
Worst-case Scheduling of Software Tasks
A Constraint Optimization Model to Support Performance Testing

Stefano Di Alesio1,2, Shiva Nejati2, Lionel Briand2, and Arnaud Gotlieb1

1 Certus Centre for Software Verification & Validation, Simula Research Laboratory, Norway
{stefano, arnaud}@simula.no

2 Interdisciplinary Centre for Reliability, Security and Trust (SnT), University of Luxembourg,
Luxembourg {shiva.nejati, lionel.briand}@uni.lu

Abstract. Real-Time Embedded Systems (RTES) in safety-critical domains, such
as maritime and energy, must satisfy strict performance requirements to be deemed
safe. Therefore, such systems have to be thoroughly tested to ensure their correct
behavior even under the worst operating conditions. In this paper, we address the
need of deriving worst case scenarios with respect to three common performance
requirements, namely task deadlines, response time, and CPU usage. Specifically,
we investigate whether this worst-case analysis can be effectively re-expressed as
a Constrained Optimization Problem (COP) over the space of possible inputs to
the system. Solving this problem means finding the sets of inputs that maximize
the chance to violate performance requirements at runtime. Such inputs can in
turn be used to test if the target RTES meets the expected performance even in
the worst case. We develop an OPL model for IBM ILOG CP OPTIMIZER that
implements a task priority-based preemptive scheduling, and apply it to a case
study from the maritime and energy domain. Our validation shows that (1) the
input to our model can be provided with reasonable effort in an industrial setting,
and (2) the COP effectively identifies test cases that maximize deadline misses,
response time, and CPU usage.

1 Introduction: Performance Testing in Safety-Critical Systems
Systems in domains such as avionics, automotive, and maritime are often safety-critical,
implying that their failure could result in catastrophic consequences. For this reason,
their safety-related software components are usually subject to third-party certifica-
tion to be deemed operationally safe. In particular, software certification has to take
into account performance requirements specifying how the system should execute on
its hardware platform, and how it should react to its environment [15]. Such require-
ments often specify constraints on response time, jitter, task deadlines, and computa-
tional resources utilization [13, 20]. Widely used safety standards, such as IEC 61508
and IEC 26262, state that performance testing is highly recommended to provide an
evidence that the system is safe [6]. However, safety-critical systems are progressively
relying on real-time embedded software that features multi-threaded application design,
highly configurable operating systems, and multi-core architectures for computing plat-
forms [17]. The concurrent nature of embedded software also entails that the order of
external events triggering the systems tasks is often unpredictable [12]. Such increas-
ing software complexity renders performance testing more and more challenging. This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31224989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aspect is reflected by the fact that most existing software testing approaches target only
the system functionality, even though the degradation in performance can have more
severe consequences than mere incorrect behavior [27].

In this paper, we consider three common classes of performance requirements, con-
cerning respectively hard real-time, soft real-time, and resource constraints. Specifi-
cally, (1) we relate the hard real-time constraints to task deadlines requirements, stat-
ing that the system tasks should always terminate before a given completion time. Such
strict requirements entail that even a single deadline miss severely compromises the
system operational safety. (2) For the soft real-time constraints, we consider response
time requirements, stating that the system should respond to external inputs within a
specified time. Failure to do so poses negative consequences over the Quality of Ser-
vice (QoS). (3) Finally, we consider CPU usage requirements, stating that the system
should always keep a certain percentage of free CPU. Limiting the CPU usage is a nec-
essary safety precaution. Indeed, if the CPU usage trespasses a certain threshold, the
system may fail to timely respond to safety-critical alarms.

To check whether the system satisfies these requirements, we need to identify worst-
case scenarios with respect to deadline misses, response time, and CPU usage. Such
scenarios are determined by the way tasks are scheduled to execute at runtime by the
Real-Time Operating System (RTOS). The schedules in turn depend on real-time, un-
predictable events, on constraints deriving from software design, and on the system ex-
ecution platform. For instance, critical tasks in RTES are usually ready to be executed
upon triggers that depend on the external environment. Furthermore, the system design
constrains the way tasks interact with each other, specifying temporal relationships, and
communication through shared resources with exclusive access. Finally, RTOS are in
general configured with a priority-based scheduling policy, which entails that the low-
est priority task must be preempted when a higher priority task is ready for execution.
However, this preemption can only occur when the running task is not locking a shared
resource, and is only necessary when there is no available processor core. This mix
of real-time, software design, and execution platform constraints on task scheduling
renders the analysis of runtime scenarios challenging in the context of RTES.

Our work focuses on performance testing, whose goal is to identify scenarios that
exercise a system in a way to either violate performance requirements, or be as close
as possible to doing so. Consistent with widely used terminology [5], we refer to this
activity as stress testing. We propose a strategy to find combinations of system inputs
that maximize the likelihood of violating performance requirements. Such input combi-
nations are characterized by sequences of arrival times for aperiodic tasks in the target
software system, and we refer to each sequence as a stress test case. Finding these test
cases is not trivial, since the set of all possible arrival times for aperiodic tasks quickly
grows as the system size increases. Therefore, it is practically impossible to investigate
all the potential ways in which the arrival times can determine task schedules at run-
time. This reason motivates the need of a systematic search that effectively finds stress
test cases likely to reveal deadline misses, long response time, and high CPU usage.
Contributions of this Paper. The main contribution of this paper is to address the
systematic generation of stress test cases by applying Constraint Programming. Specif-
ically, we present a Constraint Optimization Model (COP) to automate the generation

of stress test cases, which is inspired by the work done in this field to solve tradi-
tional scheduling problems [4]. We evaluate our model using a practical application on
a RTES from the maritime and energy domain. We cast the problem of generating stress
test cases as an OPL model designed for the IBM ILOG CP OPTIMIZER, that models
the system design, executing platform, and performance requirements. The OPL model
in this paper builds on our previous work [10,11,22]. Specifically, we started [22] with
a COMET optimization model, where we addressed the validation of CPU Usage and
response time. Then [10], we devised an OPL version of the model where we focused
on task deadlines. Finally [11], we included a dedicated search procedure for a smarter
labeling of variables, and compared our constraint-based approach with metaheuristic
search techniques. Our earlier work included a variable boolean matrix showing tasks
execution over time, that proved to severely limit the efficiency of our model. In this
work, we significantly improve the data structures representing task executions, and
demonstrate the applicability of our new COP to an industrial case study. Specifically,
1. We provide a detailed OPL model which implements a task priority-based schedul-

ing process by considering a discretized matrix, as opposed to a boolean one, which
represents task executions over time. In addition, we address the search for solu-
tions adapting the dedicated heuristic proposed in previous work [11].

2. We demonstrate the efficiency of our OPL model by applying it to an industrial
case study representing a multi-threaded I/O driver with several instances running
concurrently on a multi-core platform. Our approach successfully found scenarios
violating the three performance requirements in a few minutes.

2 The Fire and gas Monitoring System
The main motivation behind our work comes from a case study of a Fire and gas Mon-
itoring System (FMS) in the maritime and energy domain. The goal of the system is
to monitor potential gas leaks in oversea oil extraction platforms, and trigger an alarm
in case a fire is detected. The system displays to human operators data coming from
smoke and heat detectors, and gas flow sensors. When the system receives critical data
from the hardware sensors, it automatically triggers actuators, such as fire sprinklers
and audio/visual alarms. An older version of this case study was presented in our previ-
ous work [22], where we discussed the detailed design and modeling of the I/O drivers.
The FMS software architecture is shown in Figure 1a.

Drivers implement I/O communication between the control modules of the system,
and the external environment, such as hardware sensors, actuators, and human oper-
ators. In the FMS, thousands of instances of I/O drivers run concurrently interacting
with several hundreds sensors. The software components of the FMS are executed on a
Real-Time Operating System that runs on a tri-core computing platform.

Drivers in the FMS share the same design pattern, featuring six tasks that commu-
nicate through three buffers which have fixed capacity and cannot be simultaneously
accessed by different tasks. Figure 1b shows the typical operational scenario, that is a
unidirectional data transfer between hardware sensors and control modules. (1) Pull-
Data periodically receives data from sensors or human operators, formats the data in
an appropriate command form, and (2) writes it in the buffer BoxIn. (3) When BoxIn is
full, the check signal activates IOBoxRead that (4) reads the data from the buffer and

(a) Software architecture of the FMS (b) Typical drivers data transfer scenario

Fig. 1: Description of the Fire and gas Monitoring System

(5) triggers IOQueueWrite. IOQueueWrite extracts the commands from the data, and
(6) stores them in the priority Queue. When Queue reaches a critical capacity, (7) the
check signal activates IOQueueRead that (8) reads the highest priority command and
(9) triggers IOBoxWrite which in turn (10) writes the command to BoxOut. When the
periodic scan signal (11) activates PushData, the task (12) reads the commands from
BoxOut and finally (13) sends them to the control modules for processing.

The data transfer functionality is subject to strict performance requirements. Specif-
ically, in each FMS driver, (1) no task should miss its deadline, (2) the response time
should be less than one second, and (3) the average CPU usage should be below 20%.
The main variables determining whether or not these requirements will be satisfied at
runtime are the arrival times of the check signal. These arrival times depend on the ex-
ternal environment, in the sense that depend on the data sent by the hardware sensors
via PullData. The arrival times also vary across different system executions, as a con-
sequence of the impossibility to predict the data coming from the sensors. Therefore, in
order to evaluate task deadlines, response time, and CPU usage, we need a strategy to
search all the possible task arrival times. This search has the objective of finding scenar-
ios that are predicted to violate the requirements, or be close to violating them. Indeed,
the more likely a scenario is predicted to violate a performance requirement, the higher
the chances that the test case characterized by such scenario will stress the system.

3 Related Work
Testing multi-threaded concurrent software has largely focused on functional proper-
ties, rather then system performance [27]. Specific methods [12] for design-time per-
formance analysis have been proposed to estimate the schedulability of a set of tasks
through formulas and theorems from the Real-Time Schedulability Theory [26], or with
model checking techniques [2]. In our experience, performance analysis is addressed
in industry mainly with Performance Engineering, which extensively relies on profil-
ing and benchmarking tools to dynamically analyze performance properties [16]. Such
tools, however, are limited to producing a small number of system executions, and re-
quire their manual inspection. Performance analysis can check the overall sanity of the
system performance, but cannot replace systematic stress testing.

For performance testing, search-based approaches have extensively been used [1],
especially in the domain of distributed systems. Specifically, Genetic Algorithms (GA)
have successfully been used to support performance testing, in particular with respect

to QoS constraints [24] or computational resources consumption [7]. GA have also
been used to generate test cases for testing tasks timeliness [23]. As for hard real-time
properties such as deadline misses, the state-of-the-art is represented by the work of
Briand et al. [8], that we used as a baseline for comparison in our previous work [11].

For schedulability analysis, CP approaches [4] have been studied for long time, es-
pecially in the domain of job-shop scheduling problems [19]. Among those, several ap-
proaches target task real-time constraints such as task deadlines [14], or timeliness [21].
Preemptive scheduling problems have also been solved both with pure CP [9], and
with hybrid approaches featuring combinations with GA [28]. Furthermore, recent im-
plementations [18] have successfully used IBM ILOG CP OPTIMIZER and OPL for
scheduling problems, albeit not addressing task preemption.

Despite the extensive literature for constraint based scheduling, we are unaware of
CP approaches targeted to test case generation, such as the generation of worst case sce-
narios, and of approaches addressing all the complexities of RETS such as multi-core
architectures, task dependencies, aperiodic tasks, and preemptive scheduling policies.

4 Supporting Performance Testing: A New Application of COPs
We address the problem of determining worst-case schedules of tasks with an approach
inspired by the work done in Constraint Programming to solve traditional scheduling
problems [4]. Specifically, we cast the search for real-time properties that character-
ize the worst-case schedules, namely arrival times for aperiodic tasks, as a Constraint
Optimization Problem (COP). The key idea behind our formulation relies on five main
points. (1) First, we model the system design, which is static and known prior to the
analysis, as a set of constants. The system design mainly consists of the tasks of the real-
time application, their dependencies, period, duration, deadline, and priority. Constants
of our model are described in Section 4.3. (2) Then, we model the system properties
that depend on runtime behavior as a set of variables. The main real-time properties
are the number of task executions, the arrival times of aperiodic tasks, and the specific
runtime schedule of the tasks. (3) We model the RTOS scheduler as a set of constraints
among such constants and variables. Indeed, the real-time scheduler periodically checks
for triggering signals of tasks and determines whether tasks are ready to be executed or
need to be preempted. (4) We model the performance requirement to be tested (i.e.,
task deadlines, response time, or CPU usage) as an objective function to be maximized.
(5) Finally, we encapsulate the logic behind the RTOS scheduler in an effective labeling
strategy over the variables of the model. By design, the scheduler tries to execute high
priority tasks as soon as possible, potentially preempting tasks with lower priority. We
exploit this behavior by proposing a labeling strategy for the variables related to tasks
execution. Our analysis is subject to two main assumptions:
1. The RTOS scheduler checks the running tasks for potential preemptions at reg-

ular and fixed intervals of time, called time quanta. Therefore, each time value
in our problem is expressed as a multiple of a time quantum. Accordingly to the
specification of the RTOS executing the FMS, we will consider the length of ten
milliseconds for time quanta.

2. The interval of time in which the scheduler switches context between tasks is neg-
ligible compared to a time quantum.

These two assumptions are reasonable in the context of RTES, as the scheduling rate
of operating systems varies in the ranges of few milliseconds, while the time needed for
context switching is usually in the order of nanoseconds [25]. These assumptions allow
us to consider time as discrete, and model the COP as an Integer Program (IP) over finite
domains. We implemented the COP in OPL, and solved it with IBM ILOG CPLEX
CP OPTIMIZER. This choice was motivated by practical reasons, such as extensive
documentation, strong supporting community, and its acknowledged efficiency to solve
optimization problems. Despite the scheduling nature of our problem, we implemented
our model as a traditional IP as opposed to using the scheduling features of OPL and
CP OPTIMIZER. This is because we could not express a preemptive priority-driven
scheduling behavior in an effective way that exploited the capabilities of the solver.

Fig. 2: Real-time scheduling example of four tasks on a dual-core platform

The rest of this section details our constraint model using the example shown in
Figure 2. This system features four tasks in increasing priority order, j0 to j3, running
on a dual-core platform for 10 time units. j0 and j1 are executed once, while j2 and
j3 are executed twice. The figure reports the arrival times and deadlines of the tasks,
respectively labeled by at and dl, where the first index represents the task, and the
second the task execution. In this example, j0 is aperiodic, while j2 and j3 are periodic.
Note that task j1 is triggered by j0 upon termination, and that j1 and j2 share the
resource r12 with exclusive access.

4.1 Constants
Constants are implemented as integers (int), integer ranges (range), tuples (tuple), sets
of tuples (setOf) and integer expressions. Integers values are defined as external data.
Observation Interval. Let T be an integer interval of length tq, i.e., T def

= [0, tq − 1],
representing the time interval during which we observe the system behavior. T is an
integer interval, as a consequence that time is discretized in our analysis. Therefore,
each time value t ∈ T is a time quantum. In Figure 2, tq = 10 and T = [0, 9].
Number of platform cores. Let c be the number of cores in the execution platform.
Therefore, c represents the maximum number of tasks that can be executed in parallel.
In Figure 2 c = 2, as at most two tasks are allowed to run in parallel.
Set J of tasks. Let J be the set of tasks of the system. Each task j ∈ J has a set of static
properties, defined as constants, and a set of dynamic properties, defined as variables.

Let Jp, Ja, and Jg respectively be the set of periodic, aperiodic, and triggered tasks
of the system. Jp, Ja, and Jg define a partition over J . We assume that OS tasks have
lower priority than system tasks and can be preempted at any time, and hence, can be
abstracted away in our analysis. Each task j is implemented as an OPL tuple named
Task, whose fields are the following non-relation constants. J is implemented as an
OPL tuple set, while Jp, Ja, and Jg are OPL generic sets derived from J . In Figure 2,
J = {j0, j1, j2, j3}, Ja = {j0}, Jp = {j2, j3}, and Jg = {j1}.
Priority of tasks. Let pr(j) be the priority of task j. For simplicity, we define the
set HPj of tasks having higher or equal priority than j: HPj

def
= {j1 ∈ J | j 6=

j1∧pr(j1) ≥ pr(j)}. In Figure 2, pr(j0) = 0, pr(j1) = 1, pr(j2) = 2, and pr(j3) = 3.
Period of tasks. Let pe(j) be the period of the task j, only defined if j is periodic. In
Figure 2, pe(j2) = 5 and pe(j3) = 6.
Offset of tasks. Let of(j) be the offset of the task j, i.e., the time, counted from the
beginning of T , after which the first period of task j begins. of is only defined if j is
periodic. In Figure 2, of(j2) = 0 and of(j3) = 1.
Minimum and maximum inter-arrival times of tasks. Let mn(j) and mx(j) respec-
tively be the minimum and maximum inter-arrival times of task j, i.e., the minimum
and maximum time separating two consecutive arrival times of j. mn(j) and mx(j) are
only defined if j is aperiodic since for all periodic tasks j, mn(j) = mx(j) = pe(j)
trivially holds. In Figure 2, we assumed mn(j0) = 5 and mx(j0) = 10.
Duration of tasks. Let dr(j) be the estimated Worst Case Execution Time (WCET)
of task j. For simplicity, we define the integer interval Pj of execution slots as Pj

def
=[

0, dr(j) − 1
]
. Since OPL does not support indexed ranges, Pj is implemented as a

single range P
def
= [0,max

j∈J
dr(j) − 1]. This definition entails that ∀j ∈ J · Pj ⊆ P .

The iteration through values in Pj is emulated with a logic implication. Indeed, the
following properties hold for every logic predicate C and arithmetic expression E:

∀p ∈ Pj · C(p) ⇐⇒ ∀p ∈ P · p < dr(j) =⇒ C(p) (1)∑
p∈Pj

E(p) =
∑
p∈P

(
p < dr(j)

)
· E(p) (2)

Note that in Equation 2
(
p < dr(j)

)
is a boolean expression that is true if p < dr(j),

and false otherwise. For the rest of this paper, equalities and inequalities written within
parentheses represent boolean expressions that evaluate to the integer 1 if true, and to
the integer 0 if false. This is also the default behavior in CP OPTIMIZER. In Figure 2,
dr(j0) = 3 and Pj0 = [0, 1, 2].
Deadline of tasks. Let dl(j) be the time, with respect to its arrival time, before which
task j should terminate. In Figure 2, dl(j0) = 7, dl(j1) = 6, dl(j2) = 4, and dl(j3)=3.
Triggering relation between tasks. Let tg(j1, j2) be a binary relation between tasks
j1 and j2 that holds if the event triggering j2 occurs when j1 finishes its execution.
The relation triggers is defined as irreflexive and antisymmetric. For simplicity, we
respectively define the sets TSj and STj of tasks triggered by and triggering j: TSj

def
=

{j1 ∈ J | tg(j, j1)} and STj
def
= {j1 ∈ J | tg(j1, j)}. tg is implemented as an OPL

tuple with two fields, the first being the task triggering, and the second being the task
triggered. In Figure 2, tg(j0, j1) holds.

Dependency relation between tasks. Let de(j1, j2) be a binary relation between tasks
j1 and j2 that holds if there exists a computational resource r such that j1 and j2 access
r during their execution in an exclusive way. This implies that j1 and j2 cannot be
executed in parallel nor can preempt each other, but one can execute only after the other
has released the lock on the resource. The relation dependent is defined as reflexive
and symmetric. For simplicity, we define the set DSj of tasks depending on j: DSj

def
=

{j1 ∈ J | j 6= j1 ∧ de(j1, j)}. de is implemented as an OPL tuple with two fields,
each being one of the task depending on the other. In Figure 2, de(j1, j2) holds.

4.2 Variables
Independent variables in our model are implemented as OPL finite domain variables
(dvar int). Dependent variables are implemented as OPL variable expressions (dexpr
int) defined through equality constraints. The first three variables described hereafter,
namely the number of task executions, their arrival times, and active sets, are indepen-
dent variables. The remaining variables described in this section are all dependent.
Number of task executions. Let te(j) be the number of times task j is executed within
T . For simplicity, we define the integer interval Kj of task executions for the task j

as Kj
def
= [0, te(j) − 1]. Furthermore, we refer to the kth execution of task j as the

couple (j, k). We assume the minimum and maximum inter-arrival times bound the
number of executions of an aperiodic task. This means that, for aperiodic tasks, te(j)
is defined as a variable with domain

[⌊
tq

mx(j)

⌋
,
⌊

tq
mn(j)

⌋]
. Similarly, we assume that

offset and period statically determine the number of executions of periodic tasks so
that te(j) =

⌊
tq−of(j)
pe(j)

⌋
. Therefore, the number of task executions of periodic tasks

is constant, rather than variable. However, we do not formally distinguish it from the
number of task execution for aperiodic tasks. te is implemented as an integer array
ranging over Jp if the task is periodic (or ranging over Jg if triggered by a periodic task),
and as an integer variables array ranging over Ja if the task is aperiodic (or ranging over
Jg if triggered by an aperiodic task). Since OPL does not support ranges with variable
bounds, Kj is implemented as a single constant range K:

K
def
=

[
0, max

(
max
j∈Jp

⌊
tq − of(j)

pe(j)

⌋
,max
j∈Ja

⌊
tq

mn(j)

⌋)]
Note that K is defined as a range from 0 to the largest upperbound for task executions
of periodic and aperiodic tasks. This definition entails that ∀j ∈ J · Kj ⊆ K. The
iteration through values in Kj is performed in a similar way as the case of Pj , thanks
to the following properties for each logic predicate C and arithmetic expression E:

∀k ∈ Kj · C(k) ⇐⇒ ∀k ∈ K · k < te(j) =⇒ C(k) (3)∑
k∈Kj

E(k) =
∑
k∈K

(
k < te(j)

)
· E(k) (4)

In Figure 2 te(j0) = 1, te(j3) = 2, Kj1 = [0], and Kj2 = [0, 1].
Arrival time of task executions. Let at(j, k) be the time when an event notifies the
RTOS that task j should be executed for the kth time. We say that j arrives for the kth

time at time t iff at(j, k) = t. When the specific execution k of j is understandable
from the context, we will simply say that j arrives at time t. In our analysis, we assume
that the arrival time of periodic tasks is constant: ∀j ∈ Jp, k ∈ Kj · at(j, k) =
of(j) + k · pe(j). Similarly to the case of te, we do not formally distinguish the arrival
times of periodic and aperiodic tasks. at has domain T for aperiodic tasks. In Figure 2,
at(j0, 0) = 0 and at(j2, 1) = 5.
Active set of task executions. Let ac(j, k, p) be the pth time quantum in T in which
task j is running for the kth execution. We refer to the set of all ac variables as the
schedule produced by the arrival times of the tasks in J . ac variables have domain T .
In Figure 2, ac(j0, 0, 0) = 0, ac(j0, 0, 1) = 2.
Preempted set of task executions. Let pm(j, k, p) be the number of time quanta
for which the kth execution of task j is preempted for the pth time: pm(j, k, p)

def
=

ac(j, k, p)−ac(j, k, p−1)−1. pm is only defined for p > 0. In Figure 2, pm(j0, 0, 1) =
1, and pm(j0, 0, 2) = 0.
Start and end times of task executions. Let st(j, k) and en(j, k), respectively be the
first and the one after the last time quantum in which task j is executing for the kth time.
We say that j starts or ends for the kth time at time t iff respectively st(j, k) = t or
en(j, k) = t − 1. By definition, st(j, k) def

= ac(j, k, 0) and en(j, k)
def
= ac

(
j, k, dr(j) −

1
)
+ 1. In Figure 2, st(j0, 0) = 0 and en(j1, 0) = 6.

Waiting time of task executions. Let wt(j, k) be the time that j has to wait after
its arrival time before starting its kth execution. By definition, wt(j, k) def

= st(j, k) −
at(j, k). In Figure 2, wt(j0, 0) = 0, and wt(j2, 1) = 1.
Deadline of task execution. Let ed(j, k) be the absolute deadline of the kth execution
of j, i.e., the time, with respect to the beginning of T , before which j should terminate
to meet its deadline. By definition, ed(j, k) def

= at(j, k) + dl(j)− 1. ed is implemented
as two-dimensional array of integer variable expressions ranging over the set J and the
range K. In Figure 2, ed(j0, 0) = 6, and ed(j1, 0) = 8.
Deadline miss of task execution. Let dm(j, k) be the amount of time by which j
missed its deadline during its kth execution. By definition, dm(j, k)

def
= en(j, k) −

ed(j, k) − 1. dm is implemented as two-dimensional array of integer variable expres-
sions ranging over the set J and the range K. In Figure 2, dm(j0, 0) = −3.
Blocking task execution time quantum. Let bl(j, k, j1, k1, p1) be a boolean variable
that is true if in the interval

[
at(j, k), st(j, k)

)
the task execution (j1, k1) is active at

the time slot p1:

bl(j, k, j1, k1, p1)
def
= at(j, k) ≤ ac(j1, k1, p1) < st(j, k)

In Figure 2, bl(j2, 1, j1, 0, 1) = true, since (j2, 0) waits at t = 5 for the last time
quantum of (j1, 0) before starting.
Higher priority active tasks. Let ha(j, k) be the number of time quanta in the interval[
at(j, k), st(j, k)

)
where exactly c tasks having higher priority of j and not depending

on j are active. Consider the summation indexes j1, k1, p1 respectively defined in the
sets HPj \ DSj , Kj1 , and Pj1 , and the summation indexes j2, k2, p2 respectively
defined in the sets HPj \DSj , Kj2 , and Pj2 . We define:

ha(j, k)
def
=

∑
j1,k1,p1

(
bl(j, k, j1, k1, p1) ∧

((∑
j2,k2,p2

bl(j, k, j2, k2, p2)
)
= c

))

Note that for the definition of ha(j, k), it is important that HPj also includes tasks with
equal priority than j. This is because, in the RTOS scheduling policy we consider, tasks
can only preempt tasks with strictly lower priority. In Figure 2, ha(j, k) = 0 for all task
executions (j, k), since in no case there are 2 tasks active when a task is waiting.
Dependent active tasks. Let da(j, k) be the number of time quanta in the interval[
at(j, k), st(j, k)

)
where task executions depending on j is active. Consider the sum-

mation indexes j1, k1, p1 respectively defined in the sets DSj , Kj1 , and Pj1 :

da(j, k)
def
=

∑
j1,k1,p1

bl(j, k, j1, k1, p1)

In Figure 2, da(j2, 1) = 1, because j1 is active for the time quantum t = 5 between the
arrival and the start of j2.
Dependent preempted tasks. Let dp(j, k) be the number of time quanta in the interval[
at(j, k), st(j, k)

)
where task executions depending on j have been preempted. Con-

sider the summation indexes j1, k1, p1 respectively defined in the sets DSj , Kj1 , and
Pj1 . Then, we define

dp(j, k)
def
=

∑
j1,k1,p1

pm(j1, k1, p1) · bl(j, k, j1, k1, p1)

In Figure 2, dp(j, k) = 0 for all task executions (j, k), since there are no dependent
task preempted that block the execution of any task.
System load. Let ld(t) be the load of the system at time t, i.e., the number of tasks
active at time t. Consider the summation indexes j, k, p respectively defined in the sets
J , Kj , and Pj . Then we define

ld(t)
def
=
∑
j,k,p

(
ac(j, k, p) = t

)
In Figure 2, ld(0) = 2, and ld(3) = 1.

4.3 Constraints
We define five groups constraints related to different aspects of the RTOS.
Well-formedness Constraints, specifying relations among variables that directly fol-
low from their definition in the schedulability theory.

Each task execution starts after its arrival time, and ends after the task duration.

∀j ∈ J, k ∈ Kj · at(j, k) ≤ st(j, k) ≤ end(j, k)− dr(j) (WF1)

Arrival times of aperiodic tasks are separated by their minimum and maximum
inter-arrival times.

∀j ∈ Ja, k ∈ Kj \ {0} · at(j, k − 1) +mn(j) ≤ at(j, k) ≤ at(j, k − 1) +mx(j)
(WF2)

The time indexes p ∈ Pj define an order over the active time quanta of tasks.

∀j ∈ J, k ∈ Kj , p ∈ Pj \ {0} · ac(j, k, p− 1) < ac(j, k, p) (WF3)

Temporal Ordering Constraints, specifying the relative ordering of tasks basing on
their dependency and triggering relations.

Each triggered task is executed the same number of times of its triggering task.

∀j1 ∈ J, j2 ∈ TSj · te(j1) = te(j2) (TO1)

Each triggered task execution arrives when its triggering task execution ends.

∀j1 ∈ J, k ∈ Kj1 j2 ∈ TSj · end(j1, k) = at(j2, k) (TO2)

Executions of dependent tasks cannot overlap, i.e., one task can only start after the
one it depends on has ended.

∀j1 ∈ J, k1 ∈ Kj1 j2 ∈ DSj , k2 ∈ Kj2 · en(j1, k1) ≤ st(j2, k2) ∨ (TO3)
en(j2, k2) ≤ st(j1, k1)

If two tasks that depend on each other arrive at the same time, the higher priority
task executes first.

∀j1 ∈ J, k1 ∈ Kj1 , j2 ∈
(
DSj ∩ (J \HPj)

)
, k2 ∈ Kj2 · (TO4)

at(j1, k1) = at(j2, k2) =⇒ st(j1, k1) < st(j2, k2)

Multi-core Constraint, capturing the specification of the number c of cores of the
computing platform, and stating that no more than c tasks are allowed to be active in
parallel at any time.

The system load should be less than the number of cores at any time.

∀t ∈ T · ld(t) ≤ c (MC)

Note that, when c = 1, MC is equivalent to an alldifferent constraint over ac.
Preemption Constraint, capturing the priority-driven preemptive scheduling of the
RTOS, and stating that each task should be preempted when a higher priority task is
ready to be executed and no cores are available.

The number of time quanta where a task execution is preempted times c is equal
to the number of time quanta where higher priority tasks are active. Considering the
summation indexes j1, k1, p1 respectively defined in the sets HPj , Kj1 , and Pj1 ,

∀j ∈ J, k ∈ Kj , p ∈ Pj · (PC)

pm(j, k, p) · c =
∑

j1,k1,p1

(
ac(j, k, p− 1) < ac(j1, k1, p1) < ac(j, k, p)

)
Scheduling Efficiency Constraint, ensuring that there is no unnecessary task preemp-
tion, and that tasks are executed as soon as possible.

For each time quanta in which a task execution (j, k) is waiting, there should be
either (1) exactly c tasks with higher priority that do not depend on j active, or (2) one
task execution dependent on j that is active, or (3) one task execution dependent on j
that is preempted.

∀j ∈ J, k ∈ Kj · wt(j, k) = ha(j, k) + da(j, k) + dp(j, k) (SE)

4.4 Objective Functions
We formalized three objective functions, each modeling one performance requirement,
and each meant to be maximized in a separate constraint model having the same con-
stants, variables, and constraints. In this way, solutions to each of the three constraint
models characterize worst-case scenarios for the requirement modeled by the function.
Task Deadline Misses Function, modeling the performance requirement involving task
deadlines with the function FDM :

FDM =
∑

j∈J, k∈Kj

2 dm(j,k)

To properly reward scenarios with deadline misses, FDM assigns an exponential contri-
bution to deadline misses towards the sum [11]. Recall from Section 4.2 that dm(j, k)
is positive if the task execution (j, k) misses its deadline, and negative otherwise.
Response Time Function, modeling the system response time with the function FRT :

FRT =

(
max

j∈J, k∈Kj

en(j, k)

)
−
(

min
j∈J, k∈Kj

at(j, k)

)
FRT measures the total length in time quanta of the schedule, starting from when the
first task arrives, up to when the last ends. This function is also known in traditional
scheduling as makespan.
CPU Usage Function, modeling the system CPU usage with the function FCU :

FCU =

∑
t∈T

(
ld(t) > 0

)
tq

FCU measures the average CPU usage of the system over T , by counting all the time
quanta where at least one task is active, i.e., where the system load is greater than 0.

4.5 Search Heuristic
We defined a search heuristic that refines the branching process of the CP OPTIMIZER
solving algorithm. The heuristic specifies that the solver should mimic the behavior of a
RTOS by first trying to schedule tasks with higher priority. This is done by choosing the
ac variables to branch on by decreasing priority, and then by assigning their time values
in increasing order. For example, consider a system where c = 1, j0, j1 ∈ J, pr(j1) >
pr(j0). Suppose that, for given k0, p0, k1, j1 the filtering algorithm reduced the domains
of the ac variables to the set [0, 1]. Figure 3a shows the branching tree in case the solver
runs with default settings.

In the root node, the ac variables have domain [0, 1]. The solver then tries the first
variable assignment in the branch b1, stating that j0 is executing at time 0. Then, the
solver tries the second assignment in the branch b2, stating that j1 is executing at time
0. This variable assignment violates the multi-core constraint MC since both j0 and j1
are executing at the same time. Therefore, the solver prunes the node, backtracks to the
father node, and tries the assignment in b3 where j1 is executing at time 1. This assign-
ment violates the preemptive scheduling constraint PC, since j1 has higher priority, but

j0 is running instead. Only after backtracking up to the root node, the solver tries the
assignments in b4 and b5 which do not violate any constraint. Note that several other
branching steps might have been necessary if ac(j1, k1, p1) had a larger domain.

ac(j0, k0, p0) ∈ [0, 1]
ac(j1, k1, p1) ∈ [0, 1]

ac(j0, k0, p0) = 0
ac(j1, k1, p1) ∈ [0, 1]

ac(j0, k0, p0) = 0
ac(j1, k1, p1) = 0

b2

ac(j0, k0, p0) = 0
ac(j1, k1, p1) = 1

b3

b1

ac(j0, k0, p0) = 1
ac(j1, k1, p1) ∈ [0, 1]

ac(j0, k0, p0) = 1
ac(j1, k1, p1) = 0

b5

b4

(a)

ac(j0, k0, p0) = [0, 1]
ac(j1, k0, p0) = [0, 1]

ac(j0, k0, p0) = [0, 1]
ac(j1, k0, p0) = 0

ac(j0, k0, p0) = 0
ac(j1, k0, p0) = 0

b2

ac(j0, k0, p0) = 1
ac(j1, k1, p1) = 0

b3

b1

(b)

Fig. 3: Branch and bound backtracking without (a) and with (b) our search heuristic

Consider Figure 3b, where the solver has been instructed to first branch by assigning
the smallest value in its domain to the ac variable associated with the highest priority
task. In this case, the solver tries the first assignment ac(j1, k1, p1) = 0 in the branch
b1. Then, it tries the second assignment in the branch b2, that violates MC. However,
the third assignment in b3 does not violate any constraint, making the solver perform
only one backtracking step.

The semantics of this heuristic, i.e., highest priority tasks should be scheduled first,
is the same as the semantics of the RTOS scheduler, which in turn is captured by pre-
emptive scheduling constraint. By using this concept in the branching process, the
solver will be less likely to assign values for ac that violate the preemptive schedul-
ing constraint, and thus will find solutions faster. We implemented the search heuristic
within a stand-alone application that solves the OPL model using the .NET CONCERT
library to interface with the CP OPTIMIZER. Experimentation with our search heuristic
showed a significant decrease in the time needed by the solver to find solutions [11].

5 Industrial Experience
Context and Process. The work reported in this paper originates from the interaction
over the years with Kongsberg Maritime (KM)1, a leading company in the maritime and
energy field. KM has pressing needs to improve its practices related to safety certifica-
tion, and this involves improving the validation of performance requirements. There-
fore, we proposed the work reported in this paper to provide support for systematic
performance testing.

Through regular meetings with KM engineers, we first identified the need for a
model-based testing approach defining the abstractions required for performance anal-
ysis [22]. Then, we casted such analysis as an optimization problem over a mathemati-
cal model of the tasks preemptive scheduling policy. To prepare for industrial adoption,

1 www.km.kongsberg.com

we initially evaluated our methodology in five publicly available case studies of sev-
eral RTES domains [11]. This preliminary evaluation showed encouraging results when
comparing our approach with a state-of-the-art optimization strategy based on Genetic
Algorithms [8]. In this paper, we provide an improved constraint model and evaluate it
in the context of the KM Fire and gas Monitoring System.

Results. The main goal of our evaluation is to investigate whether CP can effec-
tively be used for performance testing in an industrial context. For our approach to be
used in practice, we need to discuss (1) whether the input data to our approach, i.e., the
values for the constants in the constraint model, can be provided with reasonable effort,
and (2) whether engineers can use the output of our analysis, i.e., the values for the
variables in the constraint model, to derive stress test cases for different performance
requirements. We discussed the first question in our previous work [22]. Specifically,
we demonstrated that the effort to capture the input data for our approach was approxi-
mately 25 man-hours of effort. This was considered worthwhile as such drivers have a
long lifetime and are certified regularly. We discuss the second question below.

Recall from Section 2 that we characterize stress test cases by arrival times of aperi-
odic tasks in the FMS drivers. Therefore, such arrival times are the main variables in our
constraint model. We performed an experiment with the FMS drivers with an observa-
tion interval T of five seconds, assuming time quanta of 10 ms. We run our OPL model
for three times on a single Amazon EC2 m2.xlarge instance 1. Each run maximized one
objective function defined in Section 4.4, and had a duration of five hours. Figure 4
shows the feasible solutions with the best objective value that were found within five
hours. Consistent with the terminology used in Integer Programming, we refer to these
solutions as incumbents [3]. In each graph, the x-axis reports the incumbent computa-
tion times in the format hh:mm:ss, and the y-axis reports the corresponding objective
value. The constraint problems had almost 600 variables and more than one million
constraints, and used up to 10 GB RAM during resolution.

(a) FDM value over time (b) FRT value over time (c) FCU value over time

Fig. 4: Objective values over time, where we highlighted the time when the first incum-
bent predicted to violate a performance requirement was found

Note that, for practical use, software testing has to accommodate time and budget
constraints. It is then essential to investigate the trade-off between the time needed to
generate test cases, and their revealing power for violations of performance require-
ments. For this reason, we also recorded the computation times of the first incumbents
predicted to violate the three performance requirements as expressed in Section 2.
1 http://aws.amazon.com

The run optimizing FDM is shown in Figure 4a. The solver found 55 out of a total
of 81 incumbents with at least one deadline miss in their schedule; the first of such
solutions was found after three minutes. The solution yielding the best value for FDM

produced a schedule where the PushData task missed its deadline by 10 ms in three
executions over T . Figure 4b shows the results for the run optimizing FRT . The solver
found 18 out of 19 incumbents with response time higher than one second; the first
of such solutions was found after two minutes. The best solution with respect to FRT

produced a schedule where the response time of the system was 1.2 seconds. Finally, the
solutions found by optimizing FCU are shown in Figure 4c. The solver found 16 out of
20 incumbents with CPU usage above 20%; the first of such solutions was found after
four minutes. The solution with the highest value for FCU produced a schedule where
the CPU usage of the system was 32%. In all of the three runs the solver terminated after
five hours, our time budget, without completing the search with proof of optimality.
However, for each objective function, the solver was able to find, within few minutes,
solutions that are candidates to stress test the system as they may lead to requirements
violations. These solutions can be used to start testing the system while the search
continues, because the highest the objective value, the more likely the solutions are to
push the system to violating its performance requirements.

6 Conclusions and Future Work
Currently, KM engineers spend several days simulating the behavior of the FMS and
monitoring its performance requirements. We expect that, by following the systematic
strategy proposed in this paper, they can effectively derive stress test cases to produce
satisfactory evidence that no safety risks are posed by violating performance require-
ments at runtime. We note that our methodology draws on context factors (Section 4)
that need to be ascertained prior to successful application. While the generalizability
of these factors needs to be further studied, we have found the factors to be common-
place in many industry sectors relying on RTES. Furthermore, we note how casting
the worst-case scenario analysis as a search problem relies on modeling the property
to stress test as an objective function to be maximized. This is a flexible design when
it comes to adapting the constraint model to test different performance requirements.
In such cases, it is only needed to substitute the objective function with one modeling
a difference performance requirement. Moreover, the final users of our approach, i.e.,
software testers and engineers, do not need to be aware of the mathematical details of
the constraint model, as they can simply use our methodology as a black box test cases
generator. Finally, note that there is no randomization process in the search: this means
that solving a model multiple times will always find the same set of solutions in a given
time budget. To achieve diversity among the test cases, we plan to consider hybrid ap-
proaches combining CP with meta-heuristic search strategies. As future work, we also
plan to further investigate the scheduling capabilities of CP OPTIMIZER and OPL.

Acknowledgments. We gratefully thank Arnaud Malapert and Jean-Charles Régin for
their invaluable input in refining the constraint model. The first and fourth authors ac-
knowledge funding from the Research Council of Norway (ModelFusion project and
Certus). The second and the third authors are supported by the Luxembourg National
Research Fund (FNR/P10/03 Validation and Verification Laboratory).

References

1. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-
functional system properties. Information and Software Technology 51(6), 957–976 (2009)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Logic in
Computer Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE Symposium on. pp.
414–425. IEEE (1990)

3. Atamtürk, A., Savelsbergh, M.W.: Integer-programming software systems. Annals of Oper-
ations Research 140(1), 67–124 (2005)

4. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems, vol. 39. Springer (2001)

5. Beizer, B.: Software testing techniques. Dreamtech Press (2002)
6. Bell, R.: Introduction to IEC 61508. In: Proceedings of the 10th Australian workshop on

Safety critical systems and software-Volume 55. pp. 3–12. Australian Computer Society,
Inc. (2006)

7. Berndt, D.J., Watkins, A.: High volume software testing using genetic algorithms. In: System
Sciences, 2005. Proceedings of the 38th Annual Hawaii International Conference on. pp.
318b–318b. IEEE (2005)

8. Briand, L.C., Labiche, Y., Shousha, M.: Using genetic algorithms for early schedulability
analysis and stress testing in real-time systems. Genetic Programming and Evolvable Ma-
chines 7(2), 145–170 (2006)

9. Cambazard, H., Hladik, P.E., Déplanche, A.M., Jussien, N., Trinquet, Y.: Decomposition and
learning for a hard real time task allocation problem. In: Principles and Practice of Constraint
Programming–CP 2004, pp. 153–167. Springer (2004)

10. Di Alesio, S., Gotlieb, A., Nejati, S., Briand, L.: Testing deadline misses for real-time sys-
tems using constraint optimization techniques. In: Software Testing, Verification and Valida-
tion (ICST), 2012 IEEE Fifth International Conference on. pp. 764–769. IEEE (2012)

11. Di Alesio, S., Nejati, S., Briand, L., Gotlieb, A.: Stress testing of task deadlines: A constraint
programming approach. In: Software Reliability Engineering (ISSRE), 2013 IEEE 24th In-
ternational Symposium on. pp. 158–167. IEEE (2013)

12. Gomaa, H.: Designing concurrent, distributed, and real-time applications with UML. In:
Proceedings of the 28th International Conference on Software Engineering. pp. 1059–1060.
ACM (2006)

13. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: FM 2006: Formal
Methods, pp. 1–15. Springer (2006)

14. Hladik, P.E., Cambazard, H., Déplanche, A.M., Jussien, N.: Solving a real-time allocation
problem with constraint programming. Journal of Systems and Software 81(1), 132–149
(2008)

15. Jackson, D., Thomas, M., Millett, L.I., et al.: Software for Dependable Systems: Sufficient
Evidence? National Academies Press (2007)

16. Jain, R.: The art of computer systems performance analysis. John Wiley & Sons (2008)
17. Kopetz, H.: Real-time systems: design principles for distributed embedded applications.

Springer (2011)
18. Laborie, P.: IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems.

In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Op-
timization Problems, pp. 148–162. Springer (2009)

19. Le Pape, C., Baptiste, P.: An experimental comparison of constraint-based algorithms for
the preemptive job shop scheduling problem. In: CP97 Workshop on Industrial Constraint-
Directed Scheduling. Citeseer (1997)

20. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical systems ap-
proach. Lee & Seshia (2011)

21. Malapert, A., Cambazard, H., Guéret, C., Jussien, N., Langevin, A., Rousseau, L.M.: An
optimal constraint programming approach to the open-shop problem. INFORMS Journal on
Computing 24(2), 228–244 (2012)

22. Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU usage
in safety-critical embedded systems to support stress testing. In: Model Driven Engineering
Languages and Systems, pp. 759–775. Springer (2012)

23. Nilsson, R., Offutt, J., Mellin, J.: Test case generation for mutation-based testing of timeli-
ness. Electronic Notes in Theoretical Computer Science 164(4), 97–114 (2006)

24. Shams, M., Krishnamurthy, D., Far, B.: A model-based approach for testing the performance
of web applications. In: Proceedings of the 3rd International Workshop on Software Quality
Assurance. pp. 54–61. ACM (2006)

25. Singh, A.: Identifying Malicious Code Through Reverse Engineering. Springer (2009)
26. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time systems.

Microprocessing and microprogramming 40(2), 117–134 (1994)
27. Weyuker, E.J., Vokolos, F.I.: Experience with performance testing of software systems: is-

sues, an approach, and case study. Software Engineering, IEEE Transactions on 26(12),
1147–1156 (2000)

28. Yun, Y.S., Gen, M.: Advanced scheduling problem using constraint programming techniques
in SCM environment. Computers & Industrial Engineering 43(1), 213–229 (2002)

