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Abstract— Model-Driven Security (MDS) for secure systems
development still has limitations to be more applicable in practice.
A recent systematic review of MDS shows that current MDS
approaches have not dealt with multiple security concerns system-
atically. Besides, catalogs of security patterns which can address
multiple security concerns have not been applied efficiently. This
paper presents an MDS approach based on a unified System
of Security design Patterns (SoSPa). In SoSPa, security design
patterns are collected, specified as reusable aspect models to form
a coherent system of them that guides developers in systematically
addressing multiple security concerns. SoSPa consists of not
only interrelated security design patterns but also a refinement
process towards their application. We applied SoSPa to design
the security of crisis management systems. The result shows that
multiple security concerns in the case study have been addressed
by systematically integrating different security solutions.

I. Introduction

Model-Driven Security (MDS) specialises Model-Driven
Engineering approach for secure systems development, but
still has limitations to be more applicable. Our recent system-
atic review of MDS [11] shows that multiple security concerns
have not been addressed systematically by existing MDS
studies. Indeed, the interrelations or dependencies among
security solutions have not been considered systematically by
current MDS approaches. Developing modern secure systems
must always address multiple security concerns to minimise
different security leaks and to make these systems resilient
to different security attacks. A solution to address a specific
security concern often depends on other solutions address-
ing other security concerns. For instance, most authorisation
mechanisms depend on authentication mechanisms because
before an authorisation decision, the authorisation mechanism
should have known the identity of the requester. Authentication
mechanisms often rely on encryption mechanisms, especially
for distributed systems. Furthermore, there could be a lot of
different variations of security solutions to address the same
security concern. All urge for an MDS approach that can
systematically address multiple security concerns, considering
interrelations among security solutions and their variants.

Besides, from the security engineering’s point of view, one
of the best practices is the use of security patterns to guide
security at each stage of the development process [12]. Patterns
are applied in the different architectural levels of the system

to realise security mechanisms. So far, catalogs of security
patterns are the most accessible, well organised, documented
resources of different security solutions for different security
concerns, e.g. [2, 12, 14]. But the results of a recent empiri-
cal study [15] show that using existing catalogs of security
patterns improves neither the productivity of the software
designer, nor the security of the design. Indeed, security
patterns could be applied at different levels of abstraction,
e.g. architectural design rather than detailed design. Moreover,
the levels of quality found in security patterns are varied,
not equally well-defined like software design patterns [4].
Particularly, many security patterns are too abstract or general,
without a well-defined, applicable description. There is also
a lack of some coherent specification of the interrelations
among security patterns, and with other quality properties
like performance, usability. In some catalogs, each security
pattern is described having its related patterns, and possible
impacts on other quality properties mentioned, but without any
more practical or implementation details. To the best of our
knowledge, none of existing MDS approaches has proposed
a System of Security design Patterns which provides not only
well-defined security design patterns but also the interrelations
among security patterns that can guide developers in system-
atically dealing with multiple security concerns.

In this paper, we propose an MDS framework based on
a System of Security design Patterns (SoSPa) that allows
practitioners to systematically address multiple security con-
cerns in secure systems development. Our security patterns in
SoSPa are theoretically based on well-known security design
patterns (e.g. in [2, 12, 14]). They are collected, specified as
reusable aspect models (RAM) [6] to form a coherent system
of them. While not only specifying security patterns at the
abstract level like in security patterns catalogs, SoSPa also
provides a refinement process supported by RAM to derive the
detailed security design patterns closer to implementation. In
other words, a software designer can reuse our security design
patterns that are specified at different abstraction levels as
RAM models. By using SoSPa, an integrated security solution
dealing with multiple security concerns can be systematically
engineered into a system. Not only the security design patterns
but also their interrelations are specified in SoSPa. Based on
SoSPa, the conflicts and inconsistencies among the applied
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security solutions in a system design can be detected, resolved,
or eliminated systematically. This may help to improve the
security in a system design against different security threats.
Because we propose an MDS development framework, SoSPa
is built on a meta-model, which is extended from RAM meta-
model. Our MDS framework allows selecting, refining, com-
posing security design patterns to systematically build security
solution models, and then automatically integrating them into
a target system design. The contribution of this paper is three
fold: 1) hierarchical RAM models with a refinement process
for specifying security design patterns from abstract level till
detailed design level; 2) the explicitly specified interrelations
among security design patterns for systematically dealing with
multiple security concerns; 3) an MDS framework supporting
secure systems development based on SoSPa.

In the remainder of this paper, Section II provides some
fundamental concepts and motivational examples for our MDS
approach. Then, we present our MDS approach based on
SoSPa in Section III, and some key security design patterns
of SoSPa in Section IV. Section V shows how our approach
has been evaluated and discussed. Related work is given in
Section VI. Finally, Section VII presents our conclusions and
future work.

II. Background andMotivational Examples

A. System of Security Patterns

According to Schumacher et al. [12], a security pattern
describes a particular recurring security problem that arises in
specific contexts and presents a well-proven generic scheme
for its solution. Security patterns typically do not exist in isola-
tion because applying one solely can not make a system secure
to different threats. Related patterns should be integrated for
working together to address more complex security problems
in the real world. A system of security design patterns is an
integrated collection of patterns for designing secure systems,
together with guidelines for their implementation, combina-
tion, and practical use in secure systems development. Some
catalogs of security patterns exist but might not be considered
as systems of security design patterns in which patterns are
well, concretely interconnected.

B. Reusable Aspect Models

RAM [6] is an aspect-oriented multi-view modelling ap-
proach with tool support for aspect-oriented design of complex
systems. In RAM, any concern or functionality that is reusable
can be modelled using class, sequence, and state diagrams in
an aspect (RAM) model. A RAM model can be (re)used within
other models via its clearly defined usage and customisation
interfaces [1]. The usage interface of a RAM model consists
of all the public attributes and methods of the class diagrams
in the model. The customisation interface of a RAM model
consists of all the parameterised model elements (marked with
a vertical bar |) of the partially defined classes and methods
in the model. A RAM model can be (re)used by composing
the parameterised model elements with the model elements
of other models. A RAM model can also reuse other RAM

aspect Session depends on (Map xor ZeroToMany)
structural view

|Session
|SessionID
|Attribute

|AttributeType

Map instantiation
|Data → |Session

|Key → |AttributeType
|Value → |Attribute

Op: add → addAttribute
Op: getValue → getAttribute

+ |SessionID getSessionID()
+ addAttribute()
+ getAttribute()

- |SessionID id
|Session |SessionID

|Attribute

|AttributeType

Fig. 1. Aspect Session Pattern
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level, details)

Fig. 2. A Partial Design of CMS with createMission Function [7]

models in a hierarchical way. RAM weaver is used to flatten
aspect hierarchies to create the composed design model.

We find that security patterns can be well specified by
using RAM approach. RAM’s multi-view modelling ability
make it possible to capture even complex semantics of se-
curity patterns. The hierarchical modelling support of RAM
enables a refinement process in which security patterns can
be refined from abstract level till detailed design level. Fig.
1 shows a RAM model of a Session pattern which reuses
the generic RAM model of Map (or ZeroToManyAssociation
alternatively) [6]. The RAM model of Map [6] is composed
of a generic data container |Data using a “Map” structure
to store data in pairs of |Key and |Value. Session reuses
Map by composing parameterised elements of Map with model
elements of Session as can be seen in the “Map instantiation”
box. For example, the mapping |Value to |Attribute means
that attributes in a session are stored as |Value objects
managed by the Map structure. The |Attribute element
itself is a parameter. Any object can be stored in a session by
mapping it to the |Attribute parameter. The RAM model
of Session itself has the customisation interface comprises the
parameterised classes |Session, |SessionID, |Attribute,
and |AttributeType. For example, |SessionID is a param-
eterised class which will be instantiated as a unique identity
associated with a session.

C. Motivational Examples

This section first recalls the case study of designing and
developing Crisis Management Systems (CMS) described in
[7]. Next, CMS’s potential misuse cases related to multiple
security concerns are described. Then, we show why dealing
with multiple security concerns systematically is very hard,
even by leveraging security patterns in existing catalogs.

Briefly mentioning, in CMS a crisis can be created, pro-
cessed by executing the rescue missions defined by a super
observer, and then assigning internal and/or external resources.
Fig. 2 shows a partial design of CMS, for creating a res-
cue mission. CMS are also security-critical systems whose
different users must be authenticated, authorised to execute
different tasks, sensitive data being communicated via different
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networks must be protected, and responsibility of users must
be clearly traced. In [7], only a simple use case for CMS
user authentication is provided. We show different security
threats/misuse cases of CMS (informally, not exhaustively due
to space restrictions) as follows.

Misuse cases related to user accounts, access control:
[MUC-A1] An attacker impersonates a CMSEmployee after
obtaining the user password by guess and try; [MUC-A2]
A colleague of an authenticated user misuses the system on
the authenticated user’s working device while it is being left
unattended and accessible; [MUC-A3] A CMSEmployee gains
disallowed access to the protected resources. CMSEmployees
must only have access rights according to their assigned roles;
[MUC-A4] A CMSEmployee has access rights to the system
as a FirstAidWorker but also a SuperObserver. Conflict-of-
interest roles, e.g. FirstAidWorker and SuperObserver, cannot
be assigned to the same user.

Misuse cases related to accountability data: [MUC-B1] A
CMSEmployee has received mission information concerning
a car crash but ignores or overlooks some crucial informa-
tion, and does not accept the mission. The rescue mission
fails. When confronted, the CMSEmployee denies having re-
ceived the mission information. [MUC-B2] A SuperObserver
wrongly created a rescue mission which led to its failure. The
SuperObserver manages to delete the corresponding log entry
of his wrong action, and denies it.

Misuse cases related to transmitted data: [MUC-C1] An
attacker intercepts usernames and passwords barely trans-
mitted from client to server to impersonate a valid CM-
SEmployee; [MUC-C2] An attacker intercepts the mission
information about a crisis barely transmitted from the system
to CMSEmployee. Similarly, an attacker may intercept victim’s
identity and/or medical history information transmitted from
the HospitalResourceSystem to the CMS and/or from the CMS
to a FirstAidWorker. Advanced attacker even could modify the
transmitted victim’s medical history information.

For most security experts, not saying security novices,
finding the best possible solutions addressing multiple se-
curity concerns, e.g. described in the misuse cases, and
integrating them properly into the CMS would be a very
big challenge. Developing and integrating different security
solutions addressing multiple security concerns into a system
is hard, making them work together consistently is harder.
Leveraging security patterns seems to be a good approach
for practitioners because security patterns are fairly well
documented to address different security concerns. Moreover,
some security patterns also contain some informal inter-pattern
relations, and constraints regarding other quality properties
such as performance to guide the patterns selection process.
For tackling [MUC-A1], one may decide to use the patterns
in [12], [2], e.g. to ensure the complexity of user passwords,
make password reset frequently, combine user passwords with
one-time-password (OTP). [MUC-A2] and [MUC-A3] can be
mitigated by using the patterns of access control in [2, 12, 14].
For tackling [MUC-B1] and [MUC-B2], the Audit Intercepter
and/or Secure Logger patterns [14], or the Security Logger and

Auditor pattern [2] can be used. For tackling [MUC-C1] and
[MUC-C2], one may decide to use the Secure Channel pattern
or Secure Pipe pattern [14], or the TLS pattern in [3].

But there is still a big gap between the intention and
practical application of security patterns. Security patterns are
often too abstract with good intention but no clear semantics
that make them difficult to be implemented and applied,
especially together. One can see that in the existing catalogs
of security patterns, e.g. [2, 12, 14], the interrelations among
patterns and other constraints are only briefly mentioned but
not concretely specified to be applicable. All of these could
lead to inappropriate implementation and application of secu-
rity patterns. For example, a not well-thought design decision
could lead to a weak user passwords authentication solution
that allows a FirstAidWorker to guess and successfully imper-
sonate a SuperObserver. Improperly integrating authentication,
user session, and authorisation solutions could lead to access
rights misused, and sensitive data leaked. Even worse, wrongly
implementing an encryption channel for data transmission and
also an auditing mechanism that intercepts and records the
transmitted data may result in encrypted log entries that are
useless for auditing purposes. Similarly, constructing a logging
solution for accountability must be aware of an existing
authorisation solution in the same system to produce the logs
correctly. Depending on how these two work together, the logs
might contain nothing, or meaningless info, or different types
of info about successful executions of method calls, or failed
authentication/authorisation checks for the method calls, or
sometimes also successful authentication/authorisation checks.
A sound approach for systematically addressing multiple se-
curity concerns in secure systems development is needed, but
has not existed yet at least in the MDS research area.

III. OurModel-Driven Security Approach based on SoSPa
A. Overview of Our Approach

Our MDS approach is based on a System of Security
design Patterns (SoSPa). Fig. 3 displays our meta-model of
SoSPa (SoSPa-MM) that is an extension of RAM meta-
model [6]. The core elements of SoSPa-MM are depicted
in white. The rest are core elements of RAM meta-model.
SoSPa aims at systematically addressing the globally accepted
security concerns such as confidentiality, integrity, availability,
accountability. Thus, SoSPa is composed of an extensible
set of security solution blocks, e.g. authentication, authori-
sation, cryptography. Each security solution block consists of
interrelated security design patterns. To support the selection
of security design patterns, we use feature modelling as in
software product line engineering to capture the variability
and interrelations of security patterns. Specified by a feature
model (FM), each security solution block can be used to
form a specific, customised security solution. Each security
design pattern in SoSPa contains all well-structured elements
such as context, problem, consequences as can be seen in
well-documented security patterns of existing catalogs. More
than that, inter-pattern relations are captured and explicitly
specified at the conceptual level as well as model level by
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Fig. 3. The Meta-model of the System of Security design Patterns (SoSPa-MM)

RAM models. Fig. 3 shows that each SecurityDesignPattern is
associated with ReusableAspect(s) that realised the pattern. In
other words, security design patterns are specified as reusable
aspect models (RAM) to form a coherent system of them,
i.e. SoSPa. The interrelations among security patterns are
categorised into five types as specified in RelationshipType.
We capture the core relation types among security patterns,
i.e. depends on, benefits from, alternative to, impairs, conflicts
with. These relations can be transitive and/or symmetrical.

Five main security solution blocks of SoSPa are Authentica-
tion, Authorisation, Cryptography, Auditing, and Monitoring
as can be seen in Fig. 4. Derived from security require-
ments, a customised security solution can be built up from
a combination (OR relation) of these security solution blocks.
Each feature (node) of the FM can be associated directly
with a RAM model. For example, Authentication feature is
directly specified by a RAM model named Authentication.
The features with underlined names are security patterns
which can be refined by composing the hierarchical RAM
models realising them. For example, Security Session pattern is
realised by the RAM model SecuritySession, and also the other
relevant RAM models like SessionManager, Session. Some
low-level features are not really security patterns but generic
RAM models which help building security patterns, e.g. Map,
ZeroToManyAssociation. Because in SoSPa, security patterns
are built on hierarchical RAM models (see Section IV), the
interrelations among security patterns are actually specified
at the model/design level. In other words, the interrelations
are specified based on the relations of RAM models that the
security patterns are built on. We elaborate more on this in
Section III-C.

B. Pattern-Driven Secure Systems Development Process

This section presents the development process in three main
stages, especially emphasising the selection and composition
of security design patterns into a target system design.

[Security threats identification& analysis]: This is not the
focus of this paper. We assume that misuse cases are created in
this stage. Attack models might be created from risk analyses,
e.g. using the CORAS framework as discussed in [3].

[Security design patterns selection and application]
Step 1 - Constructing security solutions from the security
patterns in SoSPa: For each security concern, the interrela-
tions specified in the feature model (Fig. 4) are used to select
the most appropriate security design patterns, i.e., the pattern
that best matches with the context and the security problem,
most satisfies the interrelations with the other already selected
security design patterns, and maximises the positive impact on
relevant quality properties like usability, performance. All the
RAM models of the selected security design patterns and other
required RAM models are woven into the RAM model of the
top most feature in the hierarchy corresponding to the security
concern of the FM. This step derives a detailed RAM design
of a customised security solution for the concern, including its
customisation interface and usage interface. For example, to
construct a customised authentication solution, all the selected
features under Authentication feature are woven into it. The
output of this step is a complete RAM model, i.e. the woven
RAM model of the authentication solution. This woven RAM
model of the authentication solution later can be integrated
into a base system model via its customisation interface. More
details can be find in the case study described in Section V.
Step 2 - Defining mappings to integrate the newly built
security solutions to a base system model: For each se-
lected security pattern, use the customisation interface of the
generated design to map the generic design elements to the
application-specific context. This step generates the mappings
of the parameterised elements in the security design pattern
with the target elements in the target system design. Any
constraints/conflicts between mappings of all the selected
security design patterns need to be resolved. Most constraints
are predefined by SoSPa for the obvious interrelations (e.g. L1
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System of Security design Patterns
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Fig. 4. A Partial Feature Model of SoSPa

and L2 discussed in the case study). Some ad-hoc constraints
might need to be provided by the designer in some rare cases
when the RAM weaver gives warning about potential conflicts
while weaving RAM models [6].
Step 3 - Weaving the security solutions into the base system
model: All the security solutions are automatically woven into
the target system design. The mappings from previous step are
the input for this weaving process.

[Verification&validation of security patterns application]:
Analyse the woven secure system against the attack models
obtained before. The attack models can be used for formal
verification of security properties in the woven model, or can
be used for test cases generation like in a security testing
approach. This is part of future work.

C. The Interrelations of Security Patterns in SoSPa

This section shows how five interrelations among security
patterns at conceptual level can be realised at detailed design
(model) level in SoSPa.

1) Depend-on Relation: Security pattern X depends on
security pattern Y means that X will not function correctly
without Y. This relation is not symmetrical, but transitive. In
SoSPa, this relation is specified as the mandatory “required”
relation among RAM models that realise the security patterns.
Let security pattern X be realised by RAM model A; let
security pattern Y be realised by RAM model B. X depends
on Y means that model A (directly or indirectly) depends on
(requires) model B. Thus, model A realising security pattern
X can only be applicable to any base system if all the RAM
models that A depends on, such as model B, have been woven
into A. In Fig. 4, the patterns of Authorisation and Auditing
depends on the patterns of Authentication. That means security
solution of Authorisation must be completed by a security
solution of Authentication.

2) Benefit-from Relation: Security pattern X benefits from
security pattern Y means that implementing Y will add to the
value already provided by implementing X. At design level,
X benefits from Y if RAM model A realising X optionally
depends on RAM model B realising Y. For example, Authen-
tication patterns can benefit from SecuritySession pattern. But

it is up to designers to decide if the chosen Authentication
pattern needs to use SecuritySession.

3) Alternative-to Relation: Security pattern X is alternative
to security pattern Y means that X provides a similar security
solution like Y’s. The designer can choose either X or Y for
addressing the same security problem. For instance, DirectAu-
thentication pattern is alternative to ThirdPartyAuthentication.

4) Impair-with Relation: Security pattern X impairs with
security pattern Y means that X and Y are not recommended
together. In case X and Y are both selected for working to-
gether, they may result in inconsistencies. A conflict resolution
could be provided to make them working consistently together.
For example, Load Balancer pattern impairs with Security
Session pattern. If no conflict resolution can be found, we
say that X conflicts with Y.

5) Conflict-with Relation: Security pattern X conflicts with
security pattern Y means that implementing Y in a system
that contains X will result in inconsistencies. An example
is that the Audit Interceptor pattern could conflict with the
SecureChannel pattern.

IV. Security Design Patterns in SoSPa

Due to space restrictions, this section only presents some
key security design patterns of SoSPa. We show how hierar-
chical RAM models are used to specify security patterns from
abstract level till detailed design level. Besides, each security
pattern is presented with its interrelations to the others.

A. Authentication Patterns

The Authentication feature is specified by a RAM model
with the most basic authentication logic (Fig. 5). For ev-
ery call to any protected method |m of any protected class
|ProtectedClass, the caller must be already authenticated
before method |m is executed. The underlying authentication
mechanisms are abstract and to be refined by composing
the model elements |Authentication, |authenticate, and
|check with the parameterised elements of the selected RAM
models, e.g. SecuritySession, DirectAuthentication that Au-
thentication depends on. The FM shows that designer could
choose different alternatives below the Authentication feature
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aspect Authentication depends on (optional LimitedAttempts, optional SecuritySession), 
(DirectAuthentication xor JAASAuthentication xor ThirdPartyAuthentication)

structural view

|ProtectedClass

+ boolean authenticate()
- boolean check()
+ boolean isAuthenticated()

 
Authentication

c: Caller

authenticate()

message view authenticate Pointcut Advice

target: |Authentication

c: Caller
authenticate()

target: Authentication

SecuritySession instantiation
|CheckPoint → Authentication

Op: |login → authenticate
Op: |check → check

Op: |isLoggedIn → isAuthenticated

DirectAuthentication instantiation
|DirectAuthentication → Authentication

Op: |login → authenticate
Op: |check → check

ThirdPartyAuthentication instantiation
|Authenticator → Authentication

Op: |login → authenticate
Op: |check → check

Binding
 c → *

 Caller → *  

*
check()

+ * |m(…)
 
|ProtectedClass

message view method |m 
with authentication required

c: Caller

|m()

target: |ProtectedClass

Pointcut

Advice

alt [r ≠ false] *
throw new NotAuthenticatedException()

c: Caller
|m()

target: |ProtectedClass

s: Authentication
r := isAuthenticated()

 

LimitedAttempts instantiation
|LimitedAttempts → Authentication

Op: |m → authenticate
Op: |check → check

*

|m

Fig. 5. Aspect Authentication

aspect DirectAuthentication depends on Map, Password
structural view

+ boolean |login()
- |check()
- Credential getCredential(Principal id)
+ void addCredential(Principal id, Credential cre)

 
|DirectAuthentication

Pointcut

s: |DirectAuthentication

Advicemessage view |login s: |DirectAuthentication

message view getCredential is Map.getValue

message view addCredential is Map.add

vc: Credential

vc := getCredential(p)

r := validate(cre)

+ boolean validate(Credential c)
 

Credential

Principal

Map instantiation
|Data → |DirectAuthentication
Op: getValue → getCredential

Op: add → addCredential
|Key → Principal

|Value → Credential

+ Principal getInputPrincipal()
+ Credential getInputCredential()

 
RequestContext

rc : RequestContext

p := getInputPrincipal()

cre := getInputCredential()

Password instantiation
PasswordManager → |DirectAuthentication

Password → Credential
UserID → Principal

Op: comparePassword → validate

c: Caller
|login()

c: Caller |login()

Binding
 c → *

 Caller → *

*

|check()

|check()
*

r

|DirectAuthentication

|login
|check

* *

Fig. 6. Aspect DirectAuthentication

for designing a customised authentication solution, e.g. Direc-
tAuthentication, ThirdPartyAuthentication∗1, or JAASAuthenti-
cation∗ [14].

Fig. 6 shows the RAM model of DirectAuthentication
pattern which is based on the Authentication Enforcer pattern
in [14] and the Authenticator pattern in [2]. RequestContext
contains the user’s principal and credential extracted from
the protocol-specific request mechanism. An instance of Re-
questContext is often provided by a specific implementation
framework. We do not discuss this RequestContext class in
details. By using the input Principal, the DirectAuthentication
retrieves the corresponding Credential from an identity store
that it manages using a Map aspect. The input Credential
is checked against the retrieved Credential. Using DirectAu-
thentication requires designer to decide on what kinds of
shared secrets to be used for authentication. The abstract
aspect AuthenticationMeans shows that share secrets could
be user password, biometrics, or one time password (OTP).
These features could be used together, e.g. user password with

1Due to space restrictions, patterns marked with a star ∗ are not presented.

OTP. If using user password for authentication, the Password∗

pattern will be woven into the DirectAuthentication aspect.
Third-party authentication provider (ThirdPartyAuthentica-

tion∗) can also be used to validate client’s credentials. The
main idea of this pattern is to map the authentication process
to a proxy to call the authentication method provided by
a third-party authentication provider. Shared secrets among
the third-party provider and their clients are invisible to the
authentication solution being constructed.

On the other hand, session can bring more benefits to an
authentication solution, e.g. for maintaining an authenticated
status. We describe security session patterns in the next sec-
tion. The SecuritySession pattern is optional to Authentication.

Note that the order of dependencies specified on the top
of each RAM model is important to make the patterns work
consistently together. For example, the order of weaving
dependencies into Authentication must be from left-to-right,
and then top-down, i.e. LimitedAttempts, SecuritySession,
DirectAuthentication. The orders of weaving are also part
of SoSPa to provide for designers. The RAM weaver can
execute the orders of weaving dependencies automatically. We
elaborate more on this in the case study given in Section V.

B. Security Session Patterns

The FM in Fig. 4 also shows how the aspects related
to security session are organised. The patterns for secu-
rity session are based on the Security Session pattern in
[12], the Controlled Access Session pattern in [2], and the
Authentication Enforcer, Secure Session Object patterns in
[14]. In SoSPa, the SecuritySession pattern depends on the
SessionManager∗ aspect for managing sessions. The designer
can choose between a generic Session pattern showed in Fig.
1 or the SecureSessionObject∗ pattern [14]. SecuritySession
presented in Fig. 7 specifies how a SecuritySession object is
created and used for maintaining the authenticated status of a
subject. Logically, if the validation process in authentication
returned by the |check method is successful, a new session
object is created. Then, any security-related information can
be stored in this object, e.g. the validated Principal. The
authenticated status is associated with the session as long as
the session is active. The SessionTimeout∗ pattern provides
a timing mechanism that requests authenticating again if the
corresponding session is expired.

C. Authorisation Patterns

Fig. 8 shows the corresponding Authorisation RAM model.
Authorisation can be employed together with Authentication
if the optional AuthenticationDependence aspect is selected
(see Fig. 4). AuthenticationDependence presented in Fig. 9
shows that authentication must be done before the method
|m called. The Authorisation RAM model itself contains
the Authorisation class with evaluateReq function to
evaluate any request AccessRequest to method |m of a
protected resource |ProtectedClass. The AccessRequest
is created with all necessary elements of a method call such
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aspect SecuritySession depends on (optional SessionTimeOut), SessionManager
structural view

|CheckPoint
|Principal

|Credential

message view login

SessionManager instantiation
|SessionManger → |SessionManger

|Session → |SecuritySession

cp: |CheckPoint

Pointcut Advice

SecuritySession
+ login()
- boolean check()
+ boolean isLoggedIn(SessionID sid)
+ logoff()

|CheckPoint
|Principal

|Credential

SessionID + SessionID getSessionId()

RequestContext

c: Caller

login()
opt [ses=null]

opt [r = true] 

cp: |CheckPoint

m: SessionManager

ses := createSession()
ses: SecuritySession

add(…)

rc: RequestContext

sid := getSessionId()
ses := lookupSession(sid)

c: Caller
login()

return sessionID ≠ null

r

*

check()

 

r := check()
Binding

caller → *
Caller → *

SessionManager

message views isLoggedIn, logoff is not presented here

Fig. 7. Aspect SecuritySession

structural view

aspect Authorisation depends on Traceable, AuthorisationEnforcer, 
(optional AuthenticationDependence)

|ProtectedClass

+ boolean evaluateReq(Subject sbj, AccessRequest request)
 

Authorisationstructural view

AccessRequest

message view protected method |m 
depends on 
AuthorisationEnforcer.|requestAccess

Pointcut

caller: Caller t: |ProtectedClass

|m(…)

Binding
 caller → *
 Caller → *

Advice

alt [r=TRUE]

caller: Caller

t: |ProtectedClass

a: Authorisation

else

AuthorisationEnforcer 
instantiation

|AuthorisationEnforcer → 
Authorisation

Op: |requestAccess → 
 evaluateReq

rc: Request
Context

subj:= getSubject()

Subject

+ * |m(…)
+ AccessRequest createRequest(Method)

 
|ProtectedClass

+ Subject getSubject()

RequestContext

AuthenticationDependence instantiation
|ProtectedClass → |ProtectedClass

Op: |m → |m

throw new NotAuthorisedException()

* 

|m

Traceable instantiation
|Traceable → |ProtectedClass

Op: |m → |m
Op: createTrace → createRequest

|Trace → AccessRequest

req := createRequest(|m)

r := evaluateReq(subj, req)

|m(…)

Fig. 8. Aspect Authorisation

structural view

aspect  AuthenticationDependence depends on Authentication |ProtectedClass
structural view

message view protected method |m
Pointcut

caller: Caller t: |ProtectedClass

|m(…)
Binding

 caller → *
 Caller → *

Advice

caller: Caller

t: |ProtectedClass

+ * |m(…)
 
|ProtectedClass

Authentication instantiation
|ProtectedClass → |ProtectedClass

Op: |m → |m
Authentication → Authentication
Op: authenticate → authenticate

Op: isAuthenticated → isAuthenticated

a: Authentication
authenticate()

+ authenticate()
+ boolean isAuthenticated()

Authentication

|m

|m(…)

r := isAuthenticated()

Fig. 9. Aspect AuthenticationDependence (renamed to L1 in Fig. 4)

as Method, AccessKind. Fig. 8 shows that the generic Trace-
able∗ aspect of RAM [6] is reused in Authorisation to create
an AccessRequest. The Subject requesting access is also
obtained from the RequestContext. The Subject and the
AccessRequest objects are used for the access decision pro-
cess managed by the Authorisation. If the request is granted,
the protected method |m will be executed. Otherwise, an
authorisation exception will be returned. The requestAccess
method is refined further by the AuthorisationEnforcer pattern.

The AuthorisationEnforcer pattern in Fig. 10 contains the

structural view

aspect AuthorisationEnforcer depends on (PolicyBasedAC xor ControlledAccessSession) |AuthorisationEnforcer

+ boolean |requestAccess(Subject sbj, AccessRequest request)
 

|AuthorisationEnforcer Subjectstructural view

message view |requestAccess is skipped for space reasons

+ boolean decideAccess(Subject sbj, AccessRequest request)
- boolean combineDecisions(PermissionsCollection rights)

 
AuthorisationProvider

PermissionsCollection
+ PermissionCollection getPermissions(…)

PermissionsManager AccessRequest

PolicyBasedAC instantiation
|PEP →  |AuthorisationEnforcer
|PDP → AuthorisationProvider

|PolicyRepository → PermissionsManager
Op: |lookup → getPermissons

|requestAccess

Fig. 10. Aspect AuthorisationEnforcer

AuthorizationEnforcer class that processes any request access
based on other RAM models such as PolicyBasedAC∗, Con-
trolledAccessSession∗.

D. Auditing (Accountability)

In critical systems, the ability to keeping tracks of who did
what and when is very important. Security patterns for auditing
can solve this accountability concern. The RAM models for
auditing and their interrelations specified in Fig. 4 are based
on the Secure Logger, Audit Interceptor patterns [14], and
the Security Logger and Auditor pattern [2]. Two common
patterns for auditing are SecureLogger and AuditInterceptor∗

in which the latter depends on the former. Fig. 11 shows
the structural view and message view of the SecureLogger
pattern. The classes and methods being traced are mapped
to the parameterised Traced class and method |m. Once the
Trace object and the identity of caller are created, they are
sent to the SecureLogger for being logged. How a Trace
object can be created is specified by the generic Traceable∗

aspect mentioned before. The LogManager is responsible for
the actual serialisation of the log (using LogFactory∗ aspect)
to a secure storage (either using SecureLogStore∗ pattern or
SecureDataLogger∗ pattern [14]).

SecureLogger in Fig. 11 is a generic logger that just simply
logs a trace whenever the method |m is called. There is
no specification on whether |m has been successfully au-
thenticated and/or authorised, or actually executed. Different
variations of when and how a trace is logged are provided
in different logging strategy aspects. For example, aspect
AuthorisationDependence in Fig. 12 specifies that a trace
is logged only if the caller to |m has been authorised
successfully and |m has been executed.

To summarise, we have presented some key security patterns
of SoSPa and their dependencies to each others, and to other
RAM models. Note that the order of dependencies on top
of each RAM model matters to the order of weaving. How
dependencies are woven into a RAM model are specified by
instantiation mappings.

V. Evaluation and Discussion

A. Case Study and Results

By using SoSPa with the patterns selection and application
process described in Section III-B, multiple security concern-
s/misuse cases of CMS can be addressed/mitigated properly.
We demonstrate the three main steps of the patterns selection
and application process as follows.
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structural view

aspect SecureLogger depends on Traceable, LogManager, (optional AuthorisationDependence, …)
|Traced

+ void log(Subject id, Trace action)
- LogMessage process(LogEntry aLog)

 
SecureLogger

structural view

 
+ void log(LogMessage msg)

LogManager

message view |m affected by 
|Traceable.createTrace, 
|LogManager.|log

Pointcut

caller: Caller target: |Traced

|m(…) Binding
 caller → *
 Caller → *

Advice

caller: |Caller

logger: 
SecureLogger

log(id, trace)

target: |Traced

rc: Request
Context

id:= getSubject()

aLog: 
LogEntry

create()

set(…)

Traceable instantiation
|Traceable → |Traced

Op: |m → |m

+ * |m<AccessKind>(…)
- logTrace()

|Traced

Subject

 + set(…)

- Subject id
- Trace action
- DateTime time

LogEntryLogMessage

|m(…)

trace := createTrace(|m)

msg := process(aLog)

logMan: 
LogManager

log(msg)

LogManager instantiation
|LogManager → LogManager

|SecureLogger → SecureLogger
Op: |log → log

+ Subject getSubject()

RequestContext

|m

logTrace()

AutthorisationDependence instantiation
|ProtectedClass → |Traced

Op: |m → |m
Op: |logTrace → logTrace

*

Fig. 11. Aspect SecureLogger

structural view

aspect AuthorisationDependence depends on Authorisation |ProtectedClass
structural view 

message view |m affected by 
Authorisation.evaluateReq Pointcut

caller: Caller target: |Traced
|m(…)

Binding
 caller → *
 Caller → *

Advice

opt [r=TRUE]

caller: |Caller
target: |Traced

+ * |m(…)
- |logTrace()

|ProtectedClass

|m(…)

|m
|logTrace

Authorisation instantiation
Authorisation → Authorisation

Op: evaluateReq → isAuthorised
|ProtectedClass → |ProtectedClass

Op: |m → |m

a: |Authorisation

r := isAuthorised()

*

+ boolean isAuthorised(…)
 

Authorisation

|logTrace()
*

 
 

*

|logTrace()

Fig. 12. Aspect AuthorisationDependence (renamed to L2 in Fig. 4)

Step 1 - Constructing security solutions for CMS from the
security patterns in SoSPa: First, authenticating CMS users
is the most fundamental security requirement of CMS as de-
scribed in [7]. Fig. 4 shows that after selecting the Authentica-
tion feature, the designer can choose to employ DirectAuthenti-
cation or JAASAuthentication. ThirdPartyAuthentication is not
a solution because CMS must use its own identity store for
authenticating CMS users. Besides, LimitedAttempts∗, which
specifies that an authentication request is blocked after some
consecutive unsuccessful authentication attempts, could be
already selected to partially mitigate [MUC-A1]. Assuming the
designer selected DirectAuthentication, now he selects Pass-
word because using user password is a concrete requirement
of CMS. Moreover, a strong user password solution must be
employed to better mitigate [MUC-A1]. PasswordComplexity∗,
PasswordReset∗ can be used together with Password pattern.
One of the best solutions to mitigate [MUC-A1] is to use
Password in combination with HardwareToken∗ (OTP). To
mitigate [MUC-A2], SecuritySession and also SessionTimeout∗

need to be employed in the authentication solution. When
SecuritySession is selected, it means all the aspects that it
depends on, e.g. mandatory SessionManager, are also selected
and composed into it. Due to space reasons, we do not discuss

about the features below SecuritySession. This hierarchical
aspects composition is applied to every feature in the feature
model. Thus, all the selected features below Authentication
are automatically woven into it, according to the order of
dependencies specified on top of Authentication, and the model
elements mappings defined in the corresponding RAM models.
For example, once LimitedAttempts is selected, it is woven
into Authentication first. In this way, a concrete authentication
solution, namely wovenAuthentication RAM model has been
built and ready to be integrated into CMS base design to fulfil
its user authentication requirements and mitigate its potential
misuse cases.

Similarly, a concrete authorisation solution can be built
to mitigate the misuse cases [MUC-A3] and [MUC-A4].
Assuming AuthorisatonEnforcer with PolicyBasedAccessCon-
trol∗ and Role-Based Access Control (RBAC)∗ have been
selected. All the selected RAM models for the authorisation
solution such as AuthorisatonEnforcer, PolicyBasedAccess-
Control∗ are woven into the Authorisation RAM model to
create a wovenAuthorisation RAM model.

And so on, misuse cases [MUC-B1] can be mitigated by
constructing a suitable Auditing solution, e.g. using SecureL-
ogger. [MUC-B2] is also mitigated by using SecureLogger
because either SecureLogStore∗ or SecureDataLogger∗ is em-
ployed to protect the logged data from being tampered. All
the selected RAM models for SecureLogger are woven into
the SecureLogger RAM model, resulting in a wovenAuditing
RAM model.

To mitigate misuse cases [MUC-C1] and [MUC-C2], Se-
cureChannel pattern [14], or TLS pattern as presented by [3],
can be employed to secure transmitted data. We do not discuss
more details about this due to space restrictions.

Step 2 - Mapping the security solutions to the CMS base
design: For each security solution built in the previous step,
its parameterised model elements can be mapped to the target
elements in the CMS design to integrate the security solution
into CMS. Note that the customisation interface of the
top-most RAM model (e.g. Authentication) in the hierarchy
of a security solution is also the customisation interface of
that security solution (wovenAuthentication). Let us make the
createMission function of CMS secure and its execution
logged. We would come up with the following mappings:
wovenAuthentication.|ProtectedClass→CrisisManager

wovenAuthentication.|m→createMission

wovenAuthorisation.|ProtectedClass→CrisisManager

wovenAuthorisation.|m→createMission

wovenAuditing.|Traced→CrisisManager

wovenAuditing.|m→createMission

As we see, the constraints among the mappings
have to be resolved. From the security requirements
of CMS, the authorisation solution has to work with
the existing (already built) authentication solution. Thus,
the AuthenticationDependence feature (or L1 in Fig. 4)
must also be selected for the authorisation solution
wovenAuthorisation. That means wovenAuthentication
is woven into AuthenticationDependence, and their woven
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alt [r=TRUE]

create(Crisis, EmergencyLevel, 
MissionDetails)

 
Mission

boolean isAvailable()
available: boolean

CMSEmployee

createMission(SuperObserver, MissionKind, EmergencyLevel, MissionDetails)
+ AccessRequest createRequest(Method)
+ Trace createTrace(Method)

 
CrisisManager

addMission(Mission)
 

Crisis

Crisis getCrisis()
 
SuperObserver

1
0..*

0..* 0..1
observedCrisis

c: Caller

createMission()

: CrisisManager

su: SuperObserver

m: Mission

currentCrisis := getCrisis()

create(currentCrisis, 
level, details)

+ boolean authenticate()
+ boolean isAuthenticated()

 
Authentication

logger: SecureLogger

log(id, trace)

id:= getSubject()

trace := createTrace(createMission)

logTrace()
rc: RequestContext

*The remaining of wovenAuditing 
with SecureLogger pattern, etc.

*

The remaining of the 
createMission function

 

a: Authorisation

else

rc: RequestContext

subj:= getSubject()

throw new NotAuthorisedException()

req := createRequest(|m)
r := evaluateReq(subj, req)

alt [r ≠ false]

throw new NotAuthenticatedException()

s: Authentication

r := isAuthenticated()

 

authenticate()

* The remaining of the 
wovenAuthentication design

*
The remaining of the 

wovenAuthorisation design

 

else

 

+ boolean evaluateReq(Subject sbj, AccessRequest request)
 

Authorisation

AccessRequest

+ boolean decideAccess(Subject sbj, AccessRequest request)
- boolean combineDecisions(PermissionsCollection rights)

 
AuthorisationProvider

+ void log(Subject id, Trace action)
- LogMessage process(LogEntry aLog)

 
SecureLogger

 
+ void log(LogMessage msg)

LogManager

woven
Auditing

woven
Authorisation

woven
Authentication

create
M

ission

Fig. 13. Automatically Woven Secure CMS Model

RAM model is then woven into wovenAuthorisation to
create a wovenAuthenticationAuthorisation. By do-
ing so, the constraints among wovenAuthentication and
wovenAuthorisation have been resolved. Similarly, to log
a wrongly created rescue mission action of a SuperObserver
in CMS as described in [MUC-B2], the AuthorisationDepen-
dence feature (or L2 in Fig. 4) is needed for wovenAuditing.
By weaving wovenAuthenticationAuthorisation with
AuthorisationDependence and then into wovenAuditing to
create a wovenAllSolutions model, all the constraints have
been resolved. After that, the instantiation directives for inte-
grating all the security solutions into the CMS base design are
straight forward:
wovenAllSolutions.|Traced → CrisisManager

wovenAllSolutions.|m → createMission

Step 3 - Weaving the security solutions into the CMS base
design: This step can be automatically done by the RAM
weaver once all the mappings and constraints have been
specified in the previous step. Fig. 13 shows final woven
model. For space reasons, we only display the key parts
of the customised authentication, authorisation, and auditing
solutions woven into the base model. The woven model shows
that the createMission action now can only be executed by
an authenticated user that is authorised to execute this task,
and a trace of this action is securely logged. Of course, a
formal analysis of the woven model against attack models
could show a formal proof that the woven model is resilient
to different attacks. Constructing attack models in a similar
way as security solution models and then employing formal
analysis techniques could be a good direction for future work.

B. Discussion

Our work raises an important question related to the abstrac-
tion level proposed by SoSPa. More specifically, the question

is how can we guarantee that the level of details is sufficient?
Or how to guarantee that there is no need to develop new
RAM models or security patterns? Our answer is that the
required level of details strongly depends on the expected
use of SoSPa. Obviously, if SoSPa was used to generate
code that can run, the low-level details of a design would
have to be provided. If the goal was to generate the code
skeleton of a secure system and test cases, the low-level details
could be omitted. The level of details of RAM models in
SoSPa is not enough for full code generation, but enough for
specifying all the important semantics of security patterns and
their interrelations. That means the code skeleton of a secure
system can be generated that preserves the important semantics
of the employed security patterns and their interrelations.

Each security design pattern can also be associated with
the side effects of its adoption on other quality properties, e.g.
performance, usability. An impact model of the security design
patterns for each quality property can be built as discussed
in [1]. Impact models are useful for analysis of the trade-off

among alternatives which leads to a thoughtful decision on
systematically selecting the right security design patterns for
the job. On the other hand, attack models can also be specified
using SoSPa-MM. These attack models are associated to the
security concerns, and can be woven into the system model
to generate misuse models for formal analysis of security, or
generate test cases for testing. In this paper, we only focus on
the interrelations among security patterns, not yet considering
the relations to other quality properties and attack models. The
types of interrelations in this paper are aligned with the five
types of inter-pattern relations presented in [16].

A second question is related to the completeness and exten-
sibility of SoSPa. As previously discussed, the set of security
patterns mentioned in this paper is not complete, mainly
due to space constraints. We have nonetheless considered the
most illustrative for the purpose of our work. However, an
interesting feature of SoSPa is that it is fully extensible. As
a result, if a user realises that some details or some security
patterns are missing, he can extend it. This is eased by the use
of RAM and the explicitness of the relationships among the
security patterns.

In a final note, we recall that to the best of our knowledge,
SoSPa is the first attempt to provide an extensive set of con-
crete design models of security patterns that can be integrated
systematically. We provide RAM models that users can explore
according to several dimensions: not only from high to low
level of details, but also in the variability perspective traversing
a large number of possible security solutions.

VI. RelatedWork

Different MDS approaches can be found in [11]. This
section briefly presents the closest related work only. Aspect-
oriented modelling: Georg et al. [3] propose a methodology
that allows not only security mechanisms but also attacks to
be modelled as aspect models. The attacks models can be
composed with the primary model of the application to obtain
the misuse model. The authors then use the Alloy Analyser
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to reason about the misuse model and the security-treated
model. Mouheb et al. [9] develop a UML profile that allows
specifying security mechanisms as aspect models. The aspect
models often go together with their integration specification to
be woven automatically into UML design models. Recently,
Horcas et al. [5] propose a hybrid AOSD and MDE approach
for automatically weaving a customised security model into
the base application model. By using the Common Variability
Language (CVL) and atl, different security concerns can
be woven into the base application in an aspect-oriented
way, according to weaving patterns. However, dependencies
between the security aspects and their application orders have
not been taken into account. In general, all these approaches
have not considered security aspects as a coherent system
capturing their interrelations and constraints. Patterns-based:
Three main catalogs of security patterns are presented in [2,
12, 14]. These catalogs only contain abstract security pat-
terns without any refinement process towards their application
and any MDS framework. Shiroma et al. [13] propose an
approach to leverage model transformations for specifying
and implementing application procedures of security patterns,
including inter-pattern dependencies. The inter-pattern depen-
dencies here mean the order of consecutive applications of
security patterns by performing consecutive transformations.
In fact, the approach only presents the dependencies in terms
of the order of application of security patterns. There are many
other important interrelations that one must consider such as
conflicts, benefits, and alternatives among security patterns.
Their approach is only able to deal with 8 per 27 security
patterns in [12] because the other 19 patterns do not have
structures described. With our extensive, extensible SoSPa, all
key interrelations among security patterns are considered, not
only the order of patterns application.

Our MDS approach based on SoSPa initially explored in
the position paper [10] is inspired by [1]. Alam et al. [1]
propose an approach based on RAM for designing software
with concern as the main unit of reuse. They show how their
ideas can be realised by using an example of low-level design
concern, i.e. the Association concern. The adoption of their
approach to high-level concerns like security has not been
dealt with yet. In this paper, we realised the ideas in [10]
by developing a system of RAM models specifying multiple
security patterns and their interrelations to form SoSPa. We
extend the concept of using variation interface in [1] for
specifying the interrelations among security patterns. With
SoSPa, abstract security patterns can be specified, refined as
detailed designs with concrete semantics. Additionally, the
interrelations among patterns can be concretely specified in
the variation interfaces and in the detailed designs, thanks to
RAM. We also plan to extend the idea of using impact model
in [1] for specifying the constraints of security patterns with
other quality properties like performance, usability.

VII. Conclusions and FutureWork

This paper has presented an MDS approach based on a
System of Security design Patterns (SoSPa) to systematically

guide and automate the application of multiple security pat-
terns in secure systems development. Our SoSPa is specified
by using an extended meta-model of RAM, namely SoSPa-
MM. Based on SoSPa-MM, security patterns are collected,
specified as reusable aspect models to form a coherent system
of them. Our MDS framework allows systematically selecting
security design patterns, constructing security solutions, and
automatically composing them with a target system design. We
evaluated our approach by leveraging the System of Security
design Patterns to design the security of crisis management
systems. The result shows that multiple security concerns
of the case study have been addressed. More importantly,
the different security solutions are thoughtfully selected and
systematically integrated. Our work on SoSPa opens three
points for future work: 1) extending the impact models in [1]
for specifying the side-effects of security patterns regarding
other quality properties like performance, usability; 2) incorpo-
rating the attack models to generate misuse models for formal
analysis of security [3]; 3) using test templates embedded into
the security patterns for testing their application [8].
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