
Vulnerabilities of Government Websites in a Developing
Country – The Case of Burkina Faso

Tegawendé F. Bissyandé1,2, Jonathan Ouoba3, Daouda Ahmat4, Fréderic Ouédraogo5,
Cedric Béré2, Moustapha Bikienga5, Abdoulaye Sere6,

Mesmin Dandjinou6, and Oumarou Sié2

1 SnT, University of Luxembourg, Luxembourg
tegawende.bissyande@uni.lu

2 Université de Ouagadougou, Burkina Faso
{cedric.bere,oumarou.sie}@univ-ouaga.bf
3 VTT Technical Research Center, Finland

jonathan.ouoba@vtt.fi
4 Université Virtuelle du Tchad, Tchad

daoudique@gmail.com
5 Université de Koudougou, Burkina Faso

{frederic.ouedraogo,moustapha.bikienga}@univ-ouaga.bf
6 Université Polytechnique de Bobo Dioulasso, Burkina Faso

{abdoulaye.sere,mesmin.dandjinou}@univ-ouaga.bf

Abstract. Slowly, but consistently, the digital gap between developing and devel-
oped countries is being closed. Everyday, there are initiatives towards relying on
ICT to simplify the interaction between citizens and their governments in developing
countries. E-government is thus becoming a reality: in Burkina Faso, all government
bodies are taking part in this movement with web portals dedicated to serving the
public. Unfortunately, in this rush to promote government actions within this trend
of digitization, little regards is given to the security of such web sites. In many cases,
government highly critical web sites are simply produced in a product line fashion
using Content Management Systems which the webmasters do not quite master.
We discuss in this study our findings on empirically assessing the security of govern-
ment websites in Burkina Faso. By systematically scanning these websites for simple
and well-known vulnerabilities, we were able to discover issues that deserved urgent
attention. As an example, we were able to crawl from temporary backup files in a
government web site all information (hostname, login and password in clear) to read
and write directly in the database and for impersonating the administrator of the
website. We also found that around 50% of the government websites are built on top
of platforms suffering from 14 publicly known vulnerabilities, and thus can be readily
attacked by any hacker.

Key words: e-government, websites, security, vulnerabilities, CMS, developing countries

1 Introduction
E-government is now a pillar of ICT4D initiatives to improve the life of citizens in devel-

oping countries. Generally, it is realized through a web portal (website) where citizens can
readily collect information and interact with government officials in an effort for simplifying
administrative processes. In their simplest form, government websites are designed to be a
reliable data source for all citizens. These websites are thus sensitive sources of information
and, as such, they should be resilient to most tampering attempts. Unfortunately, recent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31224226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Bissyandé et al.

high-profile security mishaps across the world, and in particular in developing countries,
show that the design and implementation of e-government portals leave security holes that
are exploited by attackers.

The primary cause of the precarious situation in which most e-government portals are
today, especially in the context of developing countries, is the lack of attention that develop-
ers give to the assessment of their installs. A secondary reason is the fact that website design
is often outsourced and thus the resulting web site is built in a way that government agents,
which are not IT professionals, can easily update text in the web. To that end, Content
Management Systems (CMS) are heavily used.

From WordPress to Joomla! and beyond, businesses (such as newspapers or e-commerce
companies) and institutions (such as schools or city halls) depend on CMS to maintain online
content. Thus, these third-party platforms are everywhere, and like all software, they come
with security concerns. Not surprisingly, the popularity of CMS has been an opportunity for
malicious hackers, since CMS provide a much larger attack surface. Before the proliferation
of CMS, hackers had to focus on finding a vulnerability in a single identified target (e.g.,
a bank) and then attacking it to compromise its services (e.g., Denial of Service attacks)
or to steal data. Today, however, with the vast opportunities presented by CMS, hackers
take the path of least resistance (i.e., no time and computing power is wasted on trying to
find a vulnerability in a single strong target). Indeed,“use search engines to identify common
security vulnerabilities in a CMS platform as a means to accomplish server takeover and data
theft”[1]. Unfortunately, as we will show later in this paper, there are literally thousands of
security vulnerabilities in CMS platforms. Once such weaknesses are identified, it is again
easy to rely on a search engine to fingerprint websites that are built on top of CMS that are
affected by the known vulnerability. Doing so, malicious hackers can exploit the vulnerability
in multiple CMS in many businesses and institutions, and they can do so very fast.

Nevertheless, businesses and institutions can still defend themselves with some simple
tactics. Unfortunately, they are often not aware of the vulnerabilities of such platforms. Our
work is part of this effort to sensitize government officials and web developers in developing
countries of the perils of overtrusting CMS. The contributions of this paper are as follows:

– We describe and survey the security vulnerabilities that are found in today’s popular CMS
platforms.

– We investigate government websites in Burkina Faso to study those that are built on top
of CMS platforms.

– We develop s2e-gov, a framework for security testing of e-government portals. It exploits
a database of known web vulnerabilities and other heuristics to assess the security of web
sites.

– We provide guidelines for readily securing e-government websites against common secu-
rity attacks. In particular we call for the teaching/training of web security basics to the
younger generations as we previously did for bootstrapping software engineering teaching
in developing countries [2].

The remainder of this paper is organized as follows. Section 2 motivates our work in
the context of a developing country, namely Burkina Faso. Section 3 describes web vulner-
abilities and presents an overview of their presence within popular CMS. We discuss the
implementation of s2e-gov, our e-government security scanning tool, in Section 4. Section 5
then details the lessons that we have learned while experimenting with s2e-gov. We discuss
related work in Section 6 before concluding in Section 7.



Vulnerabilities of Government Websites in a Developing Country 3

2 Motivation
During April 2015, a large number of government websites in Burkina Faso were hacked to

deliver a single page with a message from a radical group. Major newspapers in the country
made headline stories out of these incidents. Observers and readers of online content were
led to believe that these attacks were retaliation due to the engagement of the country in
the war against terrorism. Online forums have seen discussions on how websites in Burkina
Faso were poorly developed with little consideration for security. At that time, our opinion
was simply forged by the fact that many other websites in the country, and beyond, had
fallen. Given the relatively limited strategic importance of Burkina Faso for hackers, as
a researcher we immediately set to understand how such attacks could have been easily,
and potentially blindly, performed without specific targets in mind. We then collected the
dynamically generated web pages of a number of web sites to study the HTML code. A
first review showed that these web pages contained default information on how they were
built. In particular, they contained meta-information in HTML headers describing the CMS
platform on top of which the web sites are built.

CMS Use in Government Websites in Burkina Faso
To evaluate the penetration of CMS usage in government websites we identify the top

government bodies (ministries and departments) as well as institutions (research centers,
universities, etc.) and scan their webpages. Our collected dataset includes 42 websites.

Similarly to CMS detectors existing on the web, we compiled a database of fingerprints
of CMS versions using hash values of some reference files (e.g., configuration, License and
Readme files). While scanning websites from our list, we search for such files and directories
in default paths. When they exist, we deduce that the website has been built via a specific
CMS. Using the hash values of the reference files we can further identify the CMS version.
Table 1 depicts the distribution of CMS usage in government websites. For each CMS version
used we refer to the National Vulnerability Database (NVD) hosted by the US Government
National Institute of Standards and Technologies (NIST) to determine the number of known
vulnerability exposures (CVE) that have been reported for this CMS version.

This first investigation clearly shows that Government websites in Burkina Faso are
largely built on top of vulnerable CMS versions. A large proportion of websites have been
built with Joomla! 1.5 which was released in January 2008 and which is no longer supported
since September 2012: this means that even if vulnerabilities are found today in this ver-
sion, no Joomla! developer will officially work on releasing a patch for it. Despite the 14
vulnerabilities known for this Joomla! version, relevant government websites have not yet
been updated as of June 2015. Yet, the content of the websites are still up to date, implying
that they are still important tools of communication for the government.

CMS Version Nb sites Nb vulnerabilities CMS Release Date End of Life

Joomla! 1.5 19 14 22 Jan 2008 Sept 2012
Wordpress 3.5.1 1 13 24 Jan 2013 -
Drupal - 1 (135) - -
Microsoft Sharepoint 14.0.0 1 (35) - -
SPIP 3.0.17 1 0 August 2014 -
OpenCMS - 1 (14) - -

static / in-house PHP - 12 - - -
Unreachable Hosts - 6 - - -

Table 1. Distribution of CMS usage for Government Websites in Burkina Faso



4 Bissyandé et al.

3 Vulnerabilities in CMS
Software vulnerabilities are program defects that provide the opportunity to malicious

users to attack a system or application. In the literature, they are often referred to as security
bugs [3] or software weaknesses. In this article, we use the terminology of the CVE1 system
to define vulnerabilities: “An information security “vulnerability” is a mistake in software
that can be directly used by a hacker to gain access to a system or network”2.

Common security breaches due to software vulnerabilities include sensitive information
leakage, modification, and destruction. Attacks are successful exploitations of vulnerabilities.
We refer to the CVE for our vulnerability counts: it is a system that provides a reference for
all publicly known security vulnerabilities. This system is funded by the US government and
is managed by the National Institute of Standard and Technology (NIST). To easily share
data related to vulnerabilities, each identified and accepted vulnerability receives a unique
identifier. Based on this identifier one can retrieve information about the vulnerability,
including its description, the product concerned, the version of the product, the date of
vulnerability record creation and some comments. In this paper, we use the CVE system
as a dictionary for the CMS vulnerabilities that we study. In the same lines, we use the
term exposure or exploitable to describe a software vulnerability that was advertised to the
public and for which it exists ways to take advantage of it.

There are different types of vulnerabilities that can be found in web applications, in-
cluding CMS platforms. We describe those vulnerabilities and provide statistics on their
appearance in popular CMS platforms.

File Inclusion is a type of vulnerability which allows an attacker to include a file, usually
through a script, on the web server. This often occurs due to the use of user-supplied input
without proper validation.

Cross Site Request Forgery is a type of vulnerability that makes a malicious Web site,
email, blog, instant message, or program cause a users Web browser to perform an unwanted
action on a trusted site for which the user is currently authenticated. Attacks based on
this vulnerability can result in an unauthorized transfer of funds, changing a password, or
purchasing an item in the user’s context.

Gain Privileges also known as Privilege Escalation, is a vulnerability that allows attackers
to gain elevated access to resources that are normally protected from an application or user.
This results in them being able to perform unauthorized actions via a vulnerable application.

Bypassing is a vulnerability type where authentication schemes can be bypassed by sim-
ply skipping the login page and directly calling an internal page that is supposed to be
accessed only after authentication has been performed. Similarly, one can bypass authen-
tication measures by tampering with requests and tricking applications into thinking that
we’re already authenticated. Bypassing can be accomplished either by modifying a given
URL parameter or by manipulating the form or by counterfeiting sessions.

Directory Traversal (also known as path traversal, directory climbing and backtracking)
is a vulnerability where insufficient security validation/sanitisation of user-supplied input
file names can be exploited so that characters representing ”traverse to parent directory”
are passed through to the file APIs.

Code Execution refers to a vulnerability through which an attacker is able to execute
any commands of his choice on a target machine or in a target process.

Cross Site Scripting (XSS) attacks where malicious scripts are injected into otherwise
benign and trusted web sites. They occur when an attacker uses a web application to send

1 Common Vulnerability Exposures
2 https://cve.mitre.org/about/terminology.html



Vulnerabilities of Government Websites in a Developing Country 5

malicious code, generally in the form of a browser side script, to a different end user. XSS
vulnerabilities occur anywhere a web application uses input from a user within the output
it generates without validating or encoding it.

SQL Injection is a code injection technique in which malicious SQL statements are
inserted into an entry field for execution (e.g. to dump the database contents to the attacker).
SQL injection attacks exploit vulnerabilities where user input is either incorrectly filtered
for string literal escape characters embedded in SQL statements or user input is not strongly
typed and unexpectedly executed.

Denial of Service (DoS) attacks are focused on making a resource (e.g., web site or
server) unavailable for the purpose it was designed. Denial-of-service attacks significantly
degrade the service quality experienced by legitimate users by introducing large response
delays, excessive losses, and service interruptions.

Fig. 1. Distribution of Vulnerbaility Types in popular CMS – Data from NIST as of June 13, 2015

Vulnerability statistics depicted in Fig. 1 show that many CMS suffer from numer-
ous vulnerabilities. Code Execution, SQL Injection and XSS vulnerabilities are the most
widespread. Joomla! is the CMS with the most known vulnerabilities.

4 s2e-gov: Security Scans for e-Government
In this section we propose a framework for security testing of websites. In s2e-gov

we automate the process of identifying security concerns, whether known vulnerabilities or
misconfigurations, that targeted e-government websites may contain. Fig. 2 illustrates the
inputs of outputs of s2e-gov. We detail the key aspects of its implementation in this section.

4.1 Default configuration and Directory listing
The first feature implemented in s2e-gov is about directory listing: after verification of

the HTML code extracted from the index page, we proceed to check default configuration
files and directories in popular CMS. Because a CMS often includes configuration files
where credentials are stored it is important that such files are not readily accessible for
reading. CMS developers hide such information in PHP files which cannot be read by client
browsers. However, when editing those files with editors such as Vim, Nano, Notepad or
Emacs, temporary backup files are often automatically created. If these are not deleted, all
configuration information are left and become accessible in plain text format.



6 Bissyandé et al.

Fig. 2. Schematization of s2e-gov process for security testing of e-government websites

s2e-gov thus systematically tries to detect unprotected configuration files which are
available on the website. These files usually contain clear text credentials to the login page
of the website, or credentials for accessing the backend databases of CMS platforms.

4.2 Common Security Guards
The second feature implemented in s2e-gov is the verification of common security proto-

cols in websites. For example, transaction data between user web browsers and government
websites must be moved securely across the internet without any body being able to eaves-
drop or tamper with the data. This security is commonly implemented through encryption
offered by the Secure Socket Layer (SSL) to support HTTPS connections. Website admin-
istrators must therefore make available a certificate (with their public key) to allow users
browsers to encrypt their requests.

Similarly, the X-Frame-Options HTTP header is commonly known as a good means
to protect websites from Clickjacking attacks which involve fooling users into clicking on
seemingly harmless buttons or links3. The vulnerability comes from the possibility to place
the targeted web page (e.g., the Adobe Flash settings panel, a Facebook like button or a
shopping cart) inside an Iframe and overlay it with a completely different webpage. Such an
overlay might then entice users to click on certain buttons or links, leading to Clickjacking,
double-click jacking, like-jacking, cursor-jacking attacks. It is possible however to prevent
such attacks by simply parameterizing the X-Frame-Options:

* X-Frame-Options: DENY: “wont allow the website to be framed by anyone”
* X-Frame-Options: SAMEORIGIN: “No one can frame except for sites from same origin”
* X-Frame-Options: ALLOW-FROM %uri%: “Only this one URI can frame. No one else”

s2e-gov checks for such common security guards in the websites and ensures that they
properly set.

4.3 Known Attacks
Although the NVD database shows that the core of all CMS contained at some point

some vulnerabilties, security bulletins recurrently point out more security holes in plugins.
s2e-gov thus implements a plugin detection for popular CMS to collect the list of plugins
added to the CMS core. Once this list is known, s2e-gov checks whether they contain known
vulnerabilities.
3 http://jeremiahgrossman.blogspot.de/2008/10/clickjacking-web-pages-can-see-and-hear.html



Vulnerabilities of Government Websites in a Developing Country 7

Plugin Detection in CMS – Vulnerabilities in CMS are mostly found in extensions code
such as plugins, rather than the CMS core code. We first build a list of plugins available
on the Internet for the different plugins supported by our tool s2e-gov. Then, for each
CMS install, s2e-gov identifies the included plugins by scanning the web directory: for each
plugin, s2e-gov attempts to find out whether there exist some known vulnerabilities to
report. To this end, we rely on the Exploit database.

Database of Exploits – the Exploit Database4 is an established archive of attacks that
exploited CVE compliant vulnerabilities in various software. We rely on this database to
search for vulnerabilities in plugins that have been successfully exploited, either in testing
scenario or in harmful hacks.

WordPress TimThumb Exploitation – Website themes in CMS come as add-ons that extend
the core layout changes. Often, themes contain variables that refer to dynamic elements
such as images. In the popular Wordpress CMS, it has been reported that themes often
come with insecure PHP files which are used for caching and or resizing images. The recent
“TimThumb” exploitation refers to a project which essentially caches even remote files
locally, without doing the necessary proper sanitization: timthumb.php only checked whether
the target file is actually an image or not. This PHP file is used in many themes, with different
names.

The Timthumb exploitation is realized simply by tricking TimThumb into believing that
a remotely stored file, which may contain malicious PHP for example, is an actual image.
Attacks found this trick very simple to perform and many attacks based on the TimThumb
exploit were recorded in forums5.

Joomla Content Editor Bots – JCE is popular component that can be found enabled in most
Joomla! sites as a fancy content editor. Unfortunately in its development course, the JCE
had once a well known security hole that has since been fixed in Joomla! versions higher than
1.5.x series. This security hole allows anyone to upload arbitrary files to a server. One can
easily find a working exploit on the Internet for such a vulnerability. A typical exploitation
scenario consists in 3 steps where the attacker scans Joomla! installs looking for vulnerable
JCE, then exploits the bug in the JCE image manager to upload a PHP file with an image
extension (e.g., .gif) to the images/stories directory. Finally, the hacker can simply rely on
a JSON comand to change the file extension to .php. At this point, the attacker has a
backdoor to the website and do whatever it wants with the site. Usually, attackers use this
strategy to build their botnets.

4.4 E-Government requirements
More than any other web site, e-Government portals are required to offer reliable services

that make the information available to those who need it in a trustable setting. To realize
this e-Government portals must setup security policies and enforce security practices during
the design, development and production of their services.

Policy – While it is importance to take steps to be secure, it is even better to be sure that
one are secure. Security policies are documents that outline the long-term strategy in an
organisation to ensure that, when it is respected, information and infrastructure is secured.
For example, policy indicates the acceptable use for users and the guidelines for reacting to
a web site compromise.

4 https://www.exploit-db.com
5 https://www.exploit-db.com/wordpress-timthumb-exploitation/



8 Bissyandé et al.

Practice – Security practices, which play a key role for ensure e-Government security, are
checklist for actions and advice on how to keep systems secure. Most prominent examples
for security practices in e-Government include:

– Authenticate all accounts and make sure that the passwords are difficult to guess. Prefer-
ably use One-Time-Password to ensure that no masquerade attack can be performed even
if an attacker uses a sniffer to collect passwords.

– Check for resource and sofware integrity regularly by maintaining a list of their MD5
checksums

– Check logs regularly to audit data and early detect anomalies. Possibly, install firewalls
to drop unsollicited packets.

– Always update to the latest software available from the vendor with recent upgrades and
patches

Finally, our experience in assessing government websites has shown that their design
and implementation require: (1) some degree of obfuscation (e.g., which CMS is used) to
complicate the work of attackers; (2) some level of resilience to DoS attacks to ensure
availability; (3) a tight control on resource access (e.g., no dynamic loading) to preserve
integrity; and (4) a certification/authentication scheme via a Public Key Infrastructure to
guarantee confidentiality and integrity in information exchange.

5 Security Issues in Burkina Faso Government Websites
Our experiments with s2e-gov on the government websites have highlighted a substantial

number of security holes that make it easy for any hacker, even with limited skills, to take
over the administration of the web sites.

5.1 Vulnerability highlights
– 23 out of 42 (i.e., 54%) of government websites are built on top of vulnerable CMS

platforms
– 4 (i.e., 12%) websites had accessible temp files with login credentials written in clear
– No government website were SSL compliant leading to insecure connections
– 19 (i.e., 45%) websites were vulnerable to JCE attacks
– In 5 cases, we found that the database servers were directly accessible (from the internet)

5.2 Lessons Learned
Overall, in developing countries, more than anywhere else, there is a need to strengthen

security training for government technicians. We now enumerate the lessons learned from
these experiments before providing general advice for e-Government in developing countries.

Harden Websites – The first lesson learned from our study is the need for web maintainers
to harden their installs. In particular, trivial steps can be taken to avoid a government web
site to be randomnly found attackable. Concretely, a CMS should never be run in its default
configuration for a government website. Maintainers should rename directories and tune the
settings. For example, by default, Drupal is the only CMS that will lockout user accounts
after a certain number of failed attempts. This means that unless a specific security plugin
is installed, for other popular CMS such as Joomla! or Wordpress, hackers are free to brute
force their login forms.

Always update Core CMS – The second lesson learned is on the need to update to newer
versions of CMS, since CMS developers often try to patch vulnerabilities regularly.



Vulnerabilities of Government Websites in a Developing Country 9

Monitor website usage / baseline against abnormal usage – Most attacks, in particularly
DoS attacks, can be stopped while they are being performed if their is a monitoring systems
that raises alarm when an abnormal behaviour is detected.

Consider adding a firewall to virtually patch vulnerabilities internally – A firewall is
a requirement in a government system to filter packets and enforce the accepted usage
behaviour.

Separation of concerns: database servers should not be accessible from outside the network
domain – Finally, we have found out that in many cases, by obtaining information on the
database hosts we were able to directly attack it. It is very easy to address such issues by
disallowing requests coming outside the government network domain.

Edition and customization artefacts, typically backup files – By simply scanning web
directories for configuration files backed up during edition, a hacker can collect credentials
for taking over the administration of a website. It is therefore important to clean web
directory regularly during customization.

Taming Security holes This study and others somehow demonstrate that the security
threat landscape is large. However, our findings also suggest that will simple tactics e-
government portals can defend themselves. The essential of the defense system lies in aware-
ness. In particular, it is important in developing countries that web maintainers understand
that by raising the bar on protecting their websites, those will be safe from the attacks of
today’s industrialsed hacker who is only looking for the weakest web sites.

The second important means to tame security holes is to carefully monitor web services.
Indeed, it is important to regularly review server logs to have real-time alert when an abnor-
mal behaviour of the web service is detected so that maintainers can promptly investigate
them.

Finally, e-government maintainers should always assume that any third-party code, in-
cluding the CMS their website is based on, has numerous security vulnerabilities (we have
shown it based on NVD data). To address such threats, it is necessary to deploy a security
solution like a firewall for virtually patching vulnerabilities and mitigating new attack risks
when they arise.

5.3 Discussion & Future Work
In this study all government websites were considered as equally important with regards

to security needs. It is possible that some websites appear to be more critical as they allow
real interactions through forms and official reports. Others however might have been setup
to display information only. In future work we plan to investigate the critical resource in
each website to evaluate the potential cost of attack.

Similarly, we plan to investigate in the future the reasons why such vulnerabilities remain
unpatched. Typically, we will correlate the number of vulnerabilities with the IT budget of
each department.

Finally, in continuity with our previous work [4, 5] on identifying safety holes in operating
systems, we will invest in the study of popular web programming languages [6] to better
understand how vulnerabilities are distributed across them.

6 Related Work
ICT4D research can no longer focus only on getting millions of people out of poverty [7].

Researchers must take into account the security issues that threaten an extended use of
ICT. In particular the extended use of open source software comes with the responsibility



10 Bissyandé et al.

of understanding that malicious developers have access to the source code, and thus can
discover the exploitable vulnerabilities.

Vulnerabilities of E-Government websites across the world have been a concern for years.
In 2007, Moen et al. [8] have investigated such websites in 212 countries and found that 81.6%
were vulnerable to XSS and SQL injection. Yet, such simple and well-known web application
vulnerabilities can be avoided with well-known techniques. Today, in developed countries,
much effort has been put into protecting government web sites. Our study, in particular in
the case of Burkina Faso, shows that developing countries are still behind.

Although we have focused on technical aspects, including firewalls and website hardening,
to provide the appropriate levels of security, previous work has shown that the human factor
is also of high importance. A 2011 study by Bowen et al. have shown how the human factor
influences cybersecurity policies and how that work could be used to train government
employees to improve the security posture of government departments and agencies.

The literature contains a large body of related work on vulnerabilities. Wang et al. have
proposed a mathematical model to calculate the severity and risk of a vulnerability. Their
model is time dependent, taking into account exploitability, remediation level, and report
confidence attributes [9]. Paleari et al. have focused their investigation on race vulnerabilities
for web applications [10]. There have also been a number of research works on the challenges
for mitigating program security vulnerabilities [11, ?]. Finally, researchers have focused on
proposing practical approaches to detect vulnerabilities in web applications. In this context,
Ciampa et al. have focused on SQL injections [12].

7 Conclusion
In this paper we have investigated the security of government websites in a developing

country, namely Burkina Faso. We have discussed the development of a E-government secu-
rity testing framework, s2e-gov, which uncovered numerous vulnerabilities in government
websites. In particular, we show how extensive and default configuration of CMS platforms
contribute largely to making E-government websites vulnerable.

References
1. Barry Shteiman. How your cms could be breeding security vulnerabili-

ties, 2013. http://www.itproportal.com/2013/10/08/how-your-cms-could-be\

-breeding-security-vulnerabilities/.
2. Tegawendé F. Bissyandé, Jonathan Ouoba, Daouda Ahmat, Arthur D. Sawadogo, and Zakaria

Sawadogo. Bootstrapping Software Engineering Training in Developing Countries - Return on
Experience at the University of Ouagadougou. In AFRICOMM, Kampala, Uganda, 2014.

3. Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. Bug
characteristics in open source software. Empirical Software Engineering, 19(6):1665–1705, 2014.

4. Tegawendé F. Bissyandé, Laurent Réveillère, Julia L Lawall, and Gilles Muller. Diagnosys:
automatic generation of a debugging interface to the linux kernel. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineerinh, ASE’2012.

5. Tegawendé F. Bissyandé, Laurent Réveillère, Julia L Lawall, and Gilles Muller. Ahead of time
static analysis for automatic generation of debugging interfaces to the linux kernel. Automated
Software Engineering, pages 1–39, 2014.

6. Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Laurent Réveillere.
Popularity, interoperability, and impact of programming languages in 100,000 open source
projects. In Proceedings of the 37th Annual International Computer Software & Applications
Conference, COMPSAC’2013, pages 1–10, 2013.



Vulnerabilities of Government Websites in a Developing Country 11

7. Tegawendé F Bissyandé, Daouda Ahmat, Jonathan Ouoba, Gertjan Van Stam, Jacques Klein,
and Yves Le Traon. Sustainable ict4d in africa: Where do we go from here? In AFRICOMM,
pages 95–103, Blantyre, Malawi, 2013.

8. Vebjorn Moen, Andre N. Klingsheim, Kent Inge Fagerland Simonsen, and Kjell Jorgen Hole.
Vulnerabilities in e-governments. Int. J. Electron. Secur. Digit. Forensic, 1(1):89–100, 2007.

9. Ju An Wang, Fengwei Zhang, and Min Xia. Temporal metrics for software vulnerabilities.
In Proceedings of the 4th Annual Workshop on Cyber Security and Information Intelligence
Research: Developing Strategies to Meet the Cyber Security and Information Intelligence Chal-
lenges Ahead, CSIIRW ’08, pages 44:1–44:3, New York, NY, USA, 2008. ACM.

10. Roberto Paleari, Davide Marrone, Danilo Bruschi, and Mattia Monga. On race vulnerabilities in
web applications. In Proceedings of the 5th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, DIMVA ’08, pages 126–142, Berlin, Heidelberg,
2008. Springer-Verlag.

11. Hossain Shahriar and Mohammad Zulkernine. Mitigating program security vulnerabilities:
Approaches and challenges. ACM Comput. Surv., 44(3):11:1–11:46, June 2012.

12. Angelo Ciampa, Corrado Aaron Visaggio, and Massimiliano Di Penta. A heuristic-based ap-
proach for detecting sql-injection vulnerabilities in web applications. In Proceedings of the 2010
ICSE Workshop on Software Engineering for Secure Systems, SESS ’10, pages 43–49, New York,
NY, USA, 2010. ACM.


