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Abstract

The concept of signature is a useful tool in the analysis of semicoherent systems
with continuous and i.i.d. component lifetimes, especially for the comparison
of different system designs and the computation of the system reliability. For
such systems, we provide conversion formulas between the signature and the
reliability function through the corresponding vector of dominations and we
derive efficient algorithms for the computation of any of these concepts from
the other. We also show how the signature can be easily computed from the
reliability function via basic manipulations such as differentiation, coefficient
extraction, and integration.
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1. Introduction

Consider an n-component system (C, ϕ), where C is the set [n] = {1, . . . , n} of its
components and ϕ : {0, 1}n → {0, 1} is its structure function which expresses the state
of the system in terms of the states of its components. We assume that the system
is semicoherent, which means that the structure function ϕ is nondecreasing in each
variable and satisfies the conditions ϕ(0, . . . , 0) = 0 and ϕ(1, . . . , 1) = 1. We also
assume that the components have continuous and i.i.d. lifetimes T1, . . . , Tn.

Samaniego [10] introduced the signature of such a system as the n-vector s =
(s1, . . . , sn) whose k-th coordinate sk is the probability that the k-th component failure
causes the system to fail. That is,

sk = Pr(TS = Tk:n), k = 1, . . . , n,

where TS denotes the system lifetime and Tk:n denotes the k-th smallest lifetime. From
this definition one can immediately derive the identity

∑n
k=1 sk = 1.

It is very often convenient to express the signature vector s in terms of the tail
signature of the system, a concept introduced by Boland [3] and named so by Gertsbakh
et al. [5]. The tail signature of the system is the (n+1)-vector S = (S0, . . . , Sn) defined
from s by

Sk =
n∑

i=k+1

si , k = 0, . . . , n. (1)
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In particular, we have S0 = 1 and Sn = 0. Moreover, it is clear that the signature s
can be retrieved from the tail signature S through the formula

sk = Sk−1 − Sk , k = 1, . . . , n. (2)

Recall also that the reliability function associated with the structure function ϕ is the
unique multilinear polynomial function h : [0, 1]n → R whose restriction to {0, 1}n is
precisely the structure function ϕ. Since the component lifetimes are independent, this
function expresses the reliability of the system in terms of the component reliabilities
(for general background see [2, Chap. 2] and for a more recent reference see [9, Section
3.2]).

By identifying the variables of the reliability function, we obtain a real polynomial
function h(x) of degree at most n. The n-vector d = (d1, . . . , dn) whose k-th coordinate
dk is the coefficient of xk in h(x) is called the vector of domination of the system (see,
e.g., [11, Sect. 6.2]).

The computation of the signature of a large system by means of the usual methods
may be cumbersome and tedious since it requires the evaluation of the structure
function ϕ at every element of {0, 1}n. However, Boland et al. [4] observed that the n-
vectors s and d can always be computed from each other through simple bijective linear
transformations (see also [11, Sect. 6.3]). Although these linear transformations were
not given explicitly, they show that the signature vector s can be efficiently computed
from the domination vector d, or equivalently, from the polynomial function h(x).
Since Eqs. (1) and (2) provide linear conversion formulas between vectors s and S, we
observe that any of the vectors s, S, and d can be computed from any other by means
of a bijective linear transformation (see Figure 1).
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Figure 1: Bijective linear transformations

After recalling some basic formulas in Section 2 of this paper, in Section 3 we yield
these linear transformations explicitly and present them as linear conversion formulas.
From these conversion formulas we derive algorithms for the computation of any of
these vectors from any other. These algorithms prove to be very efficient since they
require at most 1

2n(n+ 1) additions and multiplications.

We also show how the computation of the vectors s and S can be easily performed
from basic manipulations of function h(x) such as differentiation, reflection, coefficient
extraction, and integration. For instance, we establish the polynomial identity (see
Eq. (26))

n∑
k=1

(
n

k

)
sk x

k =

∫ x

0

(Rn−1h′)(t+ 1) dt , (3)

where h′(x) is the derivative of h(x) and (Rn−1h′)(x) is the polynomial function
obtained from h′(x) by switching the coefficients of xk and xn−1−k for k = 0, . . . , n−1.
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Applying this result to the classical 5-component bridge system (see Example 1 below),
we can easily see that Eq. (3) reduces to

5s1 x+ 10s2 x
2 + 10s3 x

3 + 5s4 x
4 + s5 x

5 = 2x2 + 6x3 + x4 .

By equating the corresponding coefficients we immediately obtain the signature vector
s = (0, 15 ,

3
5 ,

1
5 , 0).

In Section 4 we examine the general non-i.i.d. setting where the component lifetimes
T1, . . . , Tn may be dependent. We show how a certain modification of the structure
function enables us to formally extend almost all the conversion formulas and algo-
rithms obtained in Sections 2 and 3 to the general dependent setting. Finally, we end
our paper in Section 5 by some concluding remarks.

2. Preliminaries

Boland [3] showed that every coordinate sk of the signature vector can be explicitly
written in the form

sk =
∑
A⊆C

|A|=n−k+1

1(
n
|A|

) ϕ(A)− ∑
A⊆C

|A|=n−k

1(
n
|A|

) ϕ(A) . (4)

Here and throughout we identify Boolean n-vectors x ∈ {0, 1}n and subsets A ⊆ [n]
in the usual way, that is, by setting xi = 1 if and only if i ∈ A. Thus we use the
same symbol to denote both a function f : {0, 1}n → R and the corresponding set
function f : 2[n] → R interchangeably. For instance, we write ϕ(0, . . . , 0) = ϕ(∅) and
ϕ(1, . . . , 1) = ϕ(C).

As mentioned in the introduction, the reliability function associated with the struc-
ture function ϕ is the multilinear function h : [0, 1]n → R defined by

h(x) = h(x1, . . . , xn) =
∑
A⊆C

ϕ(A)
∏
i∈A

xi
∏

i∈C\A

(1− xi). (5)

It is easy to see that this function can always be put in the unique standard multilinear
form

h(x) =
∑
A⊆C

d(A)
∏
i∈A

xi , (6)

where, for every A ⊆ C, the coefficient d(A) is an integer.
By identifying the variables x1, . . . , xn in function h(x), we define its diagonal

section h(x, . . . , x), which we have simply denoted by h(x). From Eqs. (5) and (6)
we immediately obtain

h(x) =
∑
A⊆C

ϕ(A)x|A|(1− x)n−|A| =
∑
A⊆C

d(A)x|A| ,

or equivalently,

h(x) =
n∑

k=0

ϕk x
k(1− x)n−k =

n∑
k=0

dk x
k , (7)
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where

ϕk =
∑
A⊆C
|A|=k

ϕ(A) and dk =
∑
A⊆C
|A|=k

d(A) , k = 0, . . . , n. (8)

Clearly, we have ϕ0 = ϕ(∅) = 0 and d0 = d(∅) = h(0) = 0. As already mentioned,
the n-vector d = (d1, . . . , dn) is called the vector of dominations of the system.

Example 1. Consider the bridge structure as indicated in Figure 2. The correspond-
ing structure function is given by

ϕ(x1, . . . , x5) = x1 x4 ⨿ x2 x5 ⨿ x1 x3 x5 ⨿ x2 x3 x4 ,

where ⨿ is the (associative) coproduct operation defined by x⨿ y = 1− (1−x)(1− y).
The corresponding reliability function, given in Eq. (5), can be computed by expanding
the coproducts in ϕ and then simplifying the resulting algebraic expression using x2i =
xi. We have

h(x1, . . . , x5) = x1x4 + x2x5 + x1x3x5 + x2x3x4

− x1x2x3x4 − x1x2x3x5 − x1x2x4x5 − x1x3x4x5 − x2x3x4x5

+ 2x1x2x3x4x5 .

We then obtain its diagonal section h(x) = 2x2 + 2x3 − 5x4 + 2x5 and finally the
domination vector d = (0, 2, 2,−5, 2).
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Figure 2: Bridge structure

Example 1 illustrates the important fact that the reliability function h(x) of any
system can be easily obtained from the minimal path sets simply by first expressing
the structure function as a coproduct over the minimal path sets and then expanding
the coproduct and simplifying the resulting algebraic expression (using x2i = xi) until
it becomes multilinear. The diagonal section h(x) of the reliability function is then
obtained by identifying all the variables.

This observation is crucial since, when combined with an efficient algorithm for
converting the polynomial function h(x) into the signature vector, it provides an
efficient way to compute the signature of any system from its minimal path sets.

3. Conversion formulas

Recall that Eq. (6) gives the standard multilinear form of the reliability function
h(x). As mentioned for instance in [9, p. 31], the link between the coefficients d(A)
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and the values ϕ(A) is given through the following linear conversion formulas (obtained
from the Möbius inversion theorem)

ϕ(A) =
∑
B⊆A

d(B) and d(A) =
∑
B⊆A

(−1)|A|−|B| ϕ(B) . (9)

The following proposition yields the linear conversion formulas between the n-vectors
d = (d1, . . . , dn) and (ϕ1, . . . , ϕn). Note that an alternative form of Eq. (11) was
previously found by Samaniego [11, Sect. 6.3].

Proposition 1. We have

ϕk =
k∑

j=0

(
n− j

k − j

)
dj , k = 1, . . . , n, (10)

and

dk =
k∑

j=0

(−1)k−j

(
n− j

k − j

)
ϕj , k = 1, . . . , n. (11)

Proof. By Eqs. (8) and (9) we have

ϕk =
∑
A⊆C
|A|=k

ϕ(A) =
∑
A⊆C
|A|=k

∑
B⊆A

d(B).

Permuting the sums and then setting j = |B|, we obtain

ϕk =
∑
B⊆C
|B|6k

d(B)
∑
A⊇B
|A|=k

1 =
∑
B⊆C
|B|6k

(
n− |B|
k − |B|

)
d(B) =

k∑
j=0

(
n− j

k − j

) ∑
B⊆C
|B|=j

d(B),

which proves Eq. (10). Formula (11) can be established similarly. This completes the
proof of the proposition.

We are now ready to establish conversion formulas and algorithms as announced in
the introduction.

3.1. Conversions between s and S

We already know that the linear conversion formulas between the vectors s and S
are given by Eqs. (1) and (2). This conversion can also be explicitly expressed by
means of a polynomial identity. Let

∑n
k=1 sk x

k and
∑n

k=0 Sk x
k be the generating

functions of vectors s and S, respectively. Then we have the polynomial identity

n∑
k=1

sk x
k = 1 + (x− 1)

n∑
k=0

Sk x
k. (12)

Indeed, using Eq. (2) and summation by parts, we obtain

n∑
k=1

sk x
k =

n∑
k=1

(
Sk−1 − Sk

)
xk = x+

n∑
k=1

Sk

(
xk+1 − xk

)
,
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which proves Eq. (12).
For instance, for the bridge system described in Example 1, the generating functions

of vectors s and S are given by 1
5 x

2 + 3
5 x

3 + 1
5 x

4 and 1+x+ 4
5 x

2+ 1
5 x

3, respectively.
We can easily verify that Eq. (12) holds for these functions.

3.2. Conversions between S and d

Combining Eq. (1) with Eqs. (4) and (8), we observe that

Sk =
1(
n
k

) ∑
A⊆C

|A|=n−k

ϕ(A) =
1(
n
k

) ϕn−k , k = 0, . . . , n. (13)

Recall that a path set of the system is a component subset A such that ϕ(A) = 1.
It follows from Eq. (13) that ϕk is precisely the number of path sets of size k and that
Sn−k is the proportion of component subsets of size k which are path sets. We also
observe that the leading coefficient dn of h(x), also known as the signed domination [1]
of h(x), is zero if and only if there are as many path sets of odd sizes as path sets of even
sizes. This observation immediately follows from the identity dn =

∑n
j=0(−1)n−j ϕj ,

obtained by setting k = n in Eq. (11).
Combining Eqs. (10) and (11) with Eq. (13), we immediately obtain the following

conversion formulas between the vectors S and d.

Proposition 2. We have

Sk =

n−k∑
j=0

(
n−j
k

)(
n
k

) dj =

n−k∑
j=0

(
n−k
j

)(
n
j

) dj , k = 0, . . . , n, (14)

dk =

(
n

k

) k∑
j=0

(−1)k−j

(
k

j

)
Sn−j , k = 0, . . . , n. (15)

Equation (15) can be rewritten in a simpler form by using the classical difference
operator ∆i which maps a sequence zi to the sequence ∆izi = zi+1 − zi. Defining the

k-th difference ∆k
i zi of a sequence zi recursively as ∆0

i zi = zi and ∆k
i zi = ∆i∆

k−1
i zi,

we can show by induction on k that

∆k
i zi =

k∑
j=0

(−1)k−j

(
k

j

)
zi+j . (16)

Comparing Eq. (15) with Eq. (16) immediately shows that Eq. (15) can be rewritten
as

dk =

(
n

k

)(
∆k

i Sn−i

)∣∣
i=0

, k = 1, . . . , n, (17)

and the vector d can then be computed efficiently from a classical difference table (see
Table 1).

Setting Dj,k =
(
n
k

)
(∆k

i Sn−i)|i=j , from Eq. (17) we can easily derive the following
algorithm for the computation of d. This algorithm requires only 1

2n(n+ 1) additions
and multiplications.
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Sn (
n
1

)
(∆iSn−i)|i=0

Sn−1

(
n
2

)
(∆2

iSn−i)|i=0(
n
1

)
(∆iSn−i)|i=1

(
n
3

)
(∆3

iSn−i)|i=0

Sn−2

(
n
2

)
(∆2

iSn−i)|i=1

...(
n
1

)
(∆iSn−i)|i=2

...

Sn−3

...
...

Table 1: Computation of d from S

Algorithm 1. The following algorithm inputs vector S and outputs vector d. It uses
the variables Dj,k for k = 0, . . . , n and j = 0, . . . , n− k.

Step 1. For j = 0, . . . , n, set Dj,0 := Sn−j .

Step 2. For k = 1, . . . , n

For j = 0, . . . , n− k

Dj,k := n−k+1
k (Dj+1,k−1 −Dj,k−1)

Step 3. For k = 0, . . . , n, set dk := D0,k.

Example 2. Consider the bridge system described in Example 1. The corresponding
tail signature vector is given by S = (1, 1, 45 ,

1
5 , 0, 0). Forming the difference table (see

Table 2) and reading its first row, we obtain the vector d = (0, 2, 2,−5, 2) and therefore
the function h(x) = 2x2 + 2x3 − 5x4 + 2x5.

0
0

0 2
1 2

1/5 4 −5
3 −8 2

4/5 −4 5
1 2

1 −2
0

1

Table 2: Computation of d from S (Example 2)

The converse transformation (14) can then be computed efficiently by the following
algorithm, in which we compute the quantities

Sj,k =

k∑
i=0

(
k
i

)(
i+j
i

)(
n−j
i

) di+j .
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Algorithm 2. The following algorithm inputs vector d and outputs vector S. It uses
the variables Sj,k for k = 0, . . . , n and j = 0, . . . , n− k.

Step 1. For j = 0, . . . , n, set Sj,0 := dj .

Step 2. For k = 1, . . . , n

For j = 0, . . . , n− k

Sj,k := j+1
n−j Sj+1,k−1 + Sj,k−1

Step 3. For k = 0, . . . , n, set Sn−k := S0,k.

3.3. Conversions between s and d

The following proposition yields the conversion formulas between the vectors s and
d. Note that a non-explicit version of Eq. (18) was previously found in Boland et al. [4]
(see also Theorem 6.1 in [11]).

Proposition 3. We have

sk =

n−k∑
j=0

(
n−j
k

)(
n
k

) j + 1

n− j
dj+1 =

n−k+1∑
j=1

(
n−k
j−1

)(
n
j

) dj , k = 1, . . . , n, (18)

dk =

(
n

k

) k−1∑
j=0

(−1)k−1−j

(
k − 1

j

)
sn−j , k = 1, . . . , n. (19)

dk =

(
n

k

)(
∆k−1

i sn−i

)∣∣
i=0

, k = 1, . . . , n, (20)

Proof. Combining Eq. (14) with Eq. (2), we obtain

sk = Sk−1 − Sk =

n−k+1∑
j=1

(
n−k+1

j

)(
n
j

) dj −
n−k∑
j=1

(
n−k
j

)(
n
j

) dj

=
n−k∑
j=1

(
n−k
j−1

)(
n
j

) dj +
1(
n

n−k+1

) dn−k+1 ,

which proves Eq. (18). By Eq. (2) we have ∆iSn−i = sn−i for i = 0, . . . , n − 1.
Equation (20) then follows from Eq. (17). Equation (19) then follows immediately
from Eq. (20). This completes the proof of the proposition.

Equation (20) shows that d can be efficiently computed directly from s by means of
a difference table (see Table 3).

Setting dj,k =
(
n
k

)
(∆k−1

i sn−i)|i=j−1, we can also derive the following algorithm for
the computation of vector d. This algorithm requires only 1

2n(n − 1) additions and
multiplications.

Algorithm 3. The following algorithm inputs vector s and outputs vector d. It uses
the variables dj,k for k = 1, . . . , n and j = 1, . . . , n− k + 1.

Step 1. For j = 1, . . . , n, set dj,1 := n sn−j+1.
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(
n
1

)
sn (

n
2

)
(∆isn−i)|i=0(

n
1

)
sn−1

(
n
3

)
(∆2

i sn−i)|i=0(
n
2

)
(∆isn−i)|i=1

(
n
4

)
(∆3

i sn−i)|i=0(
n
1

)
sn−2

(
n
3

)
(∆2

i sn−i)|i=1

...(
n
2

)
(∆isn−i)|i=2

...(
n
1

)
sn−3

...
...

Table 3: Computation of d from s

Step 2. For k = 2, . . . , n

For j = 1, . . . , n− k + 1

dj,k := n−k+1
k (dj+1,k−1 − dj,k−1)

Step 3. For k = 1, . . . , n, set dk := d1,k.

Example 3. Consider again the bridge system described in Example 1. The corre-
sponding signature vector is given by s = (0, 15 ,

3
5 ,

1
5 , 0). Forming the difference table

(see Table 4) and reading its first row, we obtain the vector d = (0, 2, 2,−5, 2) and
hence the function h(x) = 2x2 + 2x3 − 5x4 + 2x5.

0
2

1 2
4 −5

3 −8 2
−4 5

1 2
−2

0

Table 4: Computation of d from s (Example 3)

The converse transformation (18) can then be computed efficiently by the following
algorithm, in which we compute the quantities

sj,k =
1

n

k∑
i=1

(
k−1
i−1

)(
i+j−1
i−1

)(
n−j
i−1

) di+j−1 .

Algorithm 4. The following algorithm inputs vector d and outputs vector s. It uses
the variables sj,k for k = 1, . . . , n and j = 1, . . . , n− k + 1.

Step 1. For j = 1, . . . , n, set sj,1 := 1
n dj .
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Step 2. For k = 2, . . . , n

For j = 1, . . . , n− k + 1

sj,k := j+1
n−j sj+1,k−1 + sj,k−1

Step 3. For k = 1, . . . , n, set sn−k+1 := s1,k.

3.4. Conversions between S or s and h(x)

The conversion formulas between vectors s and d show that the diagonal section
h(x) of the reliability function encodes exactly the signature (or equivalently, the tail
signature), no more, no less. Even though the latter can be computed from vector d
using Eqs. (14) and (18), we will now see how we can compute it by direct and simple
algebraic manipulations of function h(x).

Let f be a univariate polynomial of degree 6 n,

f(x) = an x
n + an−1 x

n−1 + · · ·+ a1 x+ a0 .

The n-reflected of f is the polynomial Rnf obtained from f by switching the coefficients
of xk and xn−k for k = 0, . . . , n; that is,

(Rnf)(x) = a0 x
n + a1 x

n−1 + · · ·+ an−1 x+ an ,

or equivalently, (Rnf)(x) = xn f(1/x).
Combining Eq. (7) with Eq. (13), we obtain (see also [4])

h(x) =
n∑

k=0

Sn−k

(
n

k

)
xk(1− x)n−k. (21)

From this equation it follows, as it was already observed in [8], that

(Rnh)(x+ 1) =

n∑
k=0

(
n

k

)
Sk x

k. (22)

Thus,
(
n
k

)
Sk can be obtained simply by reading the coefficient of xk in the polynomial

function (Rnh)(x + 1). Denoting by [xk]f(x) the coefficient of xk in a polynomial
function f(x), Eq. (22) can be rewritten as(

n

k

)
Sk = [xk](Rnh)(x+ 1), k = 0, . . . , n. (23)

From Eq. (23) we immediately derive the following algorithm (see also [8]).

Algorithm 5. The following algorithm inputs n and h(x) and outputs S.

Step 1. For k = 0, . . . , n, let ak be the coefficient of xk in the n-degree
polynomial (Rnh)(x+ 1) = (x+ 1)n h

(
1

x+1

)
.

Step 2. We have Sk = ak/
(
n
k

)
for k = 0, . . . , n.

The following proposition yields the analog of Eqs. (22) and (23) for the signature.
Here and throughout we denote by h′(x) the derivative of h(x).
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Proposition 4. We have

k

(
n

k

)
sk = [xk−1](Rn−1h′)(x+ 1), k = 1, . . . , n, (24)

n∑
k=1

(
n

k

)
sk k x

k−1 = (Rn−1h′)(x+ 1) , (25)

n∑
k=1

(
n

k

)
sk x

k =

∫ x

0

(Rn−1h′)(t+ 1) dt . (26)

Proof. By Eq. (7) we have h′(x) =
∑n−1

j=0 (j + 1) dj+1 x
j and therefore

(Rn−1h′)(x+ 1) =

n−1∑
j=0

(j + 1) dj+1(x+ 1)n−1−j

=
n−1∑
j=0

(j + 1) dj+1

n−j∑
k=1

(
n− 1− j

k − 1

)
xk−1

=

n∑
k=1

xk−1
n−k∑
j=0

(
n− 1− j

k − 1

)
(j + 1) dj+1.

Thus, the inner sum in the latter expression is the coefficient of xk−1 in the polynomial
function (Rn−1h′)(x+1). Dividing this sum by k

(
n
k

)
and then using Eq. (18), we obtain

sk. This proves Eqs. (24) and (25). Equation (26) is then obtained by integrating both
sides of Eq. (25) on the interval [0, x]. This completes the proof of the proposition.

From Eq. (24) we immediately derive the following algorithm.

Algorithm 6. The following algorithm inputs n and h(x) and outputs s.

Step 1. For k = 1, . . . , n, let ak−1 be the coefficient of xk−1 in the (n − 1)-
degree polynomial (Rn−1h′)(x+ 1) = (x+ 1)n−1 h′

(
1

x+1

)
.

Step 2. We have sk = ak−1/(k
(
n
k

)
) for k = 1, . . . , n.

Even though such an algorithm can be easily executed by hand for small n, a
computer algebra system can be of great assistance for large n.

Example 4. Consider again the bridge system described in Example 1. We have

h′(x) = 4x+ 6x2 − 20x3 + 10x4 and (R4h′)(x) = 10− 20x+ 6x2 + 4x3.

It follows that (R4h′)(x + 1) = 4x + 18x2 + 4x3 and hence s =
(
0, 15 ,

3
5 ,

1
5 , 0

)
by

Algorithm 6. Indeed, we have for instance s3 = a2/(3
(
5
3

)
) = 3

5 .

The following proposition, established in [8], provides a necessary and sufficient
condition on the system signature for the reliability function to be of full degree (i.e.,
the corresponding signed domination dn is nonzero). Here we provide a shorter proof
based on Eq. (25).
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Proposition 5. ([8].) Let (C, ϕ) be an n-component semicoherent system with contin-
uous and i.i.d. component lifetimes. Then the reliability function h(x) (or equivalently,
its diagonal section h(x)) is a polynomial of degree n if and only if∑

k odd

(
n− 1

k − 1

)
sk ̸=

∑
k even

(
n− 1

k − 1

)
sk .

Proof. The function h(x) is of degree n if and only if h′(x) is of degree n − 1 and
this condition holds if and only if dn = 1

n (R
n−1h′)(0) ̸= 0. By Eq. (25) this means

that
n∑

k=1

(
n

k

)
sk k (−1)k−1 = n

n∑
k=1

(
n− 1

k − 1

)
sk (−1)k−1

is not zero. This completes the proof of the proposition.

The vectors s and S can also be computed via their generating functions. The
following proposition yields integral formulas for these functions.

Proposition 6. We have

n∑
k=0

Sk x
k =

∫ 1

0

(n+ 1)Rn
t

(
(Rnh)((t− 1)x+ 1)

)
dt , (27)

n∑
k=1

sk x
k =

∫ 1

0

xRn−1
t

(
(Rn−1h′)((t− 1)x+ 1)

)
dt , (28)

where Rn
t is the n-reflection with respect to variable t.

Proof. By Eq. (22), we have

(Rnh)((t− 1)x+ 1) =
n∑

k=0

(
n

k

)
Sk (t− 1)kxk

and hence

Rn
t

(
(Rnh)((t− 1)x+ 1)

)
=

n∑
k=0

(
n

k

)
Sk t

n−k (1− t)kxk.

Integrating this expression from t = 0 to t = 1 and using the well-known identity∫ 1

0

tn−k (1− t)k dt =
1

(n+ 1)
(
n
k

) , (29)

we finally obtain Eq. (27). Formula (28) can be proved similarly by using Eq. (25).
This completes the proof of the proposition.

From Eq. (28) we immediately derive the following algorithm for the computation
of the generating function of the signature. The algorithm corresponding to Eq. (27)
can be derived similarly.

Algorithm 7. The following algorithm inputs n and h(x) and outputs the generating
function of vector s.
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Step 1. Let f(t, x) = x (Rn−1h′)((t− 1)x+ 1).

Step 2. We have
∑n

k=1 sk x
k =

∫ 1

0
(Rn−1

1 f)(t, x) dt, where Rn−1
1 is the (n− 1)-

reflection with respect to the first argument.

The computation of h(x) from s or S can be useful if we want to compute the system
reliability h(p) directly from the signature and the component reliability p.

We already know that Eq. (21) gives the polynomial h(x) in terms of vector S. The
following proposition yields simple expressions of h(x) and h′(x) in terms of vector s.
This result was already presented in [6, Sect. 4] and [8, Rem. 2] in alternative forms.

Proposition 7. We have

h′(x) =
n∑

k=1

sk k

(
n

k

)
xn−k(1− x)k−1 , (30)

h(x) =
n∑

k=1

sk Ix(n− k + 1, k) =
n∑

k=1

sk

n∑
i=n−k+1

(
n

i

)
xi(1− x)n−i , (31)

where Ix(a, b) is the regularized beta function defined, for any a, b, x > 0, by

Ix(a, b) =

∫ x

0
ta−1(1− t)b−1 dt∫ 1

0
ta−1(1− t)b−1 dt

.

Proof. Formula (30) immediately follows from Eq. (25). Then, from Eqs. (29) and
(30) we immediately derive the first equality in Eq. (31) since h(x) =

∫ x

0
h′(t) dt.

The second equality follows from Eqs. (1) and (21). This completes the proof of the
proposition.

The following proposition provides alternative expressions of h(x) and h′(x) in terms
of S and s, respectively.

Proposition 8. We have

h(x) =
(
(x∆i + I)n Sn−i

)∣∣
i=0

, (32)

h′(x) = n
(
(x∆i + I)n−1 sn−i

)∣∣
i=0

, (33)

where I denote the identity operator.

Proof. By Eq. (17) we have

h(x) =
n∑

k=0

dk x
k =

n∑
k=0

(
n

k

)
xk

(
∆k

i Sn−i

)∣∣
i=0

,

which proves Eq. (32) as we can immediately see by formally expanding the binomial
operator expression (x∆i+I)

n. Equation (33) then immediately follows from Eq. (32).
This completes the proof of the proposition.

Proposition 8 shows that the functions h(x) and h′(x) can be computed from
difference tables. Setting

Dj,k(x) = ((x∆i + I)k Sn−i)|i=j and dj,k(x) = n((x∆i + I)k−1 sn−i)|i=j−1,

we can derive the following algorithms for the computation of h(x) and h′(x).
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Algorithm 8. The following algorithm inputs vector S and outputs function h(x). It
uses the functions Dj,k(x) for k = 0, . . . , n and j = 0, . . . , n− k.

Step 1. For j = 0, . . . , n, set Dj,0(x) := Sn−j .

Step 2. For k = 1, . . . , n

For j = 0, . . . , n− k

Dj,k(x) := xDj+1,k−1(x) + (1− x)Dj,k−1(x)

Step 3. h(x) := D0,n(x).

Algorithm 9. The following algorithm inputs vector s and outputs function h′(x). It
uses the functions dj,k(x) for k = 1, . . . , n and j = 1, . . . , n− k + 1.

Step 1. For j = 1, . . . , n, set dj,1(x) := n sn−j+1.

Step 2. For k = 2, . . . , n

For j = 1, . . . , n− k + 1

dj,k(x) := x dj+1,k−1(x) + (1− x) dj,k−1(x)

Step 3. h′(x) := d1,n(x).

Table 5 summarizes the main conversion formulas obtained thus far. They are given
by the corresponding equation numbers. For instance, formulas to compute s from d
or h(x) are given in Eqs. (18), (24), (26), and (28).

d or h(x) s S
d or h(x) (19)(20)(31) (15)(17)(21)(32)

s (18)(24)(26)(28) (2)(12)
S (14)(23)(27) (1)(12)

Table 5: Conversion formulas

3.5. Conversions based on the dual structure

We end this section by giving conversion formulas involving the dual structure of the
system. Let ϕD : {0, 1}n → {0, 1} be the dual structure function defined as ϕD(x) =
1 − ϕ(1 − x), where 1 − x = (1 − x1, . . . , 1 − xn), and let hD : [0, 1]n → R be its
corresponding reliability function, that is, hD(x) = 1− h(1− x).

Straightforward computations yield the following conversion formulas, where the
upper index D always refers to the dual structure and δ stands for the Kronecker



Conversion between system signatures and reliability functions 15

delta:

dDk = δk,0 − (−1)k
n∑

j=k

(
j

k

)
dj , k = 0, . . . , n, (34)

dk = δk,0 − (−1)k
n∑

j=k

(
j

k

)
dDj , k = 0, . . . , n, (35)

Sk = 1− S
D

n−k = 1−
k∑

j=0

(
k
j

)(
n
j

) dDj , k = 0, . . . , n, (36)

sk = sDn−k+1 =
k∑

j=1

(
k−1
j−1

)(
n
j

) dDj , k = 1, . . . , n, (37)

dDk = δk,0 −
(
n

k

)(
∆k

i Si

)∣∣
i=0

, k = 0, . . . , n, (38)

dDk =

(
n

k

)(
∆k−1

i si
)∣∣

i=1
, k = 1, . . . , n. (39)

Recall that ϕk gives the number of path sets of size k. Combining (13) with (22), we
obtain the identity

∑n
k=0 ϕn−k x

k = (Rnh)(x+ 1), from which we immediately derive
the following generating function

n∑
k=0

ϕk x
k = Rn((Rnh)(x+ 1)) = (x+ 1)n h

( x

x+ 1

)
.

Note that this function can also be obtained by using Eqs. (13), (36), and the dual
version of Eq. (22). Indeed, we have

n∑
k=0

ϕk x
k =

n∑
k=0

(
n

k

)
Sn−k x

k =

n∑
k=0

(
n

k

)
xk −

n∑
k=0

(
n

k

)
S
D

k x
k

= (x+ 1)n − (RnhD)(x+ 1).

4. The general dependent case

In this section we drop the i.i.d. assumption and consider the general dependent
setting, assuming only that there are no ties among the component lifetimes (i.e.,
Pr(Ti = Tj) = 0 whenever i ̸= j). As a consequence, the function h(x) may no longer
express the reliability of the system in terms of the component reliabilities.

Two concepts of signature emerge in this general setting. First, we can consider the
structure signature, that is, the n-vector s = (s1, . . . , sn) whose k-th coordinate is given
by Boland’s formula (4). Of course, the conversion formulas and algorithms obtained
in Sections 2 and 3 can still be used “as is”, even if the i.i.d. assumption is dropped.
Second, we can consider the probability signature, that is, the n-vector p = (p1, . . . , pn)
whose k-th coordinate is given by pk = Pr(TS = Tk:n).

We now elaborate on this latter case and show that a modification of the struc-
ture function enables us to formally extend almost all the conversion formulas and
algorithms obtained in Sections 2 and 3 to the general dependent setting.
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It was recently shown [7] that

pk =
∑
A⊆C

|A|=n−k+1

q(A)ϕ(A)−
∑
A⊆C

|A|=n−k

q(A)ϕ(A) , (40)

where the function q : 2[n] → R, called the relative quality function associated with the
system, is defined by

q(A) = Pr

(
max
i/∈A

Ti < min
i∈A

Ti

)
,

and has the property
∑

|A|=k q(A) = 1 for k = 0, . . . , n. Thus, for any subset A ⊆ C,

the number q(A) is the probability that the best |A| components of the system are
precisely those in A.

In the special case when the component lifetimes are i.i.d., or even exchangeable,
the number q(A) is exactly 1/

(
n
|A|

)
and therefore by comparing Eqs. (4) and (40) we

immediately see that the vector p then reduces to s. As mentioned in [7], this observa-
tion motivates the introduction of the normalized relative quality function q̃ : 2[n] → R,
defined by q̃(A) =

(
n
|A|

)
q(A). We then have q̃(A) = 1 whenever the component lifetimes

are i.i.d. or exchangeable.
Following a suggestion by P. Mathonet, we now assign to the system a pseudo-

structure function ψ : 2[n] → R defined so as to have∑
A⊆C
|A|=k

1(
n
|A|

) ψ(A) =
∑
A⊆C
|A|=k

q(A)ϕ(A), k = 0, . . . , n. (41)

Definition 1. Let (C, ϕ) be an n-component system with relative quality function q.
The q-structure function associated with the system is the set function ψ : 2[n] → R
defined by

ψ(A) = q̃(A)ϕ(A) =

{(
n
|A|

)
q(A), if A is a path set,

0, otherwise.

It is clear that ψ reduces to ϕ whenever the component lifetimes of the system
are i.i.d. or exchangeable. In the general dependent case, the function ψ is a pseudo-
Boolean function, that is, a function from {0, 1}n to R. As such, it has the following
multilinear form

ψ(x) =
∑
A⊆C

ψ(A)
∏
i∈A

xi
∏

i∈C\A

(1− xi) , x ∈ {0, 1}n.

Just as h(x) is the multilinear extension of ϕ(x), we can also define the multilinear
extension g : [0, 1]n → R of ψ(x); that is,

g(x) =
∑
A⊆C

ψ(A)
∏
i∈A

xi
∏

i∈C\A

(1− xi) , x ∈ [0, 1]n.

This function can always be put in the unique standard multilinear form

g(x) =
∑
A⊆C

c(A)
∏
i∈A

xi , (42)
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where, by the Möbius inversion theorem, the coefficient c(A) is given by

c(A) =
∑
B⊆A

(−1)|A|−|B| ψ(B). (43)

Thus, in this general setting we readily see that Eq. (41) holds and, consequently,
that Eq. (4) immediately extends to Eq. (40).

Now, if we also define the values P k, ψk, and ck for k = 0, . . . , n as

P k =
n∑

i=k+1

pi , ψk =
∑
A⊆C
|A|=k

ψ(A) , ck =
∑
A⊆C
|A|=k

c(A) ,

then we can formally extend all our formulas and algorithms from Eq. (1) to Eq. (33)
mutatis mutandis to the general dependent setting.

More formally, we have the following straightforward theorem.

Theorem 1. Equations (1)–(33) still hold if we replace sk, Sk, h(x), h(x), ϕ(A),
d(A), ϕk, and dk with pk, P k, g(x), g(x), ψ(A), c(A), ψk, and ck, respectively.

Let us illustrate how this theorem can be applied. Considering for instance Eq. (13),
Theorem 1 shows that this equation can be translated in the general setting into

P k =
1(
n
k

) ∑
A⊆C

|A|=n−k

ψ(A) =
1(
n
k

) ψn−k , k = 0, . . . , n.

Similarly, from Eq. (26) we immediately derive the identity

n∑
k=1

(
n

k

)
pk x

k =

∫ x

0

(Rn−1g′)(t+ 1) dt . (44)

Example 5. Consider a 3-component system whose structure function is given by

ϕ(x1, x2, x3) = x1(x2 ⨿ x3) = x1x2x3 + x1x2(1− x3) + x1(1− x2)x3 .

The q-structure function is then given by

ψ(x1, x2, x3) = x1x2x3 + 3 q({1, 2})x1x2(1− x3) + 3 q({1, 3})x1(1− x2)x3 .

Using Eq. (44), we finally obtain

p1 = 1− q({1, 2})− q({1, 3}) = q({2, 3}) ,
p2 = q({1, 2}) + q({1, 3}) ,
p3 = 0 .

It is noteworthy that in practice the function g(x) is much heavier to handle than
the function h(x) (consider for instance Example 1). Moreover, the function g(x) need
not be nondecreasing in each argument and hence it cannot be easily expressed as a
coproduct over the minimal path sets.

However, despite these observations, Theorem 1 shows that this formal extension of
the conversion formulas is mathematically elegant and might have theoretical applica-
tions.
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5. Concluding remarks

We have provided various conversion formulas between the signature and the relia-
bility function for systems with continuous and i.i.d. component lifetimes and we have
extended theses formulas to the general dependent case. This study can be regarded
as the continuation of paper [8], where Eqs. (22)–(23), Algorithm 5, and Proposition 5
were already presented and established.

We conclude this paper with the following two observations which are worth partic-
ular mention:

• It is a well-known fact that, under the i.i.d. assumption, both the structure sig-
nature s = (s1, . . . , sn) and the reliability function h(x) are purely combinatorial
objects associated with the structure function of the system. As a consequence,
the developments and results presented in Sections 2 and 3 are based only on
combinatorial and algebraic arguments and do not really require any stochastic
setting, even if such a setting has to be considered to define the component
lifetimes.

• The q-structure function of a system as introduced in Definition 1 is simply a
convenient transformation of the structure function of the system which enables
us to extend Equations (1)–(33) to the general dependent case. Even though
the q-structure function ψ(x) and its corresponding multilinear extension g(x)
are heavier to handle than their i.i.d. counterparts ϕ(x) and h(x), Theorem 1
suggests that this extension is interesting more from a conceptual than applied
viewpoint.
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