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Introduction

Organisms natively use metabolic, mostly enzymatically 
catalyzed reactions to convert raw materials into the essen-
tial substances that are needed for the survival of their cells. 
As such, they represent a tremendous resource of existing 
biological machinery to carry out biochemical transfor-
mations. Metabolic engineering involves the process of 
modifying the metabolic potential and genetics of a micro-
organism to our advantage to increase the production of a 
specific substance of interest [91]. The objective of meta-
bolic engineering is thus to reroute metabolism towards a 
pathway of interest to improve production of commercially 
valuable chemicals on an industrial scale. This has been 
achieved for several commodities, including fuels, pharma-
ceuticals, drinks such as wine and beer, fine chemicals and 
diesels. In short, many biotechnological products are being 
produced using microbial strains as cell factories [3, 9, 19, 
37, 53, 79], with an increasing number on the horizon [35, 
70, 104, 107, 109].

Traditionally, metabolism was altered using classical 
breeding and random mutagenesis, followed by selection 
and screening [65]. More recently, however, the intro-
duction of recombinant DNA techniques has allowed the 
application of targeted genetic changes [47, 111] through 
gene knockouts, overexpression, and expression of het-
erologous genes [50]. In large part owing to the advent of 
genomics and systems biology, we nowadays have a num-
ber of new tools that generate a wealth of data for analy-
sis, contributing to our understanding of metabolism and 
cellular behavior. Improved knowledge and new analyti-
cal tools [14, 67, 68] are increasingly available for use in 
the development of novel microbial strains with pheno-
types that allow production of various bulk chemicals [74, 
113]. Successful applications, for example using the model 
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organisms Escherichia coli, Saccharomyces cerevisiae and 
Corynebacterium glutamicum (for amino acid production 
mainly) as production hosts, have been reported widely in 
the literature [52, 103].

Metabolic engineering focuses on altering the function 
of enzymes, transporters, or regulatory proteins informed 
by existing knowledge of the metabolic network, enzymes, 
their encoding genes, and overall regulation [59]. Strategies 
focus on either introducing new metabolic enzyme func-
tions and pathways or altering existing metabolic pathways 
to optimize production of the chemical of interest [47]. For 
either strategy, detailed understanding of the network and a 
way to determine the distribution of flux [96] are necessary. 
Metabolic analysis methods are powerful analytical tools 
that can be utilized extensively in metabolic engineering, 
as they allow exploration and detailed consideration of the 
structure and design of a metabolic network [83]. Stoichio-
metric methods in particular, which are based on collecting 
all the available biochemical knowledge surrounding a par-
ticular metabolic network of an organism, have helped to 
construct a collection of metabolic models for an expand-
ing number of microorganisms based on annotated genome 
sequences. Such models allow researchers to conduct simu-
lations based on all known reactions occurring in the meta-
bolic network of an organism using only the knowledge of 
the stoichiometry of the network as input and, thus, make 
computational predictions for achievable metabolic states 
of an organism under varying conditions. These predictions 
can encompass the outcomes of genetic manipulations, 
including but not limited to removal or addition of reac-
tions to the network. The capability to perform such manip-
ulations and simulate the results computationally forms the 
basis for rational metabolic engineering [61] and provides 
an aid for prospective study design [30, 44].

Here, we review applications and successes of genome-
scale modeling for metabolic engineering, provide an over-
view of the metabolic reconstruction process (particularly 
the tools for automated reconstructions), and briefly offer 
our view on future developments of the field.

The flux balance analysis (FBA) formulation

Flux balance analysis (FBA) (Fig.  1) can trace its foun-
dations as far back as in the late 1960s [85, 102] and was 
popularized in the early 1990s [80, 81, 98–100]. FBA is a 
constraint-based optimization approach that can be used 
to simulate ranges of achievable reaction rates (referred to 
typically in this field as metabolic “fluxes”) in the meta-
bolic network of an organism. The available stoichiomet-
ric information for a metabolic network is incorporated 
into a stoichiometric matrix S, in which rows represent 
metabolites and columns represent reactions. Typically, 
the network is assumed to exist in a quasi-steady state, 

represented by Sv = 0, where vector v represents the fluxes 
through each reaction. Lower and upper bounds can be 
applied wherever additional information is available for 
the fluxes of the reactions, or to impose directionality and 
capacity requirements for some or all reactions.

The system typically remains under-determined, with 
many alternative solutions for flux distribution that sat-
isfy the imposed constraints. An optimal distribution is 
selected by optimizing an objective function, which usu-
ally describes the maximization of biomass production, 
based on the assumption that cells use the available food 
sources to optimize cellular growth. FBA formulations are 
often characterized by degeneracy, meaning that there exist 
multiple equivalent, non-unique optimal solutions [65, 73] 
to the problem. A typical FBA formulation maximizes the 
selected objective function (a subset of the fluxes in the 
system) subject to stoichiometric constraints and any nec-
essary bounds on system fluxes:

Vector w incorporates weights that represent the relative 
contribution of each reaction to the objective function. FBA 
formulations constitute linear programming (LP) problems, 
which makes the FBA approach suitable for application to 
very large metabolic networks. Typically, genome-scale 
metabolic networks consist of hundreds or a few thousand 
reactions. LP solvers are capable of solving problems with 
tens of thousands or more variables. The solution of an 
FBA problem is unique for the optimal value of the objec-
tive function, and also results in a non-unique (except in 
trivial cases) calculation of a flux distribution through 
every reaction in the system. Subsequently, patterns of con-
sumption and production of each metabolite can be deter-
mined for systems with thousands or tens of thousands 
of components. Crucially, kinetic information or enzyme 
concentrations are not required for the analysis; although 
such information can be incorporated for increased accu-
racy. This lack of a high number of parameters greatly 
reduces the opportunities for overfitting models—although 
some overfitting certainly still exists, for example in the 
choices during model construction—and makes the result-
ing models amenable to very broad use across a wide range 
of organisms at the genome scale. Additional methods such 
as Flux Variability Analysis [55] or Monte Carlo sampling 
of solution spaces [4, 73] can address the variability possi-
ble in each of these reaction fluxes, providing insight to the 
full range of achievable metabolic states of a system given 
physico-chemical constraints and a finite set of biological 
measurements.

Maximize → wv

subject to:

Sv = 0

vmin ≤ v ≤ vmax
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Genome‑scale reconstructions

The reconstruction of genome-scale metabolic models 
requires the construction of an S matrix that closely rep-
resents the biochemistry of the organism. Models for an 
ever increasing number of bacteria have been published 

in recent years [58] (examples: [6, 12, 25, 31, 32, 34, 57, 
60, 63, 82, 86, 110]) and more papers describing both new 
reconstructions and improvements upon previous itera-
tions are published regularly. Most reconstructions are now 
available in a standard format such as the systems biology 
markup language (SBML) [36]. The SBML files can easily 

Fig. 1   Conceptual illustration of flux balance analysis formulation 
and solution. a Reconstruction of a genome-scale metabolic network 
is performed by mathematically representing the flux through the 
reactions of the network. b The stoichiometric matrix for the system 
is constructed to represent the stoichiometry of all reactions, and the 
mathematical formulation for FBA is based on the steady-state con-
dition. These stoichiometric constraints coupled with minimum and 
maximum bounds on reaction rates define the steady-state solution 

space. c FBA provides a method for calculating achievable fluxes 
through the system (c2), based only on the knowledge of the stoichi-
ometry of a metabolic network (c1). Through simulations, alternative 
solutions can also be identified and/or the effects of alterations to the 
network, such as gene deletions or additions, can be predicted (c3). 
The “1” in the graph signifies that a reaction is “on”, i.e., there is flux 
through it
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be imported into most software applications for FBA, such 
as the COBRA Toolbox [10]. Nevertheless, wherever a pre-
existing model is not readily available (including when the 
existing model is not of the necessary quality or does not 
cover the required elements of metabolism for the intended 
analysis), a new reconstruction is needed. This process 
is data intensive and involves gathering species-specific 
information from genome annotations, high-throughput 
experiments, the literature and/or publically available 
databases, such as KEGG [41], EcoCyc [42], BKM-react 
[46], or BRENDA [84]. Gap-filling methodologies are sub-
sequently applied [13, 75] to improve connectivity to the 
point where the model can simulate phenotypes. As labor 
intensive as manual reconstruction is, the process has been 
well developed and described [95].

Automated reconstructions

As pointed out above, the construction of a genome-
scale model is a complex task; but tools for improving 
and accelerating this process are becoming increasingly 
available. To reduce the painstaking process of manual 
annotation, draft metabolic models can be built by utiliz-
ing and integrating the resources available in various bio-
logical databases in an automated manner. Several such 
automated methods have been reported in the literature; 
for example, Model SEED [24, 33] is an online resource 
designed to simplify the construction of a genome-scale 
model by utilizing an automated framework. Model SEED 
can be used to create genome-scale metabolic models in 
a high-throughput manner, by automating the annotation 
of the genome, producing a preliminary reconstruction 
of the metabolic network, performing automatic gap fill-
ing of reactions necessary for cellular growth, and, when 
such data are available, incorporating array and gene 
essentiality data to improve the quality of the reconstruc-
tion. BioNetBuilder [8] is a Cytoscape plugin with a user-
friendly interface to create biological networks integrated 
from several databases. ReMatch [71] is a web-based 
framework that reconstructs a metabolic network by inte-
grating user-developed models into a database collected 
from several comprehensive metabolic data resources, 
including KEGG, MetaCyc and CheBI. The SuBliMinaL 
Toolbox [93] is a framework for reconstructing metabolic 
networks by providing independent modules that can be 
used individually or in a pipeline, and can perform tasks 
that are common in every reconstruction process, such as 
generating a draft, determining metabolite protonation 
states, mass-balancing reactions, compartmentalizing the 
cell, adding transport reactions, creating a biomass func-
tion and exporting the reconstruction in a format readable 
by software packages (typically SBML). Reyes et al. [77] 
presented an automatic method for the reconstruction of 

genome-scale metabolic models for any organism imple-
mented in COPABI. Dale et  al. [23] developed a method 
for predicting metabolic pathways that relies on machine 
learning approaches to reconstruct the network of an 
organism. In addition to automated tools, there have also 
been instances of semi-automated tools in the literature, 
for example reconstruction, analysis and visualization of 
metabolic networks (RAVEN) [2] is a toolbox for semi-
automated reconstruction of genome-scale models, which 
accesses published models and the KEGG database to 
build a draft reconstruction, coupled with extensive gap 
filling and quality control. Microbes Flux [28] and a 
method presented by Zhou [112] both make extensive use 
of KEGG to achieve the construction of a draft metabolic 
model. Finally, Benedict et al. [13] presented a likelihood-
based gap filling method that can automatically improve 
the quality of metabolic reconstructions by incorporating 
alternative potential gene annotations. This method assigns 
a score to gene annotations based on sequence homology, 
selects the most likely pathways for gap filling using an 
mixed integer linear programming (MILP) formulation 
and identifies orphaned reactions. The likelihood-based 
approach performs better both quantitatively and qualita-
tively when compared to pre-existing algorithms.

While automated methods significantly decrease the 
time and effort required for reconstructing a new metabolic 
model, there is still need for user feedback and manual 
curation to improve the quality and accuracy of the meta-
bolic model. This is especially true during the final stages 
of the reconstruction, as the resulting model is being vali-
dated against experimental data. The curator is responsible 
for assessing the precision and accuracy of the model, and 
for evaluating if there is further need for gap filling, remov-
ing futile cycles and improvement of the biomass reaction. 
Semi-automated methods permit greater flexibility for user 
intervention during the reconstruction process and consti-
tute a good compromise for refining an initial draft model 
to further elevate the quality of the reconstruction up to the 
required standards.

Once a working model has been constructed and 
improved to a satisfactory level, in silico experiments can 
predict flux distribution ranges and phenotypic behavior 
under conditions of the user’s choice. Targets for possible 
genetic manipulation to improve strain performance can be 
identified through comparative studies under both genetic 
and environmental perturbations. The model can then be 
used to calculate knockout lethality or growth rates, and 
results can be compared to experimental observations, 
which allows for the model to be iteratively tested and 
improved [40]. Several computational approaches for net-
work manipulation and phenotypic simulation have been 
developed, such as the COBRA Toolbox for MATLAB 
[10], a popular FBA simulator.
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Successes of genome‑scale modeling

Flux balance analysis and related constraint-based meth-
ods can be used to predict the optimal set of gene knock-
out and overexpression targets to increase an organism’s 
ability to produce a chemical of interest. Here, we present 
various applications of genome-scale modeling to gage the 
impact this computational approach has had on metabolic 
engineering efforts. Table 1 summarizes examples of suc-
cesses of genome-scale modeling in the context of meta-
bolic engineering.

An exhaustive search of all feasible knockouts in an 
organism, especially with an experimental approach, to 
identify the exact genotype with the optimal production pro-
file for a substance of interest, is a painstakingly tedious and 
often practically infeasible process. Genome-scale meta-
bolic models can be a valuable tool for understanding the 
inner workings of metabolic networks, which cannot always 
be intuitively discerned. Such insight may be used to design 
strains with specific properties in a manner faster by many 
scales of magnitude, and therefore much more desirable. 
Genome-scale modeling has been applied in various meta-
bolic engineering contexts and has been successfully used to 
predict genetic modifications for improved strains.

Lee et al. [49] constructed a metabolic model for E. coli, 
which was successfully used to develop and implement a 
strategy for increased succinic acid production. The authors 
proposed optimal metabolic pathways for the production 
of succinic acid based on the results of the metabolic flux 
analyses. For increasing succinic acid production, the pyru-
vate carboxylation pathway was selected as optimal for 
increasing the production in E. coli. Experimental valida-
tion of the proposed pathway was performed by compar-
ing the yield of succinic acid with traditional succinic acid 
producing pathways. The experimental results suggested 
that the novel pathway selected through the computational 
analysis is more efficient than conventional pathways.

Alper et  al. [5] used a genome-scale model for E. coli 
and identified and experimentally confirmed seven gene 

deletion strains that showed increased lycopene production. 
The E. coli iJE660 model [76] served as the basis for this 
approach. Targets for single gene knockouts were initially 
selected, and the ones that resulted in the highest produc-
tion of lycopene were chosen as candidates. Then, a sec-
ond knockout was computationally predicted and then per-
formed on the best performing single gene mutants, and the 
double mutants with the highest yield were selected once 
more. This process produced knockout mutants with pro-
gressively increasing yields. The selected single, double, 
and triple knockout strains were constructed experimen-
tally and were shown to significantly improve the yield 
of lycopene, with the top selected strain producing a yield 
almost 40  % higher than an engineered, high-producing 
parental strain.

Bro et  al. [16] used an FBA model of Saccharomyces 
cerevisiae to identify a strategy for metabolic engineering 
of the redox metabolism that would lead to decreased glyc-
erol and increased ethanol yields on glucose under anaero-
bic conditions. Several suggested mutants were suggested 
computationally that eliminated formation of glycerol and 
increased ethanol yield. One of the most promising results 
was selected and constructed experimentally. The resulting 
strain had a 40  % decrease and 3  % increase in glycerol 
and ethanol yields, respectively, without affecting the maxi-
mum specific growth rate.

Lee et  al. [48] reported a strategy for increased threo-
nine production in E. coli. A threonine producing strain 
was re-engineered based on transcriptome profiling and 
flux analysis simulations. The resulting strain produced 
threonine with a high yield of 0.393 g per gram of glucose 
and 82.4 g/l threonine by fed‐batch culture. Similarly, Park 
et  al. [66] constructed a genetically well-defined E. coli 
strain based on known metabolic information, transcrip-
tome analysis, and in silico genome-scale knockout simu-
lation. The authors identified the necessary gene knock-
outs for the construction of an E. coli strain with increased 
l-valine production. Genes ilvA, leuA, and panB were 
deleted to make more precursors available for l-valine 

Table 1   Examples of recent 
developments and successes 
of genome-scale modeling in 
metabolic engineering

Publication Year Target Organism

Lee et al. [49] 2002 Succinic acid production E. coli

Alper et al. [5] 2005 Lycopene production E. coli

Bro et al. [16] 2006 Decrease glycerol and increase ethanol yield S. cerevisiae

Lee et al. [48] 2007 Threonine production E. coli

Park et al. [66] 2007 l-valine production E. coli

Song et al. [90] 2008 Optimize media and succinic acid production M. succiniciproducens

Meijer et al. [56] 2009 Succinic acid production A. niger

Ohno et al. [62] 2013 Butanol, propanol, propanediol production E. coli

Sun et al. [93] 2014 Terpenoid biosynthesis S. cerevisiae

Borodina et al. [15] 2015 3-Hydroxypropionic acid biosynthesis S. cerevisiae
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biosynthesis, lrp and ygaZH were overexpressed and aceF, 
mdh, and pfkA were identified as knockout targets using 
gene knockout simulation. The resulting strain produced 
a high yield of 0.378  g per gram of glucose of l-valine, 
which is higher than industrial strains developed through 
random mutation and selection.

Another useful application of FBA is to identify opti-
mal media composition for the growth of an organism and 
production of a desired metabolite [90]. Song et al. used a 
genome-scale metabolic network and flux balance analysis 
to identify two amino acids and four vitamins as essential 
compounds to be supplemented to a minimal medium that 
would improve the growth of Mannheimia succiniciprod-
ucens and the production of succinic acid. The optimized 
media increased the yield of succinic acid by 15 % com-
pared to growth on a complex medium. The optimal, chem-
ically defined medium also lowered by-products by 30 %.

Meijer et  al. [56] presented a metabolic engineering 
approach for increased production of succinic acid with 
Aspergillus niger, a microorganism that is well established 
industrially, making it an interesting target for engineering 
of the production of specific chemicals. A deletion strategy 
based on simulations with a genome-scale stoichiometric 
model of the organism was devised. The gene producing 
citrate lyase (acl) was identified as a deletion target through 
in silico tests with a genome-scale metabolic model of the 
organism. The authors found that the mutant strain tripled 
the yield of succinic acid compared to the wild type, along 
with an overall increase in the production of organic acids 
in the mutant strain.

In 2013, Ohno et  al. [62] demonstrated that the pro-
duction of many valuable compounds, such as L-butanol, 
L-propanol, and 1,3-propanediol, can be improved using a 
triple gene knockout strategy. In silico screening was per-
formed and the metabolic potential of all possible sets of 
triple knockouts were evaluated using a reduced metabolic 
model of Escherichia coli, based on the iAF1260 genome-
scale model [27]. The use of a reduced model was pre-
ferred in this study, as it significantly lowered the compu-
tational costs. The results demonstrated the applicability of 
multiple deletion strategies, since in many cases the effects 
of the deletions were only observable when multiple genes 
were simultaneously disrupted. Traditional screening meth-
ods would have missed these opportunities. Such results are 
indicative of the possibility to develop industrially viable 
strains through metabolic engineering that utilizes genome-
scale modeling.

Sun et  al. [93] presented a study that identified knock-
out targets for improving terpenoid biosynthesis in S. 
cerevisiae. Terpenoids have important pharmacological 
activity, but the production of sufficient amounts is chal-
lenging. A constraint-based approach was used to iden-
tify knockout sites with the potential to improve terpenoid 

production (specifically, sesquiterpene amorphadiene). 
Based on the simulation results, a single mutant was con-
structed and engineered to produce amorphadiene. Produc-
tion of amorphadiene was measured to assess the effects of 
gene deletions on the production of terpenoids. Ten novel 
gene knockout targets were described. The yield of amor-
phadiene produced by most single mutants increased 8- to 
10-fold compared to the wild type.

Borodina et al. [15] engineered a synthetic pathway for 
de novo biosynthesis of 3-Hydroxypropionic acid, using a 
genome-scale model of S. cerevisiae to evaluate the meta-
bolic capabilities of two promising routes. 3-Hydroxypro-
pionic acid (3HP) is a potential chemical building block 
for sustainable production of superabsorbent polymers 
and acrylic plastics. Simulations suggested β-alanine bio-
synthesis as the most economically attractive route. A syn-
thetic pathway for de novo biosynthesis of β-alanine and 
its subsequent conversion into 3-Hydroxypropionic acid 
was engineered, using a novel β-alanine-pyruvate ami-
notransferase discovered in Bacillus cereus. The expres-
sion of the critical enzymes in the pathway was optimized 
and aspartate biosynthesis was increased to obtain a high 
3-Hydroxypropionic acid producing strain.

In addition to the growing number of studies that dem-
onstrate the applicability of genome-scale modeling to 
rational metabolic engineering efforts by performing anal-
yses and producing strains that improve the production of 
chemicals of interest, several computational approaches for 
automatic selection of gene knockout candidates have been 
developed. Such frameworks make FBA a tool that is now 
available to a much wider audience. In Zomorrodi et  al. 
[114], the authors review computational tools that utilize 
mathematical optimization and were designed to assist in 
metabolic network analyses and redesign of metabolism. 
For example, OptKnock [18] is a framework that exploits 
duality theory to search for multiple gene knockout candi-
dates, by solving a bi-level optimization problem: the inner 
problem optimizes biomass production, while the outer 
problem optimizes target chemical yield. The problem is 
formulated as a single MILP problem. Sets of gene knock-
outs for improved succinate, lactate, and propanediol pro-
duction in E. coli were predicted by the authors.

The OptKnock framework suffers from certain limita-
tions, for example the intractability of the problem when 
very large sets of knockouts are considered. To address 
such issues, researchers have developed extended and 
improved frameworks that identify deletion candidates, 
such as OptGene and RobustKnock. OptGene [67] utilizes 
a genetic algorithm to rapidly identify gene deletion strat-
egies for optimization of a strain. The advantages of Opt-
Gene are that it also allows the optimization of nonlinear 
objective functions, and can be much faster than an MILP 
approach, but unlike with MILP formulations, the identified 
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solution is not guaranteed to be a global optimum. Opt-
Gene has been used to predict sets of gene knockouts for 
improved production of vanillin, succinate, and glycerol 
in S. cerevisiae. RobustKnock [94] extends OptKnock by 
accounting for the presence of competing pathways in the 
network that may reroute metabolic flux away from the 
chemical of interest. The framework removes reactions 
from the network, so that the production of the chemical 
of interest becomes part of the model’s biomass production 
requirement. RobustKnock was used to predict sets of gene 
knockouts for improving the production of hydrogen, ace-
tate, formate and fumarate in E. coli.

Although frameworks like OptKnock and OptGene are 
powerful in their ability to predict knockouts, the possible 
modifications are restricted by the selection of reactions 
included in the metabolic reconstruction. The possibility of 
adding new reactions that are not part of the original meta-
bolic network is not considered with these methods. Opt-
Strain [68] overcomes this problem with the use of a data-
base of known biotransformations to maximize the yield 
of a pathway from substrate to target product, by including 
heterologous reactions. The number of non-native reac-
tions is minimized, and the selected non-native reactions 
are incorporated into the host. In addition to the above 
tools, OptReg [69] and EMILiO(Enhancing Metabolism 
with Iterative Linear Optimization) [108] are frameworks 
that not only identify gene targets selected for deletion, but 
also identify genes that can be up or downregulated. Such 
computational tools have been used for several metabolic 
engineering applications, including the production of lactic 
acid in E. coli [29], vanillin production in yeast [17] and 
sesquiterpene production in S. cerevisiae [7]. For research-
ers and engineers that wish to apply genome-scale mod-
eling methods and the automated gene knockout selection 
frameworks described here, several software options exist 
that are now freely available, including the COBRA tool-
box [10], OptFlux [78], CellNetAnalyzer [45] other Sys-
tems Biology Research Tool [106], to name but a few.

Transcriptional regulation

Genome-scale modeling is not without its limitations; one 
of the major issues with the predictions made with this 
analysis method is that it does not consider the effects of 
gene regulation. In reality, however, the effect of regula-
tion is very significant and one of the major reasons for 
failed predictions of the metabolic effect of gene modifi-
cations. For this reason, there is great motivation to look 
beyond just the metabolic network and attempt to integrate 
the effects of regulation on the metabolic reactions of an 
organism. Integrated models can significantly improve pre-
diction accuracy, though again there is still much room for 
improvement. Machado and Herrgård have performed a 

systematic comparison of methods of transcriptomic data 
integration with genome-scale modeling [54].

In its simplest form, transcriptional regulation can be 
added to a stoichiometric model using a Boolean represen-
tation to map the effects of transcription factors (activating 
or repressing) on the expression of enzyme encoding genes. 
Such a representation forces the specific enzyme-catalyzed 
reaction to be either on or off, depending on the presence or 
absence of the controlling transcription factors. The imple-
mentation of this idea is known as regulatory Flux Balance 
Analysis (rFBA) [22]. rFBA offers the possibility of con-
sidering some basic regulatory effects on the metabolic net-
work, but it is constrained by the fact that the genes that 
are controlled by transcriptional factors can only be either 
fully active or completely off. This prohibits good predic-
tions in cases where a transcriptional factor knockout only 
has a partial effect on target genes. Another limitation of 
rFBA is that it arbitrarily chooses one metabolic steady 
state from a space of possible solutions, excluding a whole 
space of possible profiles. Instead, Steady-state Regula-
tory Flux Balance Analysis, or SR-FBA [88], enabled a 
comprehensive characterization of steady-state behaviors 
in an integrated model of metabolism and regulation. SR-
FBA was used to characterize the flux distribution and 
gene expression levels of Escherichia coli across different 
growth media. Around 50 % of metabolic genes’ flux activ-
ity was found to be determined by metabolic constraints, 
whereas regulatory constraints determined the flux activity 
of 15–20 % of genes. The integrated model was then used 
to identify specific genes for which regulation is not opti-
mally tuned for cellular flux demands.

Probabilistic regulation of metabolism (PROM) [20, 
89] is another method that overcomes the limitations of 
rFBA by implementing a probabilistic approach for pre-
dicting the state of a gene, based on the level of expres-
sion of a transcription factor. The probability for the state 
of a gene is determined based on microarray data informa-
tion, and the bounds on the flux of the relevant reaction 
are adjusted using this probability estimation. In addi-
tion, PROM requires little manual annotation compared 
to rFBA, because the process can be automated to a large 
degree. Still, the accuracy of all such methods needs to be 
improved, and there is substantial need to expand the rep-
ertoire of captured regulatory events related to metabolism 
beyond simple transcriptional effects.

Similarly, E-Flux [21] is an approach that incorporates 
transcript level measurements to the reaction flux con-
straints that define the maximum achievable flux through 
each reaction. The bounds on the fluxes of the system are 
determined based on the level of expression for the corre-
sponding coding gene. The method was tested on Myco-
bacterium tuberculosis to predict the impact of drugs, drug 
combinations, and nutrient conditions. E-flux predicted 
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seven of the eight known fatty acid inhibitors and made 
accurate predictions regarding the specificity of these com-
pounds for fatty acid biosynthesis.

An important disadvantage of previous methods is that 
they often require a user-defined expression threshold over 
(or under) which a gene is considered “on” (or “off”). 
Metabolic adjustment by differential expression (MADE) 
[38] aims to overcome the problem of selecting arbitrary 
thresholds by comparing measurements across multiple 
conditions. MADE uses the statistical significant changes 
in gene expression measurements across sequential condi-
tions to determine instances of high and low expression for 
various reactions. For this reason, MADE requires expres-
sion data from more than one experimental conditions. The 
solutions for all conditions are solved simultaneously to 
maximize agreement with the predicted patterns.

Other approaches for integrated simulation use mRNA 
expression data to construct a functional metabolic model 
for the organism. Gene Inactivity Moderated by Metabo-
lism and Expression (GIMME) [11] utilizes user-supplied 
gene expression data, a genome-scale model and presup-
posed metabolic objectives to produce a context-specific 
reconstruction. GIMME performs an FBA run on the start-
ing metabolic model to identify the maximum possible flux 
through the network. Then, experimental mRNA transcript 
levels are compared to a threshold and any reactions that 
fall below this threshold are removed from the network, 
unless their removal impacts the metabolic objectives, in 
which case an LP problem is solved that reintroduces inac-
tive reactions in a way that minimizes deviation from the 
expression data. The algorithm also provides a quantitative 
inconsistency score indicating how consistent a set of gene 
expression data is with a particular metabolic objective.

The integrative Metabolic Analysis Tool (iMAT) [115] 
on the other hand is a web-based tool based on Shlomi 
et  al. [87], which does not require prior knowledge of a 
defined metabolic functionality. iMAT enables the predic-
tion of metabolic states in specific conditions using protein 
(or gene) expression data as input, integrating them with 
transcriptomic information and a genome-scale metabolic 
model. The web tool outputs a prediction for the flux state 
and a set of confidence values for all the reactions in the 
network. Additionally, iMAT can report predicted upregu-
lated and downregulated genes post-transcriptionally. 
The main difference to GIMME is that instead of presup-
posed metabolic objectives, iMAT requires the existence 
of a minimum flux through reactions that correspond to the 
highly expressed genes in the dataset. This difference gives 
iMAT an advantage in cases where clear metabolic objec-
tives cannot be established.

The first model that can be considered “whole-cell” was 
developed for Mycoplasma genitalium [43], a human patho-
gen, by combining all the biochemical components and all 

the interactions in the system. Modules with diverse char-
acteristics were built, representing distinct cellular functions 
and combined into a dynamic framework. This integrative 
approach enabled the inclusion of physiologically and math-
ematically diverse processes and experimental measure-
ments. The model was used to examine areas of cellular 
function that had not been studied in conjunction before, 
such as protein–DNA associations and the interactions 
between DNA replication and the initiation of replication. 
This whole-cell model represents an important advancement 
in the development of integrated genome-scale modeling.

The more biochemically accurate a model is, the more 
detailed the simulations of an organism’s phenotypic 
behavior we should be able to produce by varying genetic 
and environmental parameters. With the combination of 
Metabolism and gene Expression, an ME model was pro-
duced; an integrated model of Thermotoga maritima [51] 
that considerably improves the prediction accuracy of the 
genome-scale metabolic model of the organism, along with 
the added capability of gene expression prediction. The 
ME model represents the next generation of constraint-
based models: stoichiometric models of metabolism that 
also explicitly consider gene transcription and translation. 
Thanks to the integration of additional levels of biological 
information, ME models can provide a basis for consider-
ing mRNA transcription, protein translation, protein com-
plexing, reaction catalysis or molecule formation within 
the framework of genome-scale modeling. ME models 
represent a significant step in the effort to bridge the gap 
between molecular biology and cellular physiology.

Another important application of integration of tran-
scriptome, proteome, and phenotypic data with meta-
bolic reconstructions is to contextual generic metabolic 
reconstructions in higher organisms to contextualize those 
aspects of metabolism that are present in any particular 
tissue or cell type. A number of automatic reconstruction 
approaches have been built to achieve this. One such algo-
rithm, the Model Building Algorithm (MBA) [39], was 
employed in the construction of a tissue-specific, hepatic 
model, from the generic human RECON1 model [26], inte-
grating tissue-specific molecular data. The hepatic model 
was validated with flux measurements across various hor-
monal and dietary conditions. The advantage of MBA is 
that it eliminates the presence of superfluous metabolic 
reactions and streamlines the metabolic model to consist of 
metabolic reactions that are functional in the cell. Similarly, 
a method called metabolic Context-specificity Assessed 
by Deterministic Reaction Evaluation (mCADRE) [101] 
is able to infer a tissue-specific network based on gene 
expression data and metabolic network topology, along 
with evaluation of functional capabilities during model 
building. mCADRE produces models with similar func-
tionality and achieves dramatic computational speed up 
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over MBA using the network topology to set a deterministic 
ordering for reaction removal rather than computing a large 
ensemble of models based on random orderings. Using this 
method, a reconstruction of draft genome-scale metabolic 
models for 126 human tissue and cell types was performed. 
Finally, another approach is the INIT (integrative network 
inference for tissues) algorithm [1], which uses cell type 
specific information about protein abundances as its main 
source of evidence. INIT is formulated as an MILP prob-
lem and relies on evidence from the Human Protein Atlas 
[97] and tissue-specific gene expression data to decide on 
the presence or absence of metabolic enzymes in each cell 
type, while metabolomics data from the Human Metabo-
lome Database [105] are used as constraints that force the 
ability to produce a specific metabolite by adding the nec-
essary reactions, if said metabolite has been observed in a 
tissue. INIT was used to generate genome-scale models for 
69 healthy human cell types and 16 cancer cell types.

Cells contain thousands of molecular components 
including transcripts, proteins and metabolites, and regula-
tion plays a very important role in every cellular process 
(gene expression, protein transcription, enzymatic reac-
tions). For these reasons, precise estimation of the meta-
bolic states and comprehension of the way regulation 
works are crucial factors for accurate simulation of cel-
lular processes. Approaches that integrate transcriptional 
regulation with more traditional constraint-based metabolic 
simulation make several assumptions, particularly since the 
transcription of genes and the way it correlates with flux 
are still not perfectly understood. As a result, predictions 
made with these approaches are not highly accurate, and 
while these methods have been successfully applied to spe-
cific example organisms, wide application is still problem-
atic. Nevertheless, integrated approaches constitute an ini-
tial step in the effort to effectively correlate genotype with 
phenotype and often offer improved predictions compared 
to stand-alone FBA simulations.

Conclusions

In the current microbial metabolic engineering field, many 
tools and applications have been developed that facilitate 
genetic engineering of model organisms. Here, we summa-
rized the genome-scale modeling approach, which, thanks 
to its simplicity and the fact that it offers large amounts 
of biochemical information for an organism’s reactions, is 
well suited for application in systematic metabolic engi-
neering for bio-production using microorganisms. Meta-
bolic design using genome-scale modeling is already 
widely used, as it enables prediction of the knockout or 
amplification target genes for enhancement of productiv-
ity. In this review, we offered an overview of genome-scale 

modeling and flux balance analysis, and focused particu-
larly on the challenge of metabolic reconstructions, and 
on the developments that the various efforts for automatic 
reconstruction have achieved. We reviewed several suc-
cessful studies in the area of genome-scale modeling for 
metabolic engineering. Techniques for metabolome analy-
sis have made progress in recent years, and researchers can 
now have direct access to several tools that automate the 
selection of gene deletions, additions and modifications 
to produce mutants that would facilitate the production of 
specific chemicals. Finally, we summarized the importance 
of studying and understanding the regulatory mechanisms 
of the cell and presented studies that focused on integration 
of regulation and metabolism. In the future, we expect that 
integrated models of metabolism will become particularly 
important in the field of metabolic engineering.
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