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Abstract. This paper analyzes the dynamics of a new selection scheme
based on altruistic cooperation between individuals. The scheme, which
we refer to as cooperative selection, extends from tournament selection
and imposes a stringent restriction on the mating chances of an individ-
ual during its lifespan: winning a tournament entails a depreciation of its
fitness value. We show that altruism minimizes the loss of genetic diver-
sity while increasing the selection frequency of the fittest individuals. An
additional contribution of this paper is the formulation of a new combi-
natorial problem for maximizing the similarity of proteins based on their
secondary structure. We conduct experiments on this problem in order
to validate cooperative selection. The new selection scheme outperforms
tournament selection for any setting of the parameters and is the best
trade-off, maximizing genetic diversity and minimizing computational
efforts.

1 Introduction

Evolutionary algorithms (EAs) are optimization meta-heuristics inspired by the
Darwinian process of natural selection. As in nature, individuals in EAs compete
for survival and the fittest are preferentially selected for reproduction. Through
the course of generations, evolution operates bottom up by filtering good genes
in the population and optimizing the design of the individuals. This complex
process is triggered by a set of simple rules, the cornerstones being the breeding
operators and the selection scheme: the formers leveraging the proper mixing of
individuals’ structures and the latter balancing the selection pressure. If the se-
lection pressure is too intensive, the population will lose genetic diversity quickly
and the algorithm will converge to local optima. On the other hand, if the se-
lection pressure is too relaxed, the speed of convergence will slow down and the
algorithm will waste computational efforts. Hence, the design of efficient selection
schemes remains as an open topic of research in Evolutionary Computation.
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In addition to canonical approaches such as ranking or roulette wheel [4],
other selection schemes have been designed, e.g. to balance exploration and ex-
ploitation [1], to autonomously decide on the state of reproduction of individuals
[7], or to be able to self-adapt the selection pressure on-line [3]. Nevertheless,
tournament selection [8] is still one of the most studied and employed schemes for
selection. Tournament selection is an easy-to-implement easy-to-model scheme,
in which the best of t randomly sampled individuals is selected for mating. This
simple scheme has many advantages such as allowing the tuning of the selection
pressure by simply varying the size of the tournament, having a low algorithmic
complexity (i.e. O(t) for a single selection) and being suitable for parallel and
decentralized execution as it does not require to compute estimates of the global
population. However, tournament selection has been also reported to have some
disadvantages that we aim to cover in this paper.

Poli [9] points out two different phases in a tournament: the sampling phase
where t individuals are randomly chosen from the population, and the selection
phase, in which the best of the sampled individuals is selected for reproduction.
The two main issues arising from Poli’s study are known as the not-sampling
and multi-selection problems, both of them responsible for the loss of diversity.
The not-sampling issue refers to the probability of an individual for not being
sampled. Xie, Zhang and Andreae [14] conduct a thorough analysis on this issue
and conclude that, independently of the population size, some individuals in
every generation will never be sampled when using small tournament sizes, e.g.
for binary tournament 13% of the individuals are never sampled, if ¢ = 3 that
value is ~ 5%, and so on. In contrast, the multi-selection® issue refers to the
probability of an individual for being selected multiple times in the selection
phase. The risk here is that, if the tournament size is large, a small elite of
individuals could take over the population and quickly reduce the diversity. Given
that the only tunable parameter in tournament selection is the tournament size,
either the not-sampling or multi-selection issue will always be present to some
extent at any value of the parameter.

Some authors have presented alternative solutions to the not-sampling prob-
lem. The backward-chaining proposal by Poli [9], the unbiased tournament selec-
tion by Sokolov and Whitley [12] or the round-replacement by Xie and Zhang [13]
successfully address the issue. In their respective proposals, all authors are able
to save the computational efforts associated to the evaluation of not-sampled
individuals. Xie and Zhang, however, show that the sampling countermeasures
are only effective in the case of binary tournament. For larger tournament sizes
they claim that “the mot sampled issue in standard tournament selection is not
critical”. On the basis of previous findings the authors recommend that research
should focus on tuning the parent selection pressure instead of developing alter-
native sampling replacement strategies.

3 The multi-selection problem is alternatively referred to as not-selection problem,
i.e. the multiple selection of some individuals implies the opposite problem, some
individuals are never selected.



With such a recommendation in mind, cooperative selection [6] tackles the
selection phase in tournament selection. The aim is to minimize the loss of diver-
sity due to the multi-selection of elite individuals. Given that the multi-selection
issue is more relevant for large tournament sizes, the not-sampling of individuals
is assumed as a minor issue. Nonetheless, any of the aforementioned not-sampling
solutions could be easily integrated within our approach as they are complemen-
tary. Cooperative selection tries to prevent the multi-selection of elite individuals
by implementing an altruistic rule: after winning a tournament, an individual
must decrease its own fitness as to yield its position to the second-ranked indi-
vidual for future tournaments.

In this paper, we analyze first the properties of the approach under simplified
assumptions. Then, in order to validate such properties in a real problem, we
tackle a new combinatorial problem designed to maximize the similarity between
proteins. In that context, cooperative selection is shown to preserve a higher
genetic diversity than tournament selection and to require less evaluations to
yield the same quality in solutions.

The rest of the paper is structured as follows. Section 2 introduces the new
selection scheme. This section also analyzes the main properties of the approach
and provides some assessment for tuning the scheme parameters. Section 3
presents a new combinatorial problem that is used afterwards to validate the
cooperative selection scheme. Finally, some conclusions and future lines of re-
search are exposed in section 4.

2 Cooperative Selection

Cooperative selection is a variant in the selection phase of tournament selection.
This section presents a description of the new selection scheme and analyzes
its properties for different parameter values using tournament selection as the
counterpart for comparison.

2.1 Scheme description

In order to describe cooperative selection, let us first introduce the following
definitions and nomenclature:

— An association @ = {Z1,...,74} is the scheme’s equivalent of a tournament,
where a set of individuals 7} : i € {1,...,a} is randomly sampled from a

population P to compete for selection in an association of size a.
— Every individual @ = {z1,...,2;} | @ € P has a length of [ parameters and
is characterized by two different fitness metrics:
e The canonical fitness function f(7).
e A transcription of f(7’) called cooperative fitness feoop(7), which is
initialized in an atomic operation:

sync.eval(T){f(T), feoop(T) < f(T)} (1)
Hence, feoop(T) = f() holds true right after the evaluation of 7.



Given an association @ as provided by the sampling method described above,
Procedure 1 details the criteria to select an individual from @. Note here that
@ and an analogue tournament T are indistinguishable and therefore, the only
difference between cooperative and tournament selection relies on this procedure.

Procedure 1 Pseudo-code of Cooperative Selection
CooperativeSelection (@)

#1. Ranking step:

rank(@) = {(T1,.. ., Ti, Tit1,-- -, Ta) | Vi : feoop(Ti) > feoop(Tit1)}

#2. Competition step:
winner « T1

#3. Altruistic step:? =
fcoop(?l) . fcoop( 2);fcoop( 3)

return winner

The competition (or selection phase) in cooperative selection consists of three
steps. In the first one, the sampled individuals (@) are ranked according to
their cooperative fitness. To that end, without any loss of generality, we have
considered in this paper the case of maximizing the fitness. In a second step,
the individual with the highest cooperative fitness feoop(71) is selected as the
winner of the competition. However, these two steps would not change from a
canonical competition if it were not for the final step where, after being selected,
the winner altruistically decreases its own cooperative fitness. In the next section
we show that such a simplistic rule has a tremendous impact on reducing the
environmental selection pressure and consequently the loss of genetic diversity.

2.2 Properties and tuning of parameters

Cooperative selection is based on tournament selection and, as in tournament
selection, the scheme can also be divided into two main phases: the sampling
phase in which the individuals are randomly sampled to create an association,
and the selection phase in which the individual with the highest cooperative
fitness is selected for reproduction. In order to analyze the properties of co-
operative selection, this section tackles both phases incrementally by assessing
first the bias introduced during the sampling phase, and then by analyzing the
combined effect of the not-sampling and not-selection of individuals during the
selection phase.

The sampling phase. The sampling of individuals in cooperative selection can
be described by the probability model presented by Xie et al. [14] for tournament



selection. The model states that the probability of an individual to be sampled
in y € {1,..., P} associations/tournaments is:

1- (1113)ya (2)

where P is the population size, a the association/tournament size, and y the
number of associations/tournaments within the generation.
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Fig. 1. Probability of sampling an individual at least once per generation for y = P.
Given that the sampling of individuals is performed identically in tournament and
cooperative selection, these results hold in both schemes. Results are the average of 30
independent runs.

In Fig. 1 we verify empirically the model via simulations and estimate the
sampling probabilities for P € {100, 400,800} and a € {2,4, 8,16}. The obtained
results show that the association size (a) is the main factor influencing the
sampling probability while the population size (P) does not seem to affect the
probability trend (Sokolov and Whitley [12] show that the population size may
indeed affect the trend if P < 10 however populations in EAs are usually not
that small). Independently of the population size, there is a certain probability
for an individual of not being sampled when a is small. An individual that is not
sampled does not have any chance to pass to subsequent generations and thus,
its associated genetic material and computational efforts are hopelessly wasted.
Such a waste amounts to ~ 13% of the population for a = 2; a percentage that
becomes progressively smaller as the association size increases and that can be
neglected from a > 5. Therefore, the association size should be preferentially set
to large values for an optimal operation of the scheme.

The selection phase. Once an association @ = {Z{,...,7;} is sampled from
the population, the selection phase is responsible for determining which individ-
ual in @ will be finally selected for reproduction. At this stage, a large association
size entails an increase in the selection pressure and a loss of genetic diversity.
Such an effect is well known in tournament selection for large tournament sizes
and needs to be assessed for cooperative selection.



Xie and Zhang [13] propose an experimental method for assessing the loss
of diversity according to different values of a. The method employs a synthetic
population called fitness rank distribution (FRD). The idea behind a FRD is
that a population can be partitioned into different bags of individuals with an
equal fitness. Given that each of these bags has an associated fitness rank, a
selection scheme can be characterized by the amount of individuals which are
selected from the different bags. In order to analyze cooperative selection, we
will assume a simplistic scenario in which the FRDs emulate the fitnesses of a
randomly initialized population in an easy problem [11]. Fig. 2 shows three of
these FRDs in which the best individuals are ranked first.
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8

7

]

5

o

N

| |‘| ‘|

ul |

o LI I
o

5 10 15 20 25 30 35 o 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Fitness rank Fitness rank Fitness rank

Number of individuals
Number of individuals
Number of individuals

Fig. 2. Fitness rank distributions for three different population sizes. FRDs are dropped
from a normally distributed variable X ~ N(0,36) and then shifted until min(X) =
0. This method approximates a N(18,36) distribution and guarantees non-negative
values.

Using a FRD as an input, our genetic algorithm assumes a generational
scheme with selection as the single operator to be applied. Any possible loss of
diversity is therefore due to the selection scheme and can be assessed by com-
puting the amount of individuals discarded from one generation to the other. In
this context, there are two possible causes for losing diversity: those individuals
that are not-sampled, and those ones that being sampled are not-selected.

Fig. 3 compares the loss of diversity in tournament and cooperative selec-
tion as a function of the tournament/association size. The selection pressure
monotonically increases for both schemes. However, cooperative selection scales
more gracefully than tournament selection: for a =t = 20 cooperative selection
outperforms tournament selection by a ~ 24%.

Given the different responses of both schemes to parametrization, we define
as analogues a tournament (¢) and an association (a) inducing the same loss of
diversity, e.g. t = 2 and a = 8 in Fig. 3. This notion is relevant to make com-
parisons between schemes: since two analogue parameters preserve the diversity
equally, one scheme will outperform the other if, for an analogue parametrization,
the scheme preferentially selects fitter individuals. Note here that the variety and
quality of the selected individuals are two conflicting objectives.



Tournament selection Cooperative selection

100 T T T T T T T T T T T T T T T T T T
o 80 2 |
‘69"
Z
-
3 60| - -
n
L |
S 40 - _— | .
,5 y I
=] " 1 |
S 20t ’f; | not-sampled === - : not-sampled <= l
I i not-selected —==—-~ 1 not-selected —
T .. fotal =— ' _ total ——
0 11 eoopaal 1 1 1 1 I 1 A | [ L I
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Tournament size (t) Association size (a)

Fig. 3. Loss of diversity in tournament selection (left) and cooperative selection (right)
for P = 400. The dashed line exemplifies an equivalence between analogue tournament
and association sizes.

To gain insights into this question, Fig. 4 computes the selection frequen-
cies for different parametrizations of tournament and cooperative selection. The
results show two main outcomes:

1. Cooperative selection is more robust to parameter tuning than tournament
selection as the size of an association has less impact on the selection fre-
quencies than the respective tournament size.

2. In the case of an analogue parametrization (i.e. t2 is analogue to a8), the
frequency of good individuals is higher in cooperative selection than in tour-
nament selection.
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Fig. 4. Expected selection frequencies for different tournament and association sizes in
tournament selection (left) and cooperative selection (center). The graph on the right
compares the selection frequencies between binary tournament (¢2) and its analogue
association size (a8). Frequencies are obtained from 30 independent runs.



3 Validating cooperative selection in a noisy real problem

In order to validate the previous outcomes on cooperative selection, we tackle
in this section the problem of finding two proteins (provided as two sequences
of codons) with a similar secondary structure. The pairwise comparison of the
secondary structure is a multi-modal problem with tools such as the Vector
Alignment Search Tool (VAST)? dedicated to classify similarities between pro-
teins. VAST requires a pdb?® file as an input to query a database for similarities.
However, pdb’s are obtained in laboratories using expensive and time-consuming
techniques such as X-ray crystallography or nuclear magnetic resonance [2].
These techniques prevent a systematic search of all possible sequences. In this
context, we propose ESSS as a meta-model for exploring the problem landscape.

3.1 Estimated Secondary Structure Similarity (ESSS)

The secondary structure is a primary approach to determine the three-dimensional
form of an amino acid sequence. Given that the biological functionality of a pro-
tein is conferred by its 3D structure, establishing the 3D similarity between two
proteins provides an estimation of their related properties. ESSS is an assessment
on the similarity of the secondary structure between two sequences.

Using the tool PROFphd [10], the likely secondary structure type T'(¢;) can
be estimated per codon ¢; with a reliability Rr(c;) € {1...10} in the sequence
C = {ci...cn'}. With T, (i) the actual type found at position ¢ of the reference
structure, the estimated secondary structure similarity score F is calculated as
follows:

N
F(C,Tref) = Z Match(T(¢;), Tyey (7)) (3)

where

0 if T(c;) A Trep(i) ¢ {Heliz, Sheet}
Match(T(¢;), Tref(i)) = Rr(c;) i T(¢;) = Trey(2)
“Rp(e) if T(e;) £ Toog (i)

The reference types Ty.s(i) are extracted from the original pdb file. In this
paper, we conduct an experiment using the 256b sequence®* as a reference (T} 7).
The 2560 sequence is composed of 106 codons and codifies the cytochrome B562
molecule.

Multi-modality. ESSS is a multi-modal problem. Only for the 256b sequence
that we tackle in this paper, VAST provides a list of 1635 related structures from
which /JEA is the most similar. 4JEA codifies the soluble cytochrome B562 and
differs in only 13 out of 106 codons.

4 VAST and pdb’s of sequences are available on-line at http://www.ncbi.nlm.nih.
gov/Structure/
® Protein Data Bank format



Noisiness. ESSS theoretical optimum is at F'(256b, 256b) = 860 for the instance
under study. However, to yield such a value, PROFphd should return the maxi-
mum reliability Ry = 10 at any of the 86 positions of the sequence folding as a
helix. Given that PROFphd is a meta-model based on a neural network, there is
a certain error due to the training process which translates in the actual fitness
being F'(256b,256b) = 463. The noisiness of the function can be further proven
since the sequence JJEA scores F(4JEA,256b) = 520; more than the reference
sequence itself, i.e. F(4JEA,256b) > F(256b, 256b).

3.2 Experimental setup

Experiments in this paper are conducted for a generational 1-elitism genetic
algorithm. Two versions of the algorithm are considered: one using cooperative
selection and the other being tournament selection. In order to validate the
properties described in section 2.2, analogue parameters ¢t = 2 and a = 8 are
tested. Additionally, t = 8 is also analyzed to check differences with respect to
a = 8. Table 1 presents a summary of all parameter settings.

ESSS instance

Reference pdb file 256b
Individual length (L) 106
Features multimodality and noisiness

GA settings

Scheme 1-elitism generational GA
Selection of Parents Tournament Selection &
Cooperative Selection
Tournament size 2,8
Association size 8
Recombination Uniform Crossover, p. = 1.0
Mutation Uniform, p,, = %
Population sizes (P) {100,200,400,800

Table 1. Parameters of the experiments

3.3 Analysis of results

Miller and Goldberg [8] were the first in analyzing the relations between noisy
functions and selection schemes. In general, noise has a disruptive effect on the
convergence of a genetic algorithm, delaying the convergence rate and increas-
ing the computational requirements. The common approach to counteract this
effect is to increase the selection intensity. However, if the selection pressure is
too high, the algorithm risks to prematurely converge to sub-optimal solutions.
Noisy functions are therefore an attractive context to validate the properties
of cooperative selection: the new selection scheme has been shown to increase
the selection frequency of the fittest individuals (i.e. selection intensity) without
paying an additional cost in diversity.



Unlike other noisy problems (see e.g. [5] for a survey), ESSS does not in-
clude a true fitness function to recalibrate errors of the meta-model. Therefore,
diversity is prioritized over quality in such a way that results can be validated
a posteriori in the lab [2]. That leads to the notion of feasible region: a range of
fitness values used as termination criteria. We assume the feasible region to be
[F'(256D, 256b), F(4JE A, 256b)] = [463,520] for the instance under study.

Fig. 5 shows that cooperative selection (a = 8) yields better results than
tournament selection (¢ = 2) while the genetic diversity is similarly preserved in
both schemes as it was predicted in section 2.2 for analogue parametrizations. On
the other hand, tournament selection converges faster than cooperative selection
if the algorithms are equally parametrized (a = 8 = t). However, a high value
of tournament selection (¢ = 8) increases the selection pressure and the genetic
diversity is significantly diminished.

Convergence Diversity

800 100

700 .

600 @ s
w500 -
§ 400 2 e
5300 [=
* 200 E
g‘ 100 &2 A

-ng 21 20 -

=3
-200
-300 0 . . L :
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Evaluations Evaluations

Fig. 5. Convergence of the average fitness in cooperative and tournament selection
(left) and respective average hamming distance (right). The area in gray denotes the
feasible region. Results are obtained over 30 independent runs for P = 400.

In order to find best trade-offs between speed of convergence and preserva-
tion of diversity, we reproduce previous experiments for P € {100, 200, 400, 800}
with F = 520 set as the termination condition. Fig. 6 shows the results for coop-
erative and tournament selection where the upper-left corner is the optimal area.
In all cases and independently of the population size, cooperative selection has
better results regarding diversity and number of evaluations. That is, coopera-
tive selection outperforms tournament selection. Although such results must be
interpreted under the perspective of this study, the obtained conclusions should
be easily generalized to further problems and optimization paradigms.



Diversity vs. computational effort
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Fig. 6. Trade-off between diversity and computational effort for cooperative selection
{a8} and tournament selection {¢2,¢8}.

4 Conclusions and Future Works

This paper analyzes a new selection scheme that we call cooperative selection
in the context of genetic algorithms. The scheme is an extension of tournament
selection that, by implementing an altruistic behavior in winners of the compe-
tition, is able to cope with two of the main problems of tournament selection:
the “not-sampling” and “multi-selection” of individuals. On the one hand, the
approach preferentially uses large association sizes, which neglects the proba-
bility of “not-sampling” an individual. On the other hand, the depreciation of
the fitness in winners of the competition diminishes the "multi-selection” of the
same elite of individuals.

We show that the new scheme preserves a higher genetic diversity than tour-
nament selection when both schemes are equally parametrized. Additionally,
cooperative selection casts fitter individuals when the loss of diversity is equal in
both schemes. That allows the algorithm to converge faster to quality solutions
while preserving the genetic diversity. The key to explain such a behavior is
that the new scheme can select the same variety of individuals as in tournament
selection but choosing preferentially fitter ones.

In order to validate such properties in a real problem, we formulate in this pa-
per a new combinatorial problem for maximizing the similarity between proteins.
The conducted experiments confirm previous conclusions: cooperative selection
outperforms tournament selection for any setting of the parameters and is the
best trade-off, maximizing genetic diversity and minimizing computational ef-
forts.

As a future work, we plan to proceed with the mathematical modeling of the
proposed selection scheme. Additionally, we also plan to investigate the adequacy
of the approach in high-dimensional continuous optimization problems.
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