciphers that have S-boxes. In this section we extend
it to the case of ciphers without S-boxes such as ARX by applying the concept of pDDT. We describe the
extended algorithm next. Its description in pseudo-code is listed in Algorithm 2.

In addition to Matsui’s notation for the probability of the best n-round trail Bn and of its estimate
Bn we introduce B̂n to denote the probability of the best found trail for n rounds: Bn ≤ B̂n ≤ Bn. Given
a pDDT H of size m, an estimation for the best n-round probability Bn with its corresponding n-round
differential trail T and the probabilities B̂1, B̂2, . . . , B̂n−1 of the best found trails for the first n− 1 rounds,
Algorithm 2 outputs an n-round trail T̂ that has probability B̂n ≥ Bn.

Similarly to Matsui’s algorithm, Algorithm 2 operates by recursively extending a trail for i rounds to
(i + 1) rounds, beginning with i = 1 and terminating at i = n. The recursion at level i continues to level
(i+1) only if the probability of the constructed i-round trail multiplied by the probability of the best found
trail for (n− i) rounds is at least Bn i.e. if p1p2 . . . pi B̂n−i ≥ Bn. For i = n the last equation is equivalent
to: p1p2 . . . pn = B̂n ≥ Bn. If the latter holds, the initial estimate is updated with the new: Bn ← B̂n and
the corresponding trail is also updated accordingly: Tn ← T̂n.

During the search process Algorithm 2 explores multiple differential trails. It is important to stress that
the differentials that compose those trails are not restricted to the entries from the initial pDDT H. The
latter represent only the starting point of the first two rounds of the search, as in those rounds both the
input and the output differences of the round transformation can be freely chosen (due to the specifics of
the Feistel structure). From the third round onwards, excluding the last round, beside the entries in H the
algorithm explores also an additional set of low-probability differentials stored in a temporary pDDT C
and sharing the same input difference.

The table C is computed on demand for each input difference to an intermediate round (any round
other than the first two and the last) encountered during the search. All entries in C additionally satisfy
the following two conditions: (1) Their probabilities are such that they can still improve the probability
of the best found trail for the given number of rounds i.e. if (αr, βr, pr) is an entry in C for round r, then
pr ≥ Bn/(p1p2 · · · pr−1B̂n−r); (2) Their structure is such that they guarantee that the input difference for
the next round αr+1 = αr−1 + βr will have a matching entry in H. While the need for condition (1) is
self-evident, condition (2) is necessary in order to prevent the exploding of the size of C while at the same
time keeping the probability of the resulting trail high. The meaning of the tables H and C is further
clarified with the following analogy.

Example 1 (The Highways and Country Roads Analogy). The two tables H and C employed in the search
performed by Algorithm 2 can be thought of as lists of highways and country roads on a map. The
differentials contained in H have high probabilities w.r.t. to the fixed probability threshold and correspond
therefore to fast roads such as highways. Analogously, the differentials in C have low probabilities and can
be seen as slow roads or country roads. To continue this analogy, the problem of finding a high probability
differential trail for n rounds can be seen as a problem of finding a fast route between points 1 and n on the
map. Clearly such a route must be composed of as many highways as possible. Condition (2), mentioned
above, essentially guarantees that any country road that we may take in our search for a fast route will



bring us back on a highway. Note that it is possible that the fastest route contains two or more country
roads in sequence. While such a case will be missed by Algorithm 2, it may be accounted for by lowering
the initial probability threshold.

Algorithm 2 terminates when the initial estimate Bn can not be further improved. The complexity of Al-
gorithm 2 depends on the following factors: (1) the closeness of the best found probabilities B̂1, B̂2, . . . , B̂n−1

for the first (n− 1) rounds to the actual best probabilities, (2) the tightness of the initial estimate Bn and
(3) the number of elements m in H. The latter is determined by the probability threshold used to compute
H.

Algorithm 2 Matsui Search for Differential Trails Using pDDT (Threshold Search).

Input: n: number of rounds; r: current round; H: pDDT; B̂ = (B̂1, B̂2, . . . , B̂n−1): probs. of best found trails for the first
(n−1) rounds; Bn ≤ Bn: initial estimate; T = (T1, . . . ,Tn): trail for n rounds with prob. Bn; pthres: probability threshold.

Output: B̂n, T̂ = (T̂1, . . . , T̂n): trail for n rounds with prob. B̂n : Bn ≤ B̂n ≤ Bn.

1: procedure threshold search(n, r,H, B̂, Bn, T ) do
2: // Process rounds 1 and 2
3: if ((r = 1) ∨ (r = 2)) ∧ (r 6= n) then
4: for all (α, β, p) in H do

5: pr ← p, B̂n ← p1 · · · prB̂n−r

6: if B̂n ≥ Bn then
7: αr ← α, βr ← β, add T̂r ← (αr, βr, pr) to T̂

8: call threshold search(n, r + 1, H, B̂, Bn, T̂ )
9: // Process intermediate rounds
10: if (r > 2) ∧ (r 6= n) then

11: αr ← (αr−2 + βr−1); pr,min ← Bn/(p1p2 · · · pr−1B̂n−r)
12: C ← ∅ // Initialize the country roads table
13: for all βr : (pr(αr → βr) ≥ pr,min) ∧ ((αr−1 + βr) = γ ∈ H) do
14: add (αr, βr, pr) to C // Update country roads table
15: if C = ∅ then
16: (βr, pr)← pr = maxβ p(αr → β); add (αr, βr, pr) to C
17: for all (α, β, p) : α = αr in H and all (α, β, p) ∈ C do

18: pr ← p, B̂n ← p1p2 . . . prB̂n−r

19: if B̂n ≥ Bn then
20: βr ← β, add T̂r ← (αr, βr, pr) to T̂

21: call threshold search(n, r + 1, H, B̂, Bn, T̂ )
22: // Process last round
23: if (r = n) then
24: αr ← (αr−2 + βr−1)
25: if (αr in H) then
26: (βr, pr)← pr = maxβ∈H p(αr → β) // Select the max. from the highway table
27: else
28: (βr, pr)← pr = maxβ p(αr → β) // Compute the max.
29: if pr ≥ pthres then
30: add (αr, βr, pr) to H

31: pn ← pr, B̂n ← p1p2 . . . pn
32: if B̂n ≥ Bn then
33: αn ← αr, βn ← β, add T̂n ← (αn, βn, pn) to T̂

34: Bn ← B̂n, T ← T̂
35: B̂n ← Bn, T̂ ← T // Update the target bound and the best found trail

36: return B̂n, T̂



6 General Methodology for Automatic Search for Differential Trails in ARX

We describe a general methodology for the automatic search for differential trails in ARX algorithms. In
our analysis we restrict ourselves to Feistel ciphers, although the proposed method is applicable to other
ARX designs as well.

Let F be the round function (the F-function) of a Feistel cipher E, designed by combining a number of
ARX operations, such as XOR, ADD, bit shift and bit rotation. To search for differential trails for multiple
rounds of E perform the following steps:

1. Derive an expression for computing the differential probability (DP) of F for given input and output
difference. The computation may be an approximation obtained as the multiplication of the DP of the
components of F .

2. Compute a pDDT for F . It can be an incomplete pDDT obtained e.g. by merging the separate pDDT-s
of the different components of F .

3. Execute the threshold search algorithm described in Sect.5 with the (incomplete) pDDT computed in
Step. 2 as input.

In the following sections we apply the proposed methodology to automatically search for differential
trails in several ARX-based block ciphers.

7 Description of TEA, XTEA, SPECK and RAIDEN

The Tiny Encryption Algorithm (TEA) is a block cipher designed by Wheeler and Needham and presented
at FSE 1994 [40]. It has a Feistel structure composed of 64 rounds. Each round operates on 64-bit blocks
divided into two 32-bit words Li, Ri : 0 ≤ i ≤ 64, so that P = L0|R0 is the plaintext and C = L64|R64

is the ciphertext. TEA has 128-bit key K composed of four 32-bit words: K = K3|K2|K1|K0. The key
schedule is such that the same two key words are used at every second round i.e. K0,K1 are used in all odd
rounds and K2,K3 are used in all even rounds. Additionally, thirty-two 32-bit constants δr : 1 ≤ r < 32
(the δ constants) are defined. A different δ constant is used at every second round. The round function F
of TEA takes as input a 32-bit value x, two 32-bit key words k0, k1 and a round constant δ and produces
a 32-bit output F (x). For fixed δ, k0 and k1, F is defined as:

(δ, k0, k1) : F (x) = ((x≪ 4) + k0)⊕ (x+ δ)⊕ ((x≫ 5) + k1) . (8)

For fixed round keys Kj ,Kj+1 : j ∈ {0, 2} and round constant δr, round i of TEA (1 ≤ i < 64) is described
as: Li+1 = Ri, Ri+1 = Li + F (Ri).

XTEA is an extended version of TEA proposed in [30] by the same designers. It was designed in order
to address two weaknesses of TEA pointed by Kelsey et al. [18]: (1) a related-key attack on the full TEA
and (2) the fact that the effective key size of TEA is 126, rather than 128 bits. The structure of XTEA is
very similar to the one of TEA: 64-round Feistel network operating on 64-bit blocks using a 128-bit key.
The main difference is in the key schedule: at every round XTEA uses one rather than two 32-bit key
words from the original key according to a new non-periodic key schedule. Additionally, the number of δ
constants is increased from 32 to 64 and thus a different constant is used at every round. The F-function
of XTEA is also slightly modified and for a fixed round key k and round constant δ is defined as:

(δ, k) : F (x) = (δ + k)⊕ (x+ ((x≪ 4)⊕ (x≫ 5))) . (9)
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Fig. 1. The F-functions of TEA (left) and XTEA (right).

The F-functions of TEA and XTEA are depicted in Fig. 1.
In [32] Polimón et al. have proposed a variant of TEA called RAIDEN. It has been designed by applying

genetic programming algorithms to automatically evolve a highly non-linear round function. The latter is
composed of the same operations as TEA (arranged in different order) but is more efficient and has better
mixing properties as measured by its avalanche effect. As a result RAIDEN is claimed to be competitive
to TEA in terms of security. It has 32 rounds and its round function is:

Fk(x) = ((k + x)≪ 9)⊕ (k − x)⊕ ((k + x)≫ 14) . (10)

The key k in (10) is updated every second round according to a new key schedule and therefore every two
consecutive rounds use the same key. The main differences with TEA are that in (10) the round constant
δ is discarded, the shift constants are changed and the shift operations are moved after the key addition
(see Fig. 2, left). For more details on the RAIDEN cipher we refer the reader to [32]. The only previous
security result for RAIDEN is a related-key attack reported in [17].

Most recently, in June 2013, a new family of ARX-based lightweight block ciphers SPECK [3] was
proposed by researchers from the National Security Agency (NSA) of the USA. Its design bears strong
similarity to Threefish – the block cipher used in the hash function Skein [13]. The round function of
SPECK under a fixed round key k is defined on inputs x and y as

Fk(x, y) = (fk(x, y), fk(x, y)⊕ (y ≪ t2)) , (11)

where the function fk(·, ·) is defined as fk(x, y) = ((x ≫ t1) + y) ⊕ k. The rotation constants t1 and t2
are equal to 7 and 2 resp. for word size n = 16 bits and to 8 and 3 for all other word sizes: 24, 32, 48 and
64. Note that although SPECK is not a Feistel cipher itself, it can be represented as a composition of two
Feistel maps as described in [3]. At the time of this writing we are not aware of any published results on
the security analysis of SPECK. The round functions of RAIDEN and SPECK are shown in Fig. 2.

In Table 1 are listed the maximum number of rounds covered by differential trail/s used in published
differential attacks on TEA, XTEA, RAIDEN and SPECK. These results are compared with the best trails
found using our method.

8 Automatic Search for Differential Trails

We apply the steps from Sect. 6 to search for differential trails for multiple rounds of the block ciphers
described in Sect. 7. We analyze TEA, RAIDEN and SPECK w.r.t. ADD differences and XTEA w.r.t. XOR
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Fig. 2. The F-functions of RAIDEN (left) and SPECK (right).

differences. Additive differences are more appropriate for the differential analysis of the former (as opposed
to XOR differences) due to two reasons. First, the round keys and round constants are ADD-ed. Second, the
number of ADD vs. XOR operations in one round is larger and therefore more components are linear w.r.t.
ADD than to XOR. Similarly, XTEA is more suitably analyzed with XOR differences since the round keys are
XOR-ed.

In Table 3 (left) is shown the best found ADD differential trail for 18 rounds of TEA with probability
2−62.6 and on the right side is shown the best found XOR trail for 14 rounds of XTEA with probability
2−60.76 confirming a previous result by Hong et al. [16]. Note that while the rule that a country road must
be followed by a highway is strictly respected in the trail for TEA, this is not the case for XTEA. For
example transitions 6 and 7 in the trail for XTEA have prob. resp. 2−5.35 and 2−5.36 both of which are
below the threshold pthres = 2−4.32. In those cases no country road that leads back on a highway was found
and so the shortest country road was taken (resp. the maximum probability transition for the given input
difference was computed: lines 15–16 of Algorithm 2).

The top line of Table 3 shows the fixed values of the keys for which the two trails were found and
for which their probabilities were experimentally verified. The reason to perform the search for a fixed
key rather than averaged over all keys is the fact that for TEA the assumption of independent round
keys, commonly made in differential cryptanalysis, does not hold. This is a consequence of the simple key
schedule of the cipher according to which the same round keys are re-used every second round. Thus a trail
that has very good probability computed as an average over all keys, may in fact have zero probability for
many or even all keys. This problem is further discussed in Sect. 9.

The mentioned effect is not so strong for XTEA due to the slightly more complex key schedule of the
latter. In XTEA, the round keys are re-used according to a non-periodic schedule and, more importantly,
a round constant that is different for every round, is added to the key before it is applied to the state (see
Fig. 1). In this way the round keys are randomized in every round and thus the traditional differential
analysis with probabilities computed as an average over all keys is more appropriate for XTEA.

A major consequence of the key dependency effect discussed above is that while the 14 round trail for
XTEA from Table 3 can directly be used in a key-recovery attack, as has indeed been already done in [16],
it is not straightforward to do so for the 18 round trail for TEA. The reason is that this trail is valid only
for a fraction of all keys. We have estimated the size of this fraction to be approx. 0.098% ≈ 0.1%, which
is equal to 2116 weak keys (note that the effective key size of TEA is 126 bits [18]). The size of the weak
key class was computed by observing that only the 9 LS bits of K2 and the 3 LS bits of K3 influence the



Table 3. Differential trails for TEA and XTEA. The leftmost key word is K0, the next is K1, etc. #hways lists the number
of elements in the pDDT (the highways).

TEA XTEA

key 11CAD84E 96168E6B 704A8B1C 57BBE5D3 E15C838 DC8DBE76 B3BB0110 FFBB0440

r β α log2p β α log2p

1 F ← FFFFFFFF −3.62 0 ← 80402010 −4.61
2 0 ← 0 −0.00 80402010 ← 0 −3.01
3 F ← FFFFFFFF −2.87 80402010 ← 80402010 −5.48
4 0 ← F −7.90 0 ← 80402010 −3.30
5 FFFFFFF1 ← FFFFFFFF −3.60 80402010 ← 0 −3.01
6 0 ← 0 −0.00 80402010 ← 80402010 −5.35
7 FFFFFFF1 ← FFFFFFFF −2.78 0 ← 80402010 −5.36
8 2 ← FFFFFFF1 −8.66 80402010 ← 0 −2.99
9 F ← 1 −3.57 80402010 ← 80402010 −5.45
10 0 ← 0 −0.00 0 ← 80402010 −5.42
11 FFFFFFF1 ← 1 −2.87 80402010 ← 0 −2.99
12 FFFFFFFE ← FFFFFFF1 −7.90 80402010 ← 80402010 −5.38
13 F ← FFFFFFFF −3.59 0 ← 80402010 −5.40
14 0 ← 0 −0.00 80402010 ← 0 −2.99
15 11 ← FFFFFFFF −2.79
16 0 ← 11 −8.83
17 FFFFFFEF ← FFFFFFFF −3.61
18 0 ← 0 −0.00

∑
r
log2pr −62.6 −60.76

log2pthres −4.32 −4.32
#hways 68 474
Time: 21.36 min. 315 min.

probability of the trail. By fixing those 12 bits to the corresponding bits of the key values in Table 3 (resp.
0x11C and 0x3), we have experimentally verified that for any assignment of the remaning 116 bits of the
key the 18 round trail has probability ≈ 2−63. Note that other assignments of the relevant 12 bits may also
be possible and therefore the size of the weak key class may be actually bigger.

While the fixed-key trails for TEA found by the threshold search algorithm may have limited use for an
attacker due to the reasons discussed above, they already provide very useful information for a designer.
By running Algorithm 2 for many fixed keys we saw that the best found trails typically cover between 15
and 17 rounds and in more rare cases 18 rounds. If this information has been available to the designers of
TEA at the time of the design, they may have considered reducing the total number of rounds from 64 to
32 or less. Similarly, the threshold search algorithm can be used in order to estimate the security of new
ARX designs and to help to select the appropriate number of rounds accordingly.

Comparisons of the trails found with the tool to the actual best trails on TEA with reduced word size
of 11 and 16 bits are shown in Appendix A.2.

After applying the threshold search to RAIDEN the best characteristic that was found is iterative with
period 3 with probability 2−4 (shown in Table 4). By iterating it for 32 rounds we construct a charactersistic
with probability 2−42. The latter can be used in a standard differential attack on the full cipher under a
non related-key setting. Note that in contrast to TEA, the probabilities of the reported differentials for



RAIDEN are independent of the round key due to the fact that the shift operations are moved after the
key addition.

Table 4. Three round iterative characteristic for RAIDEN beginning at round i.

r β α log2p

i 0 ← 0 −0
i+ 1 7FFFFF00 ← 7FFFFF00 −2
i+ 2 80000100 ← 7FFFFF00 −2
. . . . . . ← 0 −0

∑
r
log2pr −4

We applied the threshold search algorithm using XOR differences to three instances of block cipher
SPECK with 16, 24 and 32 bit word sizes respectively. The best trail found for the 32-bit version covers
half of the rounds (13 out of 26) and has probability 2−58 while the best found trails for 16 and 24 bits
cover resp. 9 and 10 rounds out of 22/23 and have probabilities resp. 2−31 and 2−45. All trails are shown
in Table 5.

Table 5. Differential trails for Speck32, Speck48 and Speck64. #hways lists the number of elements in the pDDT (the
highways).

Speck32 Speck48 Speck64

r ∆L ∆R log2p ∆L ∆R log2p ∆L ∆R log2p

0 A60 4205 −0 88A 484008 −0 802490 10800004 −0
1 211 A04 −5 424000 4042 −5 80808020 4808000 −5
2 2800 10 −4 202 20012 −4 24000080 40080 −5
3 40 0 −2 10 100080 −3 80200080 80000480 −3
4 8000 8000 −0 80 800480 −2 802480 800084 −4
5 8100 8102 −1 480 2084 −2 808080A0 84808480 −5
6 8000 840A −2 802080 8124A0 −3 24000400 42004 −6
7 850A 9520 −4 A480 98184 −6 202000 12020 −4
8 802A D4A8 −6 888020 C48C00 −7 10000 80100 −3
9 A8 520B −7 240480 6486 −7 80000 480800 −2
10 800082 8324B2 −6 480000 2084000 −3
11 2080800 124A0800 −4
12 12480008 80184008 −7
13 880A0808 88C8084C −7

∑
r
log2pr −31 −45 −58

log2pthres −5.00 −5.00 −5.00
#hways 230 230 230

Time: ≈ 240 min. ≈ 400 min. ≈ 500 min.



9 Difficulties, Limitations and Common Problems

In this section we discuss the common problems and difficulties encountered when studying differential
trails in ARX ciphers. This discussion is also naturally related to the limitations of the methodology
proposed in Sect. 6. Although below we often use the TEA block cipher as an example, our observations
are general and are therefore applicable to a broader class of ARX algorithms.

9.1 Accuracy of the Approximation of the DP of F

The first step in the methodology presented in Sect. 6 is to derive an expression for computing the DP of
the F-function of the target cipher. Since it is often difficult to efficiently compute the exact probability,
this expression would usually be an approximation obtained as the multiplication of the DP of the separate
components of F. The probability computed in this way will often deviate from the actual value due to the
dependency between the inputs of the different components. Indeed, this phenomenon is well-known and
has been studied before e.g. in [38].

To illustrate the above effect, consider the three inputs to the XOR operation in the TEA F-function.
These are (k0 + (x ≪ 4)), (δ + x), and (k1 + (x ≫ 5)) (see Fig. 1) and since they are obtained from the
same initial input x, they are clearly not independent. Yet, when we compute the DP of the XOR with three
inputs (adp3⊕) we implicitly assume independence of the inputs. Consequently the resulting approximation
will not be an accurate estimation of the DP of F (eadpF ) for all input and output differences α, β. More
deatils on this as well as on the computation of adp3⊕ and eadpF are provided in Appendix B.

The mentioned problem can be addressed with experimental re-adjustment of the probability by eval-
uating the F-function over a number of random chosen input pairs satisfying the input difference.

9.2 Dependency of the DP of F on the Round Keys

Another difficulty arises from the fact that in some cases the DP of the F-function is dependent on the value
of the round key(s). Ciphers for which this is the case are not key-alternating ciphers (cf. [10, Definition 2])
and are typically harder to analyze.

As noted in [9, § 5.7] an important advantage of key-alternating ciphers is that the study of their
differential and linear trails can be conducted independently of the value of the round key. In contrast, for
a non-key-alternating cipher a trail that has high probability for one key may have a significantly lower
(even zero) probability for another. Such ciphers violate the hypothesis of stochastic equivalence, according
to which: for virtually all values of the cipher key, the probability of a differential trail can be approximated
by the expected value of the probability of the differential trail, averaged over all possible values of the cipher
key [9, § 8.7.2].

The block cipher TEA is an example of a non-key-alternating cipher. The DP of its F-function is key-
dependent w.r.t. both XOR and ADD differences. This behavior is particularly counter-intuitive in the case
of ADD differences, in view of the fact that the round keys are ADD-ed (rather than XOR-ed) to the state and
hence one wouldn’t expect them to influence the additive DP of F. In practice it does and the explanation
is provided below.

In a differential cryptanalysis setting, the LSH (resp. RSH) operation in TEA reduces the number of
possible input pairs to the modular addition with key k0 (resp. key k1) from 2n to 2n−4 (resp. 2n−5). When
computing the DP of the subsequent XOR with three inputs (adp3⊕), the number of right pairs for two of
the inputs is counted over the reduced sets while the inputs still have size n bits due to the addition with
the n-bit key word. We elaborate further on this below.



Consider the trivial case in which the left (resp. right) bit shift operation is omitted. Then the addition
of key k0 (resp. k1) to the set of n-bit inputs results in an output set of n-bit elements that is a permuted
version of the input set. The additive DP of the XOR operation in this case will be computed over the same
set of 2n pairs irrespective of the actual value of the key.

When a bit shift by 4 (resp. 5) positions is applied on the input to the key addition, the latter acts
not as a permutation but rather as a re-mapping of one set of L (n− 4)-bit (resp. (n− 5)-bit) elements to
another set of L n-bit elements, where L ≤ 2n−4 (resp. L ≤ 2n−5). The nature of this re-mapping depends
on the actual value of the key. Consequently, the probability of the XOR operation with 3 inputs will be
computed over different reduced sets of 2n−4 (resp. 2n−5) elements depending on the value of the key k0
(resp. k1). This effect is further illustrated with an example in Appendix D.2

Note that the discussed key dependency effect is not present in block cipher RAIDEN where the key
addition is positioned before the shift operations. As a result the DP of the XOR operation is not key
dependent in this case.

A solution to the problem of key-dependency of the DP of the F-function is to search for differential
trails with probabilities computed for (multiple) fixed keys rather than for trails with probabilities averaged
over all keys. As discussed in Sect. 8, this is the approach that we took in the analysis of TEA.

9.3 Dependency Between the Round Keys

In differential cryptanalysis of keyed primitives it is common practice to assume that the round keys are
independent [19]. This is known as making the hypothesis of independent round keys [10].

Citing from [9, § 8.7.2]: the hypothesis states that the expected probability of a differential trail, averaged
over all possible values of the cipher key, can be approximated by the expected probability of the differential
trail, averaged over all independently specified round key values.

In ciphers with weak key schedule such as TEA the hypothesis of independent round keys does not
hold. As a consequence, obtaining an accurate estimation of the expected probabilities of differential trails
in such ciphers is difficult.

A possible solution to the dependent round keys problem is to analyze the cipher with respect to a set
of randomly chosen fixed keys and consider the minimum probability, among all keys within the set (rather
than the expected probabilities averaged over all keys). The reason to select the minimum probability is
to guarantee that the resulting differential trail is possible (i.e. has non-zero probability) for every key in
the set. More details on this are provided in Appendix B.3.

9.4 Influence of the Round Constants

Fixed constants are commonly used in the design of symmetric-key primitives in order to destroy similarities
between the rounds. Since they are typically added to the state by applying the same operation as for the
round keys, it is generally assumed that constants influence neither the probabilities nor the structure of
differential trails and hence can be safely ignored. Surprisingly, this assumption does not hold for TEA and
possibly for other ARX constructions as well.

The fixed round constants of TEA (the δ constants) influence both the probabilities and the structure
of differential trails. They influence the probabilities as an indirect consequence of the key-dependency
effect discussed in Sect. 9.3. On the one hand, as noted, the DP of F depends on the value of the two round
keys added resp. to two of the three inputs of the XOR (cf. Fig. 1 (left)). On the other, the third input, to
which a δ constant is added, is dependent on the other two inputs (since all three are produced from the
same initial input x) and hence indirectly also influences the DP of F.



As to the influence of round constants on the structure of differential trails, after modifying TEA to
use the same δ constant at every round, for many keys the best found trail after several rounds eventually
becomes iterative with period 2 and of the form (α → 0), (0 → 0), (α → 0), . . . . The difference that
maximizes the probability of the differential (α → 0) is α = 0xF and has probability 2−8 for exactly
6 · 259 ≈ 261.6 keys (approx. 10% of all keys). We use the two-round iterative trail (0xF → 0), (0 → 0)
to construct a trail over 15 rounds with probability 2−56. We also find a 4-round iterative pattern with
probability < 2−15 which holds for a smaller number of keys. It is used to construct a trail with probability
2−61.36 on 18 rounds of the modified TEA. For more detailed discussion of these results ref. Appendix D.3.

10 Conclusions

In this paper we proposed the first extension of Matsui’s algorithm for automatic search for differential
trails, originally proposed for S-box based ciphers, to the class of ARX ciphers. We used the block ciphers
TEA, XTEA, RAIDEN and SPECK as a testbed for demonstrating the practical application of this method.

Using the proposed algorithm, the first full (i.e. not truncated) differential trails for block cipher TEA
were found. The best one covers 18 rounds which is one round more than the best differential attack
on TEA (17 rounds) and significantly improves the best previously known truncated trail which is on 8
rounds. Trails on 9, 10 and 13 rounds of SPECK32, SPECK48 and SPECK64 resp. were also reported.
They represent the first public security analysis of the cipher. For RAIDEN, a trail on all 32 rounds was
shown that can be used to break the full cipher. The best trail for XTEA found by the tool confirms the
previous known best trail, but this time it was found in a fully automatic way.

11 Open Problems

Some open problems for future work are listed next.

1. Design a constant time algorithm for the computation of the fixed-key differential probability adpF(k0,k1,δ)
of the TEA F-function . The algorithm proposed in this paper (described in detail in Appendix D) is
worse-time exponential in the word size and its complexity is inversely proportional to the probability of
the given differential. If a more efficient algorithm exists, it can be used in the place of the re-adjustment
procedure discussed in Sect. 9.1 and will therefore significantly improve the efficiency of the current
search algorithm for TEA.

2. Address the problem that it is infeasible to compute a full pDDT beyond a certain probability thresh-
olds: 0.01 for ADD differences and 0.05 for XOR differences (cf. Table 2). A possible solution would be
to start the search with an incomplete pDDT and update it dynamically with the missing highways
during the process of the search.

3. Compute a bound on how far the probabilities of the best found trails can be from the actual best trail
in terms of the fixed probability threshold.
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A More Experimental results

A.1 More Differential Trails for TEA

More differential trails for TEA for six different keys chosen at random are shown in Table 6.

A.2 Threshold Search on TEA with Reduced Word Size

In Fig. 3, Fig. 4 and Fig. 5 are compared the probabilities of the best trails found by the threshold search
algorithm using pDDT to the actual best trails found by applying Matsui’s search using full DDT on
TEA with word size reduced to 11, 14 and 16 bits respectively. For 11 and 14 bits 50 experiments are
performed and in each experiment a new fixed key is chosen uniformly at random. For 16 bits, the number
of experiments is 20. In the experiments on 14 and 16 bits the same δ constant (equal to the initial value)
was used in every round. The reason is that if different constants are used, then a separate DDT has to be
computed for every round, which for 10 rounds and 14-bit words is infeasible. Also note that for 16 bits it
takes longer to compute the full DDT-s due to their larger size (compared to the 14 bit case). The memory
consumption is also much bigger – 320 GB of RAM are required to store all DDT-s. Due to the mentioned
limitations, less number of experiments on 16 bits were performed.

B Automatic Search for Differential Trails in TEA

In this section are provided more details on the application of the general methodology outlined in Sect. 6
to the automatic search for high probability differential trails in TEA.



Table 6. TEA: ADD trails for six different keys (shown between bold lines) chosen at random; pthres = 0.05 = −4.32.

BC3FDB33 D7AA08E 4736577E C29B8AF9 E028DF9A 8819B4C3 3AB116AF 3C50723 37527D25 EBB25BDA CD7CADB9 1768A28B

r β ← α log2p r β ← α log2p r β ← α log2p

1 FFFFFFF1 1 −2.94 1 0 0 −0.00 1 FFFFFFF1 FFFFFFFF −3.62
2 0 0 −0.00 2 FFFFFFEF FFFFFFFF −3.67 2 0 0 −0.00
3 1 1 −7.99 3 0 FFFFFFEF −12.19 3 FFFFFFF1 FFFFFFFF −2.82
4 FFFFFFFF 1 −8.06 4 11 FFFFFFFF −2.81 4 1 FFFFFFF1 −7.31
5 0 0 −0.00 5 0 0 −0.00 5 0 0 −0.00
6 F 1 −2.88 6 F FFFFFFFF −3.66 6 1 FFFFFFF1 −9.19
7 0 F −9.07 7 2 F −8.98 7 F 1 −2.90
8 FFFFFFF1 1 −3.64 8 FFFFFFF1 1 −2.89 8 0 0 −0.00
9 0 0 −0.00 9 0 0 −0.00 9 FFFFFFF1 1 −3.65
10 F 1 −2.95 10 F 1 −3.60 10 0 FFFFFFF1 −7.94
11 0 F −7.88 11 FFFFFFFF F −7.93 11 F 1 −2.83
12 FFFFFFF1 1 −3.64 12 0 0 −0.00 12 0 0 −0.00
13 0 0 −0.00 13 FFFFFFFF F −7.31 13 FFFFFFF1 1 −3.63
14 F 1 −2.88 14 FFFFFFF1 FFFFFFFF −3.66 14 FFFFFFFF FFFFFFF1 −7.85
15 FFFFFFFF F −8.03 15 0 0 −0.00 15 0 0 −0.00
16 0 0 −0.00 16 FFFFFFF1 FFFFFFFF −2.87 16 FFFFFF01 FFFFFFF1 −5.46

∑
r
log2pr −59.96 −59.6 −57.21

Time: 8.42 min. 8 min. 6.54 min.

85DB3457 81B3787F C0D7FC4C 98F4BFEB 804790E1 5EDFC983 64001F29 2231A3F8 BF8ABF08 1F6E2F9F 63569045 FEB41F34

r β ← α log2p r β ← α log2p r β ← α log2p

1 FFFFFFF1 1 −2.85 1 FFFFFFF1 FFFFFFFF −3.64 1 0 0 −0.00
2 0 0 −0.00 2 0 0 −0.00 2 FFFFFFF1 FFFFFFFF −3.60
3 FFFFFFF1 1 −3.65 3 FFFFFFF1 FFFFFFFF −2.81 3 FFFFFFFF FFFFFFF1 −7.91
4 FFFFFFFF FFFFFFF1 −7.42 4 0 FFFFFFF1 −13.00 4 1E FFFFFFFE −3.72
5 0 0 −0.00 5 F FFFFFFFF −3.60 5 1 F −8.13
6 FFFFFFFF FFFFFFF1 −7.84 6 0 0 −0.00 6 FFFFFFF1 FFFFFFFF −3.63
7 F FFFFFFFF −3.57 7 FFFFFFF1 FFFFFFFF −2.86 7 0 0 −0.00
8 0 0 −0.00 8 2 FFFFFFF1 −9.48 8 FFFFFFF1 FFFFFFFF −2.87
9 F FFFFFFFF −2.91 9 F 1 −3.65 9 1 FFFFFFF1 −8.05
10 2 F −7.72 10 0 0 −0.00 10 0 0 −0.00
11 FFFFFFF1 1 −3.68 11 F 1 −2.87 11 1 FFFFFFF1 −7.71
12 0 0 −0.00 12 FFFFFFFE F −7.89 12 F 1 −2.89
13 F 1 −2.96 13 FFFFFFF1 FFFFFFFF −3.63 13 0 0 −0.00
14 FFFFFFFE F −12.42 14 0 0 −0.00 14 FFFFFFEF 1 −3.60
15 FFFFFFF1 FFFFFFFF −3.56 15 FFFFFFF1 FFFFFFFF −2.92 15 FFFFFFFE FFFFFFEF −9.61
16 0 0 −0.00 16 FFFFFF01 FFFFFFF1 −5.80
17 FFFFFFF1 FFFFFFFF −2.86

∑
r
log2pr −61.44 −62.15 −61.71

Time: 17.9 min. 6.44 min. 5.33 min.
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B.1 An Approximation for the DP of F

Computing the exact additive DP of F for fixed round keys and round constant (step 1 in the general
methodology from Sect. 6) is very inefficient (ref. Appendix D.1 for details). Therefore, as an approximation,
we use the expected DP averaged over all round keys and δ constants. It is defined as:

eadpF (α→ β) , 2−4n ·#{(k0, k1, δ, x) : F (x+ α)− F (x) = γ} . (12)

The probability eadpF (12) can be efficiently computed as follows. Note that the only components of
F that are non-linear w.r.t. ADD differences are the operations RSH and XOR (see Fig. 1 (left)). Therefore,
for fixed input and output differences α and β resp., the expected DP of F can be expressed as the
multiplication of the DP of RSH and XOR:

eadpF (α→ β) =
3∑

i=0

(
adp≫5(α→ γi) · adp

3⊕((α≪ 4), α, γi → β)
)
, (13)

where γ0, γ1, γ2 and γ3 are the four output differences after the RSH operation (cf. Theorem 2 (5)) and
adp3⊕ denotes the additive DP of XOR with three inputs, defined analogously to (2). Equation (13) can be
efficiently computed using (5) to compute adp≫5 and the methods described in [27] to compute adp3⊕.

B.2 Computing a pDDT for F

In this section we describe the process of constructing a pDDT based on the expected differential probability
of the F-function of TEA (cf. (12)). This is step 2 in the general methodology from Sect. 6. We begin by
observing that to construct a pDDT for F, it is sufficient to construct a pDDT for the operation XOR with
three inputs.



Theorem 3. Let α and β be respectively input and output ADD differences to F and let γ0, γ1, γ2 and γ3 be
the four output differences after the RSH operation (cf. (13)). Let pthres ≥ 0 be a fixed probability threshold.
Then

∀i : 0 ≤ i < 4 : adp3⊕((α≪ 4), α, γi → β) ≥ pthres =⇒ eadpF (α→ β) ≥ pthres , (14)

and

eadpF (α→ β) ≥ pthres =⇒ ∃i : 0 ≤ i < 4 : adp3⊕((α≪ 4), α, γi → β) ≥ pthres . (15)

Proof. Appendix E.4.

Theorem 3 implies that for a fixed threshold pthres, every entry in the pDDT of XOR with three inputs
can be transformed into an entry in the pDDT of F (by multiplying its probability by the probabilities of
RSH (13)). Therefore Algorithm 1 can be used to construct a pDDT for F. Note that applying the algorithm
directly is very inefficient because for XOR with three inputs the recursion proceeds over four, rather than
three, n-bit words. Thus for n = 32 and pthres ≤ 0.01 the computation becomes quickly infeasible (cf.
Table 2). However, the fact that the three inputs to the XOR operation in F are strongly dependent can
be used to improve the efficiency. The improvement is at the expense of a small fraction of differentials
that are missing from the pDDT, which results in an incomplete pDDT. More details on this process are
provided in Appendix D.4.

B.3 Search for Differential Trails

After constructing a pDDT for F as described in Sect. B.2, it is straightforward to apply Algorithm 2 to
search for differential trails in TEA. Before doing so, however, one final detail has to be addressed. Note that
since in TEA the same key is used every second round, in our analysis we can not assume that the round keys
are independent. Therefore the expected probability of a differential trail can not be accurately estimated
by multiplying the expected differential probabilities over all keys at every round computed using (13).
Indeed, if we do so, we risk ending up with a differential trail that has high probability according to our
estimation, but which is in fact impossible for most or all keys. Unfortunately this is exactly what will
happen if Algorithm 2 (cf. Sect. 5) is directly applied with the pDDT of F.

To address the problem mentioned above, we modify Algorithm 2 to perform the search for a (set of)
fixed key/s, by adding one additional input – the value of the key/s. Whenever a differential is pulled from
the pDDT H, it’s probability is experimentally verified against the specific value of the (set of) round
key/s by performing one-round encryptions over 2ǫ chosen plaintexts satisfying the specific difference,
where ǫ = c+log2(1/pthres) for some constant c ≥ 2. For example, for pthres = 0.01 > 2−7, a suitable choice
would be c = 3 so that ǫ = 3 + 7 = 10 and 2ǫ = 210 chosen plaintexts. For a set of more than one key, the
minimum of the probabilities among all keys is computed. The reason to take the minimum rather than
e.g. the average probability is to guarantee that the resulting trail is possible (i.e. has non-zero probability)
for every key in the set.

C Automatic Search for Differential Trails in XTEA

In this section we apply the methodology described in Sect. 6 to search for XOR and ADD differential trails
in XTEA.



C.1 XOR Differences

Let x−1 be the input to F from the previous round. Then define F ′ as:

(δ, k) : F ′(x−1, x) = x−1 + F (x) . (16)

An Approximation for the DP of F ′. The DP of F ′ is approximated as:

xdpF
′

(α→ β) ≈ xdp+((α≪ 4)⊕ (α≫ 5), α→ τ) · xdp+(τ, α−1 → β) . (17)

Computing a pDDT for F ′.

1. Initialize an empty pDDT for F ′: H ′ ← ∅.
2. For a fixed threshold pthres construct an incomplete pDDT H for the first ADD operation in F ′. This is

done by applying Algorithm 1 for XOR differences. Note that in H are stored only those differentials for
which the input differences ∆x and ∆y are such that: if ∆x = α then ∆y = (α≪ 4)⊕ (α≫ 5).

3. Denote p′ = xdp+((α ≪ 4) ⊕ (α ≫ 5), α → τ). For each entry (α, ((α ≪ 4) ⊕ (α ≫ 5)), τ, p′) in H
compute pF ′ = p′ ·maxβ xdp+(τ, α−1 → β) (cf. (17)).

4. If pF ′ ≥ pthres add (α, β, pF ′) to H ′.

5. Return H ′.

Search for Differential Trails. Apply Algorithm 2 with the incomplete pDDT H ′ to search for XOR

differential trails in XTEA.

C.2 ADD Differences

An Approximation for the DP of F . Define f(x) = (x≪ 4)⊕ (x≫ 5). An approximation of the DP
of f is:

adpf (α→ τ) ≈
3∑

i=0

(
adp≫5(α→ γi) · adp

⊕(γi, (α≪ 4)→ τ)
)
, (18)

and we get the following approximation of the DP of F :

adpF (α→ β) ≈ adpf (α→ τ) · adp⊕((τ + α), 0→ β) . (19)

Computing a pDDT for F .

1. Initialize an empty pDDT for F : H ← ∅.
2. For a fixed threshold pthres construct an incomplete pDDT Hf for f . This process is conceptually the

same as the one described in Sect. B.2 for the F-function of TEA.

3. Denote pf = adpf (α→ τ). For each entry (α, τ, pf ) in Hf compute pF = pf ·maxβ adp⊕((τ+α), 0→ β)
(cf. (19)).

4. If pF ≥ pthres add (α, β, pF ) to H.

5. Return H.



Search for Differential Trails. Apply Algorithm 2 with the incomplete pDDT H to search for ADD

differential trails in XTEA.

D More Details on the Differential Properties of the TEA F-function

D.1 Computation of the Fixed-key DP of F

In this section, an algorithm for the computation of the fixed-key DP of the TEA F-function is presented.
For fixed keys k0, k1, round constant δ and input and output ADD differences resp. α and β, the additive
DP of the TEA F-function is defined over all n-bit inputs x as follows:

adpF(k0,k1,δ)(k0, k1, δ : α→ β) , 2−n ·#{x : F (x+ α)− F (x) = γ} , (20)

where F is defined as in (8). Note that expression (20) is related to the expected DP of F (12) as:

eadpF = 2−3n
∑

k0,k1,δ

adpF(k0,k1,δ) . (21)

From (20) it follows that computing the fixed-key probability adpF(k0,k1,δ) is equivalent to counting the

number of values x for which y′ − y = β, where y = F (x) and y′ = F (x + α). We have designed an
algorithm that performs this count in a bitwise manner. At every bit position i, a value for bit x[i] is
assigned and next it is checked whether y′[i : 0] − y[i : 0] = β[i : 0] holds modulo 2i+1. If it does then the
algorithm recursively proceeds to bit position (i + 1), otherwise it backtracks and assigns another value
to x[i]. When all bits of x have been successfully assigned, a counter c is incremented. This process is
described in more detail next.

For 0 ≤ i < n, the (i+ 1)-bit words y[i : 0] and y′[i : 0] are computed as follows:

y[i : 0] =((x[i− 4 : 0]) + k0[i : 0])⊕ (22)

(x[i : 0] + δ[i : 0])⊕ (23)

(x[i+ 5 : 5] + k1[i : 0]) , (24)

y′[i : 0] =(((x+ α)[i− 4 : 0]) + k0[i : 0])⊕ (25)

((x+ α)[i : 0] + δ[i : 0])⊕ (26)

((x+ α)[i+ 5 : 5] + k1[i : 0]) , (27)

where x[i − 4] = 0 : i < 4 and x[i + 5] = 0 : i > ((n − 1) − 5)). Notice that for i = 3, the bits of x
that participate in (22)–(27), namely x[3 : 0] and x[8 : 5], are non-overlapping and hence can be assigned
independently. At bit position i = 4, the first dependency occurs: bit x[0] which has already been assigned
and used in the computation of (23) and (26) for i < 4, at position i = 4 is again used in the computation
of (22) and (25). To take this dependency into account the algorithm initially assigns the first 10 bits of x
i.e. x[9 : 0]. Then it checks if (y′[4 : 0]− y[4 : 0] = β[4 : 0]) mod 25. Indeed this check is possible for i = 4 ,
because bit x[0] needed to compute (22) and (25) is known; bits x[4 : 0] needed to compute (23) and (26)
are known; and bits x[9 : 5] needed to compute (24) and (27) are also known. If the check succeeds, the
algorithm proceeds by recursively assigning the remaining bits of x bit by bit.

The recursion starts at level i = 10 where bit x[10] is assigned and it is checked if (y′[5 : 0]− y[5 : 0] =
β[5 : 0]) mod 26 is consistent. If yes, bit x[11] is assigned and it is checked if (y′[6 : 0]− y[6 : 0] = β[6 : 0])
mod 27, etc. In general, when x[i] is assigned, equation (y′[i−5 : 0]−y[i−5 : 0] = β[i−5 : 0]) mod 2(i−5)+1



is evaluated. This process is repeated until the recursion reaches level i = n− 1. At this level, bits x[n− 1]
and x[n − 1] are assigned and equation (y′[n − 6 : 0] − y[n − 6 : 0] = β[(n − 6 : 0]) mod 2n−5 is checked
for consistency. Note that at this point all bits of x have been assigned (x is an n-bit word), but only the
(n − 5) LS bits have been checked for consistency. Therefore from level i = n − 1 up to i = (n − 1) + 5
the recursion proceeds without assigning new values at the i-th bit positions of x and only checking the
consistency of equation (y′[i − 5 : 0] − y[i − 5 : 0] = β[i − 5 : 0]) mod 2i−4. If level i = n + 4 has been
successfully reached then it means that the constructed x is such that (y′ − y = β) mod 2n and a counter
c is incremented. A pseudo-code of the described procedure is listed in Algorithm. 3.

Algorithm 3 Computation of the Fixed-key DP of the TEA F-function.
Input: n, α, β, k0, k1, δ, c, x
Output: adpF

(k0,k1,δ)
(k0, k1, δ : α→ β)

1: procedure assign bit(n, i, c, x) do
2: if i = n+ 4 then
3: c = c+ 1
4: return
5: Compute y[i− 5 : 0] and y′[i− 5 : 0] according to eq. (22)–(27)
6: if (y′[i− 5 : 0]− y[i− 5 : 0] = β[i− 5 : 0]) mod 2i−4 then
7: if i < (n− 1) then
8: for q ∈ {0, 1} do
9: x[i+ 1 : 0]← q |x[i : 0]
10: assign bit(n, i+ 1, c, x)
11: else
12: assign bit(n, i+ 1, c, x)
13: return c
14: procedure adp tea f(n, k0, k1, δ, α, β) do
15: c← 0
16: for x[9 : 0] in {0, . . . , 210 − 1} do
17: i← 10
18: c = c+ assign bit(n, i, c, x)
19: return p← c 2−n

Clearly Algorithm 3 is worst-case exponential since for a differential that has probability 1 all branches
of the recursion will be explored. In general, the efficiency of the algorithm is inversely proportional to the
probability of the differential (α→ β). The reason is that low-probability differentials correspond to small
number of values x that satisfy them, which in turn means that for many assignments of x[i] equation
(y′[i : 0]− y[i : 0] = β[i : 0]) mod 2i+1 will be inconsistent. As a result the total number of recursive calls
will be smaller.

D.2 Key-dependency of the DP of F

As noted in Sect. 9, the DP of the F-function of TEA is key-dependent w.r.t. both XOR and ADD. As the
round keys are added to the state by means of the ADD operation, for XOR differences the mentioned effect
is not surprising. This is not so for ADD differences though. The effect for ADD differences is illustrated in
Fig. 6 and Fig. 7, where for a small-scale version of TEA resp. with 7-bit and 10-bit word size for every
fixed input difference (the X axis) is plotted the variation of the maximum (over all output differences)
probabilities for all round keys (the Y axis). We analyze this key-dependency effect in more detail below.
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The first thing to observe is that, although ADD differences propagate with probability 1 through the
three modular additions in the TEA F-function (see Fig. 1) independently of the actual value of the round
keys and the round constant, the probability of ADD differentials through F is actually highly dependent
on the values of the keys and the constant. The reason for this counter-intuitive behavior is the following.

In a differential cryptanalysis setting, consider an input pair (x, x+α) to F . For a fixed n-bit difference
α, there are 2n such pairs that satisfy the difference. Observe that the LSH operation reduces the set of
possible input pairs to the modular addition with key k0 (cf. Fig. 1 (left)) from 2n to 2n−4. Similarly the
RSH operation reduces the set of possible input pairs to the modular addition with key k1 from 2n to 2n−5.
Although the key additions will not affect the differences that the pairs in each set satisfy, they will affect
the actual values of those pairs which on its part influences the DP of F. The latter is due to the way the
DP of the subsequent XOR with three inputs (adp3⊕) is computed. To compute adp3⊕, the number of the
right pairs for two of the inputs are counted over the reduced sets of resp. 2n−4 and 2n−5 elements, while
still the elements of those sets are of size n bits, because of the addition with the n-bit key word. As a
result the reduced sets contain different elements for different values of the keys and so the probability
adp3⊕ and, by implication, the DP of F will also be different for different keys. Note that this is not the
case when the two sets have full size 2n (e.g. if the shift constants of LSH and RSH are set to 0). In that
case the right pairs for the XOR will always be counted over the same set of 2n pairs (possibly re-ordered)
irrespective of the actual value of the key. This key dependency effect is illustrated in detail by means of
the following simple example.

Example 2. In order to demonstrate the dependency of the DP of the TEA F-function on the value of the
round key, we isolate a small sub-component f of F composed of an RSH, key addition and XOR. Let x and
y be n-bit inputs, k be an n-bit key and r be a shift constant. Then define

f(k, x, y) = (k + (x≫ r))⊕ y . (28)



Note that in contrast to F (8), in f the inputs x and y are independent. We define f in this way on
purpose, so that in the following analysis we can focus exclusively on the influence of the key k, and not
be distracted with side effects arising form dependencies between the inputs.

For n = 3 and r = 1, let α = 2, β = 2 be fixed input differences, and let γ = 1 be fixed output
difference. We shall compute the DP of f : adpf (k : α, β → γ) for two values of the key: k = 0 and k = 1.
We denote the two probabilities as p0 = adpf (k = 0 : 2, 2 → 1) and p1 = adpf (k = 1 : 2, 2 → 1). Note
that by setting k = 0 we effectively discard the key addition operation. Intuitively this should be the same
as the case k 6= 0 since ADD differences propagate with probability 1 through addition. With the following
example we demonstrate that this intuition is wrong.

Let A and B be the sets of pairs that satisfy the inputs differences α and β respectively. Denote with C
the set of output pairs after the RSH operation, and with Dk the set of output pairs after the key addition
with key k. Note that Dk = k + C. Finally, let Ek be the set of pairs in Dk such that when combined
element-wise with a pair from B through XOR, the result is a pair that satisfies the output difference γ:

Ek = {Dk × B : (d, d′) ∈ Dk, (b, b
′) ∈ B : ((d⊕ b)− (d′ ⊕ b′)) mod 2n = γ} . (29)

The probability adpf can then be expressed as:

pk = 2−n ·#Ek . (30)

Since α = β = 2,
A = B = {(2, 0), (3, 1), (4, 2), (5, 3), (6, 4), (7, 5), (0, 6), (1, 7)} . (31)

The output set after the RSH by 1 is

C = {(1, 0), (1, 0), (2, 1), (2, 1), (3, 2), (3, 2), (0, 3), (0, 3)} . (32)

As expected, the number of unique elements in C compared to A is reduced by 2 due to the shift by 1
position. Note that all analysis up to this point is independent of the value of the key k. We shall now
demonstrate how the choice of the key influences the probability.

1. Let k = 0. Then D0 = C:

D0 = {(1, 0), (1, 0), (2, 1), (2, 1), (3, 2), (3, 2), (0, 3), (0, 3)} , (33)

and E0 is

E0 = {{(1, 0), (1, 0)} × {(3, 1), (5, 3), (7, 5), (1, 7)},

{(2, 1), (2, 1)} × {(3, 1), (7, 5)},

{(0, 3), (0, 3)} × {(3, 1), (7, 5)}} . (34)

Since there are 16 elements in E0, according to (30) p0 =
16
64 = 0.25.

2. Let k = 1. In this case D1 = 1 + C:

D1 = {(2, 1), (2, 1), (3, 2), (3, 2), (4, 3), (4, 3), (1, 4), (1, 4)} . (35)

Note that due to the key addition, two of the pairs in D1 do not belong to D0: (1, 4), (4, 3), while the
remaining two: (2, 1), (3, 2) belong to both sets. As a result the set E1 also changes with respect to E0:

E1 = {{(2, 1), (2, 1)} × {(3, 1), (7, 5)},

{(4, 3), (4, 3)} × {(5, 3), (1, 7)}} . (36)

There are 8 elements in E1 and so p1 =
8
64 = 0.125 < p0.



From the above example we can see that the value of the key k determines the exact way in which the set
C will be mapped to Dk. This in turn influences the size of the set Dk × B that ultimately determines the
final probability adpf .

Note however that although, as a result of the key addition, the sets D0 and D1 differ with respect to
their elements, they are still the same with respect to the differences between the values within each pair.
Let ∆Dk be the set of ADD differences modulo 2n, satisfied by each pair in Dk. Then:

∆D0 = {(1− 0), (1− 0), (2− 1), (2− 1), (3− 2), (3− 2), (0− 3), (0− 3)} =

∆D1 = {(2− 1), (2− 1), (3− 2), (3− 2), (4− 3), (4− 3), (1− 4), (1− 4)} =

∆D = {1, 1, 1, 1, 1, 1, 5, 5} .

This example demonstrates that in certain cases (the additive DP of the TEA F-function in particular),
the value of the key influences the differential probability, while still keeping the differences unaffected.

D.3 Influence of the δ Constants

As discussed in Sect. 9.4, we modified TEA to use the same δ constant, equal to the initial value 0x9e3779b9,
at every round. Then we applied the algorithm presented in Sect. B to search for differential trails in this
modified version of the cipher. We noticed that for many keys, after some rounds the best found trail would
eventually become iterative with period 2 and of the form: (α→ 0), (0→ 0), (α→ 0), (0→ 0), . . . etc. .

We further investigated for what value of α the probability of the differential (α→ 0) will be maximal
for a fixed key. To do this we modified Algorithm 3 (more specifically the assign bit() procedure) to
assign the bits not only of the value x but also of the (unknown) difference α. Note that the modified
algorithm computes the probability of the differential (α → 0) not only for the difference that maximizes
it but also for all other differences. Therefore it requires also more memory: at least 232 × 4 bytes to store
all values of α. For many keys we find that the difference that maximizes the probability of the differential
is α = 0xF and the resulting probability is ≤ 2−8. One round key for which the probability is exactly 2−8 is
for example 4858548F, 3FF378B3. We have computed that the exact number of such keys is 6 · 259 ≈ 261.6

i.e. around 10% of all keys. For 32-bit words, we were not able to find any keys for which the differential
(α→ 0) has probability bigger than 2−8 for some α.

Finally, we report the best found differential trail on the modified version of TEA using the same δ
constant. It is based on a 4-round iterative pattern and results in a differential trail on 18 rounds with
probability 2−61.36. The trail is shown in Table 7.

D.4 Improving the efficiency of Algorithm 1

In this section we describe in more detail the improvement of the efficiency of Algorithm 1 when used to
construct a pDDT for F (cf. Sect. B.2). We exploit the fact that the three inputs to the XOR operation
in F are strongly dependent. As a result many differentials that are valid when the XOR is considered in
isolation will in fact not be possible when XOR is viewed as a component of F.

Let α, β and γ be input differences to the XOR in F, where α is the initial input difference to F, and
β and γ are the differences after the LSH and the RSH operations respectively. Then by Theorem 1 and
Theorem 2, α, β and γ are subject to the following constraints:

(α, β, γ) : (β = (α≪ 4))∧

(γ ∈ {(α≫ 5), (α≫ 5) + 1, (α≫ 5)− 2n−5, (α≫ 5)− 2n−5 + 1}) . (37)



Table 7. TEA, single δ: best found ADD differential trail for 18 rounds.

key E028DF9A 8819B4C3 3AB116AF 3C50723

r β α p log2p

1 FFFFFFF1 ← 1 0.137390 −2.86
2 0 ← 0 1 −0.00
3 F ← 1 0.135712 −2.88
4 0 ← F 0.001984 −8.98
5 FFFFFFF1 ← 1 0.133148 −2.91
6 0 ← 0 1 −0.00
7 F ← 1 0.138214 −2.86
8 0 ← F 0.002533 −8.62
9 FFFFFFF1 ← 1 0.137360 −2.86
10 0 ← 0 1 −0.00
11 F ← 1 0.130371 −2.94
12 0 ← F 0.001984 −8.98
13 FFFFFFF1 ← 1 0.131958 −2.92
14 0 ← 0 1 −0.00
15 F ← 1 0.137543 −2.86
16 0 ← F 0.002228 −8.81
17 FFFFFFF1 ← 1 0.136597 −2.87
18 0 ← 0 1 −0.00

∑
r
log2pr −61.36

Let α[i : 0], β[i : 0] and γ[i : 0] be partially constructed (i+1)-bit differences. Then expressing (37) bitwise
for the first (i+ 1) bits we get:

(α[i : 0], β[i : 0], γ[i : 0]) :

((β[i : 0] = 0 : i < 4) ∨ (β[i : 0] = α[i− 4 : 0]|0000(2) : i ≥ 4))∧

((γ[i : 0] ∈ {(α[i+ 5 : 5])[i : 0], (α[i+ 5 : 5] + 1)[i : 0],

(α[i+ 5 : 5]− 2n−5)[i : 0], (α[i+ 5 : 5]− 2n−5 + 1)[i : 0]} :

5 ≤ i < 27)) . (38)

Equation (38) is a necessary, but not a sufficient condition for (37). The reason is the following. Consider one
of the partially constructed differences after RSH: (α[i+ 5 : 5]− 2n−5)[i : 0]. Note that −2n−5 = 2n − 2n−5

mod 2n, which is a value that has only its five MS bits set (e.g. for n = 32 : −2n−5 = 232 − 227 =
0xF8000000). Thus the term −2n−5 affects the sum (α[i + 5 : 5] − 2n−5)[i : 0] only for i ≥ 27. Therefore,
although a given difference may be discarded as invalid when evaluated at position i < 27 according to (38),
for i ≥ 27 it may still turn out to be a valid difference after subtraction by 2n−5 or (2n−5 − 1).

Condition (38) in combination with pi+1 ≥ pthres (cf. Algorithm 1) improves the efficiency of Algorithm 1
when applied to construct a pDDT for F. Still, due to the fact that it is not a sufficient condition, as
discussed above, not all valid differentials are present, and therefore the constructed pDDT is incomplete.

E Proofs

E.1 Proof of Proposition 1

Proof. We shall prove the proposition for adp⊕. In this case α, β and γ are ADD differences propagating
through the XOR operation. The proof for xdp+ is analogous.



We induct over the word size n. The proposition is trivially true for the base case n = 1: p1 ≤ p0 = 1.
Let n = k > 1. We have to prove that pk ≤ pk−1.

Let x and y be n-bit integers. Define Li to be the set of i-bit pairs (xi, yi) that satisfy the differential
(αi, βi → γi) for the operation addition modulo 2i:

Li = {(xi, yi) : ((xi + αi)⊕ (yi + βi))− (xi + yi) = γi}, n ≥ i ≥ 1 . (39)

Let li = #Li. By definition pk = lk/2
2k and pk−1 = lk−1/2

2(k−1) (cf. (2)). Note that every element of Lk

can be obtained from an element (xk−1, yk−1) of Lk−1 by appending bits x[k− 1] and y[k− 1] to xk−1 and
yk−1 respectively. Assume that this is not true i.e. assume:

∃xk, yk : (xk = x[k − 1]|xk−1, yk = y[k − 1]|yk−1, (xk, yk) ∈ Lk)∧

((xk−1, yk−1) /∈ Lk−1) . (40)

If (40) is true then we can construct a new set L∗

k−1 = (xk−1, yk−1) ∪ Lk−1. Its size is l∗k−1 = lk−1 + 1 and

so pk−1 = l∗k−1/2
2(k−1). The latter differs from the actual value of the probability pk−1 = lk−1/2

2(k−1) and
therefore the assumption (40) is false. Thus ∀(xk, yk) ∈ Lk : (xk−1, yk−1) ∈ Lk−1. Because #{(x[k], y[k])} =
22, the size of Lk can be at most 22 times bigger than the size of Lk−1:

lk ≤ 22lk−1 ⇒
lk
22k
≤

lk−1

22(k−1)
⇒ pk ≤ pk−1 . (41)

⊓⊔

E.2 Proof of Theorem 1

Proof. Let x be an n-bit input to LSH with shift constant r ≤ n. Let xL, xR : x = xL2
n−r + xR. Then

(x ≪ r) = xR2
r. Similarly, for the input ADD difference α let αL, αR : α = αL2

n−r + αR and thus
(α≪ r) = αR2

r. The sum (x+ α) can then be represented as:

(x+ α) = (xL + αL)2
n−r + (xR + αR)

= ((xL + αL + cR) mod 2r) 2n−r + ((xR + αR) mod 2n−r) , (42)

where cR is the carry generated from the addition (xR+αR) mod 2n−r. From (42) follows that (x+α)≪
r = (xR + αR)2

r. Thus for the output difference β we get:

β = ((x+ α)≪ r)− (x≪ r) = (xR + αR)2
r − xR2

r = αR2
r = (α≪ r) . (43)

Note that (43) is independent of the input x and therefore holds with probability 1 over all values of x.
From this the expression (4) for the probability adp≪r immediately follows. ⊓⊔

E.3 Proof of Theorem 2

Proof. Let x be an n-bit input to RSH with shift constant r ≤ n. Let xL, xR : x = xL2
r + xR. Then

(x≫ r) = xL. Similarly, for the input ADD difference α let αL, αR : α = αL2
r +αR and thus (α≫ r) = αL.

Denote by cR the carry generated from the addition (aR + αR) mod 2r:

cR =

{
0 , if (xR + αR) < 2r ,

1 , otherwise .
. (44)



The sum (x+ α) can then be represented as:

(x+ α) = (xL + αL)2
r + (xR + αR)

= ((xL + αL + cR) mod 2n−r) 2r + ((xR + αR) mod 2r) . (45)

Therefore (x+ α)≫ r = (xL + αL + cR) mod 2n−r and for the output difference β we derive:

β = ((x+ α)≫ r)− (x≫ r) = ((xL + αL + cR) mod 2n−r)− xL

= αL − cL2
n−r + cR , (46)

where

cL =

{
0 , if (xL + αL + cR) < 2n−r ,

1 , otherwise .
. (47)

The term −cL2
n−r in (46) is introduced in order to cancel the carry 2n−r that is generated in the cases in

which the sum (xL+αL+cR) is bigger than (2n−r−1). In such a case cL = 1 and −cL2
n−r+(xL+αL+cR) =

−2n−r + 2n−r + (xL + αL + cR) mod 2n−r = (xL + αL + cR) mod 2n−r.
In the expression for β (46), for each distinct value of the tuple (cL, cR) we get one of the four possibilities

for β:

β =





(α≫ r) , cL = 0, cR = 0 ,

(α≫ r)− 2n−r , cL = 1, cR = 0 ,

(α≫ r) + 1 , cL = 0, cR = 1 ,

(α≫ r)− 2n−r + 1 , cL = 1, cR = 1 .

. (48)

In order to compute the corresponding probabilities, we have to count the number of inputs x, that
result in a given value for (cL, cR). Note that cL and cR depend on x and α, of which α is fixed and x can
take on all values from 0 to 2n − 1. From (44) it is easy to compute that cR = 0 for exactly (2r − αR)
values of xR and therefore cR = 1 for the remaining 2r − (2r − αR) = αR values. Note that xR is an r-bit
word. Similarly, if cR = 0 then cL = 0 for (2n−r −αL) values of xL and cL = 1 for the remaining αL values.
If cR = 1 then cL = 0 for (2n−r − αL − 1) values and cL = 1 for the remaining αL + 1 values. Therefore
(cL, cR) = (0, 0) for (2n−r − αL)(2

r − αR) values of x. Since the total number of values is 2n we obtain the
probability:

adp≫r(α→ β = (α≫ r)) = 2−n(2n−r − αL)(2
r − αR) . (49)

The expressions for the remaining three probabilities are derived analogously. ⊓⊔

E.4 Proof of Theorem 3

Proof. Denote pi = adp3⊕((α ≪ 4), α, γi → β) and qi = adp≫5(α → γi). Let ∀i : 0 ≤ i < 4 : pi ≥ pthres.
After multiplying both sides by qi and summing over i we obtain:

3∑

i=0

(piqi) = eadpF (α→ β) ≥
3∑

i=0

(pthres qi) = pthres

3∑

i=0

qi = pthres , (50)

since
∑3

i=0 qi = 1 (cf. Theorem 2), which proves (14). Similarly, to prove (15) assume that ∄i : adp3⊕((α≪
4), α, γi → β) ≥ pthres. Due to (50) this assumption contradicts the fact that eadpF (α→ β) ≥ pthres and is
therefore false. This completes the proof. ⊓⊔



Fig. 7. TEA, n = 10 bits: dependency of the maximum probability output ADD difference on the value of the round key.


