
Software	Verification	and	Validation	Laboratory:

A Comprehensive	Modeling	Framework	for

Role-based	Access	Control	Policies

Ameni	Ben	Fadhel, Domenico	Bianculli	and	Lionel	Briand

Interdisciplinary	Centre	for	Security, Reliability	and	Trust

University	of	Luxembourg

TR-SnT-2014-15

ISBN:	978-2-87971-137-9

April	22, 2015

Version	1.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31225114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Comprehensive Modeling Framework for
Role-based Access Control Policies

Ameni Ben Fadhel Domenico Bianculli Lionel Briand

May 13, 2015

Abstract

Prohibiting unauthorized access to critical resources and data has become
a major requirement for enterprises. Access control (AC) mechanisms manage
requests from users to access system resources; the access is granted or denied
based on authorization policies defined within the enterprise. One of the most
used AC paradigms is role-based access control (RBAC). In RBAC, access rights
are determined based on the user’s role, e.g., her job or function in the enterprise.

Many different types of RBAC authorization policies have been proposed in
the literature, each one accompanied by the corresponding extension of the orig-
inal RBAC model. However, there is no unified framework that can be used
to define all these types of RBAC policies in a coherent way, using a common
model. Moreover, these types of policies and their corresponding models are
scattered across multiple sources and sometimes the concepts are expressed am-
biguously. This situation makes it difficult for researchers to understand the
state of the art in a coherent manner; furthermore, practitioners may experience
severe difficulties when selecting the relevant types of policies to be implemented
in their systems based on the available information. There is clearly a need for
organizing the various types of RBAC policies systematically, based on a unified
framework, and to formalize them to enable their operationalization.

In this paper we propose a model-driven engineering (MDE) approach, based
on UML and the Object Constraint Language (OCL), to enable the precise
specification and verification of such policies. More specifically, we first present
a taxonomy of the various types of RBAC authorization policies proposed in
the literature. We also propose the GemRBAC model, a generalized model for
RBAC that includes all the entities required to define the classified policies. This
model is a conceptual model that can also serve as data model to operationalize
data collection and verification. Lastly, we formalize the classified RBAC policies
as OCL constraints on the GemRBAC model. To facilitate such operational-
ization, we make publicly available online the Ecore version of the GemRBAC
model and the OCL constraints corresponding to the classified RBAC policies.

1 Introduction
Prohibiting unauthorized access to critical resources and data has become a major
requirement for enterprises. Access control (AC) mechanisms manage requests from
users to access system resources; the access is granted or denied based on the autho-
rization policies defined within the enterprise. Access control systems can be grouped
into three categories [37]: discretionary (DAC), mandatory (MAC), and role-based
(RBAC). In DAC, access rights are directly assigned to each user; moreover, a user is

2

the only entity that can control the access to her own object(s), by assigning access
rights to other users. In the second category, MAC, the access rights are determined
according to mandated regulations stated by a central authority. In RBAC, access
rights are determined based on the user’s role, e.g., her job or function, as well as on
the permissions assigned to each role. By decoupling users from permissions, RBAC
simplifies the administration and the deployment of access control policies in large
enterprises. In the rest of this paper, we focus on RBAC, since it has become the de
facto standard for access control in enterprise systems [29].

The concept of role-based access control was initially proposed by Sandhu et al.
in 1996 [38]; later on, the various initial proposals of RBAC models were consolidated
into a unified standard model for RBAC, proposed by the NIST [36]. The basic
RBAC model is composed of: 1) entities, corresponding to users, roles, sessions, and
permissions; 2) relations among these entities. A user is allowed to execute a set of
permissions that corresponds to the role(s) assigned to her; in other words, a role
maps each user to a set of permissions. A session maps each user to the set of her
active role(s).

RBAC supports three security principles: least privilege, data abstraction, and
separation of duty. The least privilege principle requires a user to be authorized to
execute only the minimal set of permissions needed for a given task, as determined by
her role. The data abstraction principle is satisfied by abstracting low-level operations
(e.g., the read and write operations provided by the operating system) with high-level
operations defined for each business object in the system (e.g., updating the list of
employees). The separation of duty principle states that no user should be given
sufficient permissions to misuse the system. Although these principles are supported
by RBAC, they are not automatically enforced by a system implementing RBAC:
additional authorization constraints, called also policies1, have to be defined to restrict
the user’s access.

Various types of authorization constraints have been proposed in the literature. For
instance, cardinality constraints represent a bound on the number of roles and sessions
to which a user can be assigned. Prerequisite constraints are a precondition on user-
role assignment, stating that a user can be assigned to a role only if the user is already
a member of another role. Separation of duty constraints (SoD) define a mutual
exclusion relation among roles, permissions, or users. Dually, binding of duty (BoD)
constraints define a correlation among a set of operations that must be performed by
the same user. Delegation constraints allow a user to temporarily transfer a set of
permissions associated to her role to another user. Context constraints restrict a user
from performing an action depending on her current location or on the time at which
the action should happen.

Various extensions of the original RBAC96 model have been proposed to support
these different types of constraints. However, there is no unified framework that can
be used to define all these types of authorization constraints in a coherent way, using
a common model. The lack of a unified framework makes difficult for practitioners to
understand, select among, and implement the different types of policies proposed in
the literature.

In this paper we survey and classify the various types of RBAC authorization
constraints proposed in the literature, and describe the different facets that charac-
terize each type of constraint. We also review the different extensions of the original
RBAC model that have been proposed in the literature to support the various types

1In the rest of this paper, we will use the terms “(authorization) constraints” and “policies” inter-
changeably.

3

of constraints. The main result of this review is that none of the proposed models can
support all the constraints included in our classification. To address this limitation,
we propose the GemRBAC model, a Generalized Model for RBAC that includes all
the conceptual entities required to define the classified constraints. We then specify
in an unambiguous manner all types of constraints to enable their operationalization.
The specification follows a model-driven approach, based on UML and the Object
Constraint Language (OCL): the classified constraints are formalized as constraints
expressed with OCL on the GemRBAC model. This formalization brings three ben-
efits: 1) it enables practitioners to select and make use of the various policies in a
precise manner, based on the GemRBAC model; 2) it lays the ground for the practi-
cal verification of such policies, both at design time and at run time, based on UML
modeling tools and OCL checkers (such as Eclipse OCL [15]); 3) it shows the expres-
siveness of the GemRBAC model, since it can accommodate all types of constraints
included in our classification.

More specifically, the main contributions of this paper are: 1) a taxonomy, clas-
sifying the main RBAC policies proposed in the literature; 2) the GemRBAC model,
which is a generalized model for RBAC that includes all the entities required to define
the policies classified in the taxonomy; 3) the formalization, as OCL constraints on
the GemRBAC model, of the RBAC policies included in the taxonomy; these con-
straints have been made publicly available, together with an Ecore [14] version of the
GemRBAC model, at https://github.com/AmeniBF/GemRBAC-model.

The rest of the paper is organized as follows. Section 2 discusses the motivations of
this work. Section 3 describes the original RBAC conceptual model. Section 4 presents
a taxonomy of the various types of RBAC constraints proposed in the literature.
Section 5 illustrates the various extensions to the original RBAC model. Section 6
introduces the GemRBAC model. Section 7 presents the specification of RBAC
policies using OCL constraints defined on the GemRBAC model. Section 8 discusses,
with an example, the application of the proposed model for the verification of RBAC
policies. Section 9 discusses the related work while section 10 concludes the paper and
provides directions for future work.

2 Motivations
RBAC is an access control mechanism that defines rules for authorizations and access
restrictions for each role within an organization. Such a policy is required to specify
access rights according to an individual’s job or function (i.e., her role); unlike tradi-
tional access control, rights are not assigned to a user according to her identity. RBAC
is available in some, security-oriented variants of Unix-like operating systems, as well
as in modern database management systems. These systems implement a subset of
the NIST RBAC model [36], based on the initial proposal of Sandhu et al. [37].

As we will see in the next sections, the original RBAC model supports a limited
number of different types of authorization constraints, which cannot fulfill the expres-
siveness requirements that have emerged in the recent years in modern organizations.
Examples of these new requirements are supporting delegation and revocation of per-
missions, and enabling access control policies based on the spatio-temporal context of
users.

To fill this gap, researchers have proposed several extensions of the original RBAC
model, to support the definition of new types of constraints (see sections 4 and 5).
Though this work opens new possibilities for applying RBAC in modern enterprise

4

systems, it is not easy to exploit in its current form. Indeed, these types of constraints
and their corresponding models are scattered across multiple sources, are defined us-
ing different formalisms, and sometimes the concepts are expressed in an ambiguous
manner.

This situation is very impractical for practitioners who want to select the relevant
types of policies to be implemented in their systems. Moreover, they are faced with
several models, often partially overlapping with each other, but with slightly different
semantic variations. Furthermore, to the best of our knowledge, there is no model that
can express all the type of constraints that we have identified in our survey. Last,
scattered and heterogenous models make it difficult for researchers to understand the
state of the art in a coherent manner.

We contend there is clearly a need for organizing the various types of RBAC
authorization constraints systematically, based on a unified framework. The goal
would be to formalize these constraints in such a way as to enable and facilitate
their operationalization. This is the reason for which we propose the GemRBAC
model, as a unified RBAC model that captures all the types of constraints found in
the literature. Furthermore, for each type of authorization constraint, we define its
formalization using OCL. By using such a common, standardized, and well-supported
language, we not only facilitate the precise understanding of such constraints but we
also facilitate their operationalization through industry-strength tools.

3 The original RBAC conceptual model
The original RBAC conceptual model, proposed in 1996 by Sandhu et al. [38], is
composed of users, roles, sessions, and permissions; figure 1 illustrates the different
components of this model and the relations between them. According to Sandhu et
al., a role can be seen, at the same time, both as a collection of permissions and as
a collection of users. A role can be assigned to one or more users via a user-role
assignment relation. A role-permission assignment relation maps each role to one
or more permissions. A session is a mapping of one user to a subset of the roles
that have been assigned to her; this mapping activates the role(s) for a certain user.
A permission allows a user to perform some operation(s) on some resource(s) of the
system.

A role can be inherited using a role hierarchy relation, as shown in figure 2. A role
can have one or more juniors (sub-roles) denoted by an arrow. For instance, r2, r3 and
r4 are juniors of r1. In addition to its assigned permissions, r2 inherits all permissions
from its ancestor r1. Moreover, a junior role can have one or more ancestors (senior
roles). As shown in figure 2, r5 inherits not only the permissions of r2 but also the
ones of r3.

A set of authorization constraints is defined and applied to different relations to
describe which permission(s) are granted to a user based on the role(s) assigned to
her. The different types of constraints will be discussed in detail in section 4.

RBAC administrative model
An instance of an RBAC model can include a large number of objects: the complexity
and the size of such model instance represent a challenge to manage and maintain it.
To ease its management, the RBAC model can be extended with an administrative
part [38]; this part is shown in figure 1, enclosed with a dashed line. The administrative

5

roleuser

session

permissionrole-permission
assignment

user-role
assignment

role activation

role
hierarchy

* * * *

*

**

1

administrative
role

administrative
permission

administrative
role activation

** administrative role-permission
assignment

administrative user-role
assignment

1

*

* *

administrative role hierarchy

Figure 1: The original RBAC model [38]; the dashed line encloses the administrative
model for RBAC

r1

r2 r3 r4

r5

Figure 2: Role hierarchy example

extension contains the concepts of administrative role and administrative permission.
Examples of the latter are assigning a user to a role or adding a new permission
or constraint. An administrative role can acquire only administrative permissions
via an administrative role-permission assignment. In addition, administrative user-
role assignments map administrative roles to users. An administrative role hierarchy
defines inheritance relations between administrative roles.

4 RBAC policies taxonomy
In this section we present our classification of the existing types of RBAC constraints
found in the literature. The taxonomy shown in figure 3, contains at the top level
eight types of access control constraints; these are described in detail in the next
sub-sections.

4.1 Prerequisite constraint
A prerequisite constraint is a precondition on a role assignment; it can be evaluated
either at the role level or at the permission level [38, 4]. A constraint at the role level
states that a user can be assigned to a role only if the user has been already assigned
to another role. For instance, to acquire the role developer in a company, Bob must
be already an employee in the company. A constraint at the permission level indicates
that a permission p1 can be assigned to a role r only if this role already has permission

6

RBAC
policies

Prerequisite
constraint

Cardinality
constraint

Precedence
and

dependency
constraint

Role hierarchy
constraint

Separation of
duty constraint

(SoD)

Binding of duty
constraint

(BoD)

Role delegation
and revocation

constraint

Context
constraint

Prerequisite
role

Prerequisite
permission

Static SoD
(SSoD)

Dynamic SoD
(DSoD)

SSoD
conflicting

users

SSoD
conflicting roles

SSoD
conflicting

permissions

Simple DSoD

Object-based
DSoD

Operational-
based DSoD

Operational
object-based

DSoD

DSoD
conflicting

users

DSoD
conflicting roles

DSoD
conflicting

permissions

Location-based
context

constraint

Time-based
context

constraint

Delegation

Revocation

Single/multi-step delegation

Total/partial delegation

Strong/weak revocation

Cascading/non cascading
revocation

Grant-dependent/ grant-
independent revocation

Grant/transfer

Role-based
BoD

Subject-based
BoD

Strong/weak
transfer

Static/dynamic
weak

transfer

Figure 3: RBAC policies taxonomy

7

p2. For example, an employee cannot have the permission write document if she does
not have the permission read document.

4.2 Cardinality constraint
A cardinality constraint can represent a bound on the cardinality of either the role
activation relation or the user-role assignment one [2]. An example of the first is a
constraint like: “a user cannot activate more than three roles in a session”; an example
of the second is “a user cannot be assigned to more than four roles”.

4.3 Precedence and dependency constraint
In some systems, assigning a role to a user does not entail that the user can activate
it at anytime. A role that can be activated is called enabled. Role enabling and role
activation can be controlled by specific constraints that determine precedence/depen-
dency relationships [39] between two or more roles. For example, a policy like “the
resident physician role can be enabled only if the attending physician role has been
already activated” defines a precedence constraint between the enabling of a role and
the activation of another one. A precedence constraint can be complemented with the
corresponding dependency constraint on the deactivation of a role; to continue the ex-
ample above, the corresponding dependency constraint would look like “the attending
physician role cannot be deactivated if there is an activated resident physician role”.

4.4 Role hierarchy constraint
This type of constraint specifies the assignments of roles through a hierarchy. As
explained in section 3, assigning role r to user u implies assigning u all junior roles
of r. A role hierarchy constraint can also be applied at the permission level: if a
role acquires a permission p, all its sub-roles will also acquire it [38]. For instance,
considering figure 2, role r5 will inherit the permissions of roles r2 and r3. The default
behavior of this constraint can be overridden by denoting that a role or permission
cannot be inherited.

4.5 Separation of duty (SoD) constraint
Separation of duty (SoD) constraints [27] are used to define mutual exclusion rela-
tions among rules, permissions, or users. Mutually-exclusive entities are also called
conflicting. In the literature, there are two types of SoD: static (SSoD) and dynamic
(DSoD).

4.5.1 Static separation of duty (SSoD) constraint

This type of separation of duty is also known as strong exclusion [40]. It can refer to
users, roles, and permissions [2, 3]. A user-centric static separation, also called SSoD
conflicting users, states that two conflicting users cannot be assigned to the same role.
A role-centric separation, also called SSoD conflicting roles, specifies that the same
user cannot be assigned to mutually-exclusive roles. SSoD can also be permission-
centric: this means that a user is not allowed to acquire two conflicting permissions
and, symmetrically, that two conflicting permissions cannot be assigned to the same
role.

8

4.5.2 Dynamic Separation of duty (DSoD) constraint

Dynamic separation of duty deals with user-role activation through a session. In this
case, a user is allowed to acquire conflicting roles; however, she cannot activate them
at the same time. There are different types of DSoD [40]:

• Simple DSoD specifies that conflicting roles cannot be activated in the same
session. As in SSoD, simple DSoD can also be user-, role- or permission-
centric [4].

• Object-based DSoD allows a user to activate two conflicting roles at the same
time, as long as she does not operate on the same object. For instance, a user
can be an author or a reviewer ; an author can submit a paper but cannot be a
reviewer for it. This type of constraint is also called Resource-based Dynamic
Separation of Duty in [26].

• Operational-based DSoD aims to prevent a user from performing all the
operations in the same business task (e.g., a sequence of operations defined in a
workflow). This means that a user can activate two conflicting roles at the same
time, as long as the union of the operations allowed by the roles assignment does
not correspond to the entire sequence of operations defined in the business task.

• Operational Object-based DSoD is a combination of the two previous types
of constraint. During the execution of a certain business task, a user can activate
two conflicting roles at the same time, even if the union of the operations allowed
by the roles assignment correspond to the entire sequence of operations defined
in the business task. The only constraint is that no user can perform all the op-
erations on the same object. This type of constraint is also called History-based
SoD [40] because the history of the operations performed by a user determines
what she is allowed to do. Reference [40] also introduces the concepts of order-
dependent and order-independent history-based SoD. The former requires that
a role performs its operations in a particular order; the latter does not take into
account the order of operations.

4.6 Binding of duty constraint (BoD)
Unlike SoD constraints, binding of duty constraints define a correlation between a set
of permissions; the permissions being correlated and the corresponding operations are
also called bounded. BoD constraints are usually defined in the context of workflow
systems, whose activities can be performed by different subjects with different roles.
Reference [42] classifies this type of constraint as role-based and subject-based. In role-
based BoD, the operations allowed by two or more permissions have to be performed
by the same role. In subject-based2 BoD, the same user must perform the operations
allowed by the bounded permissions; moreover, the user has to maintain the same role
while performing all these operations.

4.7 Role delegation and revocation constraint
A delegation allows a user (called the delegator) to transfer the permissions associated
with her role (called the delegated role) to another user (called the delegate). A dele-
gation takes place only if the delegate has not already been assigned to the delegated

2The word subject refers to a user having activated a certain role.

9

role or has already received it by means of another delegation. Furthermore, when
a hierarchy has been defined for roles, the delegate receives not only the delegated
role but also all its sub-roles. A delegation is put to an end through a revocation
action. In this section, we present the different types of role delegation and revocation
constraints which can be set within an RBAC system.

4.7.1 Role delegation constraint

A user can delegate her role or permission to another user. A delegation can be single-
or multi-step, total or partial [44], and can be either of type “grant” or “transfer” [11].

A user can acquire a role through a standard user-role assignment (in which case
the role is called original), or through a delegation (in which case the role is called
delegated). A single-step delegation forbids a user to delegate a delegated role. On
the other hand, a multi-step delegation allows a user to delegate a delegated (i.e.,
non-original) role; however, the number of delegation steps is bounded and should not
exceed a maximum delegation depth, predefined for the system.

With a total delegation, a user delegates all the permissions belonging to a certain
role; with a partial delegation, a user delegates only a subset of the role permissions.

When a delegation is of type “grant”, the delegator can continue to use the role
that has been delegated. On the other hand, when the delegation is of type “transfer”,
right after the delegation the delegator is no longer assigned to the role that has been
just delegated.

As mentioned above, when a hierarchy has been defined for roles, the delegate
receives not only the delegated role but also all its sub-roles. Delegations of type
“transfer” can be strong or weak depending on the assignment of the juniors of the
delegated role to the delegator. With a strong transfer, the delegator is not assigned to
the delegated role and to all its sub-roles anymore. A weak transfer can be classified
as static or dynamic. With a static weak transfer, the delegator keeps using a subrole
r of the delegated role only if she is a member of another senior of role r. In case of
a dynamic weak transfer, the delegator keeps using a subrole r of the delegated role
only if she activates a senior of role r. As an example, consider the role hierarchy in
figure 2 and assume that user u1 is assigned to r2 and to r3. If user u1 delegates her
role r2 to user u2, the latter will acquire role r2 and its junior role r5. If the delegation
is a static weak transfer, after the delegation u1 will still be a member of role r5, since
she is still a member of role r3, which is a senior of role r5. On the other hand, if
the delegation by user u1 of role r2 to user u2 is of type dynamic weak transfer, the
delegator will be still a member of role r5 after the delegation only if role r3 is active.

4.7.2 Role revocation constraint

A delegation is often followed by a revocation; in the following we refer to the revoca-
tion model proposed in [44].

A role can be revoked either by any user who acquired the role via a user-role
assignment, or by the user who delegated the role. In the former case, the revocation
is called grant-independent ; in the latter it is called grant-dependent.

The dominance of a revocation refers to its effects on the user-role assignment
relation, as determined by role hierarchy; it can be either weak or strong. Consider
the case in which a user may be directly assigned to a role or may be assigned to a role
by inheriting it through a role hierarchy. A weak role revocation only removes the user
from the delegated role and does not impact on the other roles acquired through the

10

role hierarchy. A strong revocation removes the user from the delegated role and also
from the ones inherited through the role hierarchy. For instance, if user u1 delegates
her role r1 to user u2, u2 will acquire r1 and its juniors r2, r3, r4 and, r5 as shown in
figure 2. With a strong revocation, u2 will be revoked from r1 and all its junior roles.

A revocation can affect not only the user who received the role being revoked,
but also the other delegate users determined by a multi-step delegation. A cascading
revocation removes the delegated role assignment and the assignment(s) resulting
from a multi-step delegation. A non-cascading revocation removes only the requested
delegation and does not affect the delegation(s) of the delegated role.

If a delegation has a certain duration, a revocation can be triggered automatically
after the duration expires. If a duration is not specified, a delegation remains active
until a user revokes it explicitly.

4.8 Context constraint
Context constraints allow a user to perform an action depending on her current lo-
cation (location-based context constraints) [8] or on the time (time-based context con-
straints) at which the action should happen [20].

Contextual information can be assigned to users, roles and/or permissions. A user
context refers to her current position and time. A role (respectively, a permission)
context refers to the location from and the time at which the corresponding role
(respectively, permission) can be activated.

A location can be physical or logical. A physical location corresponds to some
specific geographic coordinates; a logical location corresponds to a bounded space
like a specific room in a building. With a location-based context constraint, roles can
be enabled and activated when the user’s position matches the location specified in
the constraint. A role is automatically disabled when the user leaves the geofence
determined by the location specified with the constraint.

Time-based context constraints specify the periodicity and/or the duration of role
activation [7]. For example, one can constraint a role to be activated only on work-
ing days within a predefined range of hours. Moreover, a constraint can limit the
cumulative time during which a role is active, e.g., “for three hours per day”.

A context-based constraint can be specified at the permission level to prohibit a
user to perform a permission assigned to her active role, when her contextual infor-
mation is not valid.

These constraints can also be used to manage conflicting roles that a user can
acquire through a role hierarchy. Each of the conflicting roles can have a time-based
context constraint that restricts its activation to a certain period of time. If the time
windows of the activation of conflicting roles do not overlap with each other, the SoD
constraint will not be violated. More in general, context constraints can be applied to
a hierarchy constraint to restrict role inheritance and activation depending on location
and/or time [34].

5 RBAC model extensions
The original RBAC model, introduced in section 3, was proposed by Sandhu et al.
in [38] and is commonly referred to as RBAC96. It is actually defined as a family
of reference models: RBAC0, RBAC1, and RBAC2. The basic model, RBAC0, is
composed of users, permissions, sessions, and assignment and activation relations.

11

The other two models are defined incrementally over RBAC0 by adding concepts to
it: RBAC1 adds the concept of role hierarchy while RBAC2 adds constraints.

Several researchers extended RBAC96 to support additional type of constraints
such as delegation and context. In the rest of this section, we review some of these
works.

RDM2000 [44] extends RBAC96 to support role delegation. It includes two types of
user-role assignment: in addition to the original user assignment defined in RBAC96,
RDM2000 proposes the delegated user assignment, which maps a user to a delegated
role. A limitation of this work is that it only supports total delegation; this means
that a user is not allowed to delegate a subset of her assigned permissions. Another
extension related to the concept of delegation is PDM, permission-based delegation
authorization model, proposed in [45]. In this model, if a user wants to delegate a set
of permissions, she has to create a new role with the required permissions; this role can
inherit from any original role. A limitation shared both by RBDM2000 and by PDM is
that they only support grant delegation; a complete delegation model supporting both
grant and transfer operations has been proposed by Crampton et al. [11]. However,
the models provided by RBDM2000, by PDM, and by Crampton et al. do not support
the various types of revocation policies presented in section 4. Sohr et al. [22] extends
their previous model introduced in [26] to support the role delegation properties of
RDM2000; this extension supports the various types of revocation.

Regarding temporal constraints, the first temporal RBAC model, TRBAC, was
proposed by Bertino et al. in [7]. TRBAC introduces periodic constraints on role
enabling and disabling, which define the period of time (delimited by two time points)
during which a role can be enabled/disabled. TRBAC also supports the definition of
dependencies among the enable/disable actions of roles; for instance one can require
that role r1 must be enabled whenever role r2 is disabled. While TRBAC supports
temporal constraints only for role enabling/disabling, there is a more general version
called GTRBAC [20, 21] that supports temporal constraints also on role activation and
assignment. Moreover, GTRBAC adds support for temporal aspects in role hierarchy,
cardinality, dependency, and SoD constraints. The GTRBAC was extended in [19] to
support delegation by adding the delegation properties supported in PDM.

The first model to support location-based constraint has been GEO-RBAC [8]. It
introduces the concept of spatial role, which consists of a role and its corresponding
region, i.e., the area or the place in which the role can be enabled. In this model, each
user is associated to a real position, obtained by a positioning device, and a logical
position, which is the mapping of the user’s real position into a region of the system.
Role enabling is conditioned by the logical position of a user, which should match the
one specified in the spatial role definition. This means that the list of enabled roles
evolves according to the user’s position. An administrative model for GEO-RBAC,
called GEO-RBAC Admin was proposed in [12]; in this model an administrative role
is defined as a spatial role. While GEO-RBAC supports location-based constraints
only for role enabling (and consequently for role activation), the LRBAC model [32]
extends these constraints also to user-role and role-permission assignments.

Other works support full context-based constraints by combining spatial and tem-
poral information. The LoTRBAC model [9] extends GTRBAC by assigning a location
to each user, role and permission. In this model, location and temporal information
control role enabling and activation. Another model, STRBAC [34], allows for defining
location- and time-based constraints related to role-to-user and role-to-permission as-
signments. This may result in a limited subset of permissions allowed for a certain role,
at a given time in a given place. Furthermore, STRBAC supports location- and/or

12

-idUser: String

User -idRole: String
-isStrong: Boolean
-isCascading: Boolean
-isDependent: Boolean

Role

-idPermission:
String

Permission

-idObject: String

Object

-idOperation:
String

Operation

-idDelegation: String
-isRevoked: Boolean
-isTransfer: DelegationType
-isTotal: Boolean
-startDate: Date
-endDate: Date
-maxDepth: Integer

Delegation

-idSession: String

Session

+checkAccess(RBACContext):
Boolean

RBACContext

-time: RBACtime

TemporalContext -idLog: String

History

-maxPermission: Integer
-maxActiveRole: Integer
-maxRole: Integer

-location:
RBAClocation

SpatialContext

+assignRole(Role)
+accessHistory:
Set(History)

+assignPermission()
+logBOCurrentProcessInstance():
Set(History)
+accessHistory: Set(History)
+getAllJuniors: Set(Role)

+performOperation
(Operation,Permission,Role)
+enableRole(Role)
+disableRole(Role)
+activate(Role)
+deactivate(Role)
+delegateRole(Role)
+accessHistory:
Set(History)

+accessHistory:
Set(History)

+getBoundedPermissions():
Set(Permission)
+getBusinessTaskList():
Set(Operation)
+getCurrentDate(): Date

+revoke()
+getAbsoluteDelegationPath()

+accessHistory:
Set(History)

revoking
User
0..1

delegate
User
1

delegator
User
1

delegated
Permissions

1..*

roleHierarchy

juniors
0..*

seniors
0..*

delegatedDelegation
0..*

delegated
Role

1

RBACUtility

delegatedRoles
0..*

users
1..*

receivedDelegation
0..*

0..*

0..*

users
1..*

roles
1..*

user-role
assignment

user-role
delegation role-

permission
assignment

roles
1..*

permissions
1..*

0..*

role
activation

role enabling

activeRoles
0..*

enabled
Roles
0..*

0..*

0..*

0..*

1

userContext
*

1

roleContext
*

0..*

0..*

permissionContext
*

log
Operation

logUser

logRole

log
Permission

log
Object

logContext

1..*

1..*

1..*

1

0..*

delegate
Role
1 -grant

-strong
-weakStatic
-weakDynamic

DelegationType
<enumeration>

Figure 4: The GemRBAC conceptual model

time-based constraints also for role hierarchy and separation of duty. STRBAC was
extended in [35] to support delegation constraints based on contextual information.
In STRBAC, a change in a spatio-temporal constraint may lead to the addition of
a new role. The GSTRBAC model [31, 1] lifts this requirement by introducing the
concept of spatio-temporal zone (st-zone). An st-zone is an RBAC entity abstracting
a location and a time, and is assigned to other entities like users, roles, permissions,
and resources. In this mode, a role is enabled if its st-zone matches the one of the user;
similarly, a permission is enabled if its st-zone matches the one of the corresponding
resource.

Table 1 shows to which extent the various models discussed in this section support
the RBAC constraints included in the taxonomy presented in section 4. As one can
notice, there is no extension of the original RBAC model that supports all the con-
straints included in the taxonomy. To overcome this limitation, in the next section
we propose a new generalized model for RBAC, which supports all these constraints.
This generalized model will constitute the basis for the subsequent formalization with
OCL of all the types of constraint identified in the taxonomy.

6 The GemRBAC model
In this section we present our GemRBAC model (shown in figure 4 as a UML class dia-
gram), which extends the original RBAC96 model with additional concepts. The com-

13

Table 1: Support for RBAC constraints in the various RBAC models

RBAC96
[38]

RDM2000
[44]

PDM
[45]

Crampton
et
al. [11]

Sohr et
al. [26,
22]

TRBAC
[7]

Prerequisite role + + N/A N/A + N/A
permission + + N/A N/A + N/A

Role hierarchy + + + + + -
Cardinality + + N/A + + +
BoD role - - - - - -

subject - - - - - -
Precedence & dependency - - - - - +
SoD SSoD + + + + + -

simple DSod + + + + + -
object DSod - - - - + -
operational DSod - - - - + -
history-based DSod - - - - + -

Context location - - - - - -
time - - - - - +

Delegation grant/transfer - grant grant + grant -
single/multiple - + + + + -
total/partial - total + + total -

Revocation dominance - - - - + -
propagation - - - - + -
dependency - - - - + -

GTRBAC
[19]

GEO-
RBAC
[8]

LRBAC
[32]

LoTRBAC
[9]

STRBAC
[34, 35]

GSTRBAC
[31, 1]

Prerequisite role N/A N/A N/A N/A N/A +
permission N/A N/A N/A N/A N/A +

Role hierarchy time-
based

+ - + time
and
location-
based

time
and
location-
based

Cardinality + N/A + + N/A +
BoD role - - - - - -

subject - - - - - -
Precedence & dependency + - - - - -
SoD SSoD time-

based
+ - + time

and
location-
based

time
and
location-
based

simple DSod time-
based

+ - + time
and
location-
based

time
and
location-
based

object DSod - - - - - -
operational DSod - - - - - -
history-based DSod - - - - - -

Context location - + + + + +
time + - - + + +

Delegation grant/transfer grant - - - grant -
single/multiple + - - - - -
total/partial + - - - + -

Revocation dominance - - - - - -
propagation - - - - - -
dependency - - - - - -14

ponents of the original model are modeled as classes (User, Session, Role, Permission)
and associations (between User and Role, User and Session, Role and Permission).
We define a permission as a set of operations that can be performed on an object: we
model this by associating the class Permission with the classes Object and Operation.
The class Object can be extended to include additional information as required by the
application needs, e.g., state information for a stateful object.

Role activation is modeled as an association between the Session and Role classes.
We also model role enabling with another association between these two classes.

In GemRBAC the concept of delegation is represented by the class Delegation.
This class contains various attributes: startDate and endDate represent the bounds of
a delegation period; the boolean attributes isTotal and isRevoked represent, respec-
tively, whether the delegation is total and whether the delegation has been revoked or
not. The attribute isTransfer indicates whether the delegation is of type “transfer”
or “grant”. The concepts of delegator, delegate and revoking users are represented as
associations between the User and Delegation classes. Similarly, the concepts of the
role of the delegator, the role of the delegate, and the delegated role are represented
as an association between class Role and class Delegation. We also model the set of
delegated roles as an association between classes User and Role. The specific type of
revocation is represented by specific boolean attributes of the Role class: isDependent,
isStrong, and isCascading.

The context is modeled with the class RBACContext, which has two subclasses,
TemporalContext and SpatialContext. The RBACContext class represents spatial and
temporal information, which are associated with each instance of the User, Role and
Permission classes. The temporal context refers to the current time or the time on
which a given role, respectively permission, can be enabled/assigned. The spatial
context refers to a specific bounded area or geographical location. It can be assigned
to a user, role or permission. A role, respectively permission, is enabled/assigned if
its location matches the user’s position.

Since policies such as History-based SoD require a record of operations performed
over time, we introduce the History class. An instance of this class records that a user
performed a certain operation on a given object according to a given permission, in
a certain location, at a certain time, while having a certain role; these data are gath-
ered through the associations with (respectively) User, Operation, Object, Permission,
TemporalContext, SpatialContext, and Role.

7 OCL specification of RBAC policies
In this section we show how the RBAC policies described in section 4 can be formalized
as OCL constraints on the GemRBAC model. This formalization aims to precisely
specify the semantics of such policies in such a way that they can be operationalized,
for example through an OCL constraint checker. For the purpose of the formalization,
we enrich the model with some helper classes and operations, also included in figure 4.

The Ecore version of the GemRBAC model, the OCL constraints defined in this
section, and the model instances that violate/satisfy them are available at https:

//github.com/AmeniBF/GemRBAC-model.

7.1 Prerequisite constraint
The prerequisite constraint can specify a pre-condition either for user-role assignment
or for role-permission assignment. In the first case, the constraint states that to acquire

15

role r1, the user must have been already assigned to role r2. This constraint can be
written in OCL as a pre-condition of the operation assignRole:

1 context User::assignRole(r:Role):

2 pre PreqRole:

3 let r2:Role = Role.allInstances() -> select (r:Role | r.idRole =’r2’) ->

4 any(true),

5 roleSet: Set(Role) = self.roles -> union(self.delegatedRoles) -> asSet()

6 in r.idRole = ’r1’ implies roleSet -> includes(r2)

In this constraint we first select (line 4) the instance3 of role r2 from all the instances
of class Role. In line 6, the implication states that if the role being assigned (param-
eter r of the operation assignRole) is r1 then r2 must be among the roles already
assigned or delegated to the user; these roles are derived from navigating the roles

and delegatedRoles associations.
The prerequisite constraint on role-permission assignment has a similar structure:

context Role:: assignPermission(p:Permission):

pre PreqPermisssion:

let p2:Permission = Permission.allInstances() -> select (p:Permission |

p.idPermission = ’p2’) -> any(true)

in p.idPermission = ’p1’ implies self.permission -> includes(p2)

7.2 Cardinality constraint
A cardinality constraint on the role activation relation is expressed in OCL as an
invariant of the class Session:

context Session inv Cardinality:

let u: RBACUtility = RBACUtility.allInstances() -> any(true)

in self.activeRoles -> size() <= u.maxActiveRole

In this expression, the number of roles activated for the current session is determined
by the cardinality of the activeRoles association between classes Session and Role;
maxActiveRole is a constant defined in the class RBACUtility.

The constraints for the number of roles assigned to a user and for the number of
permissions assigned to a role are defined in a similar way for classes User and Role:

context User inv Cardinality:

let u: RBACUtility = RBACUtility.allInstances() -> any(true),

roleSet : Set(Role) = self.roles -> union(self.delegatedRoles)-> asSet()

in self.roleSet -> size() <= u.maxRole

context Role inv Cardinality:

let u: RBACUtility = RBACUtility.allInstances() -> any(true)

in self.permissions -> size() <= u.maxPermission

Notice that when expressing the constraint on the number of roles assigned to a
user, we consider both assigned and delegated roles.

3Although the operation allInstances() returns all the instances of a class, we assume that each
role in the system corresponds to exactly one specific instance of class Role.

16

7.3 Precedence and dependency constraint
Precedence and dependency constraints control the enabling and the deactivation of
roles. A precedence constraint on the enabling of a role with respect to the activation
of another one can be expressed as a pre-condition of the operation enableRole:

1 context Session::enableRole(r:Role):

2 pre RoleEnablingPrecedence:

3 let r2: Role = Role.allInstances() -> select (a: Role | a.idRole = ’r2’) ->

4 any(true)

5 in r.idRole = ’r1’ implies Session.allInstances() ->

6 exists (s: Session | s.activeRoles -> includes(r2))

In the OCL expression above, we first select the instance corresponding to role r2
(line 4), and then the implication at line 5 states that if the role being enabled (pa-
rameter r of the operation enableRole) is r1 then r2 must be among the activated roles;
the list of these roles is derived from the activeRoles association. The corresponding
dependency constraint can be expressed in a similar way:

context Session::deactivateRole(r:Role):

pre RoleActivationDependency:

let r2:Role = Role.allInstances() -> forAll(a: Role | a.idRole = ’r2’)->

any(true)

in r.idRole = ’r1’ implies (Session.allInstances() ->

exists (s:Session | s.activeRoles -> excludes(r2)))

7.4 Role hierarchy constraint
A role hierarchy constraint can be expressed on user-role and permission-role assign-
ment relations. In the first case, it states that if a user acquires a role, she will
also acquire all its juniors. This can be expressed in OCL as a post-condition of the
operation assignRole as follows:

context User::assignRole(r:Role):

post RoleHierarchy:

self.roles -> includesAll(r.juniors)

In this expression the roles assigned to the user, derived from the roles association,
should include all junior roles of the role being assigned (parameter r of operation
assignRole); the junior roles are derived from the r.juniors association.

A role hierarchy constraint on the role-permission assignment states that if a role
acquires a permission, all its sub-roles will acquire it. This constraint is defined as a
post-condition of the operation assignPermission:

context Role::assignPermission(p:Permission):

post RoleHierarchy:

self.juniors -> forAll (r: Role | r.permissions -> includes(p))

In this expression, we check if each sub-role is associated to the permission being
assigned (parameter p of the operation assignPermission).

17

7.5 Separation of duty constraint (SoD)
7.5.1 Static SoD

The static SoD (SSoD) can be user-, role- or permission-centric. The user-centric SoS
specifies that role r1 can be assigned either to user1 or to user2, but not to both. This
constraint can be expressed in OCL as an invariant of the class Role:

1 context Role inv SSoDCU:

2 if self.idRole =’r1’ then

3 let u1:User = User.allInstances() -> select (u:User | u.idUser=’u1’) ->

4 any(true),

5 u2:User = User.allInstances() -> select (u:User | u.idUser=’u2’) ->

6 any(true)

7 in if self.users -> includes(u2) or self.users -> includes(u1) then

8 self.users -> includes(u2) xor self.users -> includes(u1)

9 endif

10 endif

In the OCL expression above, we first select the instances of users user1 (line 4) and
user2 (line 6). In line 7, we state that the users assigned to the role should contain
either user1 or user2, but not both (exclusive OR); these users are derived from the
users association.

The role-centric and permission-centric SoD are defined in a similar way as invari-
ants of the User and Permission classes, respectively:

context User inv SSoDCR:

let r1:Role = Role.allInstances() -> select (r:Role | r.idRole=’r1’) ->

any(true),

r2:Role = Role.allInstances() -> select (r:Role | r.idRole=’r2’) ->

any(true),

roleSet : Set(Role) = self.roles -> union(self.delegatedRoles) -> asSet()

in if roleSet -> includes(r2) or self.roles -> includes(r1) then

roleSet -> includes(r2) xor self.roles -> includes(r1)

endif

context Role inv SSoDCP1:

let p1:Permission = Permission.allInstances()-> select (p:Permission |

p.idPermission=’p1’) -> any(true),

p2:Permission = Permission.allInstances()-> select (p:Permission |

p.idPermission=’p2’) -> any(true)

in if self.permissions -> includes(p2) or self.permissions -> includes(p1)

then

self.permissions -> includes(p2) xor self.permissions -> includes(p1)

endif

context Permission inv SSoDCP2:

if self.idPermission =’p1’ then

let r1:Role = Role.allInstances() -> select (r:Role | r.idRole=’r1’) ->

any(true),

r2:Role = Role.allInstances() -> select (r:Role | r.idRole=’r2’) ->

any(true)

18

in if self.roles -> includes(r2) or self.roles -> includes(r1) then

self.roles -> includes(r2) xor self.roles -> includes(r1)

endif

endif

7.5.2 Dynamic SoD

Unlike static SoD, dynamic SoD (DSoD) allows a user to acquire two conflicting roles
but she cannot activate them at the same time. To express that roles r1 and r2 should
not be active in the same session, we can write the following OCL constraint as an
invariant of the class Session:

context Session inv DSoD:

let r1:Role = Role.allInstances() -> select (r:Role | r.idRole=’r1’) ->

any(true),

r2:Role = Role.allInstances() -> select (r:Role | r.idRole=’r2’) ->

any(true)

in if self.activeRoles -> includes(r2) or self.activeRoles -> includes(r1)

then

self.activeRoles -> includes(r2) xor self.activeRoles -> includes(r1)

endif

Object-based SoD is another variation of DSoD which allows a user to activate two
conflicting roles at the same time, as long as she does not operate on the same object.
It can be expressed in OCL as a pre-condition of the operation performOperation of
the Session class:

1 context Session::performOperation(op:Operation, p:Permission, r:Role):

2 pre ObjectDSOD:

3 let r2:Role = Role.allInstances() -> select (r:Role | r.idRole=’r2’) ->

4 any(true),

5 r1:Role = Role.allInstances() -> select (r:Role | r.idRole=’r1’) ->

6 any(true),

7 logr2: Set (History) = self.user.accessHistory() -> select (a: History |

8 a.role= r2),

9 logr1: Set (History) = self.user.accessHistory() -> select (a: History |

10 a.role= r1)

11 in if r = r1 then

12 (logr2 -> select (a: History| a.object= p.object)) -> isEmpty()

13 else if r = r2 then

14 (logr1 -> select (a: History| a.object= p.object)) -> isEmpty()

15 endif

16 endif

In this constraint we refer to instances of the History class, which keeps track of each
operation performed in the system, recording the user who performed it, the role she
had, the object on which the operation was performed, the time and the location. We
use the operation accessHistory of the class User to retrieve the instances of History
filtered on the two conflicting roles (lines 8 and 10). For each role that the input
parameter r can assume (in this case r1 or r2, lines 11 and 13), we check (lines 12

19

and 14) whether the history of the conflicting role(s) does not contain any operation
performed on the same object as the one specified in the input parameter p.

With an Operational-based DSoD constraint, a user can activate two conflicting
roles at the same time, as long as the union of the operations allowed by the roles
assignment does not correspond to the entire sequence of operations defined in a
business task. This can be expressed in OCL as an invariant of the class Session:

1 context Session inv OperationalDSoD:

2 let r1:Role = Role.allInstances() -> select (r:Role | r.idRole=’r1’) ->

3 any(true),

4 r2:Role = Role.allInstances() -> select (r:Role | r.idRole=’r2’) ->

5 any(true),

6 u: RBACUtility = RBACUtility.allInstances() -> any(true),

7 opBT: Set(Operation) = u.getBusinessTaskList(),

8 op:Set(Operation) = r1.permissions.operations -> asSet() ->

9 union(r2.permissions.operations -> asSet())

10 in (self.activeRoles -> includes (r1) and self.activeRoles -> includes (r2))

11 implies (opBT - op) -> notEmpty()

On line 7 we retrieve the list of operations defined in the business task by calling the
getBusinessTaskList operation of the class RBACUtility. We have to check that the
union of the operations allowed by the two conflicting roles is a proper subset of the
business task operations. This is equivalent to stating that the difference between the
two sets is not empty (line 11). This check is done if both roles are active.

The History-based DSoD constraint combines both the Object-based one and the
Operational-based one. Differently from these two, History-based DSoD allows a user
to activate two conflicting roles at the same time, as long as the user does not perform
all the operations on the same object. This can be specified as a pre-condition of the
operation performOperation of the Session class:

1 context Session::performOperation(op:Operation, p:Permission, r:Role):

2 pre HistoryDSOD:

3 let u: RBACUtility = RBACUtility.allInstances() -> any(true),

4 opBT: Set(Operation) = u.getBusinessTaskList(),

5 r1:Role = Role.allInstances()-> select (r:Role | r.idRole=’r1’) ->

6 any(true),

7 r2:Role = Role.allInstances()-> select (r:Role | r.idRole=’r2’) ->

8 any(true),

9 perm1: Set (Permission)= r1.permissions-> select (a |

10 a.object = p.object),

11 perm2: Set (Permission)= r2.permissions-> select (a |

12 a.object = p.object),

13 opObjBT: Set(Operation) = (perm1.operations -> union(perm2.operations))->

14 select (op:Operation | opBT ->

15 includes (op)) ->asSet(),

16 logr2: Set (History)= self.user.accessHistory() ->

17 select (a: History | a.role = r2

18 and perm2 -> includes (a.permission)),

19 logr1: Set (History)= self.user.accessHistory() ->

20 select (a: History | a.role = r1

21 and perm1-> includes (a.permission)),

20

22 log: Set (History) = logr1 -> union(logr2),

23 opLog: Set (Operation)= log -> collect (l | l.operation) -> asSet(),

24 newopLog:Set (Operation) = opLog -> including (op)

25 in (opObjBT - newopLog)-> notEmpty()

In the OCL expression above, we first retrieve the list of operations defined in the
business task. Then, we select the conflicting roles r1 and r2 (lines 6 and 8), and then
we compute (line 15) the list of operations opObjBT belonging to the business task and
that can be performed on the input object (p.object) according to the permissions of
the two roles. Afterwards, we compute the list opLog of operations performed by the
user (either under role r1 or r2) on the input object (line 22). The pre-condition then
checks whether the set resulting from adding the input parameter op to opLog is still
a proper subset of opObjBT.

7.6 Binding of duty constraint (BoD)
Binding of duty constraints define a correlation between a set of permissions. A
role-based BoD constraint requires that bounded operations must be executed by the
same role. This constraint can be specified in OCL as a pre-condition of the operation
performOperation of the Session class:

1 context Session::performOperation(op:Operation, p:Permission, r:Role)

2 pre RoleBoD:

3 let u: RBACUtility = RBACUtility.allInstances() -> any(true),

4 boundedPermissions: Set (Permission)= u.getBoundedPermissions(),

5 roles: Set (Role)= Role.allInstances() -> select (r:Role |

6 r.permissions -> includesAll(boundedPermissions)),

7 roleLog: Set (History)= r.logBOCurrentProcessInstance()

8 in if boundedPermissions -> includes(p) and roleLog -> isEmpty() then

9 roles -> forAll (r:Role |r.logBOCurrentProcessInstance() -> isEmpty())

10 endif

In the OCL expression above, we first retrieve the set of bounded permissions and their
assigned roles (lines 4 and 6). Then, we determine which bounded operations have
been performed by role r in the current process instance4 by calling the operation
logBOCurrentProcessInstance() of the Role class (line 7). If the operation being
performed corresponds to a bounded operation and none of the bounded operations
have been performed in the current process instance by role r (line 8), then the pre-
condition is satisfied if none of the bounded operations have been previously performed
by any other role different from r (line 9). In other words, if a user with role r

has already performed a bounded operation (corresponding to the case in which the
condition roleLog->isEmpty() is false), any other user with the same role is allowed
to perform another bounded operation in the current process instance.

The subject-based BoD constraint requires that bounded operations must be exe-
cuted by the same subject (user and role). This constraint can be expressed in OCL
as:

context Session::performOperation(op:Operation, p:Permission, r:Role)

pre SubjectBoD:

4We recall that BoD constraints are usually defined in the context of process-based workflow
systems.

21

let u: RBACUtility = RBACUtility.allInstances() -> any(true),

boundedPermissions: Set (Permission)= u.getBoundedPermission(),

roles: Set (Role)= Role.allInstances() -> select (r:Role |

r.permissions-> includesAll(boundedPermissions)),

subjectLog: Set (History)= r.logBOCurrentProcessInstance() ->

select (a: History | a.user= self.user)

in if boundedPermissions -> includes (p) and subjectLog -> isEmpty() then

roles -> forAll (r:Role | r.logBOCurrentProcessInstance() -> isEmpty()

endif

This OCL constraint is similar to the one defined for role-based BoD. However, the
log subjectLog corresponds to the bounded operations that have been performed by
the user user with role r in the current process instance.

7.7 Role revocation and delegation constraints
7.7.1 Role delegation constraint

A delegation is characterized by a delegated role, a delegator, a delegate and their
corresponding roles. In a multi-step delegation, a user is allowed to delegate a del-
egated role according to a maximum delegation depth (hereafter called maxDepth).
This type of delegation can be specified in OCL as an invariant of the class Delegation

context Delegation inv MultiStepDelegation:

self.getAbsoluteDelegationPath() -> size() <= self.maxDepth

In the OCL expression shown above, the operation getAbsoluteDelegationPath re-
turns the list of delegation steps starting from the original (non-delegated role). The
size of this list is then compared with the attribute maxDepth. The single-step delega-
tion constraint can be defined as a multi-step delegation with a maximum delegation
depth equal to 1.

A delegation can be total or partial depending on the number of permissions being
delegated. A total delegation delegates all the permissions belonging to a certain role;
it can be specified in OCL as an invariant of the Delegation class:

context Delegation inv TotalDelegation:

self.isTotal implies

self.delegatedPermissions = self.delegatedRole.permissions

This expression states that if the delegation is total (represented by the attribute
isTotal) then the list of delegated permissions (derived from the association delegated-

Permissions) should be equal to the list of permissions associated to the delegated role.
A partial delegation (characterized by the attribute isTotal being false) is defined

in a similar way:

context delegation inv PartialDelegation:

not (self.isTotal) implies

(self.delegatedRole.permissions - self.delegatedPermissions) -> notEmpty()

A delegation can be either of type “grant” or “transfer”. While a “grant” type
delegation does not affect the permissions of the delegator, in case of a delegation of
type “transfer”, the delegator cannot use the delegated role after the delegation. A
delegation of type “transfer” can be either strong or weak. In case of strong transfer, in

22

addition to the delegated role, the delegator is no longer assigned to any of its juniors.
This constraint can be expressed in OCL as an invariant of the Delegation class:

1 context Delegation inv StrongTransfer:

2 let roles: Set(Role) = self.delegatedRole.getAlljuniors() -> including (self.

delegatedRole)

3 in self.isTransfer = delegationType::strong implies

4 self.delegatorUser.roles -> excludesAll(roles)

5 and self.delegateUser.delegatedRoles ->

6 includes(self.delegatedRole)

In the OCL expression shown above, we first retrieve the list of roles from the Delegation
object, including the delegated role and its juniors (line 2). The operation getAlljuniors

returns the juniors of the delegated role, walking through the transitive closure of the
hierarchy relation. For instance, the operation getAlljuniors applied to role r1 in
figure 2 returns the list of roles: r2, r3, r4 and r5. The OCL expression at line 3
states that if the delegation is of type strong transfer (represented by the expression
self.isTransfer = delegationType::strong) then the list of roles assigned to the del-
egator (derived from the delegatorUser.roles association) should include neither the
delegated role nor any of its juniors. Besides, the list of roles delegated to the del-
egate should include the delegated role; these roles are derived by navigating the
delegateUser.delegatedRoles association.

A delegation of type weak transfer can be either static or dynamic. In case of static
weak transfer, the delegator keeps using a subrole r of the delegated role only if she is
a member of another senior of role r. This constraint can be expressed in OCL as an
invariant of the Delegation class:

1 context Delegation inv StaticWeakTransfer:

2 let acquiredRoles: Set(Role) = self.delegatorUser.roles ->

3 union(self.delegatorUser.delegatedRoles),

4 allowedRoles: Set(Role) = self.delegatedRole.getAllJuniors() ->

5 select (r : Role | (r.seniors -> excluding(delegatedRole)) ->

6 exists (r1 : Role | acquiredRoles ->includes(r1))),

7 roles: Set(Role) = (self.delegatedRole.getAllJuniors() ->

8 including(self.delegatedRole)) - allowedRoles

9 in self.isTransfer = delegationType:: weakStatic implies

10 self.delegatorUser.roles -> excludesAll(roles)

11 and self.delegatorUser.roles -> includesAll(allowedRoles)

12 and self.delegateUser.delegatedRoles -> includes(self.delegatedRole)

In the OCL expression shown above, we first retrieve the list (acquiredRoles) of roles
available to the delegator, defined as the union of the roles assigned to and delegated
to the delegator (lines 2 and 3). Then, we select among the subroles of the delegated
role, the roles (allowedRoles) that the delegator is allowed to acquire. We check if
one of the juniors of the delegated role has another senior in the list acquiredRoles

(lines 4–6). We compute the list of roles that the delegator cannot use after the
transfer, keeping into account the allowedRoles (lines 7 and 8). If the transfer is of
type static weak (condition checked at line 9) the list of roles assigned to the delegator
should include neither the delegated role nor any of its juniors (except for those allowed
by the hierarchy relation). Finally, the list of roles delegated to the delegate should
include the delegated role (line 12).

23

The constraint for the delegation of type dynamic weak transfer has a similar
structure:

1 context Delegation inv DynamicWeakTransfer:

2 let acquiredRoles : Set(Role) = self.delegatorUser.roles ->

3 union(self.delegatorUser.delegatedRoles),

4 allowedRoles : Set(Role) = self.delegatedRole.getAllJuniors() ->

5 select (r : Role | (r.seniors ->

6 excluding(delegatedRole)) -> exists(r1 : Role |

7 self.delegatorUser.sessions -> exists(s:Session |

8 s.activeRoles -> includes(r1)))),

9 roles : Set(Role) = (self.delegatedRole.getAllJuniors() ->

10 including(self.delegatedRole)) - allowedRoles

11 in self.isTransfer = delegationType:: weakDynamic implies

12 self.delegatorUser.roles -> excludesAll(roles)

13 and self.delegatorUser.roles -> includesAll(allowedRoles)

14 and self.delegateUser.delegatedRoles -> includes(self.delegatedRole)

Notice that in this case the list allowedRoles (lines 5–8) includes the subroles having
an active senior in the delegator session.

7.7.2 Role revocation constraints

A delegation is revoked by setting the attribute isRevoked to true. The delegation is
revoked automatically when its duration expires; this constraint can be specified as
an invariant of the Delegation class as follows:

context Delegation inv AutomaticRevocation:

let u: RBACUtility = RBACUtility.allInstances() -> any(true),

in u.currentDate >= self.endDate implies self.isRevoked

A revocation is called grant-dependent if only the delegator is allowed to revoke
the delegation. On the other hand, a grant-independent revocation allows not only the
delegator but also any original user to revoke the delegation. This constraint can be
expressed in OCL as a pre-condition of the operation revoke of the Delegation class:

1 context Delegation::revoke()

2 pre RevacationDependency:

3 if self.delegatedRole.isDependent then

4 self.revokingUser = self.delegatorUser

5 else

6 self.revokingUser = self.delegatorUser or self.delegatedRole.users ->

7 includes(self.revokingUser)

8 endif

In the OCL expression above, we first check if the revocation is grant-dependent, by
checking the attribute isDependent of the association delegatedRole (line 3). If this
is the case, only the delegator is allowed to revoke the delegation (line 4). Otherwise,
the delegation can be revoked either by the delegator or by any user assigned to the
delegated role (lines 6 and 7).

A revocation can be classified as strong or weak according to its dominance. A
strong revocation removes from a user not only the delegated role but also its ju-

24

nior roles. A strong revocation can be expressed in OCL as a post-condition of the
operation revoke of the Role class:

context Delegation::revoke()

post StrongRevocation:

self.delegatedRole.isStrong implies

self.delegateUser.delegatedRoles -> excludesAll(self.delegatedRole.

getAllJuniors())

In the constraint above, the implication states that if the revocation is strong (as
determined by the attribute isStrong), the set of roles received by the delegation
(delegateUser.delegatedRoles) should not include juniors of the delegated role.

A revocation can be classified as cascading or non-cascading according to its prop-
agation. A cascading revocation removes all delegations resulting from a multi-step
delegation. It can be specified in OCL as a post-condition of the operation revoke of
the Delegation class:

context Delegation::revoke():

post CascadingRevocation:

self.delegatedRole.isCascading implies

self.delegatedDelegation -> forAll (d: Delegation | d.isRevoked = true)

In the constraint above, the implication states that in case of a cascading revocation
(as determined by the attribute isCascading), all the delegated delegations should be
revoked; this list of delegations is derived from the association delegatedDelegation.

7.8 Context constraint
A location-based constraint states that the role should be enabled (or assigned) if the
user is located in the location assigned to the role itself. Moreover, the role should be
disabled (or unassigned) when the user is not located anymore in the location assigned
to the role. The location-based constraint on role enabling can be specified in OCL
as an invariant of the class Session as follows:

1 context Session inv locationbased:

2 let userLocation: SpatialContext = self.user.userContext.

3 oclAsType(SpatialContext),

4 disabled: Set (Role) = self.user.roles -> select (r:Role |

5 r.roleContext.oclAsType(SpatialContext) ->

6 forAll (loc: SpatialContext |

7 not(loc.checkAccess(userLocation)))),

8 enabled: Set (Role) = self.user.roles -> select (r:Role |

9 r.roleContext.oclAsType(SpatialContext) ->

10 exists (loc: SpatialContext |

11 loc.checkAccess(userLocation) = true))

12 in self.enabledRoles -> excludesAll(disabled) and self.enabledRoles ->

includesAll(enabled)

In the OCL expression above, we first select among the set of roles assigned to
the user in the current session the roles that should be disabled. For each role, we
check (by means of the checkAccess operation of the class RBACContext) whether the
role’s spatial context matches the user’s location; if this is not the case, the role should

25

be disabled (lines 4–7). In a similar way, we retrieve the list of roles that should be
enabled. If any location in the role’s spatial context matches the user’s location, the
role is enabled (lines 8–11). Then we check whether the roles in the two lists belong
or not to the list of roles enabled in the current session (line 12).

A time-based constraint can be expressed in a similar way by replacing the in-
stances of SpatialContext with instances of TemporalContext. More in general, a
context-based constraint, combining both time and location, can be expressed in OCL
as an invariant of the class Session:

context Session inv RoleContext:

let userContext: RBACContext = self.user.userContext,

disabled: Set (Role) = self.user.roles -> select (r:Role |

r.roleContext -> forAll (c: RBACContext |

not(c.checkAccess(userContext)))),

enabled: Set (Role) = self.user.roles -> select (r:Role |

r.roleContext -> exists (c: RBACContext |

c.checkAccess(userContext) = true))

in self.enabledRoles -> excludesAll(disabled) and self.enabledRoles ->

includesAll(enabled)

A context-based constraint defined at the permission level can be specified in OCL
as a pre-condition of the performOperation of the class Session:

context Session::performOperation (op: Operation, p:Permission, r:Role)

pre PermissionContext:

let userContext: RBACContext = self.user.userContext

in p.permissionContext -> select(c:RBACContext | c.checkAccess(userContext))

-> notEmpty()

In the OCL expression above, we check whether there is at least one instance of the
contextual information assigned to the permission p that matches the user’s context.

8 Application
The GemRBAC model and the OCL formalization of the various types of RBAC
constraints presented in the previous sections represent our main contribution towards
an integrated framework for the definition of the RBAC constraints identified in our
taxonomy (see section 4). Our goal is to enable the specification of policies that
make use of the concepts previously proposed in the literature, using a unified model
(GemRBAC) and a standardized language (OCL) for their definition. With respect
to the state of the art, not only we consider all types of RBAC policies proposed in the
literature, but we also use a common model and notation to define them, improving
their understanding.

In terms of application, from the point of view of the definition of RBAC policies,
we believe that this work can represent a one stop source for security engineers, who
can access the taxonomy of the various types of RBAC constraints, determine their
exact meaning by referring to their formalization as OCL constraints on the Gem-
RBAC model, select the constraints that suit the needs of their organization, and
operationalize them based on readily-available OCL checkers.

We also maintain that our framework can be a basis on which to further develop
a model-driven approach for the verification of RBAC policies. Verification should

26

securityOfficer
:Role

trainee:Role

participant:Role

manageDevice:Permission

readRefuge:Permission

manageRefugee:Permission

sendAlert:Permission

modifyRefugee:Permission

readDevice:Permission

d1:
TemporalContext

d2:
TemporalContext

AbayZone1: SpatialContext

role
hierarchy

junior

create:Operation

read:Operation

update:Operation

delete:Operation

refugee:Object

device:Object

alert:Object

Bob:User

Alice:User

Mallory:User

role
assignment

role
assignment

role
assignment

manager:Role manageMission:Permission

role
assignment

Figure 5: Initial system state

be intended here in its broadest scope, including design-time verification (e.g., con-
sistency checking of policies [17, 18]) and run-time enforcement (e.g., allowing access
to resources only if an instance of the GemRBAC model satisfies the constraints
associated with it). In particular, for the latter, we assume that the run-time infras-
tructure collects snapshots representing the state of the system (from the point of
view of RBAC) as instances of the GemRBAC model. RBAC policies can be defined
as OCL constraints that the instances of the GemRBAC model should satisfy; these
constraints are based on the OCL templates proposed in section 7. An OCL checker
(such as Eclipse OCL [15]) can be used to check if a model instance satisfies the OCL
constraints associated with it, resulting in the enforcement of the corresponding access
control policies.

Although the definition of approaches for the verification of RBAC constraints
(including both consistency checking and model-driven run-time enforcement) is out
of the scope of this paper, in the rest of this section we describe an example scenario,
showing how the GemRBAC model can be instantiated in some states corresponding
to run-time changes of the system, and how we can define RBAC constraints using
the OCL templates proposed in the previous section.

Example Scenario
This example scenario is inspired by a real-world application developed by our partner
HITEC Luxembourg, which develops situational-aware systems for emergency scenar-
ios. The application is an integrated communication solution, to be used in case of
an emergency scenario (e.g., a natural large-scale disaster or a civil war situation), to
ease the process of assisting refugees and/or casualties in such situations.

The application allows different (humanitarian) organizations to participate to
various missions. During a mission, a user of the application can send alerts to request
treatment services for injured people. Each user belongs to at least one organization
and can be assigned to one or many missions. Each mission is characterized by a name,
a start date, an end date, and a geofence. The latter is a geographic boundary that

27

defines where users assigned to a certain role should be situated during the mission
period.

The membership of a user to an organization or to a mission does not automatically
grant the access to the corresponding resources. Following the principles of RBAC, the
access is allowed (or denied) according to the user’s role. In the rest of this section,
we consider the mission Philippine, which starts on date d1, ends on date d2, and
is situated within the geofence labeled AbayZone1. We refer to the following RBAC
entities:

• users = {Bob, Alice, Mallory};

• roles = {securityOfficer, participant, trainee, manager};

• permissions = {readRefugee, updateRefugee, manageRefugee, readDevice, man-
ageDevice, sendAlert, manageMisssion};

• operations = {create, read, update, delete};

• objects = {refugee, device, alert};

• spatial context = {AbayZone1};

• temporal context = {d1, d2}.

Figure 5 depicts an instance of the GemRBAC model representing the initial sys-
tem state for the mission Philippine. Each role is assigned to a set of permissions.
A permission is an abstraction of an object and a set of operations. For instance,
the permission manageDevice corresponds to the execution of the the operations cre-
ate, read, update, and delete on the object device. All roles are given the permission
sendAlert, to send an alert. The role securityOfficer can manage all the resources;
permissions of the form manage* include all the operations defined in the system.
Role participant is entitled the permission updateRefugee, which allows to update the
details of an existing refugee. Moreover, role participant is given the permissions of
the form read* for the objects of type device and vehicle. Role trainee is a subrole of
role participant ; hence, it inherits all the permission of its senior. Role manager can
perform administrative operations on the mission through the permission manageMis-
sion. Roles are assigned to users as follows: Bob is assigned to role securityOfficer
and to role manager, Alice is assigned to role participant, and Mallory is assigned to
role trainee. In addition to the user-role and role-permission assignments shown in
figure 5, some additional constraints can further restrict the user access. We define
the following constraints:

C1: role participant is enabled for the entire duration of the mission.

C2: role securityOfficer is enabled if the user is situated in the mission geofence.

C3: role trainee is enabled only if role securityOfficer is active.

C4: right after a delegation of type strong transfer, the delegator is no longer assigned
to the delegated role and all its juniors.

The time-based constraint C1 restricts the role activation; no user can activate
role participant before the starting of the mission. This constraint can be expressed
using the template (locationbased) provided on page 25, by replacing the instances of

28

Bob:User

Alice:User

Mallory:User

securityOfficer
:Role

trainee:Role

 participant:Role

d1:
TemporalContext

d2:
TemporalContext

AbayZone1:
SpatialContext

role
hierarchy

junior

role
delegation

role
assignment

role
assignment

officerDeleg:Delegation

delegate
role

delegated
role

delegator
user

-isTransfer = strong

delegate
user

delegator
role

manager:Role role
assignment

sesBob:Session

role
activation

Figure 6: System state after the delegation of role securityOfficer

SpatialContext with instances of TemporalContext. At the beginning, since no user is
connected to the system, no session is created.

In the rest of this section, we consider three run-time changes of the system. Each
change is represented by a snapshot that captures the system state. On each snapshot
we check whether the constraints defined above are satisfied or violated.

First, let us consider the case in which user Bob gets a new job. Since he cannot
participate to the mission anymore, he has to delegate, as a transfer, his role secu-
rityOfficer to Alice. To perform the delegation, he has to first activate one of his
roles, e.g., role manager5. Figure 6 depicts, as an object diagram, an instance of the
GemRBAC model that corresponds to a portion of the system state right after this
delegation. Since the delegation of Bob to Alice is of type transfer, Bob is no longer
member of role securityOfficer ; the latter is assigned to Alice via a role delegation
association. Notice that the object officerDeleg of type Delegation, having the at-
tribute isTransfer set to strong, has been created. It keeps track of the delegated role
(securityOfficer), the delegator user (Bob), the role of the delegator at the time of the
delegation (manager), the delegated role (securityOfficer), the delegate user (Alice),
and the role of the delegate (participant). Constraint C4 states that right after a
delegation of type strong transfer, the delegator is no longer assigned to the delegated
role and all its juniors. This constraint can be expressed using the template (Strong-
Transfer) provided on page 23. As Bob is no longer a member of role securityOfficer,
one can check that constraint C4 is satisfied.

When users Alice and Mallory connect to the system, a new session is created for
each of them, as shown in figure 7, with objects sesAlice and sesMallory. We assume
that Alice is located in the mission geofence AbayZone1. The spatial constraint C2
is satisfied and role securityOfficer is enabled. This constraint can be expressed using
the template (locationbased) provided on page 25. Session sesAlice maps Alice to the
roles that she is allowed to activate: participant and securityOfficer. The dependency

5Notice that the role being delegated is disabled because of constraint C2.

29

Bob:User

Alice:User

Mallory:User

securityOfficer
:Role

trainee:Role

 participant:Role

role
hierarchy

junior

role
delegation

role
assignment

role
assignment

admindeleg:Delegation
delegate role

delegator
user

-isTransfer = strong

sesAlice:Session

sesMallory:Session

role
enabling

role
enabling

posAlice:
SpatialContext

d1:
TemporalContext

d2:
TemporalContext

AbayZone1:
SpatialContext

delegate
user

delegator role

Figure 7: System state after the enabling of role securityOfficer

constraint C3 states that role trainee is enabled if role securityOfficer is active. Since
role securityOfficer is not active, Mallory cannot activate his role: as shown in figure 7,
role trainee is not enabled in session sesMallory. This constraint can be expressed
using the template (RoleActivationDependency) provided on page 24, by replacing
the parameter r with role trainee, and role r1 with role securityOfficer.

We now consider yet another change of the system corresponding to the instant
when user Alice activates role securityOfficer. Consequently, constraint C3 is satisfied
and Mallory is allowed to activate role trainee. In this state, let us assume that Alice
finds an injured person who needs medical treatment services. She sends an alert
(permission sendAlert) to request help for the casualty. As shown in figure 8, a new
object of the class History has been created to record the details of the operation:
the user (Alice), the user’s position (posAlice), the current time t1, the operation
(create) performed on the object alert, the corresponding permission sendAlert, and
the activated role securityOfficer.

Finally, the role participant will be disabled, according to constraint C1, when the
mission ends (on day d1).

We remark that none of the existing RBAC models discussed in section 5 would
be able to express the example presented above. More specifically, models RBAC96,
RDM2000, PDM, Crampton et al., Sohr et al., TRBAC, GTRBAC, GEO-RBAC and
LRBAC lack full support of context-based constraints. Consequently, constraints C1
and C2 could not be defined in these models. Although models LoTRBAC, STRBAC,
and GSTRBAC cover time-based and location-based constraints, they do not support
dependency and transfer policies. Consequently, constraints C3 and C4 could not be
defined in these models.

The example above, based on a real world application, shows the lack of expres-
siveness of the models presented in the literature and illustrate the need for a unified
modeling framework (like the proposed GemRBAC model), including constraint tem-
plates, to enable the specification and checking of a rich and realistic set of RBAC
policies.

30

Bob:User

Alice:User

Mallory:User

securityOfficer
:Role

trainee:Role

 participant:Role

role
hierarchy

junior

role
delegation

role
assignment

role
assignment

officierDeleg:Delegation

delegate
role

delegator
user

-isTransfer = strong

sesAlice:Session

sesMallory:Session

role
activation

role
enabling

role
enabling

posAlice:
SpatialContext

logAlice: History

send alert:Permission

create:Operation

alert:Object

t1: TemporalContext

delegated role

delegator role

Figure 8: System state after sending an alert

9 Related Work
The topic of roles and their use in enterprise information systems has been discussed
in a survey [46] that covers various aspects, ranging from roles in object modeling to
roles in social psychology and management; the article also briefly summarizes some
of the RBAC model extensions we have discussed in section 5. Reference [29] is a
survey and classification of the scientific literature over 15 years of research on roles
in information security. Reference [30] surveys the techniques used to verify RBAC
policies, using both semi-formal approaches (mainly based on UML/OCL) and formal
ones (based on specification languages like Z [41] and Alloy [16]). For a more general
survey on access control services in operating systems, database management systems
and network solutions (not limited to RBAC) we refer the reader to [13].

There have been several proposals for using OCL for the formalization of RBAC
constraints [4, 43, 33, 23, 10, 22, 25]; however, the types of policies considered in each
of these formalizations are a subset of the ones presented in this paper. In terms of
model-based approaches for RBAC, SecureUML [28] is a modeling language for the
model-driven development of secure systems, based on RBAC; it extends the original
RBAC model to support authorization constraints, which are preconditions expressed
in OCL, associated with operations that access system resources. In reference [6],
authors present an RBAC model which combines SecureUML and ComponentUML.
The latter is a UML-based language for modeling system entities and relationships
between them. Authorization constraints are defined as OCL queries such as ‘are
there actions on concrete resources that every user can perform in the given scenario? ’.
Similarly to our work, OCL queries are evaluated on the model instance which is a
snapshot of the system state. However, we analyze the OCL constraints from a user’s
request point of view in order to make the access decision. The model-driven security
approach proposed in [5] builds a security-aware graphical user interface model from

31

the security model presented in [6] and a graphical user interface model. The goal
is to automatically generate the graphical user interface application. Reference [24]
shows how to incorporate RBAC policies into UML design models using UML diagram
templates, but only supports role hierarchy and static and dynamic separation of duty
constraints.

This paper fills the gap between the existing OCL-based formalizations of the
RBAC policies and the various types of policies proposed in the literature, by for-
malizing all the types of policies classified in section 4 as OCL constraints on the
GemRBAC model.

10 Conclusion and future work
RBAC is the de facto standard for access control in enterprise information systems:
by assigning permissions to roles, it decouples users from permissions, simplifying the
administration and deployment of access control in the enterprise. Since the original
definition of RBAC in 1996, there have been many proposals to extend the original
model to support various types of authorization constraints. However, there is no
unified framework that can be used to define all these types of authorization constraints
in a coherent way, using a common conceptual model. Moreover, imprecise definitions
and semantics hinder the operationalization of some of these constraints.

In this paper we have proposed an extension of the original RBAC conceptual
model, called GemRBAC, which includes all the entities required to express the
various types of RBAC policies. These policies have been selected based on an
analysis and classification of the various RBAC extensions proposed in the litera-
ture. The various RBAC policies have been formalized as OCL constraints on the
UML representation of the GemRBAC model. This is expected to facilitate the
selection and operationalization of policies, either at design or run time, based for
example on OCL checkers. To support this, we make publicly available at https:

//github.com/AmeniBF/GemRBAC-model the Ecore version of the GemRBAC model,
the OCL constraints defined in section 7, and the model instances that violate/satisfy
them.

As part of future work, we plan to extend the GemRBAC with additional concepts,
such as those related to administrative operations, and more advanced definitions of
temporal and spatial contexts (e.g., periodicity expressions such as ‘each Friday ’ or
relative location expressions such as ‘5 miles around the current position of the user ’).
For example, the latter could be realized by introducing a more detailed class hierarchy
of class RBACContext. We also plan to define a domain-specific language to facilitate
the definition of the various policies discussed in this paper. The policies defined with
this language will then be mapped to the OCL constraints on the GemRBAC model;
this mapping will enable the verification of the policies, both at design time and at run
time, by means of OCL checkers, as hinted in section 8. Last, we plan to consolidate
the GemRBAC model and the domain-specific language in a tool suite, to facilitate
the concrete implementation of RBAC in organizations.

Acknowledgement
This work has been partially supported by the National Research Fund, Luxembourg
(FNR/P10/03) and by a research grant from HITEC Luxembourg. Ameni Ben Fadhel
is also supported by the Faculty of Science, Technology and Communication of the

32

University of Luxembourg. We thank Benjamin Hourte and Christophe Roussy from
HITEC Luxembourg for their help in the definition of the example.

33

