
A PEP-PDP Architecture to Monitor and Enforce
Security Policies in Java Applications

Yehia Elrakaiby, Yves Le Traon
Security, Reliability and Trust Interdisciplinary Research Center, SnT, University of Luxembourg, Luxembourg

Email: {yehia.elrakaiby,yves.letraon}@gmail.com

Abstract—Security of Java-based applications is crucial to
many businesses today. In this paper, we propose an approach to
completely automate the generation of a security architecture
inside of a target Java application where advanced security
policies can be enforced. Our approach combines the use of
Aspect-Oriented Programming with the Policy Enforcement Point
(PEP) - Policy Decision Point (PDP) paradigm and allows the
runtime update of policies.

Keywords—Java Security, Security Policies, Obligations, Access
Control, Usage Control.

I. INTRODUCTION

Java security has attracted the attention of many researchers
due to the widespread use of Java to develop applications and
businesses today.

Several techniques have been considered to provide secu-
rity for Java applications. Many researchers [1]–[8] studied
the use of In-lined Reference Monitors (IRM) [9] and Aspect
Oriented Programming (AOP) [10] to weave mechanisms
needed to enforce security requirements into Java applications.
The main limitation of this approach is that policies may not be
updated afterwards. For example, a policy stating that “a user
can post comments on the website if he or she is a subscribed
member” can not be changed into a requirement that “any
registered user can post comments on the website”. Other
approaches such as XACML [11] propose to separate policy
enforcement from policy evaluation using a Policy Enforce-
ment Point (PEP) / Policy Decision Point (PDP) architecture,
enabling policy update at runtime. In this paradigm, a user
access request is intercepted by a PEP which forwards the
request to the PDP for decision-making. The decision taken by
the PDP is returned to the PEP which enforces it. The difficulty
in using this latter approach to secure Java applications consists
in the need to develop several application-specific modules to
intercept sensitive method calls in the application and manage
the communication between the PEPs and the PDP.

In this paper, we propose a generic approach that combines
the advantages of the two aforementioned approaches: in com-
parison with IRM-based approaches, the policy can be updated
at runtime; with respect to other approaches using a PEP-PDP
architecture, there is no need to develop application specific
modules. To overcome this latter issue, we have included in the
policy language the constructs necessary to define a declarative
mapping between the Java entities of the target application (e.g.
methods) to their corresponding policy entities (e.g. actions),
thereby clarifying policy semantics and avoiding the need to
implement application-specific modules. From a conceptual
point of view, our approach consists in making a complete

separation between the policy and application entities and
providing means necessary to map the application and policy
entities together. Another main advantage of this separation
between the policy and application realms is that it simplifies
the extension of the policy language without affecting the
application. This is demonstrated by the support the specifica-
tion of sophisticated security requirements such as obligations,
history-based and reaction policies in our approach.

The remainder of this paper is organized as follows.
Section II presents a motivating example. Section III gives an
overview of our approach and introduces the MJP language.
Section IV details the PEP-PDP architecture automatically
produced given an MJP policy specification. Section V makes
an empirical assessment of our approach. Finally, Section VI
discusses related work and Section VII concludes the paper.

II. MOTIVATING EXAMPLE

Consider an Auction Sale Management System (ASMS)
[12]. In ASMS, users have accounts and are allowed to buy
and sell products online. Users can join auction sessions,
place bids and post or read messages from the session’s
bulletin board. Each session has a designated moderator. Along
with this functional description of the system, the following
requirements are needed to comply either with regulations such
as privacy laws [13], [14] or with the service’s internal policy.

• R1: Only users can update the account information,

• R2: To ensure service availability, each user may not
post more than 50 comments during a sale session,

• R3: When a user posts a comment including a black-
listed word, then the moderator has to update the post
such that the word no longer appears in it, i.e. the
moderator may either completely delete the post or
modify the post by removing the blacklisted word.

• R4: Users should not have a negative account balance
for more than one week. If within one week, the
user’s account is still negative, then the user’s access
is suspended until his balance is positive again.

The examples above show different requirements: R1,
R2 are contextual access control rules. R2 further specifies
conditions on the user’s past actions. R3 and R4 specify
obligation requirements. R4 further specifies that a user should
be denied to access the service if the user fails to comply with
the obligation to not have a negative balance for more than
one week. We consider that R4 represents a policy requirement
(and not a functional requirement) since it may change later
if there is a change in the service’s policy.

2013 International Conference on Availability, Reliability and Security

978-0-7695-5008-4/13 $26.00 © 2013 IEEE

DOI 10.1109/ARES.2013.49

367

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31224562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE I: Rule Predicates

Predicate Informal Meaning

perm(i, r, a, rt, ca) Users assigned the role of r are allowed to perform
the action a on targets in the role of rt if the
context ca holds.

proh(i, r, a, rt, ca) Users assigned the role of r are prohibited to
perform the action a on targets assigned the role
of rt if the context ca holds.

obliga(i, r, a, rt, ca, cv) Users assigned the role of r are required to
perform the action a on targets in the role of rt
when the context ca holds before the context cv
is true.

obligs(i, r, cf , ca, cv) Users assigned the role of R are obliged to make
the context cf true when the context ca holds
before the context cv is true.

i ∈ I, r, rt ∈ R, a ∈ A, ca, cv, cf ∈ C

To correctly specify and enforce the requirements above
in a Java application, we identify the following challenges:
(1) specification of requirements using a high-level language
to simply their expression and interpretation, (2) support of
fine-grained security rules and the verification of contextual
conditions such as, for example, that the user is requesting to
update his own account, (3) provision of means to map the
specified policy to the Java application entities, (4) monitoring
of compliance with requirements and activation of counter-
measures in case of non-compliance, e.g. R4, (5) enabling the
update of requirements to enable enforcement of new internal
or regulatory mandates, e.g. that also moderators may update
user accounts (R1) or that users can have a negative for a
maximum of two days instead of one week (R4).

III. SECURING JAVA APPLICATIONS USING POLICIES

To address the challenges just identified, we introduce a
methodological approach to enforce high-level requirements
into target Java applications. In the following, we first intro-
duce our policy language enabling an application-independent
specification of high-level requirements, then we present how
policy entities can be mapped onto the target application.
Finally, we will present a security architecture that is able
to enforce and monitor compliance with these requirements
inside of the target Java application.

A. Policy Specification

Our policy language is a typed first-order language that
includes the entities shown in Table I: A role [15], an action
and a context [16] represent an abstraction of a set of system
users, a user action and a set of rule conditions respectively.
Each entity is represented using a different sort: roles (R),
actions (A), context expressions (C) and rule identifiers (I).
Context expressions are built from basic contexts, a basic
context is an identifier of a set of state conditions. For example,
a basic context “emergency” could denote an emergency
situation. Context expressions are defined as follows:

exp ::= c | � | ⊥ | [exp, exp] | delay(nU) | exp&& exp.

where c is a basic context, n is a natural number and U is from
the set {s (seconds), m (minutes), h (hours), d (days)}. The
special context � (⊥ respectively) is a context that is always
true (false respectively). An interval context [c, c′] holds since

the context c holds until the context c′ holds. The context
delay(nU) holds after the elapse of a time period of a number
n of the entity U since the activation of the security rule.

For example, the ASMS policy presented in Section II can
be specified as follows:

perm(1, user, update account info, account,
personal account),

proh(2, user, post comment, sale,
exceeded 50 comments),

obliga(3,moderator, update comment, comment,
comment contains blacklisted word, delay(1h)),

obligs(4, user,¬has negative balance,
has negative balance, delay(7d)).

Note that requirements are specified using a high level
application-independent notation simplifying their specifica-
tion and interpretation. This also simplifies policy reuse in
different systems.

To complete the specification of requirements in Section II,
we specify that a user should be prohibited to access the service
if he or she violates the requirement 4 as follows:

proh(5, user, log in, service, violated r4).

B. Mapping Applications to Policies

Java, as every object oriented programming language,
is based on objects (alternatively called instances), classes,
attributes (data fields) and methods. Policies on the other
hand are specified on an abstract level using roles, actions
and contexts. To specify the meaning of policy entities in a
given environment (a Java application in our case), we consider
making a first-order logic representation of the environment
and the use of mapping rules to map the policy entities onto the
entities of the target application, i.e. that for each policy entity,
a corresponding entity in the target environment is specified.
For a Java application, we consider mapping policy entities as
follows: (1) a class is mapped onto a role, (2) an action is
mapped onto a (chain of) method call of(s) and (3) a context
specifies a set of conditions of the application state, i.e. the
values of object fields and method parameters.

1) Roles and Actions: In our approach, a Java class is
denoted by a role in the policy, i.e. every instance of this class
is considered a subject of the corresponding role. Similarly, a
(chain of) method call of(s) is mapped onto a policy action.
These mappings are defined using the following propositions:

a) Role Declaration:

Role <role name>
Class Name <className>
[Relevant Fields <attType> : <attName>

{, <attType> : <attName> }]. (1)

where className is the fully qualified name of a class and
role name is a role name from R. This proposition states that
instances of className are assigned the role of role name.
The Relevant Fields part is an optional list of some of the
attribute names of className and their types. It is needed only
for performance reasons: only change in relevant attributes

368

is monitored, i.e. the other attributes of a class that are not
declared relevant are not monitored and their update does not
cause any policy update processing.

For example, we can specify a correspondence between the
class Person and the role person as follows:

Role person
Class Name person.Person
Relevant Fields int : age, String : password.

Similarly, we specify a role declaration for Sale as follows:

Role sale
Class Name sale.Sale
Relevant Fields boolean : forMajors, int : id,

ArrayList<String> : blackListOfWords,
ArrayList<Comment> : commentsList.

b) Action Declaration:

Action <action>
Method ID <method id> {–> <method id> } (2)

Method Sig <methodSignature> {–> <methodSignature> } .

where methodSignature is a fully qualified method name and
action is a policy action from A. The Method ID part gives
every method in the Method Sig part an identifier to be used
to refer to the method in the policy, therefore the two parts
should be of the same length.

For example, the following proposition specifies that
the chain composed of CommentService.postComment fol-
lowed by Sale.postComment corresponds to the policy action
post comment:

Action post comment
Method ID post comment 1 –> post comment 2
Method Sig CommentService.postComment(int,Message) –>

Sale.postComment(Message).

2) Contextual Mappings: So far, we have described the
specification of mappings between policy roles and actions and
the target application classes and methods. These mappings
are sufficient for the specification of coarse-grained security
rules, e.g. that some class may execute some method of another
class (or subjects of a role RT). This is however generally
insufficient. For example, it does not allow the specification of
contextual conditions such that the user should be the owner
of the account he is requesting to update.

To add support for such contextual policies, we define
a fist-order representation of the application state. In our
approach, the application state is a set of facts representing
the instances of relevant classes and their attributes. The
application state may also include a representation of the (chain
of) method call of(s) being currently executed.

Instances of relevant classes and their attributes are rep-
resented in the application using two predicates, namely
instance of(s,r) and attribute(s,n,v) shown in Table II. For
example, the facts instance of(i,person) and attribute(i,age,18)
hold in an application state if the application has an instance

TABLE II: Application State Predicates

Predicate Informal Meaning

instance of(s,r) s is an instance of the class r (s is assigned the role of r)
attribute(s,n,v) v is the value of the attribute n of the instance s
attribute(s,n,op,v) v is related to the value of the attribute n of the instance s

according to the operator op
call of(m,m id) m is a call of the method m id

s,m ∈ O : instance identifiers, r ∈ R : roles, v ∈ V : attribute values
n ∈ N ∪ N : attribute names and natural numbers, m id ∈ M : method identifiers

op ∈

⎧⎪⎨
⎪⎩

{<=, >=, <,>}, if n is an int, double, float, etc

{startsWith, contains}, if n is a String

{includes}, if n is a collection, ArrayList, etc

i of the class person and the value of the field age of i
is 18. Note that instance of facts are also used to represent
the super classes of an instance. For example, if moderator
is a subclass of person, then an instance i of moderator
would have two instance of facts: instance of(i,person) and
instance of(i,moderator).

Note that the application state is dynamic, i.e. facts are
added and removed from it to reflect the current state of
the target application. Method calls are represented in the
application state using the predicates call and attribute. A fact
call of(m,post comment 1) means that m is a (current) call
of the method post comment 1. The parameters of a method
are represented using the predicate attribute, similarly to class
fields. However, the argument n corresponds in this case to
the position of the method argument as opposed to the field
name. For example, a fact attribute(m,1,y) means that the
first parameter of the call m is y. Each method call has two
special attributes, namely the this and target attributes. The this
attribute identifies the calling instance and the target denotes
the instance on which the method is invoked.

In the following, we explain how security rule contexts,
such as personal account can be defined. Then, we show how
method calls are mapped into a policy subject, action and target
to enable the evaluation of access control policies.

a) Hold Rules: Basic contexts are defined using hold
rules shown in Table III. They specify conditions on the
application state that have to hold for security rules to be
applicable. A hold rule is a proposition of the following form:

hold(S,A, T, C)← F. (3)

A hold rule specifies that C holds between the security rule
subject S, target T and action A if the formula F holds in
the application state. For example, we can define the context
personal account of the rule 1 in Section III-A as follows1:

hold(S, , T, personal account)← instance of(S, person)∧
instance of(T, account) ∧ attribute(S, userAccount, T).

The previous rule specifies that if the value of the attribute
userAccount of S is T, S is a person and T is an account, then
personal account holds between S and T.

To enable the specification of more sophisticated conditions
over the application state, we consider a quaternary predicate

1The “any term” Prolog symbol is used when the S, A or T of the
context is irrelevant.

369

TABLE III: Policy Mapping Predicates

Predicate Informal Meaning

hold(s,a,t,c) the context c holds between s, a and t
operation(s,a,t) the instance s is taking the action a on t

s, t ∈ O, a ∈ A, c ∈ C

attribute where the third argument is an operator. For exam-
ple, attribute(I,age,<,19) holds in an application state if the
age of I is less than 19. It can be used in the specification of
context rules. For example, we may specify that the context
“major” holds for a subject if its age attribute is more than or
equals 18 as follows:

hold(S, , ,major)← attribute(S, age,>=, 18).

We have defined operators for Java primitive types
and collections such as ArrayList as shown in Table II.
These operators enable the specification of sophisticated
rule conditions. For example, consider the context “com-
ment contains blacklisted word” of rule 3 in Section II iden-
tifying the comment that should be deleted when the comment
contains a word that is blacklisted in the sale where the
comment is posted. It may be specified as follows:

hold(, , Comment, comment contains blacklisted word)←
instance of(Sale, sale)&

attribute(Sale, commentsList, includes, Comment)&
attribute(Sale, blackListOfWords, includes,Word)&

attribute(Comment, content, contains,Word).

This context thus holds if there is a Sale that includes a
Comment (in the list of comments) and this Comment includes
a Word that appears in the sale’s blackListOfWords.

b) Operation Rules: Security policies define controls
over operations, i.e. actions taken by users on target objects.
An operation rule defines an operation by specifying conditions
on the application state. They are propositions of the following
form:

operation(S,A, T)← F. (4)

where F is a formula and A is an action.

For example, consider the method CommentSer-
vice.updateComment(Person person, Comment comment)
where person is the subject updating the comment. An
operation rule could map a call to this method onto a
subject (the person), action (update comment) and target (the
comment) as follows:

operation(S, update comment, T)←
call of(m,updateComment)&

attribute(m, 1, S)& attribute(m, 2, T).

To show the use of operation rules with a chain of method
calls, consider the sequence diagram shown in Figure 1:

• An object Person calls the method SaleSer-
vice.postMessage(int saleID, Message message)
where saleID is the identifier of the sale where the
message is to be posted.

TABLE IV: Rule State Predicates

Predicate Informal Meaning

act perm(i,s,a,t) i allows s to take a on t
act proh(i,s,a,t) i forbids s to take a on t
act obl(i,s,a,t) s is obliged by i to take a on t
viol obl(i,s,a,t) s has violated i but i is still required
fulf obl(i,s,a,t) s has fulfilled i and i is not required
fviol obl(i,s,a,t) s has fulfilled i after i was violated

i ∈ I, s, t ∈ O, a ∈ A, r ∈ R

• The object SaleService is the server, it uses the saleID
to retrieve the Sale object from a list of sales where
the message should be posted and calls the method
Sale.postComment to post the comment.

This chain of method call may be mapped to a policy
operation, i.e. a policy subject taking a policy action on a
target, by specifying that Person is the subject and Sale is the
target and that the action is post comment as follows:

operation(S, post comment, T)←
call of(M1, post comment 1)& attribute(M1, this, S)&
call of(M2, post comment 2)& attribute(M2, target, T).

The previous rule specifies that calling the method
post comment 2 after the execution of post comment 1 cor-
responds to the execution of the policy action post comment.
The rule also identifies the calling instance of post comment 1
as the subject of the operation and the called instance of
post comment 2 as the operation target. Note that it is pos-
sible not to identify a subject or a target for the operation
by using the “any term” symbol . For example, opera-
tion(S,post comment,) is interpreted as denoting the taking
of the action post comment by S on any target.

c) Compliance Monitoring and Reaction to Violation:
In our approach, compliance with obligation requirements is
monitored and it is possible to react to a violation of a
requirement by activating new security rules. The support of
this kind of policies relies on the special set of predicates
shown in Table IV. This set represent the state of security
rules. For example, we can specify the context violated r4 of
the rule 5 in Section III-A as follows:

hold(S, , , violated r4)← viol obl(4, S, A,O).

The previous context rule specifies that violated r4 holds for
a subject S if he is in violation of obligation requirement 4.

C. State Variables

Policies often depend on the history of past events (history-
based policies) [2]. To support this kind of policies, a policy
variables can be created and updated. There are two types of
policy variables: (1) instance variables: extend the instances
of relevant classes with additional attributes, and (2) global
variables which are attributes of the global policy state.

Instance variables are declared in role declarations. For
example, we may specify that instances of the relevant class
person should be extended with an attribute nb of comments
of type int as follows:

370

Fig. 1: Posting a Comment Sequence Diagram

Role <role name>
Class Name <className>
[Relevant Fields <attType>:<attName>

{ <attType>:<attName> }]

[Additional Fields <attType>: <attName>
{, <attType>: <attName> }].

Role person
Class Name com.sales.bo.person.Person
Relevant Fields int : age, String : password
Additional Fields int : nb of comments.

Currently, we only support the declaration of instance
attributes of type int and String. The value of an instance
attribute is initialized according to the attribute type.

Instance attributes may be updated after action occurrences
or when some conditions are true using state-update rules.
State-update rules are of the following form:

F → update actions. (5)

where update actions is a set of assertions and retractions.
For example, we may specify that the attribute fact nb of -
comments should be updated each time a user posts a comment
as follows:

operation(S, post comment, T)→
retract(attribute(S, nb of comments,X)),

assert(attribute(S, nb of comments,X + 1)).

D. Policy Evaluation Logic

Due to space limitations, we only briefly present the
access control decision logic. Obligation management and their
formal operational semantics are presented in [17].

allow operation(S,A, T)←
operation(S,A, T), permitted(S,A, T),¬prohibited(S,A, T),

permitted(I, S,A, T)←
permission(I, Rs,A,Rt, C), instanceof(S,Rs), action(A),

instance of(T,Rt), hold(S,A, T, C),
prohibited(I, S,A, T)←

prohibition(I, Rs,A,Rt, C), instanceof(S,Rs), action(A),
instanceof(T,Rt), hold(S,A, T, C).

The rules above specify that an operation is authorized if
it is permitted and not denied by the specified policy. An
operation is permitted (prohibited) if there is a permission

TABLE V: MJP Specification

<MJP Specification>::= <Role Declarations>
<Action Declarations>
<Operation Rules>
<Hold Rules>
<Security Rules>
[<State Update Rules>]

(prohibition) matching the subject, action and target of the
permission (prohibition) and the context of this permission
(prohibition) holds.

IV. SECURITY ARCHITECTURE TO ENFORCE THE POLICY

A policy specification includes sets of operation rules, hold
rules, security rules, role and action declarations as shown
in Table V. A specification may optionally include a set of
state update rules for policy state variables. Given a policy
specification and a target application, the (logical) architecture
in Figure 2 is used to enforce the policy. The architecture com-
prises the following components: (1) an extended PEP (xPEP)
primarily monitors change in the target application and notifies
the PDP when a policy-relevant event is detected, e.g. when
the attribute of an instance of a relevant class is updated, (2) a
stateful PDP updates the policy after reception of notifications
from the xPEP, e.g. activates obligations. This section describes
these two components and their implementation.

A. Extended Policy Enforcement Point

1) Implementation: The xPEP is implemented using
Aspect-Oriented Programming (AOP) [10]. AOP is a program-
ming paradigm providing an efficient way to encapsulate cross-
cutting functionalities in one place (called an aspect) instead
of having it spread across the target application. An aspect
defines one or more pointcut expressions and code advices.
A pointcut expression selects points in the program at which
a cross-cutting concern needs to be applied. These points are
called join points and they correspond to points exposed by the
AOP system, e.g. method executionand object creation. The
advice is the additional code that should be executed when a
pointcut expression is matched. It is possible to run an advice
before, after, or around a join point.

In our implementation, we use a set of generic aspects to
monitor the target application. Note that although the weaving
of aspects into the application is performed at compilation
time, policies may be changed at runtime. The extended PEP
monitors the instantiation of classes, change in the values of
attributes and method calls. The PDP is notified of change in
the elements specified in role and action declarations.

371

������

��������	
�

��
	���	�����

�������

������

�����
�������	�
�����������	������

�
	����������	

���
��
�����

��� ���

��	�
�
��

��
�

��� ���

�
�

�������
��

�

������
������
��

������	�������	�
�
���	�

�

������
��	�

��	�	

������!�
�
�	����
"�	

#��
�$��
#�

	�������

��� ���

�

��� ���

��	�
�
��

��
�

��	�
�
��

��
�

���

���

���� 	�������	�
�
���	�

Fig. 2: Policy Enforcement Architecture

a) Access Control Enforcement: To enforce access con-
trol rules, we use a generic advice of type around(), i.e. method
calls are interrupted and their execution is either skipped or
interrupted if their execution is not authorized by the access
control policy. Whether unauthorized method calls should be
interrupted or skipped is specified in the policy2.

B. Policy Decision Point

The stateful PDP is an application-independent module that
enforces the access control policy and monitors and updates
the states of obligations according to change notifications. The
PDP logically consists of a Policy Information Point (PIP)
where an internal first-order predicate logic representation of
the target application state is maintained, the access-decision
and obligation state-update logic and a policy state. The policy
state includes applicable security rules, e.g. activated obliga-
tions. In our current implementation, the PDP is implemented
using the production rule system drools [18]. Algorithm 1
sketches the operation of the PDP after the reception of a no-
tification from the xPEP: First, the application state is updated
and the operation rules are evaluated. Instance variables are
then updated as specified in state update rules. The policy is
then evaluated and updated accordingly.

Note our policies follow the access control and obligation
models in [17], [19]. Interested readers are referred to these
papers for the formal semantics of policies. Currently, only
access control and obligations are supported. However, it is
straightforward to add support for more advanced features such
as delegation [20] and more advanced conflict detection and
resolution strategies [21].

V. EMPIRICAL ASSESSMENT

We evaluated our implementation by studying policy en-
forcement in accordance with a policy specification for the
ASMS application (122 classes, 797 methods and 10703 line
of code). We also implemented the xPEP in Java/AspectJ [22],

2When method execution is interrupted, a runtime SecurityException is
thrown. Additional code may be needed to deal with these exceptions.

Algorithm 1: PDP Operation

Input : A change notification of type T where T ∈
{instance-creation, attribute-update,
method-execution}

Output: Access Decision and the set of activated,
fulfilled, violated and canceled obligations

begin
(1) Update application state;

updates the application state facts;
(2) Apply operation rules;

identifies and updates the current operation;
(3) Update variables update rules;

update the values of policy state variables;
(4) Evaluate Security Policy;

derives the new policy state;
return the set of newly activated, violated, fulfilled
and canceled obligations and the access control
decision if T=method execution;

end

which consists of a set of generic aspects, and the communi-
cation between the PEP and the PDP and modules to make a
first-order representation of Java objects. Our implementation
has 42 classes, 442 methods and 4485 lines of code. In the
following, we refer to a policy specification as an MJP speci-
fication for a Mapping Java to security Policies specification.

To test our implementation, we have considered the sce-
nario in Table VI: a user having the role of personnel creates
a number of regular users, in addition to a seller, an admin-
istrator and a moderator. The seller creates an auction and
opens it. Then regular users connect to the auction and they are
selected in turn to post a comment. One every five users posts a
comment containing a word included in the auction’s blacklist.
Consequently, the moderator becomes obliged to update the
post. From every three obligations, the moderator fulfills two:
once by entirely deleting the post and another time by deleting
the blacklisted word from the post. The third obligation is
violated. In this case, another obligation is activated for the

372

FPL PU CP OS RS PS CR ASM

SASI � × ◦ × × ◦ × �
JavaMOP � × � × × � ◦ �
Polymer × × ◦ × × � ◦ �
SPoX � × ◦ × × ◦ × �
PoET × × ◦ × × � × �
XACML � � � ◦ × × � ×
MJP � � � � � � � �

×: not supported, �: supported, ◦: partially supported

FPL: Formal Policy Language, PU: Policy Update at Runtime, CP: Contextual Policies, PS: Policy State,
OS: User obligations, RS: Reaction policies, CR: Policy Conflict Management, ASM: Application-Specific Modules

TABLE VII: Comparison with Existing Frameworks

TABLE VI: MJP Specification

operation illustrates

User posts a comment Access allowance
Moderator required to delete the post Oblig. activation
Moderator does not delete the post Oblig. violation
Moderator updates the post Oblig. cancellation
Moderator deletes the post Oblig. fulfillment
Admin is obliged to delete the post Reaction policy
When the number of comments posted
by a user exceeds 50 comments

State Update

The user is forbidden to post comments Access denial

��

���

���

���

���

���

	��

��

������������������������������	��	��
��
��

���������		�

����
�
������
�����
�����������
�	���
��

��
���
����
����
��
���
�������������
�
�������
��� �!�

Fig. 3: Average Access Request Evaluation Time

administrator to delete the post. The post is then deleted by the
administrator. When the number of comments posted by a user
exceeds 50 comments, the user is forbidden to post comments.
The scenario ends when all users exceed their comments limit.

Figure 3 shows the evolution of the average time necessary
to evaluate access with the increase of number of users.
There are several ways to improve the efficiency of policy
management in our framework. For example, the current im-
plementation maintains a large number of (unnecessary) facts
to evaluate the policy. We are currently working on several
optimizations which should largely improve policy evaluation
and update times.

VI. RELATED WORK

Several frameworks have been proposed to enforce security
policies in Java applications. Table VII lists many of these
frameworks and compares them with our approach MJP.

Security policy monitoring and enforcement using Java-
MOP [23] is studied in [8]. JavaMOP enables the declaration
of events in the form of AspectJ pointcuts. A set of properties
can be specified using these events using various logical
formalisms. In [8], handling the validation (violation) of a
property and possible conflicts between handlers and their
resolution are discussed. In our work, mapping policies are
specified in a first-order providing them declarative semantics
and simplifying their interpretation, specification and update.

SPoX [6], [7] is an XML-based formal security policy
specification language. A security state in SPoX is a set of
security-state variables with integer values. A SPoX specifi-
cation defines a security automaton [9] where states of the
automaton are the sets of security-state variables and their
values and its edges are pointcut expressions. With respect
to our work, policy state in SPoX only includes security-
state variables whereas our policy state additionally includes
application-state variables (policy-relevant instance attributes).
Therefore, we are able to specify more contextual policies.

Security Automata Software-Fault Isolation (SFI) Imple-
mentation (SASI) [2] generalizes SFI to security policies
specified as security automata. Two SASI prototypes have been
implemented: one for the output of a GNU gcc C compiler and
another for Java Virtual Machine Language. Two limitations
to policy specification in SASI are highlighted in [2]: (1) the
inability to store typed variables in the enforcement state and
(2) the need to search for code sequences that correspond to
the application-level abstractions in the case of x86 SASI.
In comparison, our approach enables the keeping of both
application and security policy variables. Moreover, we support
obligation policies and can specify new security rules that only
apply when obligations are violated.

XACML [11] defines a declarative attribute-based access
control policy language. XACML supports the definition of
obligations. However, XACML requires the development of
application-specific modules to enforce and monitor obliga-
tions and to evaluate contextual policies. Our approach is more
generic and does not require development of any application-
specific module.

PoET/PSLang [1] is a successor to SASI. A PSLang
specification includes a set of security events, a security state
and security updates. PSLang has a Java-inspired syntax and
is expressive enough to specify the EM policies of [9]. It does
not however support obligation policies necessary to express
usage control requirements [24].

373

Several other works studied the security of Java applica-
tions. For example, [5] uses AOP to weave into applications the
code necessary to enforce rewrite-based access control policies
[25]. In [26], RBAC [27] is realized in Java programs through
the annotation of classes, methods and interfaces. [26] do not
support the runtime modification of the policy nor contextual
policies.

VII. CONCLUSION

In this paper, we have introduced a framework (MJP) to
enable the integration of advanced security policies in Java ap-
plications. The framework enables the generation of a security
architecture in Java applications supporting the specification
of fine-grained contextual security policies. Thus, application
developers have the choice between the specification of coarse-
grained policies (on the level of classes and simple methods
as considered in most frameworks today) or more fine-grained
contextual policies (on the level of class instances and chains of
method calls). Another important advantage of the framework
is that policies can be specified and updated at runtime
without requiring any modification to the target’s application.
In previous work, AOP has been used to directly integrate
security mechanisms inside the target application making their
change at runtime impossible. In our work, AOP is used for the
monitoring of change in the application state. Therefore, the
application developers may focus on the development of the
business logic and then security controls can be later integrated
and can be updated at runtime. The framework also supports
the expression and enforcement of advanced security policies
such as user obligations, history-based policies and reaction
policies providing security officers the expressiveness needed
to specify practical sophisticated policies.

This work can be extended in several ways. For example,
the policy language can be extended to add support for more
advanced usage controls [24]. The study of formal application
analysis is another research direction. We also intend to
incorporate different strategies to handle policy violation [8],
[23] and study optimizations to improve the performance of
MJP. The integration of more advanced conflict detection and
resolution techniques is also envisaged.

REFERENCES

[1] U. Erlingsson and F. Schneider, “IRM Enforcement of Java Stack
Inspection,” IEEE Symposium on Security and Privacy, pp. 246–255,
2000.

[2] U. Erlingsson and F. B. Schneider, “SASI enforcement of security
policies,” NSPW, pp. 87–95, 2000.

[3] J. Ligatti, L. Bauer, and D. Walker, “Enforcing Non-safety Security
Policies with Program Monitors,” ESORICS’05 Proceedings of the 10th
European conference on Research in Computer Security, pp. 355–373,
2005.

[4] L. Bauer, J. Ligatti, and D. Walker, “Composing security policies with
polymer,” ACM SIGPLAN Notices, vol. 40, no. 6, p. 305, Jun. 2005.

[5] A. S. de Oliveira, E. K. Wang, C. Kirchner, and H. Kirchner, “Weaving
rewrite-based access control policies,” FMSE, pp. 71–80, 2007.

[6] K. W. Hamlen and M. Jones, “Aspect-oriented in-lined reference
monitors,” PLAS, p. 11, 2008.

[7] M. Jones and K. W. Hamlen, “Enforcing IRM security policies: Two
case studies,” 2009 IEEE International Conference on Intelligence and
Security Informatics, pp. 214–216, 2009. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5137306

[8] S. Hussein, P. Meredith, and G. Rolu, “Security-policy monitoring and
enforcement with JavaMOP,” PLAS, pp. 1–11, 2012.

[9] F. B. Schneider, “Enforceable security policies,” ACM Transactions on
Information and System Security, vol. 3, no. 1, pp. 30–50, Feb. 2000.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-
m. Loingtier, J. Irwin, and C. Lopes, “Aspect-Oriented Programming,”
ECOOP European Conference on Object-Oriented Programming, no.
June, 1997.

[11] “extensible access control markup language (xacml) version 3.0,” http:
//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf,
2012, retrieved: 07/09/2012.

[12] A. Pretschner, T. Mouelhi, and Y. L. Traon, “Model-based tests for
access control policies,” in ICST, 2008, pp. 338–347.

[13] US Congress, “Health Insurance Portability and Accountability Act of
1996,” pp. 1–169, 1996.

[14] The European Parliment and the Council, “Directive 1995/46/EC of
the european parliment and the council of 24 october 1995 on the
protection of individuals with regard to the processing of personal
data and on the free movement of such data,” Official Journal of the
European Communities, 1995.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

[16] A. Abou El Kalam, S. Benferhat, A. Miège, R. El Baida, F. Cuppens,
C. Saurel, P. Balbiani, Y. Deswarte, and G. Trouessin, “Organization
based access control,” POLICY, vol. 0, p. 120, 2003.

[17] Y. Elrakaiby, F. Cuppens, and N. Cuppens-Boulahia, “Formal
enforcement and management of obligation policies,” Data &
Knowledge Engineering, pp. 1–21, Sep. 2011.

[18] “Drools - the business logic integration platform,” http://www.jboss.org/
drools/drools-expert.html, retrieved: 17/09/2012.

[19] F. Cuppens and N. Cuppens-Boulahia, “Modeling contextual security
policies,” International Journal of Information Security, vol. 7, no. 4,
pp. 285–305, Nov. 2007.

[20] M. Ben-Ghorbel-Talbi, F. Cuppens, N. Cuppens-Boulahia, and
A. Bouhoula, “A delegation model for extended RBAC,” IJIS, vol. 9,
no. 3, pp. 209–236, May 2010.

[21] F. Cuppens, N. Cuppens-Boulahia, and M. B. Ghorbel, “High Level
Conflict Management Strategies in Advanced Access Control Models,”
Electronic Notes in Theoretical Computer Science, vol. 186, pp. 3–26,
Jul. 2007.

[22] R. Laddad, AspectJ in Action: Enterprise AOP with Spring Applications.
Manning Publications Co, 2009.

[23] F. Chen and G. Ro, “Java-MOP: A monitoring oriented programming
environment for Java,” Tools and Algorithms for the Construction and
Analysis of Systems, 2005.

[24] R. Sandhu and J. Park, “The UCON ABC usage control model,” ACM
Transactions on Information and System Security (TISSEC), vol. 7,
no. 1, pp. 128–174, 2004.

[25] D. J. Dougherty, C. Kirchner, H. Kirchner, and A. S. de Oliveira,
“Modular access control via strategic rewriting,” ESORICS, pp.
578–593, 2007.

[26] J. Zarnett, M. Tripunitara, and P. Lam, “Role-based access control
(RBAC) in Java via proxy objects using annotations,” SACMAT, p. 79,
2010.

[27] R. Sandhu, E. Coyne, and H. Feinstein, “Role-Based Access Control
Models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

374

