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A NEW IDENTITY FOR SL(2,C)-CHARACTERS OF THE ONCE

PUNCTURED TORUS GROUP

HENGNAN HU, SER PEOW TAN, AND YING ZHANG

To Professor Sadayoshi Kojima on the occasion of his sixtieth birthday

Abstract. We obtain new variations of the original McShane identity for
those SL(2,C)-representations of the once punctured torus group which satisfy
the Bowditch conditions, and also for those fixed up to conjugacy by an Anosov
mapping class of the torus and satisfying the relative Bowditch conditions.

1. Introduction

For a once punctured torus T equipped with any complete hyperbolic structure
of finite area, Greg McShane in [8] obtained the original McShane identity:

∑

γ

1

1 + el(γ)
=

1

2
, (1)

where the sum is over all simple closed geodesics γ in T , with l(γ) the length of γ.
The identity (1) has since been generalized to hyperbolic surfaces with cusps

(McShane [9]) or smooth geodesic boundary (Mirzakhani [10]) or conic singularities
(Tan-Wong-Zhang [12]), and eventually from a different point of view to closed
surfaces (Luo-Tan [7]), along with other related versions (for example, Rivin [11]).

On the other hand, Brian Bowditch gave in [1] a simple proof of identity (1)
via Markoff triples, and extended it in [3] to type-preserving representations of
the once punctured torus group into SL(2,C) satisfying certain conditions (which
we call the Bowditch conditions). In particular, he showed identity (1) holds for
quasi-Fuchsian representations of the once punctured torus group. S. P. Tan, Y.
L. Wong and Y. Zhang in [14] generalized the McShane-Mirzakhani identity to an
identity for general irreducible representations of the once punctured torus group
into SL(2,C) satisfying the same set of Bowditch conditions.

In this paper we obtain new identities for general irreducible representations of
the once punctured torus group into SL(2,C) satisfying the Bowditch conditions.

It is well known that a complete hyperbolic structure on T gives rise to (the
conjugacy class of) a discrete, faithful representation of π1(T ) into PSL(2,R), the
group of orientation-preserving isometries of the upper half-plane model of the
hyperbolic plane H2. Since π1(T ) is a free group (of rank two), we may lift the
representations into SL(2,R) and simply consider representations of π1(T ) into
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SL(2,R). In general, to study deformations of related hyperbolic 3-manifolds, we
consider the representation set Hom(π1(T ), SL(2,C)).

We say that a representation ρ : π1(T ) → SL(2,C) has peripheral trace τ ∈ C if

tr ρ(aba−1b−1) = τ

where {a, b} is a free basis of π1(T ). It can be shown that τ is independent of
the choice of the free basis, and that ρ is reducible if and only if it has peripheral
trace τ = 2. In the special case where τ = −2, ρ is said to be type-preserving, as
ρ(aba−1b−1) ∈ SL(2,C) is parabolic unless tr ρ(a) = tr ρ(b) = 0.

Any two representations ρ, ρ′ : π1(T ) → SL(2,C) which are conjugate by an
element in SL(2,C) have the same trace values. Conversely, two irreducible repre-
sentations ρ, ρ′ : π1(T ) → SL(2,C) with the same trace values are conjugate by an
element in SL(2,C). In fact, from the trace values of ρ on a triple a, b, ab where
{a, b} is a free basis of π1(T ), W. Goldman [4, page 451] obtained a very simple
representative ρ of its conjugacy class.

Let Ω be the set of isotopy classes of (unoriented) essential (i.e., nontrivial and
not boundary-parallel) simple closed curves in T . Thus an element X ∈ Ω corre-
sponds to the union of two conjugacy classes of a pair of inverse elements in π1(T );
in particular, the trace tr ρ(X) ∈ C is well defined.

An irreducible representation ρ : π1(T ) → SL(2,C) is said to satisfy the Bowditch
conditions if (i) tr ρ(X) 6∈ [−2, 2] ⊂ R for all X ∈ Ω, and (ii) the set {X ∈ Ω :
|tr ρ(X)| ≤ 2} is finite (possibly empty).

As the main theorem of this paper, we have

Theorem 1.1. Let ρ : π1(T ) → SL(2,C) be an irreducible representation and let
µ = τ + 2 where τ ∈ C is the peripheral trace of ρ. If ρ satisfies the Bowditch
conditions then

∑

X∈Ω

hµ(x) =
1

2
, (2)

where the infinite sum converges absolutely, x = tr ρ(X), and the function hµ :
C\{[−2, 2],±√

µ} → C is defined by

hµ(x) =
1

2

(

1− x2 − 2
3µ

x2 − µ

√

1− 4

x2

)

. (3)

Here and throughout the paper, we assume that, the square root function be
taken as

√
: C → {z ∈ C | ℜ(z) ≥ 0}. Note that identity (2) when µ = 0 reduces

to Bowditch’s extension of the original McShane identity (1).
If we consider conjugacy classes of representations π1(T ) → SL(2,C) which are

fixed by an Anosov mapping class θ of T , then the Bowditch conditions are not
satisfied; but we can define the relative Bowditch conditions on Ω/θ, that is, if the
corresponding conditions (i) and (ii) are satisfied by the elements of Ω/θ. As in [2],
we have the following variant of Theorem 1.1.

Theorem 1.2. Let ρ : π1(T ) → SL(2,C) be an irreducible representation and let
µ = τ + 2 where τ ∈ C is the peripheral trace of ρ. If ρ is fixed up to conjugation
by an Anosov mapping class θ of T and it satisfies the Bowditch conditions relative
to the action of θ then

∑

[X]∈Ω/θ

hµ(tr ρ(X)) = 0, (4)
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where the infinite sum converges absolutely, with function hµ defined by (3).

There is an identification of Ω with Q ∪ {1/0} by considering the slopes of Z-
homology classes of simple closed curves in T . Explicitly, given a free basis {a, b}
of π1(T ), if the simple closed curves represented by (the conjugacy classes of) a, b
and ab are assumed to have slopes 0/1, 1/0 and 1/1, then the simple closed curve
represented by ab−1 has slope −1/1, and each essential simple closed curve in T
has a unique slope s/r ∈ Q ∪ {1/0} where r, s are coprime integers.

Furthermore, there is a tri-coloring of Ω coming from the three non-trivial Z2-
homology classes, or equivalently, from considering the identification of Ω with
Q∪{1/0}, and the parity of s/r ∈ Q∪{1/0}, namely, when only r is odd, or when
only s is odd, or when r, s are both odd. Thus

Ω = Ω1 ⊔ Ω2 ⊔ Ω3.

Theorem 1.1 is a special case (with pi =
1
3 ) of the following theorem.

Theorem 1.3. Let ρ : π1(T ) → SL(2,C) be an irreducible representation and let
µ = τ + 2 where τ ∈ C is the peripheral trace of ρ. Choose arbitrary p1, p2, p3 ∈ C

such that p1 + p2 + p3 = 1. If ρ satisfies the Bowditch conditions then
∑

X∈Ω1

hµ,p1
(x) +

∑

X∈Ω2

hµ,p2
(x) +

∑

X∈Ω3

hµ,p3
(x) =

1

2
, (5)

where the three infinite sums converge absolutely, x = trρ(X) and the function
hµ,p : C\{[−2, 2],±√

µ} → C is defined by

hµ,p(x) =
1

2

(

1− x2 − (1 − p)µ

x2 − µ

√

1− 4

x2

)

. (6)

Remark. Most of the results here generalize to an n-variable setting where we
consider the polynomial automorphisms of Cn which preserve the Markoff-Hurwitz
equation, see [6] or [5] for details. We also note here that while the identities in
[14] were geometrically motivated, these are not, hence it would be interesting to
find some geometric interpretations for these new identities.

The rest of the paper is organized as follows. In §2 we describe the combinatorial
setting and formulation introduced by Bowditch in [3] and state a branch version
of Theorem 1.1. In §3 we prove the main theorem, and indicate proofs of the other
results. We also give a second proof of Theorem 1.3, which explains how the result
was originally motivated. In §4 we give two summation identities used in the second
proof of Theorem 1.3.

Acknowledgements. We would like to thank Martin Bridgeman, Dick Canary,
Bill Goldman, François Labourie, Makoto Sakuma and Weiping Zhang for helpful
conversations and comments.

2. Preliminary setting and formulations

In this section we describe the setting and formulation introduced by Bowditch
in [3] (and used in [14]) on the combinatorial structure of the set Ω of isotopy classes
of essential simple closed curves in a once punctured torus T .

The curve complex C (T ) of T is a simplicial complex defined as follows: the set of
vertices (0-simplices) is Ω; there is an edge (1-simplex) with vertex set {X,Y } if and
only if the two simple closed curves representing X and Y have minimal geometric
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intersection number one; and there is a k-simplex with vertex set {X0, X1, · · · , Xk}
if and only if each pair of the vertices is connected by an edge.

The simplicial complex C (T ) is 2-dimensional. Actually, C (T ) has a nice geo-
metric realization in the upper half-plane model of the hyperbolic plane H2 via
the Farey triangulation: the set of vertices is Q ∪ {1/0}, the set of rational slopes
(including 1/0); the edges of C (T ) are realized as hyperbolic lines joining Farey
neighbors; and the 2-simplices are the ideal triangles of the Farey triangulation.

Trivalent tree Σ. The dual graph Σ of C (T ) is a trivalent tree embedded
in the underlying space |C (T )|. Geometrically, Σ can be realized as a trivalent
tree properly embedded in H2: the set of vertices, V (Σ), consists of the geometric
centers of the rational ideal triangles, and the set of edges, E(Σ), consist of geodesic
segments. A complementary region of Σ is the closure of a connected component
of the complement of Σ in H2. The set of complementary regions of Σ in H2 has a
natural bijection with Q ∪ {1/0} which is identified with Ω. We thus identify the
two sets and also use Ω to denote the set of complementary regions of Σ in H2.

For every vertex v ∈ V (Σ), we use the identification v ↔ {X,Y, Z} to indicate
the three complementary regions X,Y, Z ∈ Ω around v, that is, v = X ∩ Y ∩ Z.
For every edge e ∈ E(Σ), we use the notation e ↔ {X,Y ;Z,W} to mean that
e = X ∩ Y and e ∩ Z and e ∩W are endpoints of e; we also use Ω0(e) := {X,Y }.

Directed edges of Σ and circular sets. Denote by ~E(Σ) the set of all directed
edges of Σ. Each edge e ∈ E(Σ) corresponds to a pair of oppositely directed edges

~e,−~e ∈ ~E(Σ). For a directed edge ~e ∈ ~E(Σ), we use the notation ~e ↔ {X,Y ;Z →
W}, or just {X,Y ;→ W} for simplicity, to indicate that e ↔ {X,Y ;Z,W} and
the direction of ~e heads towards W . Thus we have −~e ↔ {X,Y ;W → Z}.

Let Ω+(~e) (resp., Ω−(~e)) be the subset of Ω consisting of those complementary
regions of Σ whose boundaries are completely contained in the subtree of Σ obtained
by removing e from Σ that contains the head (resp., tail) of ~e. Thus we have, for

every ~e ∈ ~E(Σ), Ω = Ω−(~e) ⊔ Ω0(e) ⊔ Ω+(~e).

Given a finite subtree Σ′ of Σ, the circular set C(Σ′) ⊂ ~E(Σ) is defined to be

the set of all ~e ∈ ~E(Σ) such that e ∩ Σ′ consists of only the head endpoint of ~e.

SL(2,C)-characters and Markoff maps. Given a representation ρ : π1(T ) →
SL(2,C), its trace function trρ : π1(T ) → C is called an SL(2,C)-character of the
once punctured torus group. Furthermore, trρ regarded as defined on Ω is called a
µ-Markoff map, where µ = τ + 2 with τ ∈ C the peripheral trace of ρ.

Equivalently, a µ-Markoff map is a function φ : Ω → C satisfying the following
vertex and edge relations (writing x := φ(X), y := φ(Y ), etc.):

(i) for every vertex v ↔ {X,Y, Z}, (x, y, z) satisfy the µ-Markoff equation

x2 + y2 + z2 − xyz = µ; (7)

(ii) for every edge e ↔ {X,Y ;Z,W}, (x, y, z, w) satisfy the edge equation

xy = z + w. (8)

Edge direction induced by a Markoff map. There is a natural direction
on edges of Σ determined by a Markoff map φ as follows: for e ↔ {X,Y ;Z,W},
if |φ(W )| > |φ(Z)|, we choose ~e ↔ {X,Y ;W → Z}; if |φ(W )| < |φ(Z)|, we choose
~e ↔ {X,Y ;Z → W}; if |φ(W )| = |φ(Z)|, then choose the direction arbitrarily.
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Edge value defined by a Markoff map. For a directed edge ~e ↔ {X,Y ;→
Z}, writing x = φ(X), y = φ(Y ), z = φ(Z), we define an edge value φ(~e) by

φ(~e) = Ψ(x, y; z) =
z

xy
− 1

3

(

1

2
− z

xy

)(

µ

x2 − µ
+

µ

y2 − µ

)

. (9)

When the µ-Markoff map φ satisfies the Bowditch conditions, φ(~e) is well defined
since we have x, y, z 6= 0 and (by [14, Lemma 3.10]) x, y, z 6= ±√

µ. By the edge

and vertex relations, we have, for any directed edge ~e ∈ ~E(Σ),

φ(~e) + φ(−~e) = 1, (10)

and, for any vertex v ∈ V (Σ),

φ(~e1) + φ(~e2) + φ(~e3) = 1, (11)

where ~e1, ~e2, ~e3 are the three directed edges heading towards v. Combining relations
(10) and (11), we have, for any circular set C = C(Σ′),

∑

~e∈C

φ(~e) = 1. (12)

There is also the following branch version of the main theorem.

Theorem 2.1. Under the same assumptions of Theorem 1.1 and with the same

notation, we have, for every directed edge ~e ∈ ~E(Σ),
∑

X∈Ω0(e)

hµ(x) +
∑

X∈Ω−(~e)

2hµ(x) = φ(~e), (13)

where the infinite sum converges absolutely, with edge value φ(~e) defined by (9).

3. Proofs of the theorems

Proof of Theorem 1.1. For the µ-Markoff map φ = trρ : Ω → C, we need to show

∑

X∈Ω

hµ(φ(X)) =
1

2
, (14)

where the infinite sum converges absolutely. By arguments of Bowditch in [3], it is
verified in [14] that the infinite sum

∑

X∈Ω |φ(X)|−t converges for all t > 0. Since

|hµ(x)| = O(|x|−2) as |x| → +∞, the infinite sum in (14) converges absolutely. It
remains to show that the infinite sum is equal to 1

2 .
By a similar calculation as in [14], there is a constant K = K(φ) > 0 so that

|Ψ(x, y; z)− hµ(x)| ≤ K|y|−2

for all vertices v ↔ {X,Y, Z} sufficiently far away from a fixed vertex v0 and z is
given by

z =
xy

2

(

1−
√

1− 4

(

1

x2
+

1

y2
− µ

x2y2

)

)

. (15)

By arguments in [3] (as verified in [14] for general µ ∈ C), there is a finite subtree
Σ0 of Σ such that for edges not in Σ0, their φ-induced directions are all directed
towards Σ0. Let Cn be the set of directed edges at a distance n way from Σ0. Thus
Cn is a circular set, and we have

∑

~e∈Cn
φ(~e) = 1.
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Let Ωn denote the subset of Ω such that X ∈ Ωn if and only if X ∈ Ω0(e) for
some ~e ∈ Cn. Then Ωn ⊂ Ωn+1 and Ω =

⋃∞
n=0 Ωn. It suffices to show that

lim
n→∞

∑

X∈Ωn

hµ(x) =
1

2
.

In fact, for sufficiently large n and each ~e ∈ Cn+1, if ~e ↔ {X,Y ;→ Z} with
X,Z ∈ Ωn and Y ∈ Ωn+1\Ωn, then z is given by (15). Thus we have

∣

∣

∣

∣

∣

∑

X∈Ωn

2hµ(x) − 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

X∈Ωn

2hµ(x)−
∑

~e∈Cn+1

φ(~e)

∣

∣

∣

∣

∣

∣

≤
∑

~e∈Cn+1

|hµ(x) − φ(~e)|

(where ~e ↔ (X,Y ;→ Z) with X,Z ∈ Ωn, Y ∈ Ωn+1 \ Ωn)

≤
∑

Y ∈Ωn+1\Ωn

constant · |y|−2 → 0

as n → ∞. This proves Theorem 1.1. �

First proof of Theorem 1.3. We use similar notation as that used in the proof of
Theorem 1.1. The convergence of the infinite sums in (5) follows as before, and we

need to prove the equality in (5). The idea is to modify the value φ(~e) for ~e ∈ ~E(Σ)

to a weighted one, φp1,p2,p3
(~e), according to the induced tri-coloring on ~E(Σ) so

that they still satisfy the relations (10) and (11).
For any vertex v ↔ {X,Y, Z} of Σ, where X ∈ Ω1, Y ∈ Ω2, Z ∈ Ω3, we denote

~e1 ↔ {Y, Z;→ X}, ~e2 ↔ {Z,X ;→ Y }, ~e3 ↔ {X,Y ;→ Z} and define weighted
edge values φp1,p2,p3

(~ei), i = 1, 2, 3 by

φp1,p2,p3
(~e1) =

x

yz
−
(

1

2
− x

yz

)(

p2
µ

y2 − µ
+ p3

µ

z2 − µ

)

, (16)

φp1,p2,p3
(~e2) =

y

zx
−
(

1

2
− y

zx

)(

p3
µ

z2 − µ
+ p1

µ

x2 − µ

)

, (17)

φp1,p2,p3
(~e3) =

z

xy
−
(

1

2
− z

xy

)(

p1
µ

x2 − µ
+ p2

µ

y2 − µ

)

. (18)

It can be checked that

φp1,p2,p3
(~e1) + φp1,p2,p3

(~e2) + φp1,p2,p3
(~e3) = 1,

and for every directed edge ~e ∈ ~E(Σ),

φp1,p2,p3
(~e) + φp1,p2,p3

(−~e) = 1.

The rest of the proof follows similar lines as those in the proof of Theorem 1.1. �

Proof of Theorem 2.1. The proof is essentially the same as that of Theorem 1.1. �

Proof of Theorem 1.2. We may deduce Theorem 1.2 from Theorem 2.1 with exactly
the same arguments as those used in [2, §3] or [14, §5]. �
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Second proof of Theorem 1.3. With similar notation as that used in the first proof
of Theorem 1.3, let us write, for a directed edge ~e ↔ {X,Y ;→ Z},

φ0(~e) =
z

xy
. (19)

For each integer n ≥ 0, let Σn ⊂ Σ be the subtree whose vertex set consists
of vertices at a distance not exceeding n from a fixed vertex v0 of Σ, and let

Cn = C(Σn) ⊂ ~E(Σ) be the circular set of directed edges determined by the finite
subtree Σn. From the vertex and edge relations for the µ-Markoff map φ we obtain

∑

~e∈Cn

φ0(~e)−
∑

{X,Y,Z}↔v∈V (Σn)

µ

xyz
= 1 (20)

for all n ≥ 0. Passing to limits as n → ∞, we get

lim
n→∞

∑

~e∈Cn

φ0(~e)−
∑

{X,Y,Z}↔v∈V (Σ)

µ

xyz
= 1. (21)

By arguments of Bowditch in [3], we have

lim
n→∞

∑

~e∈Cn

φ0(~e) =
∑

X∈Ω

h0(x). (22)

On the other hand, for each v ∈ V (Σ) with v ↔ {X1, X2, X3}, where Xi ∈ Ωi,
i = 1, 2, 3, we may distribute µ

x1x2x3
to the three regions X1, X2, X3 according to

the weights p1, p2, p3 respectively. Furthermore, for any X ∈ Ω let VX ⊂ V (Σ)
denote the set of vertices adjacent to X . Then we have

∑

{X,Y,Z}↔v∈V (Σ)

µ

xyz
=

3
∑

i=1

pi
∑

X∈Ωi

∑

{X,Y,Z}↔v∈VX

µ

xyz
. (23)

If a region X ∈ Ω corresponds to a ∈ π1(T ), then all the neighboring regions of X
are exactly those regions Yn ∈ Ω, n ∈ Z corresponding to anb ∈ π1(T ) where {a, b}
is free basis of π1(T ). Thus the values yn = φ(Yn), n ∈ Z are given by the formulas
yn = Aλn +Bλ−n for some λ,A,B ∈ C where λ+λ−1 = x, |λ| > 1. By the vertex
relation, we have

AB =
x2 − µ

x2 − 4
. (24)

Solving for λ gives λ = x
2

(

1 +
√

1− 4
x2

)

, λ−1 = x
2

(

1−
√

1− 4
x2

)

, and

λ− λ−1 = x

√

1− 4

x2
. (25)

By identity (29) in Proposition 4.1, we have, for a fixed X ∈ Ω,

∑

{X,Y,Z}↔v∈VX

µ

xyz
=

µ

x2 − µ

√

1− 4

x2
. (26)

It follows from (23) that

∑

X∈Ω

h0(x)−
3
∑

i=1

∑

X∈Ωi

piµ

x2 − µ

√

1− 4

x2
= 1, (27)

which can be rewritten as (5). This proves Theorem 1.3. �
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Remark. The theorems in this paper also hold if we relax the Bowditch conditions
by allowing a finite number of X ∈ Ω with trρ(X) = ±2, that is, if we replace the
Bowditch condition (i) by (i′) trρ(X) 6∈ (−2, 2) ⊂ R for all X ∈ Ω. The verification
is essentially the same as what was done in [13] for the results therein.

4. Appendix: Two summation identities

In this appendix we prove two identities, (28) and (29) below, concerning sum-
mations of certain sequences of complex numbers.

Proposition 4.1. Given λ,A,B ∈ C with |λ| > 1 and A,B 6= 0, let

yn = Aλn +Bλ−n

for n ∈ Z. Then

+∞
∑

n=0

1

ynyn+1
=

1

A(A+B)(λ − λ−1)
, (28)

+∞
∑

n=−∞

1

ynyn+1
=

1

AB(λ− λ−1)
. (29)

Proof. We first prove (28). Indeed,

+∞
∑

n=0

1

ynyn+1
=

+∞
∑

n=0

λ2n+1

(Aλ2n+1 +Bλ)(Aλ2n+1 +Bλ−1)

=
1

A(λ− λ−1)

+∞
∑

n=0

(

λ

Aλ2n+1 +Bλ
− λ−1

Aλ2n+1 +Bλ−1

)

=
1

A(λ− λ−1)

+∞
∑

n=0

(

1

Aλ2n +B
− 1

Aλ2n+2 +B

)

=
1

A(A+B)(λ − λ−1)
.

To prove (29), we have

+∞
∑

n=−∞

1

ynyn+1
=

+∞
∑

n=0

1

ynyn+1
+

−1
∑

n=−∞

1

ynyn+1

=

+∞
∑

n=0

1

ynyn+1
+

+∞
∑

m=0

1

(Bλm +Aλ−m)(Bλm+1 +Aλ−m−1)

=
1

A(A+B)(λ − λ−1)
+

1

B(A+B)(λ − λ−1)

=
1

AB(λ− λ−1)
.

This finishes the proof of Proposition 4.1. �
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