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Abstract. We prove that a representation from the fundamental group of a closed surface
of negative Euler characteristic with values in the isometry group of a Riemannian manifold
of sectional curvature bounded by −1 can be dominated by a Fuchsian representation. More-
over, we prove that the domination can be made strict, unless the representation is discrete
and faithful in restriction to an invariant totally geodesic 2-plane of curvature −1. When
applied to representations into PSL(2,R) of non-extremal Euler class, our result is a step
forward in understanding the space of closed anti-de Sitter 3-manifolds.

Introduction

Let Γ be a group, and ρi : Γ → Isom(Mi, gi) be representations of Γ in the groups of
isometries of Riemannian manifolds (Mi, gi), for i = 1, 2. We will say that ρ1 dominates ρ2 if
there exists a 1-Lipschitz map f : M1 → M2 which is (ρ1, ρ2)-equivariant, i.e. which satisfies

(1) f(ρ1(γ) · x) = ρ2(γ) · f(x)

for every x ∈ M1 and γ ∈ Γ. The domination will be called strict if the map f can be chosen
to be λ-Lipschitz for some constant 0 < λ < 1.

We will be mainly interested in the case where Γ is the fundamental group of a closed
oriented connected surface of negative Euler characteristic. Those surfaces are endowed with
metrics of constant negative curvature −1, and any such metric gives rise to an isometric
identification of S with a quotient j(Γ)\H2, where H2 is the Poincaré half-plane and j a rep-
resentation of Γ into Isom+(H2) ≃ PSL(2,R). The representations obtained by this procedure
are called Fuchsian.

We are interested in the following question: given a representation ρ of the fundamental
group of a closed oriented surface of negative Euler characteristic into the group of isometries
of a complete Riemannian manifold, is there a Fuchsian representation of Γ that dominates
ρ? When ρ takes values into PSL(2,R), the question has been raised by Kassel in her work
on closed anti-de Sitter 3-manifolds (cf. subsection 0.3).

Here we prove:

Theorem A. Let S be a closed oriented surface of negative Euler characteristic, Γ its fun-
damental group, (M,g) a smooth, simply connected, complete Riemannian manifold and
ρ : Γ → Isom(M,g) a representation. Assume that the sectional curvature of (M,g) is
bounded above by −1. Then there exists a Fuchsian representation j of Γ that dominates
ρ. Moreover, the domination can be made strict unless ρ stabilizes a totally geodesic plane
H ⊂ M of curvature −1, in restriction to which ρ is Fuchsian.
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Note that the strict domination cannot occur if ρ is Fuchsian in restriction to an invariant
copy of H2. Indeed, composing the equivariant map f with the orthogonal projection on H

would provide a contracting map from the original hyperbolic surface to the new hyperbolic
surface ρ(Γ)\H. This would contradict the fact that both surfaces have the same volume
−2πχ(S).

One can think of several generalizations of Theorem A. In section 3, we will extend it to
representations of lattices in PSL(2,R) with torsion. It is likely that our approach can be
generalized to the case where M is any CAT(−1) space, see subsection 0.4.

Hereafter we discuss some applications of our result, and in the last section some possible
developments to higher rank representations.

0.1. Contraction of the length spectrum and universality of the Bers constant.

Recall that the translation length of an isometry ϕ of a Riemannian manifold (M,g) is defined
by

(2) l(ϕ) := inf
x∈M

d(x, ϕ(x)) ,

where d(·, ·) is the distance induced by g. If ρ : Γ → Isom(M,g) is a representation, the length
spectrum of ρ is the map Lρ : γ ∈ Γ 7→ l(ρ(γ)) ∈ R+.

The length spectrum of a representation contains a lot of information, and sometimes deter-
mines completely the representation. For instance, Zariski dense representations in PSO(n, 1)
are determined by their length spectrum. Another illustration of this phenomenon is a fa-
mous result of Otal [34] stating that one can recover a negatively curved metric on a closed
surface by the knowledge of the length spectrum of the action of its fundamental group on
the universal cover.

Given two representations ρi : Γ → Isom(Mi, gi), we say that the length spectrum of ρ1
dominates the one of ρ2 if Lρ2 ≤ Lρ1 . Similarly, the domination is called strict if there is a
positive constant λ < 1 such that Lρ2 ≤ λLρ1 .

It is clear that if ρ1 (strictly) dominates ρ2, then the length spectrum of ρ1 (strictly)
dominates the length spectrum of ρ2. The converse has been proven in several cases by
Guéritaud–Kassel [19]. They pointed out to us that their method would work in our setting.
The following corollary can therefore be seen as a reformulation of Theorem A.

Corollary B. Let Γ be the fundamental group of a closed oriented surface of negative Euler
characteristic, and ρ a representation of Γ into the isometry group of a smooth simply con-
nected complete Riemannian manifold of curvature bounded above by −1. Then there exists
a Fuchsian representation of Γ whose length spectrum dominates Lρ. Moreover, the domina-
tion can be made strict unless there exists a totally geodesic copy of H2 preserved by ρ, in
restriction to which ρ is Fuchsian.

Recall that the Bers constant in genus g is the smallest constant Bg such that for any
hyperbolic metric on a closed surface S of genus g, there is a decomposition of S into pairs
of pants such that all the geodesics of this decomposition have length at most Bg. The Bers
constant in genus 2 has been explicitly computed by Gendulphe [16].

Since the length spectrum of a representation of a surface group into the isometry group
of any simply connected Riemannian manifold of sectional curvature ≤ −1 can be dominated
by the length spectrum of a Fuchsian representation, the Bers constant naturally extends to
those representations, and we get the following corollary:
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Corollary C. Let Γ be the fundamental group of a closed oriented surface S of genus g ≥ 2,
M a smooth, simply connected, complete Riemannian manifold of curvature bounded above
by −1 and ρ a representation of Γ into Isom(M). Then there exists a pants decomposition of
S for which the image of any curve of the decomposition has translation length at most Bg.

Marché and Wolff [32] recently used this extension of the Bers constant to solve a conjecture
of Bowditch in genus 2. They proved that, given a closed oriented surface S of genus 2 and a
non-Fuchsian representation ρ : π1(S) → PSL(2,R), there always exists a simple closed curve
in S whose image by ρ is not hyperbolic.

0.2. Rigidity results. Theorem A asserts that Fuchsian representations are “maximal” in
some strong sense that implies various weaker rigidity results. To illustrate this, let us recall
the definition of the critical exponent of a representation.

Definition 0.1. Let Γ be a surface group, (M,d) a metric space and ρ : Γ → Isom(M) a
representation. The critical exponent of ρ is the smallest number δ(ρ) such that the Poincaré
series ∑

γ∈Γ

e−s d(x,γ·x)

converges for all s > δ(ρ). (The convergence does not depend on the choice of the base point
x ∈ M).

When M is a CAT(−1) space and ρ is convex cocompact, the critical exponent coincides
with the Hausdorff dimension of the limit set of ρ(Γ) in ∂∞M (see for instance [8]). It is equal
to 1 when ρ is Fuchsian in restriction to a totally geodesic hyperbolic plane of curvature −1,
and it easily follows from Theorem A that it is greater than 1 otherwise. As a corollary, we
obtain a new proof of the following result:

Corollary D. Let Γ be a surface group and ρ a convex cocompact representation of Γ into the
isometry group of some complete simply connected Riemannian space M of sectional curvature
≤ −1. Then the limit set of ρ(Γ) in ∂∞M has Hausdorff dimension ≥ 1, with equality if and
only if ρ is Fuchsian in restriction to some stable totally geodesic plane of curvature −1.

When M is the hyperbolic space H3, this is a famous theorem of Bowen [5]. It was conjec-
tured by Bourdon [4] and proved by Bonk and Kleiner [3] when M is any CAT(−1) space. A
generalization of our approach in the context of general CAT(−1)-spaces, which seems likely
(see subsection 0.4), would then provide an alternative proof of Bourdon’s conjecture.

Toledo introduced in [40] another notion of maximality for representations of a surface
group into PSU(n, 1). Recall that the symmetric space of PSU(n, 1) is the complex hyperbolic
space Hn

C. It carries a PSU(n, 1)-invariant Kähler metric that can be normalized to have
sectional curvature between −4 and −1. Our theorem thus applies for representations into
PSU(n, 1).

Let S be a closed oriented surface of genus g ≥ 2 and Γ its fundamental group. Let ρ be a

representation of Γ into PSU(n, 1), and f be any (Γ, ρ)-equivariant map from S̃ to Hn
C. Then

the number

τ(ρ) =
2

π

∫

S
f∗ω

is an integer independent of f , called the Toledo invariant. Toledo proved [40, 41] that
this invariant is bounded between 2 − 2g and 2g − 2 and is extremal if and only if the
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representation is Fuchsian in restriction to some stable totally geodesic hyperbolic plane in
Hn

C. Representations with extremal Toledo invariant are called maximal.
Surprisingly, maximal representations in that sense do not have maximal length spectrum.

Indeed, Toledo’s maximal representations are Fuchsian in restriction to some holomorphic
copy of H2, which has curvature −4. In constrast, representations that cannot be strictly
dominated preserve a copy of H2 of curvature −1 which is Lagrangian with respect to ω.
Therefore, those representations have a Toledo invariant equal to 0. We are thankful to Pr.
Toledo for bringing this subtlety to our attention.

0.3. Closed anti-de Sitter manifolds of dimension 3. Anti-de Sitter (AdS) manifolds
are Lorentz manifolds of constant negative sectional curvature. In dimension 3, they are
locally modelled on PSL(2,R) equipped with its Killing metric, whose isometry group is (up
to finite index) PSL(2,R)× PSL(2,R) acting on PSL(2,R) by

(γ1, γ2) · x = γ1xγ
−1
2 .

Klingler [25], generalizing a result of Carrière [7], proved that closed Lorentz manifolds of
constant curvature are always geodesically complete. A consequence is that a closed AdS

manifold of dimension 3 is a quotient of the universal cover ˜PSL(2,R) by a subgroup of
˜PSL(2,R)× ˜PSL(2,R) acting freely, properly discontinuously and cocompactly on ˜PSL(2,R).
Those quotients have been described by works of Goldman [18], Kulkarni and Raymond

[27], Salein [37], and Kassel [23]. Kulkarni and Raymond proved that, up to a finite cover
and a finite quotient, closed anti-de Sitter manifolds are isometric to Γj,ρ\PSL(2,R), where
Γ is a surface group, j, ρ two representations of Γ into PSL(2,R), j Fuchsian, and Γj,ρ is the
image of Γ into PSL(2,R)× PSL(2,R) by the embedding

γ 7→ (j(γ), ρ(γ)) .

A pair (j, ρ) of representations such that Γj,ρ acts properly discontinuously on PSL(2,R) is
called an admissible pair. Salein noticed that a sufficient condition for (j, ρ) to be admissible
is that j strictly dominates ρ. As a consequence, he obtains the existence of admissible pairs
(j, ρ) with ρ of any non-extremal Euler class. Lastly, Kassel [23, Chapter 5] proved that
Salein’s sufficient condition is also necessary.

Describing the space of closed anti-de Sitter 3-manifolds (up to finite coverings) thus reduces
to describing the set of triples (Γ, j, ρ), where Γ is a surface group, j a Fuchsian representation
of Γ into PSL(2,R) and ρ another representation that is strictly dominated by j. A natural
question is whether any non-Fuchsian representation ρ can appear in an admissible pair. It
is answered positively by Theorem A. We thus get the following corollary:

Corollary E. Let S be a closed oriented surface of negative Euler characteristic, Γ its fun-
damental group, and ρ : Γ → PSL(2,R) a representation of non-extremal Euler class. Then
there exists a Fuchsian representation j of Γ such that Γj,ρ acts properly discontinuously and
cocompactly on PSL(2,R).

This result has been obtained independently and with different methods by Guéritaud,
Kassel and Wolff, see [20].

Remark 0.2. Theorems of Kulkarni–Raymond and Kassel have been generalized by Kassel
[24] and Guéritaud–Kassel [19] to compact quotients of PSO(n, 1) by discrete subgroups of
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PSO(n, 1) × PSO(n, 1). Namely, they proved that those quotients have (up to finite index)
the form

Γj,ρ\PSO(n, 1)

with Γ the fundamental group of a closed hyperbolic n-manifold and j, ρ two representations
of Γ into PSO(n, 1), j discrete and faithful and ρ strictly dominated by j. However, when
n ≥ 3, the picture is very different. Indeed, by Mostow’s rigidity theorem, there is only one
discrete and faithful representation of Γ up to conjugacy. Therefore, one cannot change the
translation lengths of the elements j(γ), and when H1(Γ,R) 6= 0 it is possible to construct
abelian representations ρ that are not dominated by j.

0.4. Strategy of the proof. Our approach shares some similarities with the technique used
by Toledo in [40, 41]. Starting with any hyperbolic metric on S, one can consider a (Γ, ρ)-

equivariant map from S̃ to M that is harmonic. (It almost always exists, according to a
theorem of Labourie [28].) Toledo noticed that such a map may not be 1-Lipschitz, though
it contracts volume in average.

However, it turns out that this harmonic map becomes contracting after suitably changing
the hyperbolic metric on S. If the harmonic map were an immersion, this could be achieved
by uniformizing the metric of M pulled back by the harmonic map. Domination would then
follow from Lemma 2.5 and the well-known Ahlfors–Schwarz–Pick lemma [1].

In our setting, harmonic maps need not be immersions, but our strategy is similar. The
new hyperbolic metric on S is constructed using a uniformization theorem due independently
to Hitchin [21] and Wolf [45] (see subsection 1.3.2), and the Ahlfors–Schwarz–Pick lemma is
replaced by a maximum principle relying on classical Bochner-type identities for harmonic
maps, refining an argument of Sampson, see the proof of [38, Theorem 13].

Note that the representation that we obtain this way depends on the choice of the initial
hyperbolic metric on S. What we construct is actually a map from the Teichmüller space of
S to the domain of Fuchsian representations strictly dominating ρ. In [42], the second author
proves that this map is a homeomorphism, leading to a topological description of the space
of pairs (j, ρ) such that j strictly dominates ρ.

It is likely that our approach can be generalized when M is any CAT(−1)-space, using
Korevaar–Schoen’s analysis of harmonic mappings with non positively curved metric tar-
get space (see [26]), and particularly their definition of the Hopf differential in this context.
However, some technical difficulties arise, because for a singular target space one cannot use
directly Bochner identities.

The next section introduces the main results we need about harmonic maps, and we prove
Theorem A in section 2. In section 3 we note that our proof naturally extends to representa-
tions of lattices of PSL(2,R) that are not necessarily torsion-free.

0.5. Acknowledgments. We thank François Guéritaud, Fanny Kassel and Maxime Wolff
for interesting discussions about our respective points of view and Olivier Guichard, Michael
Wolf and Domingo Toledo for useful comments that improved a first version of this work.
We also thank Sorin Dumitrescu for his interest in this subject and his important role in the
collaboration of the authors. The first author thanks the university of Nice-Sophia Antipolis
for the invitation and the nice working conditions.
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1. Harmonic maps between Riemannian manifolds

A harmonic map between two Riemannian manifolds is a critical point of the energy func-
tional, which associates to a map f the mean value of the square norm of its differential.
Though most of the fundamental results we state here are true in a general setting, we will
restrict ourselves to the theory of harmonic maps with the source being a surface. In this
case, the energy of a map only depends on the conformal class of the metric on the source.
More details about the theory of harmonic maps and its relation to Teichmüller theory can
be found in the survey of Daskalopoulos and Wentworth [12].

1.1. Energy of a map and harmonicity. Let (S, g0) be a Riemann surface, (M,g) a
Riemannian manifold, and f : S → M a smooth map. One can measure how “stretchy” the
map f is by comparing f∗g with g0.

Definition 1.1. Let g1 be a non-negative symmetric 2-form on S. Let A be the field of
symmetric endomorphisms of (TS, g0) such that g1 = g0(·, A·). The energy density of g1
(with respect to the Riemann structure g0) is the function

x 7→ eg0(g1)(x) =
1

2
Tr(Ax) .

Let f be a map from (S, g0) to a Riemannian manifold (M,g). The energy density of f is
the function

x 7→ eg0(f)(x) = eg0(f
∗g)(x) .

When there is no confusion on the ambient Riemann structure g0, we will usually omit to
index the energy density on g0 and simply write “e(f)”.

Definition 1.2. The total energy of f is the integral of the energy density:

E(f) =

∫

S
e(f)(x)Vol0(x) ,

where Vol0 is the volume form induced on S by the metric g0.

Consider now a representation ρ : Γ = π1(S) → Isom(M,g), and f : S̃ → M a (Γ, ρ)-

equivariant map. Since ρ(Γ) acts on M by isometries, the symmetric 2-form f∗g on S̃ is
preserved by the action of the fundamental group, and so is the energy density eg̃0(f). We
will denote eg0(f) the induced function on S. Then we similarly call the integral of eg0(f)
against Vol0 on S the total energy of f and denote it E(f).

From now on we assume S is closed. Suppose f is a map from S to M that minimizes
the energy functional among all smooth maps homotopic to f . Then f must verify a certain
partial differential equation that can be expressed as the vanishing of a differential operator
called the tension field of the map.

Definition 1.3. The second fundamental form of f is the section of Sym2T ∗S ⊗ f∗TM
defined by

(3) IIf (X,Y ) := ∇f
Xdf(Y )− df(∇g0

XY ),

where ∇f is the pull-back on f∗TM of the Levi-Civita connexion ∇g.
The tension field of f is

(4) τ(f) := Trg0 IIf = IIf (e1, e1) + IIf (e2, e2)
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where (e1, e2) is any orthonormal basis of (TS, g0).
The map f is harmonic if the tension field τ(f) vanishes everywhere.

Proposition 1.4. If f : S → M minimizes the energy functional among all maps homotopic
to f , then f is harmonic.

For the same reason, if a (Γ, ρ)-equivariant map from S̃ to M minimizes the energy func-
tional among all (Γ, ρ)-equivariant maps, then it is harmonic. Note that the total energy of
f depends on the metric g on M , but only on the conformal class of g0 on S. Indeed, if we
multiply g0 by some positive function σ, the energy density of f is divided by σ, but the
volume is multiplied by σ, and therefore the total energy is preserved. From this, one can
deduce that harmonicity only depends on the conformal class of g0. This is specific to the
case where S has dimension 2.

1.2. Existence results. Existence results for harmonic maps date back to the seminal work
of Eells–Sampson [14] where they deal with maps between closed manifolds. Here we will
need an analogous result for equivariant maps.

Recall that a simply connected Riemannian manifold M with sectional curvature ≤ −1 is
Gromov hyperbolic, see [9, 15]. One can thus define its boundary ∂∞M as the space of geodesic
rays, where two such rays are identified when they remain at bounded distance. Any isometry
of M induces a transformation of ∂∞M . Therefore, a representation ρ : Γ → Isom(M) induces
an action of Γ on ∂∞M .

Theorem (Labourie). Let S be a closed Riemann surface, Γ its fundamental group, (M,g)
a complete simply connected Riemannian manifold of sectional curvature ≤ −1, and ρ a rep-
resentation of Γ into Isom(M,g). If ρ does not fix a point in the boundary of M , or if ρ fixes

a geodesic in M , then there exists a ρ-equivariant harmonic map from S̃ to M . If ρ does not
fix a point in the boundary, this map is unique.

Remark 1.5. This statement is only a particular case of Labourie’s theorem, that deals with
spaces of non-negative curvature (for which the condition on ρ is more difficult to express).
Labourie’s result was first obtained by Donaldson for maps into H3 [13] and by Corlette for
maps into non-positively curved Riemannian symmetric spaces [10].

1.3. Hopf differential and parametrization of Teichmüller space.

1.3.1. Harmonic maps and quadratic differentials. Consider a surface S with a Riemannian
metric g0. This metric induces a conformal structure on S and thus a complex structure.
Any complex symmetric 2-form on S splits into a (1, 1)-part, a (2, 0)-part and a (0, 2)-part.
In particular, if f : S → (M,g) is a smooth map, f∗g can be written in the form αg0+Φ+Φ̄,
where Φ is a quadratic differential called the Hopf differential. The following proposition is
classical. A proof can be found in [12, Section 2.2.3].

Proposition 1.6. If f : (S, [g0]) → (M,g) is harmonic, then its Hopf differential is holomor-
phic. This necessary condition is also sufficient when M is a surface.

Observe that if f : S̃ → (M,g) is an equivariant harmonic map with respect to some

representation ρ : π1(S) → Isom(M,g), then the Hopf differential of f on S̃ is invariant
under the action of the fundamental group of S, and thus defines a holomorphic quadratic
differential on S.
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1.3.2. Harmonic maps and Teichmüller space. Let S be a closed surface of negative Euler
characteristic. We view here the Teichmüller space T (S) as the space of hyperbolic metrics
on S, where two such metrics are identified when there is an isometry between them which is
homotopic to the identity on S. Fixing a base point g0 in Teichmüller space, and another point
g1, one can look at the unique harmonic map from (S, g0) to (S, g1) homotopic to the identity.
The Schoen–Yau theorem [39] states that this map is a diffeomorphism. By Proposition 1.6,
the Hopf differential of this map is holomorphic with respect to the complex structure given
by g0. This constructs a map from the Teichmüller space to the vector space of holomorphic
quadratic differentials on (S, [g0]). Sampson [38] proved that this map is injective and Hitchin
[21] and Wolf [45] proved that it is surjective. Those results can be summed up in one theorem.

Theorem (Schoen–Yau, Sampson, Hitchin, Wolf). Let (S, [g0]) be a closed Riemann surface,
and Φ a holomorphic quadratic differential on S. Then there is a unique Riemannian metric
g1 on S of curvature −1 such that

g1 = αg0 +Φ+ Φ̄

for some positive function α.

2. Proof of Theorem A

2.1. Representations fixing a point at infinity. Our strategy for proving that any rep-
resentation ρ : π1(S) → Isom(M,g) can be dominated is based on the existence of a ρ-

equivariant harmonic map from S̃ to M . Hence, we must first say something about represen-
tations fixing a point in ∂∞M , for which Labourie’s theorem does not hold. Fortunately, in
this case, there is a trick which reduces the problem to the (easy) abelian case.

Assume that ρ(π1(S)) fixes a point a ∈ ∂∞M . Given a geodesic ray γ : [0,∞) → M which
tends to a at infinity, we classically define the Busemann function as

(5) βγ(x) := lim
t→∞

(d(γ(t), x) − t) .

Under the assumption that (M,g) is simply connected with curvature bounded away from 0,
the following properties hold: for every element ϕ ∈ Isom(M,g) such that ϕ(a) = a, there
exists a real number m(ϕ) such that for every x ∈ M ,

(6) βγ(ϕ(x)) = βγ(x) +m(ϕ),

and moreover

(7) l(ϕ) = |m(ϕ)|,

where we recall that l(ϕ) is the translation length defined by (2). We refer to the books [9, 15]
for details about the theory of Gromov hyperbolic spaces.

In the case where ρ : π1(S) → Isom(M,g) fixes the point a ∈ ∂∞M , the function m ◦ ρ :
π1(S) → R is a morphism by (6). Let γ′ be an oriented bi-infinite geodesic in the hyperbolic
plane H2 of constant curvature −1 and let ρ′ be the representation from π1(S) to H

2 preserving
the geodesic γ′ and acting on γ′ by translations given by m ◦ ρ. Equation (7) reduces the
problem of dominating ρ to the problem of dominating ρ′. But now, ρ′ fixes a geodesic, and
Labourie’s theorem can thus be applied to ρ′. We obtain a (Γ, ρ′)-equivariant harmonic map
taking values in the geodesic. This harmonic map can be constructed by integrating the
harmonic 1-form having the cohomology class of m ◦ ρ ∈ H1(S,R).
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2.2. Proof of Theorem A. Let S be a closed oriented surface of negative Euler character-
istic, Γ its fundamental group, and ρ a representation of Γ into Isom(M,g) that does not fix
a point in ∂∞M . Fix an arbitrary hyperbolic metric g0 on S. By Labourie’s theorem, we can

consider a (Γ, ρ)-equivariant harmonic map f : (S̃, g̃0) → (M,g). Let Φ be the holomorphic
quadratic differential on S such that

f∗g = αg0 +Φ+ Φ̄

for some real function α.
Wolf’s theorem (combined with Schoen–Yau) gives us a hyperbolic metric g1 on S such

that g1 = α1g0 + Φ + Φ̄ for some positive function α1. Then our main theorem is the direct
consequence of the following lemma:

Lemma 2.1. Either f induces a diffeomorphism from S̃ to a totally geodesic plane H2 ⊂ M
of curvature −1, or we have

f∗g < g1

on all S.

Indeed, if we know this inequality holds, and since S is compact, there is a constant λ < 1
such that f∗g ≤ λ2g1. Let j1 be a holonomy representation of g1 (i.e. a representation of

Γ into PSL(2,R) such that (S, g1) is isometric to j1(Γ)\H
2). Then f : (S̃, g̃1) → H2 is λ-

Lipschitz and (j1, ρ)-equivariant, and therefore j1 dominates ρ.

2.2.1. The functions Hi and Li. Recall that g0 induces a natural hermitian metric on the line
bundle K2

S . When given a quadratic differential Φ, the function |Φ|2g0 is thus well-defined on
S.

Let us fix a metric g0 of curvature −1 on S, and let g′ be a non-negative symmetric 2-form
on S of the form

αg0 +Φ+ Φ̄,

with α a real function and Φ a holomorphic quadratic differential.

Lemma 2.2. We have:
eg0(g

′) = α,

det
g0

g′ = e(g′)2 − 4|Φ|2g0 .

Proof. In a local complex coordinate z, we have

g0 = σdzdz̄

for some real positive function σ, and

g′ = ασdzdz̄ + ϕdz2 + ϕ̄dz̄2

for some complex valued (holomorphic) function ϕ. In coordinates (x = ℜ(z), y = ℑ(z)), we
thus get

g0 = σ(dx2 + dy2)

and
g′ = (ασ + 2ℜ(ϕ))dx2 + (ασ − 2ℜ(ϕ))dy2 + 4ℑ(ϕ)dxdy.

From this, we deduce that
eg0(g

′) = α
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and

det
g0

(g′) = α2 − 4
|ϕ|2

σ2
= α2 − |Φ|2g0 .

�

Since g′ is non-negative, we obtain that e(g′)2−4|Φ|2g0 ≥ 0, from which we can deduce that
the system of equations {

x+ y = e(g′)
xy = |Φ|2g0

has two non-negative (eventually identical) solutions. We will use the following lemma:

Lemma 2.3. Let H and L be the two functions on S such that

• H ≥ L
• H + L = eg0(g

′)
• HL = |Φ|2g0

Then (H − L)2 = detg0 g
′, and wherever g′ is non degenerate, H and L are solutions of the

partial differential equation:

(8) ∆0 log(u) = −2κ(g′)

(
u−

|Φ|2

u

)
− 2

where κ(g′) denotes the Gauss curvature of the Riemannian metric g′.

Proof. The fact that (H − L)2 = detg0 g
′ is just a reformulation of Lemma 2.2. The second

point is a classical fact that can be found for instance in Schoen–Yau’s paper [39] (see also
[45]). Let us denote U the domain of S where g′ is non degenerate and f the identity on U ,
seen as a map from (U, g0) to (U, g′). Then

H = ‖∂f‖2

and
L =

∥∥∂̄f
∥∥2

(see [39, Equation (6)]). Equation (8) then follows from the fact that f is harmonic, since its
Hopf differential is holomorphic [39, equations (16) and (17)]. �

Let’s go back to our setting, where f∗g = e(f)g0 +Φ+ Φ̄ and where g1 = e(g1)g0 +Φ+ Φ̄.
We introduce H1 and L1 such that

H1 ≥ L1,

e(g1) = H1 + L1

and
H1L1 = |Φ|2 .

Similarly, let H2 and L2 be such that H2 ≥ L2,

e(f) = H2 + L2

and
H2L2 = |Φ|2 .

Then we have:

• L1,H1, L2,H2 are non-negative, and H1 > L1 everywhere,
• Vol1 = (H1 − L1)Vol0,
• detg0 f

∗g = (H2 − L2)
2,
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• H1, L1 are both solutions of the following partial differential equation:

(9) ∆0 log(u) = 2u− 2
|Φ|2

u
− 2

where ∆0 is the Laplace operator associated to the metric g0,
• On the open set U of S where f∗g is non degenerate, H2, L2 are both smooth and
solutions of

(10) ∆0 log(u) = 2βu− 2β
|Φ|2

u
− 2,

where β = −κ and κ is the sectional curvature of the Riemannian metric f∗g.

Remark 2.4. The domain U where f∗g is non-degenerate is either empty or dense, by [38,
Corollary of Theorem 3].

The following result is presumably well-known. For instance, it can be read between the
lines in [36, Lemma C.4] and [38, Theorem 7]. Since it is crucial in our approach, we detail
the argument here.

Lemma 2.5. For all x ∈ U we have κ(f∗g)(x) ≤ −1. Moreover, the inequality is strict,

unless the second fundamental form of f(S̃) vanishes at f(x̃) (x̃ being any lift of x in S̃). In

particular, if κ(f∗g) is identically −1 on U , then the image of Ũ by f is totally geodesic.

Proof. By definition of U , f restricted to the lift Ũ is an immersion. Let V ⊂ Ũ be an open

subset, small enough so that N := f̃(V ) is an embedded submanifold. Since f : (V, f∗g) →
(N, gN ) is an isometry, the only thing we want to prove is that (N, gN ) has curvature ≤ −1.
Take an orthonormal frame e1, e2 of TN . The curvature of N is related to the sectional
curvature of TN in the ambient space M by the following relation:

(11) κN = κM (TN) + 〈IIN (e1, e1), II
N (e2, e2)〉 − ||IIN (e1, e2)||

2,

where IIN (u, v) is the second fundamental form of N . This formula can be re-expressed as

(12) κN = κM (TN) +
codim(N)

Jac(f)2
· E

(
det
g0

(〈IIN (df(·), df(·)), n〉)

)

where the average is taken over all the unitary vectors n normal to N with respect to nor-
malized Haar measure, and Jac(f) stands for the Jacobian of the map f : (V, g0) → (N, g).

The second fundamental form of f (see (3)) and of N are related by

(13) IIf (X,Y ) = IIN (df(X), df(Y )) + df
(
∇f∗g

X Y −∇g0
XY

)
.

In particular, since both summands on the right hand side are orthogonal, using the har-
monicity of f , we infer that

Trg0 IIN (df(·), df(·)) = 0,

and in particular for every unitary vector n ∈ TM normal to TN , we get

Trg0〈II
N (df(·), df(·)), n〉 = 0.

This shows that the eigenvalues of the quadratic form 〈IIN (df(·), df(·)), n〉 are opposite, hence
detg0(〈II

N (df(·), df(·)), n〉) ≤ 0, with equality if only if the quadratic form 〈IIN (df(·), df(·)), n〉
vanishes. From (12), we deduce that κN ≤ κM (TN) ≤ −1. Equality implies the vanishing of
the second fundamental form. This proves the lemma. �
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Lemma 2.6. Either f induces a diffeomorphism from S̃ to a totally geodesic plane H2 ⊂ M
of curvature −1, or we have

H2 < H1.

Proof. Recall that U is the domain of S where f∗g is non-degenerate. First, note that on the
complement of U , we have

H2 = L2 =
√

|Φ|2g0 =
√

L1H1 < H1.

We shall then only focus on what happens in the domain U .
Note that H1 does not vanish since H1 > L1 ≥ 0. Let x be a point on S such that

H2(x)/H1(x) is maximal. Assume by contradiction that H2(x) > H1(x). Then since H2L2 =
H1L1, we have L2(x) < H2(x), and therefore x belongs to U . Equations (9) and (10) and the
relation H2L2 = |Φ|2g0 show that at the point x,

(14) ∆0 log

(
H2

H1

)
= 2(H2 −H1) + 2|Φ|2g0

(
1

H1
−

1

H2

)
+ 2(β − 1) (H2 − L2) ,

where β = −κ(f∗g). By Lemma 2.5, we have β ≥ 1. Since H2 ≥ L2 by hypothesis, the
last summand in equation (14) is non negative. Therefore, the assumption H2 > H1 clearly

implies that ∆0 log
(
H2

H1

)
(x) > 0, which contradicts the fact that log

(
H2

H1

)
admits a maximum

at x. At this maximum, we must have H2 ≤ H1, and thus H2 ≤ H1 everywhere.
To get the strict bound, we will use the following version of the strict maximum principle,

which was probably already known by Picard (see [31], Theorem 1 for a slightly more general
version).

Lemma 2.7 (Picard). Let w be a real non-positive function on a domain U of C, such that
∆w ≥ Kw for some constant K > 0. Then either w ≡ 0 on U , or w < 0 on U .

In this theorem, ∆ is a priori the Laplace operator associated to a flat metric, but, since it
is a local result, the conclusion still holds for any conformal metric. We apply Lemma 2.7 to

the function w = log
(
H2

H1

)
. Since β ≥ 1, equation (14) shows that

∆0 log

(
H2

H1

)
≥

(
2 +

2|Φ|2g0
H1H2

)
(H2 −H1),

so that we get
∆0w ≥ 2(H1 + L2)(e

w − 1) ≥ Kw,

where K := 2maxS(H1 +L2). Lemma 2.7 shows that either H2 is identically equal to H1 on
U , or H2 < H1 on U . But on the complement of U , we already saw that H2 < H1. In the case
H2 = H1, the complement of U is thus empty and equation (14) shows that necessarily β = 1

on S, hence κ(f∗g) = −1 on S. Lemma 2.5 shows that H2 = f(S̃) is a totally geodesic plane
of curvature −1. Moreover, in that case, we also have L2 = L1 and thus f∗g = g1, which
means that f : (S, g1) → M is an isometric embedding. Hence Lemma 2.6 is proved. �

Let us finish the proof of Lemma 2.1. According to Lemma 2.6, if f is not an isometric
embedding with totally geodesic image, then we have H2 < H1 everywhere. Since H2L2 =
H1L1 we also have L2 > L1. Therefore, (H2 − L2)

2 < (H1 − L1)
2, and by adding 4H2L2 =

4H1L1 to each member, we get that (H2 + L2)
2 < (H1 + L1)

2.
Now, remember that f∗g = (H2 +L2)g0 +Φ+ Φ̄ and g1 = (H1 +L1)g0 +Φ+ Φ̄. It is then

clear that H2 + L2 < H1 + L1 implies f∗g < g1.
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3. Extension of the theorem to lattices in PSL(2,R) with torsion

Here we extend the theorem when Γ is a lattice in PSL(2,R) with torsion.

Theorem F. Let Γ be a lattice in PSL(2,R) and ρ a representation of Γ into the isometry
group of a smooth complete simply connected Riemannian manifold M of sectional curvature
≤ −1. Then there exists a Fuchsian representation j : Γ → PSL(2,R) and a (j, ρ)-equivariant
map from H2 to M which is either a contraction or an isometric and totally geodesic embed-
ding.

Remark 3.1. Note that this result is relevant to the study of anti-de Sitter Lorentz manifolds
of dimension 3. Indeed, even when Γ is a lattice in PSL(2,R) with torsion, the action of Γj,ρ

on PSL(2,R) may not have any fixed point. If j strictly dominates ρ, then the action of Γj,ρ

on PSL(2,R) is properly discontinuous and cocompact. It is free if, furthermore, for any γ ∈ Γ
with torsion, ρ(γ) has order strictly smaller than γ. In that case, the quotient Γj,ρ\PSL(2,R)
is a smooth anti-de Sitter 3-manifold which is a Seifert bundle over the orbifold j(Γ)\H2.

Proof. By Selberg’s lemma, we can consider a finite index normal subgroup Γ0 ⊂ Γ which is
torsion-free. Hence the quotient S = Γ0\H

2 is a closed hyperbolic surface. We now mimic
the proof of the main theorem.

Assume first that the action of ρ(Γ) on ∂∞M does not have any finite orbit, ρ(Γ0) does
not fix a point in ∂∞M . Let f be the unique (Γ0, ρ)-equivariant harmonic map from H2 to
M . We prove that f is actually (Γ, ρ)-equivariant. Indeed, for some γ ∈ Γ, consider the map
γ · f : x → ρ(γ)−1f(γ · x). It is harmonic and (Γ0, ρ)-equivariant. By uniqueness, γ · f = f ,

and we get that f(γ · x) = ρ(γ) · f(x). This being true for any γ ∈ Γ, we obtain that f̃ is
(Γ, ρ)-equivariant.

Let g0 denote the hyperbolic metric on S = Γ0\H
2. Then g0 is Γ/Γ0-invariant, and so

is the Hopf differential Φ of f̃ . Hence, the unique hyperbolic metric g1 on S of the form
g1 = αg0+Φ+Φ̄ is Γ/Γ0-invariant. Therefore, g1 induces an orbifold hyperbolic metric on the
quotient of S by Γ/Γ0. The holonomy of this metric gives a representation j : Γ → PSL(2,R).

By construction, the map f̃ is (j, ρ)-equivariant and for the same reason as before, it is either
a contraction or an isometric and totally geodesic embedding.

Again, we must deal separately with the specific case where ρ(Γ) has a finite orbit in
∂∞M . If this orbit contains at least three points, then it has a well-defined barycenter in
M which is fixed by ρ(Γ) and the length spectrum of ρ is identically 0. When this orbit has
one or two points, the length spectrum of ρ is the same as the one of some representation
m : Γ → Isom(R) (see section 2.1).

In that case, one can still consider a (Γ0,m)-equivariant harmonic map f : H2 → R. Some
care must be taken because this map is only unique up to translation. The map γ · f defined
as before is still (Γ0,m)-equivariant and harmonic. It differs from f by a translation, so that
they both have the same Hopf differential Φ. Therefore, Φ is Γ-invariant and the Fuchsian
representation associated to g1 still extends to a representation j : Γ → PSL(2,R). Lastly,
the map f may not be (j, ρ)-equivariant, but one easily checks that the barycenter map

f̄ =
1

[Γ : Γ0]

∑

γ∈Γ/Γ0

γ · f

is (j, ρ)-equivariant and still contracting.
�
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4. Perspectives for higher rank representations

If G is a simple Lie group of rank ≥ 2 and X its symmetric space, then the sectional
curvature of X is not bounded away from 0 and our theorem does not apply to representations
in G. We shall state some remarks and questions in this context.

First, we need to conveniently choose a normalization of the metric on X. To do this, one
can note that, though the sectional curvature is not pinched away from 0, there is a negative
upper bound on the curvature of totally geodesic hyperbolic planes. We choose to normalize
the metric on X so that this upper bound is exactly −1.

With this convention, it is not true in general that a representation of Γ into G can be
dominated by a Fuchsian one unless it is Fuchsian in restriction to some stable hyperbolic
plane of curvature −1. When G is PSL(n,R), for instance, those Fuchsian representations
preserving a totally geodesic plane of curvature −1 can be continuously deformed into so-
called Hitchin representations. In contrast with Theorem A, several results tend to show that
Fuchsian representations are “minimal” among Hitchin representations (see [22, Proposition
10.1], and more recently [35]).

In the case where n = 3, the work of Loftin [30], together with a recent result of Benoist–
Hulin [2, Proposition 3.4], implies that one can find Hitchin representations “as big as we
want”. More precisely, for any Fuchsian representation j and any constant C, there is a
Hitchin representation ρ in PSL(3,R) such that

Lρ ≥ CLj

(see [33] or [43, Corollary 3.6]). We expect this to be true in any dimension n ≥ 3.
Our theorem can thus be generalized as follows: for any linear representation ρ, there is

a Hitchin representation j in PSL(3,R) such that Lj ≥ Lρ. However, this fact cannot give
any interesting control on higher rank representations such as a systole or a Bers constant,
precisely because Hitchin representations can be “as big as we want”.

A more subtle generalization of our theorem could arise in the theory of Higgs bundles.
Indeed, one could hope that, in any fiber of the Hitchin fibration, the Hitchin representation
maximizes every translation length. For representations in PSL(2,C) = Isom+(H3), this is a
reformulation of our theorem. A generalization in higher dimension would be a step forward
in understanding the relation between geometric properties of linear representations and their
parametrization by Higgs bundles.
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