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Abstract

The aim of the present paper is to establish the multidimensional counterpart

of the fourth moment criterion for homogeneous sums in independent leptokurtic

and mesokurtic random variables (that is, having positive and zero fourth cumu-

lant, respectively), recently established in [22] in both the classical and in the free

setting. As a consequence, the transfer principle for the Central limit Theorem

between Wiener and Wigner chaos can be extended to a multidimensional transfer

principle between vectors of homogeneous sums in independent commutative ran-

dom variables with zero third moment and with non-negative fourth cumulant, and

homogeneous sums in freely independent non-commutative random variables with

non-negative fourth cumulant.

Subject classification: 60F17, 60F05, 46L54

Keywords: Fourth Moment Phenomenon; Free Probability; Homogeneous Sums; Mul-

tidimensional Limit Theorems; Wiener Chaos; Wigner Chaos

1 Introduction

The fourth moment phenomenon is a collection of probabilistic results, allowing one to

deduce central limit theorems (in both the classical and free probability settings) for a

sequence {Xn : n ≥ 1} of non-linear functionals of a random field, merely by controlling

the sequences {EX2
n = n ≥ 1} and {EX4

n : n ≥ 1} of the first two even moments. First

discovered in [26] in the context of non-linear transformations of Gaussian fields, such a

phenomenon is gaining an increasing interest in the mathematical community, due to its

wide range of applications. The reader is referred to the monograph [20] for an intro-

duction to the topic. See [10, 11, 27] for recent surveys, as well as [1] for a constantly

updated account of the mathematical literature on this topic.

The present paper focuses on several multidimensional consequences of the fourth

moment phenomenon, both in the classical and in the free setting. In particular, our

goal is to apply the results from [22] in order to generalize the transfer principle for the

Central Limit Theorem between Wiener andWigner chaoses, established in [25]. Transfer

principles of this type can be potentially very useful for establishing free counterparts to
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well-understood results in the classical settings . For instance, a remarkable example is

given by the free version of the Breuer-Major Theorem pointed out in [15].

The main results of the present note complete the findings of [22], where the authors

have described a new large class of random variables to which the fourth moment phe-

nomenon applies. This class contains in particular homogeneous sums in independent

copies of a leptokurtic or mesokurtic random variable X (that is, a random variable

with positive or zero fourth cumulant respectively, in both the probability settings). The

proofs of these generalized Fourth Moment Theorems involve some combinatorial argu-

ments, since they rely on new formulae for the fourth moment of homogeneous sums.

In order to work out the proof, an additional assumption in the classical case has been

needed, resulting in the requirement E[X3] = 0. The same assumptions have allowed

the authors to establish that homogeneous sums in leptokurtic or mesokurtic random

variables verify also an invariance principle for central convergence, customarily referred

to as universality phenomenon, in both the probability settings.

Further results dealing with universality and Fourth Moment Theorem in the free

setting include [8, 9, 14, 21, 32], and for the commutative framework [6, 23, 24, 30, 31].

Further, the analysis of the fourth moment phenomenon for infinitely divisible laws has

been addressed in [3] while, more recently, limit theorems encompassing the fourth mo-

ment and the universality phenomena have been investigated also in the setting of the

random graphs colouring problem [7].

As already mentioned, the proofs we present do not require any additional techniques

with respect to those developed in [22], of which this paper is meant to be a sequel.

The main results that will be proved in the present work are Theorem 3.3 and its free

version Theorem 3.5, in which we prove that joint and componentwise central convergence

are equivalent for vectors of homogeneous sums in independent copies of leptokurtic or

mesokurtic variables, both in the commutative and in the non-commutative framework.

The combination of these results lead to the formulation of the general transfer principle

for (vectors of) such random variables, achieved via Theorem 3.7.

2 Preliminaries

Before stating our main results, some preliminary notations and definitions need to be

fixed. For any unexplained concept or result pertaining to free probability theory, the

reader is referred to the fundamental references [18, 33].

For every n ∈ N, set [n] := {1, . . . , n}. Let X be a random variable defined on a fixed

probability space (Ω,F ,P). Unless otherwise specified, it will be always assumed that X

satisfies the following assumptions, that will be referred to as Assumption (1):

(i) X is centered and has unit variance;

(ii) E[X3] = 0;

(iii) there exists ǫ > 0 such that E[|X |4+ǫ] <∞.
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Given a sequence X = {Xi}i≥1 of independent copies of X (i.i.d. for short), we will

consider random variables having the form of multilinear homogeneous polynomials of

degree d ≥ 2:

QX(f) =

n
∑

i1,...,id=1

f(i1, . . . , id)Xi1 · · ·Xid , (1)

where the mapping f : [n]d → R is an admissible kernel, in the sense of the following

definition.

Definition 2.1. For a given degree d ≥ 2 and some integer n ≥ 1, a function f : [n]d → R

is said to be an admissible kernel if the following properties are satisfied:

(i) f vanishes on diagonals, that is, f(i1, . . . , id) = 0 whenever ij = ik for some k 6= j;

(ii) f is symmetric, namely f(i1, . . . , id) = f(iσ(1), . . . , iσ(d)) for any permutation σ of

{1, . . . , d} and any (i1, . . . , id) ∈ [n]d;

(iii) f satisfies the normalization:

d!

n
∑

i1,...,id=1

f(i1, . . . , id)
2 = 1.

Since f is an admissible kernel and X satisfies Assumption (1), the homogenous sum

QX(f) verifies E[QX(f)] = 0 and E[QX(f)2] = 1.

Remark 2.1. Note that the symmetry and the normalization assumptions on f are intro-

duced for mere convenience: indeed, given a function f : [n]d → R that is vanishing on

diagonals, it is always possible to generate an admissible kernel f̃ by first symmetrizing

f and then by properly renormalizing it.

As already discussed in the Introduction, the goal of the present paper is to complete

the findings of [22], in particular providing an extension of the results therein to the

multidimensional setting. In order to achieve our goals, we shall need the following

definitions.

Definition 2.2. Let X be a random variable verifying Assumption (1), X = {Xi}i≥1

be a sequence of independent copies of X .

(a) We say that X satisfies the Fourth Moment Theorem at the order d ≥ 2 (for

normal approximations of homogeneous sums) if, for every sequence fn : [n]d → R

of admissible kernels, the following statements are equivalent for n→ ∞:

(i) QX(fn)
Law−−→ N (0, 1).

(ii) E[QX(fn)
4] → E[N4] = 3, where N ∼ N (0, 1).

(b) X is said to be universal at the order d (for normal approximations of homogeneous

sums) if, for any sequence fn : [n]d → R of admissible kernels, QX(fn)
Law−−→ N (0, 1)

implies, as n→ ∞,

τn := max
i=1,...,n

Infi(fn) −→ 0,
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where Infi(fn) :=
n
∑

i2,...,id=1

fn(i, i2, . . . , id)
2 is the i-th influence function of fn.

As shown originally in [26] and [23], if X is normally distributed then it verifies both

Points (a) and (b) in Definition 2.2. In this case, the corresponding homogeneous sums

QX(fn) are said to be elements of the dth (Gaussian) Wiener chaos associated with X

(see e.g. [28] for an introduction to these concepts). We observe that in [23] it is proved

that the Gaussian Wiener chaos is also universal with respect to Gamma approximations.

A crucial role in the proof of the universal behavior of the Gaussian Wiener chaos has

been played by the findings in [17], where the authors have measured the proximity in

law between homogeneous sums in terms of influence functions. The next statement

records the estimates from [17] that are needed for our discussion.

Theorem 2.1. Let X = {Xi}i≥1 and Y = {Yi}i≥1 be sequences of independent centered

random variables on a fixed probability space, with unit variance and uniformly bounded

moments of every order. Then, for d ≥ 1 and for every sequence of admissible kernels

fn : [n]d → R,

E[QX(fn)
m]− E[QY (fn)

m] = O
(√
τn
)

∀m ∈ N,

where τn := max
i=1,...,n

Infi(fn).

Remark 2.2. Note that the issue of universality is relevant only for homogeneous sums of

degree d ≥ 2, since no invariance principle holds for homogeneous sums of degree d = 1

(see [23]). For degrees d ≥ 2 and in view of Theorem 2.1, one could alternatively define

X to be universal at the order d if, for any sequence fn : [n]d → R of admissible kernels,

QX(fn)
Law−−→ N (0, 1) implies QZ(fn)

Law−−→ N (0, 1) for every sequence Z of independent

copies of a centered random variable having unit variance.

We now turn to the non-commutative setting. Consider a fixed non commutative

probability space (A, ϕ), where A is a unital ∗-algebra, and ϕ is a unital, faithful and

positive trace. Let Y be a random variable on it that is centered and that has unit

variance, that is, ϕ(Y ) = 0 and ϕ(Y 2) = 1. In this case, it will be said for short that Y

satisfies Assumption (2).

If Y = {Yi}i≥1 is a sequence of freely independent copies of Y , the free counterpart

to random variables of the form (1) are self-adjoint elements of the type:

QY(f) =

n
∑

i1,...,id=1

f(i1, . . . , id)Yi1 · · ·Yid , (2)

where f is an admissible kernel.

From Assumption (2) and the properties of f , it follows that ϕ(QY(f)) = 0 and

d!ϕ(QY(f)2) = 1.

Remark 2.3. In the free setting, the natural choice for the coefficient of a homogeneous

sum would be a mirror symmetric function, namely a kernel f : [n]d → C such that
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f(i1, i2, . . . , id) = f(id, . . . , i2, i1) for every i1, . . . , id ∈ [n], with z̄ denoting the complex

conjugate of z. This assumption is the weakest possible to ensure that the element QY(f)

is self-adjoint. However, the forthcoming discussion will heavily rely on the universality

property of the Wigner Semicircle law that has been so far established only for homo-

geneous sums with symmetric real-valued coefficients: indeed, both in [8] and in [14],

counterexamples to the universality for mirror symmetric kernels have been provided.

For several reasons, the semicircular distribution is considered as the non-commutative

analogue of the Gaussian distribution: for instance, it is the limit law for the free ver-

sion of the Central Limit Theorem, and joint moments of a semicircular system satisfy

a Wick-type formula [18]. A very interesting fact for our purposes is that the semicircu-

lar law satisfies both the Fourth Moment Theorem and the universality property as to

semicircular approximations (see [14]), thus justifying the following definitions.

Definition 2.3. Let Y satisfy Assumption (2) and let S be a standard semicircular

random variable, for short S ∼ S(0, 1). Let Y = {Yi}i≥1 and S = {Si}i≥1 be sequences

of freely independent copies of Y and S respectively. For a fixed d ≥ 2 and for every

n ≥ 1, let fn : [n]d → R be an admissible kernel.

(a) We say that Y satisfies the free Fourth Moment Theorem of order d (for central

approximations) if, for any sequence fn : [n]d → R of admissible kernels, the

following statements are equivalent as n→ ∞:

(i) d!2ϕ(QY(fn)
4) → ϕ(S4) = 2, S ∼ S(0, 1);

(ii)
√
d!QY(fn)

Law−−→ S(0, 1).

(b) We say that X is free universal at the order d (for central approximations) if, for

any sequence fn : [n]d → R of admissible kernels,
√
d!QY(fn)

Law−−→ S(0, 1) implies,

as n→ ∞,

τn = max
i=1,...,n

Infi(fn) → 0.

The findings established with [32, Theorem 3.2] provide a general multidimensional

version of Theorem 2.1 in the free probability setting. Here the invariance principle will

be formulated via Theorem 2.2 for estimating the proximity in law between vectors of

homogeneous sums.

Theorem 2.2. Let X = {Xi}i≥1 and Y = {Yj}j≥1 be sequences of freely independent

random variables, centered and with unit variance, freely independent between each other.

Assume further that X and Y are composed of random variables with uniformly bounded

moments, that is, for every integer r ≥ 1,

sup
i≥1

ϕ(|Xi|r) <∞ (resp. sup
i≥1

ϕ(|Yi|r) <∞).

For every integer k ≥ 1, for every choice of ms = (ms,1, . . . ,ms,p) ∈ N
p for s = 1, . . . , k,

if Qn(Y ) = (QY (f
(1)
n ), . . . , QY (f

(p)
n )) denotes a vector of homogeneous sums with ad-
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missible kernel f
(j)
n : [n]d → R for every j = 1, . . . , p, then:

ϕ
(

Qn(X)m1Qn(X)m2 · · ·Qn(X)mk
)

− ϕ
(

Qn(Y )m1Qn(Y )m2 · · ·Qn(Y )mk
)

= O
(

max
j=1,...,p

(τ (j)
n )

1

2

)

, (3)

where τ
(j)
n = max

i=1,...,n
Infi(f

(j)
n ) and where for m = (m1, . . . ,mp) ∈ Np we have used the

standard multi-index notation Qn(Y )m := QY (f
(1)
n )m1QY (f

(2)
n )m2 · · ·QY (f

(p)
n )mp .

Remark 2.4. It is worth to remark that Theorem 2.2 has been originally formulated for

more general objects than homogeneous sums, and that in the above simplified formula-

tion for homogeneous sums, it encompasses [14, Theorem 1.3] corresponding to p = 1.

By virtue of Theorem 2.2, the definition of free universal law can be equivalently

reformulated by saying that X is freely universal (at the order d) if, for any sequence

fn : [n]d → R of admissible kernels,
√
d!QY(fn)

Law−−→ S(0, 1) implies
√
d!QZ(fn)

Law−−→
S(0, 1) for every sequence Z = {Zi}i≥1 of freely independent and identically distributed

random variables verifying Assumption (2).

Theorems 2.3 and 2.4 below provide the initial impetus for our investtigations; their

proofs can be found in [22]. To fix the notation, χ4(X) = E[X4] − 3 and κ4(Y ) =

ϕ(Y 4)−2 will denote, respectively, the fourth cumulant of a random variableX satisfying

Assumption (1) and the fourth free cumulant of a non-commutative random variable Y

verifying Assumption (2).

Theorem 2.3. Fix d ≥ 2 and let X be a random variable satisfying Assumption (1). If

E[X4] ≥ 3 (or, equivalently, χ4(X) ≥ 0), then X satisfies the Fourth Moment Theorem

and its law is universal at the order d for normal approximations of homogeneous sums,

in the sense of Definition 2.2.

Theorem 2.4. Fix d ≥ 2 and consider a random variable Y verifying Assumption (2)

and such that ϕ(Y 4) ≥ 2 (or, equivalenty, κ4(Y ) ≥ 0). Then, Y satisfies the free Fourth

Moment Theorem and it is free universal at the order d for semicircular approximations

of free homogeneous sums.

Remark 2.5 (Gamma and Free Poisson approximations). In [22], it was shown that, when

d is an even integer, any random variable satisfying (1) and χ4(X) ≥ 0, is universal and

satisfies the Fourth Moment Theorem with respect to the Gamma approximation as well

(see also [19]). Similarly, in the free setting, every non-commutative random variable

satisfying Assumption (2) and with κ4(X) ≥ 0 is both universal and satisfies the Fourth

Moment Theorem with respect to the free Poisson approximation, that can be considered

as the free counterpart to the Gamma law (see also [21]). Unfortunately, so far there

is no result proving the equivalence between componentwise and joint convergence for

Poisson limits, and hence our strategy cannot deal with Poisson approximations.
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2.1 Some examples

As to the classical probability setting, Theorem 2.3 supplies us with several examples of

laws that satisfy the Fourth Moment Theorem and are universal for central convergence.

Here are some examples.

1. Let X1, X2 be independent random variables satisfying Assumption (1) and such

that χ4(X1), χ4(X2) ≥ 0. Then Z = X1+X2 satisfies in turn Assumption (1) and

χ4(Z) ≥ 0 (due to the additivity property of cumulants), and hence satisfies the

Fourth Moment Theorem. As to multiplicative convolution, W := X1X2 satisfies

Assumption (1) as well. By virtue of the moment-cumulant formula, χ4(W ) =

E[X4
1 ]E[X

4
2 ]− 3 and hence, according to Theorem 2.3, for W to satisfy the Fourth

Moment Theorem it is sufficient that that at least one of the Xi’s satisfies χ4(Xi) ≥
0.

2. Every random variable X , centered and with unit variance, whose law is infinitely

divisible with respect to additive convolution, satisfies χ4(X) = E[X4]− 3 ≥ 0 (see

for instance [4, Proposition A1]). Hence, if X is infinitely divisible and satisfies

Assumption (1), the Fourth Moment Theorem for homogeneous sumsQX(fn) holds

at any order d ≥ 2. The same necessary condition on the kurtosis has been exploited

to study the non-classical infinite divisibility of power semicircular distributions in

[5].

3. For k ≥ 1, let Hk(x) denote the k-th Hermite polynomial and let N ∼ N (0, 1).

Then,

E[Hk(N)4] = |P⋆
2 (k

⊗4)| ≥ 3

where P⋆
2 (k

⊗4) denotes the set of pairing partitions σ of [4k] such that every block

of σ intersect each block of

k⊗4 := {{1, . . . , k}, {k+ 1, . . . , 2k}, . . . , {2k + 1, . . . , 3k}, {3k+ 1, . . . , 4k}}

in at most one element. Since E[Hk(N)3] = 0 if k is odd, for X = Hk(N), Theorem

2.3 applies: the techniques so far established do not allow us to infer that the

assumption on the third moment can be dropped.

As to the non-commutative setting, Theorem 2.4 establishes that the Fourth Moment

Theorem (along with the universality phenomenon) applies, for instance, in the following

cases:

1. Every random variable Y satisfying Assumption (2) and whose law is infinitely

divisible with respect to the additive free convolution, satisfies κ4(Y ) = ϕ(Y 4)−2 ≥
0 (see for instance [4, Proposition A1]). Hence, every freely infinitely divisible law

satisfies the Fourth Moment Theorem (and the universality) as to semicircular and

free Poisson approximations of homogeneous sums, at any order d ≥ 2.

2. For k ≥ 1, if Uk(x) denotes the k-th Chebyshev polynomial (of the second kind)

and S ∼ S(0, 1), then:

ϕ[Uk(S)
4] = |NC⋆

2(k
⊗4)| ≥ 2 ,
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where NC⋆
2(k

⊗4) denotes the set of the non-crossing pairings σ of the set [4k], such

that in each block of σ, there is at most one element of every block of the interval

partition k⊗4. Note that the universality of the law of Uk(S) for semicircular (and

free Poisson) approximations of homogeneous sums can be also established via the

approach developed in [32].

3. Let T be a Tetilla-distributed random variable, namely T Law
= 1√

2
(S1S2 + S2S1),

where S1, S2 are freely independent standard semicircular random variables. Since

κ4(T ) = 1
2 > 0, T satisfies both the Fourth Moment Theorem and the universality

property for semicircular and free Poisson approximations of homogeneous sums,

at any order d ≥ 2 (see [13]).

4. Let X ∼ Gq(0, 1), with Gq(0, 1) denoting the q-Gaussian distribution – that we

assume to be defined on an adequate non-commutative probability space (Aq, ϕq).

Then, κ4(X) = ϕq(X
4)− 2 = q, and hence, if q ∈ [0, 1], X satisfies the Fourth Mo-

ment Theorem and the law Gq(0, 1) is universal at any order d ≥ 2 for semicircular

and free Poisson approximations of free homogeneous sums. See [12, Theorem 3.1

and Proposition 3.2] for the general Fourth Moment Theorem for integrals with

respect to a q-Brownian motion of symmetric kernels, for non-negative values of

q. Equivalently, the fourth moment and the universality phenomena for X can be

alternatively deduced from the fact that, for positive values of q, the q-Gaussian

distribution is also freely infinitely divisible [2].

3 Main results

3.1 Multidimensional Central Limit Theorem in the classical set-

ting

The next statement corresponds to [23, Theorem 7.1], where the authors have provided

an explicit error bound for the distance in law between a vector of the type

(QX(f (1)
n ), . . . , QX(f (m)

n ))

and its Wiener-chaos counterpart (QN (f
(1)
n ), . . . , QN (f

(m)
n )). For the sake of complete-

ness, it is worth to underline that a first attempt of extending Theorem 2.1 to the

multidimensional case has been carried out in [16, Theorem 4.1], in the case one of the

sequences lives on a discrete probability space.

Theorem 3.1. Let m, d ≥ 1. Let X = {Xi}i≥1 be a sequence of centered indepen-

dent random variables, with unit variance, whose third moments are uniformly bounded

(namely, such that there exists β > 0 such that sup
i≥1

E[|Xi|3] < β). For j = 1, . . . ,m,

let f
(j)
n : [n]d → R be an admissible kernel according to Definition 2.1. If N = {Ni}i≥1

denotes a sequence of i.i.d. standard Gaussian random variables, for every thrice differen-

tiable function ψ : Rm → R, with ‖ψ′′′‖∞ <∞, there exists a constant C = C(β,m, d, ψ)

such that:
∣

∣E[ψ(QX(f (1)
n ), . . . , QX(f (m)

n ))]−E[ψ(QN (f (1)
n ), . . . , QN (f (m)

n ))]
∣

∣ ≤ C

√

max
j=1,...,m

τn(f
(j)
n ).

8



Remark 3.1. We stress that, due to our normalization assumption on the kernels f
(j)
n ,

√

max
j=1,...,m

τn(f
(j)
n ) ≤ 1.

The main result of the present subsection is a multidimensional version of Theo-

rem 2.3, stated via Theorem 3.3: the proof we will provide use the findings of [29,

Proposition 2] (stated in Theorem 3.2), where it is shown that for vectors of the type

(QN (f
(1)
n ), . . . , QN (f

(m)
n )), joint convergence towards the multidimensional normal dis-

tribution is equivalent to componentwise central convergence, as summarized in the next

statement. Note that the original statement does not concern exclusively Gaussian homo-

geneous sums, but deals with vectors of multiple Wiener integrals of symmetric functions

in full generality.

Theorem 3.2. For d ≥ 2 and m ≥ 1, assume that C = (Ci,j)i,j=1,...,m is a real valued,

positive definite, symmetric matrix. For every j = 1, . . . ,m, let QX(f
(j)
n ) be a sequence

of homogeneous sums of degree d, with f
(j)
n : [n]d → R symmetric kernel, vanishing on

diagonals, such that:

lim
n→∞

E[QX(f (j)
n )QX(f (i)

n )] = Ci,j ∀ i, j = 1, . . . ,m.

Then, the following statements are equivalent as n→ ∞:

(i) QN (f
(j)
n )

Law−→ N (0, Cj,j) for every j = 1, . . . ,m;

(ii) (QN (f
(1)
n ), . . . , QN (f

(m)
n ))

Law−→ N (0, C), with N (0, C) denoting them-dimensional

Gaussian distribution with covariance matrix given by C.

Combining Theorem 2.3, Theorem 3.1 and Theorem 3.2, it is possible to conclude that

the equivalence between joint and componentwise convergence for normal approximations

of random vectors (QX(f
(1)
n ), . . . , QX(f

(m)
n )) always holds true under the assumptions

E[X3] = 0 and E[X4] ≥ 3, as made precise in the following statement.

Theorem 3.3. Fix m ≥ 1 and d ≥ 2. Let X = {Xi}i≥1 be a sequence of independent

copies of a random variable X verifying Assumption (1) and E[X4] ≥ 3. For every

j = 1, . . . ,m, let QX(f
(j)
n ) be a sequence of homogeneous sums of degree d, with f

(j)
n :

[n]d → R admissible kernel, such that:

lim
n→∞

E[QX(f (j)
n )QX(f (i)

n )] = Ci,j ∀ i, j = 1, . . . ,m ,

where C = (Ci,j)i,j=1,...,m is a real valued, positive definite symmetric matrix. The

following statements are equivalent as n→ ∞:

(i) QX(f
(j)
n )

Law−→ N (0, Cj,j) for every j = 1, . . . ,m;

(ii) (QX(f
(1)
n ), . . . , QX(f

(m)
n ))

Law−→ N (0, C), with N (0, C) denoting them-dimensional

Gaussian distribution with covariance matrix given by C.

Proof. It is sufficient to prove that (i) ⇒ (ii), since the reverse implication is obvious.

Assume that (i) occurs. Under the assumption E[X4] ≥ 3 and by virtue of Theorem
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2.3, X satisfies the Fourth Moment Theorem and its law is universal at the order d for

normal approximations of homogeneous sums of degree d, implying, in particular, that:

QN (f (j)
n )

Law−→ N (0, Cj,j) for every j = 1, . . . ,m,

for a sequence N of independent standard Gaussian random variables. Besides, for every

j = 1, . . . ,m, τ
(j)
n = max

i=1,...,n
Infi(f

(j)
n ) −→ 0 as n→ ∞. Since

E[QX(f (j)
n )QX(f (i)

n )] = E[QN (f (j)
n )QN (f (i)

n )] ∀i, j = 1, . . . ,m,

by virtue of Theorem 3.1 the random vectors (QN (f
(1)
n ), . . . , QN (f

(m)
n )) and

(QX(f
(1)
n ), . . . , QX(f

(m)
n )) are asymptotically close in distribution. Finally, the con-

clusion follows by applying Theorem 3.2.

3.2 Multidimensional CLT in the free setting

The subsequent statements summarize [25, Theorem 1.3] and [14, Theorem 1.3], where

the free counterpart to [29, Proposition 2] and to Theorem 2.1 was achieved respectively.

Even if the original statement deals with vectors of Wigner stochastic integrals in full

generality, the statement here is recalled only for semicircular homogeneous sums.

Theorem 3.4. For d ≥ 2 and m ≥ 1, let f
(j)
n : [n]d → R be a mirror symmetric function

for every j = 1, . . . ,m. If S = {Si}i≥1 denotes a sequence of freely independent standard

semicircular random variables, let C = (Ci,j)i,j=1,...,m be a real-valued, positive definite

symmetric matrix, such that for i, j = 1, . . . ,m,

lim
n→∞

ϕ
(

QS(f
(i)
n )QS(f

(j)
n )

)

= Ci,j .

If (s1, . . . , sm) denotes a semicircular system with covariance determined by C, the fol-

lowing statements are equivalent as n→ ∞:

(i) QS(f
(j)
n )

Law−→ sj;

(ii) (QS(f
(1)
n ), . . . , QS(f

(m)
n ))

Law−→ (s1, . . . , sm).

For d ≥ 2, the combination between Theorem 2.2, Theorem 2.4 and Theorem 3.4

allows us to prove that Theorem 3.4 itself can be extended to all random variables with

non-negative free kurtosis, providing therefore the free counterpart to Theorem 3.3.

Theorem 3.5. Fix m ≥ 1 and d ≥ 2. Let Y = {Yi}i≥1 be a sequence of freely

independent copies of a random variable Y verifying Assumption (1) and such that

κ4(Y ) = ϕ(Y 4) − 2 ≥ 0. For every j = 1, . . . ,m, let QY (f
(j)
n ) be a sequence of ho-

mogeneous sums of degree d, with f
(j)
n : [n]d → R symmetric, vanishing on diagonals

kernels such that:

lim
n→∞

ϕ
(

QY (f (j)
n )QY (f (i)

n )
)

= Ci,j ∀i, j = 1, . . . ,m.

If C = (Ci,j)i,j=1,...,m is a real-valued, positive definite symmetric matrix, and (s1, . . . , sm)

denotes a semicircular system with covariance determined by C, the following statements

are equivalent as n→ ∞:
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(i) QY (f
(j)
n )

Law−→ sj for every j = 1, . . . ,m;

(ii) (QY (f
(1)
n ), . . . , QY (f

(m)
n ))

Law−→ (s1, . . . , sm).

Proof. It is sufficient to prove that (i) ⇒ (ii), since the reverse implication is obvious.

Assume that (i) occurs. Under the assumption ϕ(Y 4) ≥ 2 and by virtue of Theo-

rem 2.4, Y satisfies the Fourth Moment Theorem and its law is universal for semicircu-

lar approximations of homogeneous sums, at the given order d. In particular one has

QS(f
(j)
n )

Law−→ sj for every j = 1, . . . ,m; besides, τ
(j)
n = max

i=1,...,n
Infi(f

(j)
n ) −→ 0 for every

j = 1, . . . ,m. Finally, since

ϕ
(

QY (f (j)
n )QY (f (i)

n )
)

= ϕ
(

QS(f
(j)
n )QS(f

(i)
n )

)

∀i, j = 1, . . . ,m ,

by virtue of Theorem 2.2 it follows that the vectors (QS(f
(1)
n ), . . . , QS(f

(m)
n )) and

(QY (f
(1)
n ), . . . , QY (f

(m)
n )) are asymptotically close in distribution: hence the conclu-

sion follows by Theorem 3.4.

The last statement that we need to recall is [25, Theorem 1.6], where the authors

established the following transfer principle for the multidimensional CLT betweenWiener

and Wigner chaos, here formulated only for homogeneous sums.

Theorem 3.6. Let d ≥ 1 and m ≥ 1 be fixed integers, and let C = (Ci,j)i,j=1,...,m be a

real-valued, positive definite symmetric matrix. For every j = 1, . . . ,m, let f
(j)
n : [n]d →

R be an admissible kernel, and assume that, for every i, j = 1, . . . ,m:

d!ϕ(QS(f
(i)
n )QS(f

(j)
n )) → Ci,j ,

E[QN (f (i)
n )QN (f (j)

n )] → Ci,j ,

where S denotes a sequence of freely independent standard semicircular random variables,

and N denotes a sequence of independent standard Gaussian random variables. Then,

if (s1, . . . , sm) denotes a semicircular system, with covariance given by C, and N (0, C)

a denotes the multivariate normal distribution of covariance C, the following statements

are equivalent as n→ ∞:

(i) (
√
d!QS(f

(1)
n ), . . . ,

√
d!QS(f

(m)
n ))

Law→ (s1, . . . , sm)

(ii) (QN (f
(1)
n ), . . . , QN (f

(m)
n ))

Law→ N (0, C).

Thanks to Theorems 3.3 and 3.5, Theorem 3.6 can be completely generalized to a

transfer principle for central convergence, between homogeneous sums QX(fn), with X

satisfying Assumption (1) and with non-negative kurtosis, over a classical probability

space, and free homogeneous sums
√
d!QY(fn), with Y satisfying Assumption (2) and

with non-negative free kurtosis, over a free probability space (A, ϕ). Note that, since we

are analysing the occurrence of the fourth moment phenomenon along with the univer-

sality property, we need to set d ≥ 2.
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Theorem 3.7. Set d ≥ 2. Let X be a random variable (in the classical sense), satisfying

Assumption (1) and such that E[X4] ≥ 3, and Y be a free random variable satisfying

Assumption (2) and ϕ(Y 4) ≥ 2. Let m ≥ 1, and for every j = 1, . . . ,m, let f
(j)
n : [n]d →

R be a symmetric, vanishing on diagonal kernel, such that:

lim
n→∞

d!ϕ
(

QY(f (i)
n )QY(f (j)

n )
)

=
1

d!
lim
n→∞

E[QX(f (i)
n )QX(f (j)

n )] = Ci,j , ∀i, j = 1, . . . ,m,

with C = (Ci,j)i,j=1,...,m real-valued, positive definite symmetric matrix. Then the fol-

lowing conditions are equivalent as n→ ∞:

(i)
(

QX(f
(1)
n ), . . . , QX(f

(m)
n )

) Law−→ N (0, C);

(ii)
(√
d!QY(f

(1)
n ), . . . ,

√
d!QY(f

(m)
n )

)

Law−→ (s1, . . . , sm),

with (s1, . . . , sm) denoting a semicircular system with covariance determined by C.

Proof. Assume first that (i) holds: then, for every j = 1, . . . ,m, QX(f
(j)
n )

Law−→ N (0, Cj,j),

implying, by virtue of Theorem 2.3, that QN(f
(j)
n )

Law−→ N (0, Cj,j). By virtue of Theorem

3.2, then, we have the joint convergence (QN(f
(1)
n ), . . . , QN(f

(m)
n ))

Law−→ N (0, C), which

is, in turn, equivalent to the joint convergence
(√
d!QS(f

(1)
n ), . . . ,

√
d!QS(f

(m)
n )

) Law−→
(s1, . . . , sm), by virtue of [25, Theorem 1.6]. Finally, Theorem 3.4 implies that√
d!QY(f

(j)
n )

Law−→ sj and the conclusion follows by Theorem 3.5.

To prove the reverse implication, start with Theorem 2.4 and consider Theorem 3.3

instead of Theorems 2.3 and 3.5, respectively.

Remark 3.2. Due to the assumption E[X3] = 0 in the statement of Theorem 2.3, this

setting does not fit the Poisson homogeneous chaos. In view of the Transfer principle

provided with Theorem 3.7, this failure is consistent with the lack of a transfer principle,

for central convergence, between classical and free Poisson chaos, as highlighted with a

counterexample in [9].
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Probability and Statistics 46(1), 45-58, 2010.

[25] I. Nourdin, G. Peccati, and R. Speicher. Multidimensional semicircular limits on the

free Wigner Chaos. Ascona Proceedings 2011, Progress in Probability 67, 211-221,

2013.

[26] D. Nualart and G. Peccati. Central limit theorems for sequences of multiple stochas-

tic integrals. The Annals of Probability 33(1), 177-193, 2005.

[27] G. Peccati. G. peccati (2014). quantitative clts on a gaussian space: a survey of

recent developments. ESAIM: PROCEEDINGS, 44:61–78, 2014.

[28] G. Peccati and M. S. Taqqu. Wiener Chaos: Moments, Cumulants and Diagrams.

Springer-Verlag, 2010.

[29] G. Peccati and C. Tudor. Gaussian limits for vector-valued multiple stochastic
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