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Abstract—In this paper we address the problem of constellation
design in four dimensional space (4D) under average power
constraint. We compare the performance of best lattice con-
stellations with those optimized without any constraint on their
structure. Even though the lattice based constellations provide
the best minimum distance, usually they do not allow for a good
binary labelling. Therefore, in more realistic system scenarios,
up to a 2 dB gain can be obtained by properly optimizing the
constellation and the corresponding binary labelling. We also
investigate the performance of 4D constellations obtained by the
Cartesian product of two 2D constellations.

Index Terms—Multidimensional Constellations, Lattice Based
Constellations, Shaping Gain, Polypolarization Multiplexing

I. INTRODUCTION

Multidimensional constellations have been proposed to en-
hance spectral efficiency in many systems. For example, sys-
tems with more than one polarization, multidimensional coded
modulation systems and systems where only a fraction of bits
is needed in two dimensions. It is well known that constellation
enlargement can allow a denser packing of the constellation
points for a given minimum Euclidean distance and average
power [1]. This would, in turn, enhance the spectral efficiency
of the system.

In general, the multidimensional constellations have better
figures of merit than 2D constellations. As a case in point, the
QAM constellations suffer a loss from the promised Gaussian
capacity of 1.53 dB. This so called shaping loss is mainly due
to the finite size and the shape of the QAM constellations.
However, such a loss can be partially compensated by using
multidimensional constellations based on lattices. Indeed, in
four dimensional space (4D), the asymptotic shaping gain
provided by a lattice-based design is only 0.46 dB [2]. The
densest lattice in 4D is known, and its characteristics have
been thoroughly analyzed in [3]. Nevertheless, optimal lattice-
based constellations may perform poorly in practical systems
for several reasons. First of all, these constellations optimize
only the minimum Euclidean distance of the constellation
which is a good design criterion only if the signal-to-noise
ratio (SNR) is very large. The second problem is cutting out a
finite and bounded subset of the lattice. In particular, in binary
digital systems where it is desired to associate m bits to each
symbol, we need to choose 2™ vertices of the lattice. This
would imply some loss in the performance over non periodic

Copyright: 978-1-4673-9907-4/15/$31.00 ©2015 IEEE

channels. In such systems, also the labelling becomes an issue,
as it is not possible to find a Gray labelling for constellations
with size M where at least one signal has more than log, M
neighbours. Some labelling procedures have been proposed in
[4] and references therein, but no performance assessment in
a realistic scenario was shown. As we will see in this paper,
in BICM systems, this may cause a performance degradation
in excess of 2 dB.

Despite the problems mentioned above, the multidimen-
sional constellation design has been subject of many investi-
gations in the last few years and several techniques exploiting
more than one polarization have been proposed. For example,
the authors in [5] introduce the poly-polarization multiplexing
(PPM) technique. In the same paper, also the constellation
design for PPM has been discussed.

Moreover, several schemes exploiting more than one polar-
ization have been proposed for optical communications. See
for example [6] and some references within. However, in all
of them only small size QAM or PSK constellations have been
considered, and no particular further design has been proposed.

Our goal in this paper is twofold. First, we optimize the 4D
constellations and the corresponding labelling by maximizing
the pragmatic achievable mutual information and compare
their performance with the best lattice based constellations.
Second, we optimize the 2D constellations and compare their
performance with those optimized in 4D. To have a fair com-
parison, we generate a 4D constellation from the optimized
2D points as a Cartesian product. The average power of all
constellations are normalized to unity in 4D. As we will see,
the proposed optimized constellations perform better than the
known constellations in the literature. We are mainly interested
in 64-ary constellations in this paper. We have also optimized
the 16-ary constellations, but the gain that can be obtained with
respect to the Cartesian product of two 4-QAM is negligible.
Notice that there are exactly sixteen quadrants in the 4D
space and therefore 4 x 4-QAM has exactly one point in
each quadrant. In other words, it can be seen as a BPSK
constellation in each dimension, which is known to be optimal
at very low SNRs.

The rest of this paper is organized as follows. In Section II,
we describe some basic concepts and define the objective
function to be optimized. In Section III, we briefly review the
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algorithms used to optimize constellations and the labelling.
Various constructions for 64-ary constellations are presented in
Section IV. The performance comparison and the simulation
results for proposed constellations are presented in Section V.
Finally, we conclude the paper in Section VI and suggest some
possible future improvements.

II. BASIC NOTATIONS AND PROBLEM STATEMENT

A constellation x is simply a finite subset of the k& dimen-
sional Euclidean space, i.e., Y C RF. In this paper, we are
mainly interested in constellation with M = 2™ elements and
k = 4. The elements of y are referred to as constellation
points, transmitted symbols or simply signals. The symbols are
associated to the bits at the input of the modulator through the
one-to-one labelling p : x — {0,1}™. For any given symbol
x, we denote by u’(z) the value of the it" bit of the label
associated to it.

A labelling for x is called a Gray labelling if for any
two symbols z;,z; € x, we have dg(u(x;), p(z;)) = 1
if d(z;,z;) < d(z;,z), for all z, € x, where dg(.,.)
and d(.,.) are the Hamming and Euclidean distance functions
respectively.

We consider a 4D AWGN channel where the received signal
can be written as y = x + n, where the AWGN noise n,
transmitted symbol z and received signal y are all in R*. In
practice, usually the 4D constellation is projected onto two
2D planes called polarization. Signals in each polarization are
then complex numbers.

A. Objective Function

Bit interleaved coded modulation (BICM) has been accepted
in many standards in recent years [7]. The main idea is to
separate the detector from the decoder at the receiver. This
allows to substantially reduce the complexity of the receiver.
However, such systems suffer a large performance degradation
if a good binary labelling i is not chosen. In such systems,
the so called pragmatic achievable mutual information (PAMI)
defined in [7] is usually a good performance measure for
constellation design:

m

LOow = Y I (@)y),

i=1

where I(.,.) is the mutual information function and pf(x) is
the random variable indicating the i" bit associated to the
transmitted signal.

On the other hand, when iterations between decoder and de-
tector are allowed, the binary labelling becomes less important
and the achievable mutual information (AMI), I () = I(z;y)
can be used as the quality measure.

B. Problem Statement

Our problem is to find the constellations x and the corre-
sponding labelling ¢ that maximize the PAMI, I,,, under the

average power constraint. Therefore, the optimization problem
can be formulated as:

(1)
subject to: 4 Duex lul> <1 (1)

This optimization problem is known to be hard because the
I, function usually allows for many local maxima. Notice that
the average power constraint is over the 4D space and not per
polarization.

If the shape of the constellation is fixed a priori, one still
needs to find the best possible labelling that maximizes the
PAMI. In such cases, the optimization problem is slightly
different and same optimization algorithm may not be suitable
for both problems.

III. CONSTELLATION DESIGN

Constellation design problem has been an active field of
research since the advent of information theory. The optimal
solutions for the problem defined in (1) are not known even for
small constellation sets. Usually, the optimization algorithms
are trapped in a local maximum of the problem, specially
when the constellation set has more than 16 points. Further, the
shape of the optimized constellation for a given communica-
tion system depends on several factors. The most important pa-
rameters affecting the shape are the channel model, the power
constraint, the chosen objective function to be optimized, and
the optimization algorithm per-se. Several algorithms have
been proposed in the literature for this optimization problem.
In the following we briefly review the algorithms we use for
optimization in this paper.

A. Genetic Algorithm for Constellation Cut and labelling
Optimization

The genetic algorithm (GA) has been already used in the
literature for constellation design (see for example [8]). In
the following, we specialize it to two distinct optimization
problems for 4D lattice-based constellations. The first problem
is the selection of a finite number of points from a given
(infinite) lattice. Indeed, the average power constraint usually
selects a number of points higher than the desired cardinality.
Therefore, only a subset of the points satisfying the average
power constraint has to be selected. This selection is done by
implementing a GA which maximizes the AMI of the selected
constellation.

The second problem is to find a good labelling for a given
constellation. A genetic algorithm has been implemented for
finding the labelling which maximizes the PAMI of the given
constellation.

B. Simulated Annealing for Joint Constellation and labelling
Optimization

A simplified simulated annealing (SA) has been introduced
for constellation design problem over AWGN in [9] for
optimizing small size constellations. This algorithm has been
extended for optimizing the constellations with up to 256
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Fig. 1. The 8-QAM constellation used in this paper as the benchmark.

signals under more general channel models in [10]. The
main advantage of the SA algorithm with respect to other
algorithms in the literature is that it allows to jointly optimize
the constellation and the corresponding labelling. This is of
great importance because a constellation optimized without
considering the labelling may not allow for a Gray mapping,
and hence will show a large performance degradation in prac-
tical systems. For details on the SA algorithm for constellation
design we kindly refer the readers to [10] and the references
therein. A straightforward extension of the SA algorithm for
the optimization of 4D constellations can be found in [11],
[12].

IV. 64-ARY CONSTELLATION DESIGN IN 4D

In this section, we present the 64-ary constellations which
are considered in this paper. As mentioned before, the shape of
the optimized constellation depends also on the selected SNR.
Our target SNR for optimization is 10 dB which approximately
corresponds to an AMI of 5 bits per transmitted symbol.
The simplest constellation can be constructed by taking the
Cartesian product of two 8-QAM constellations shown in
Fig. 1. We denote the resulting constellation as 8 x 8-QAM
and use it as a benchmark for performance evaluation.

A. Lattice Amplitude Modulation

Following [13], we refer to the multidimensional lattice-
based constellations by Lattice Amplitude Modulations
(LAMs), where the basic construction procedure involves
taking symbols from a suitable 4D lattice. According to the
lattice chosen, different types of constellations, with varied
properties, can be derived.

The densest packing in 4D is given by the D, lattice (the
so-called checkerboard), which is a cubic lattice centered at
the origin. It is obtained by partitioning the quadratic lattice
Z4 and choosing only the points whose (integer) coordinates
sum to 0 (modulo 2). Being the densest lattice in 4D, the Dy,
provides the best coding gain by maximizing the minimum
Euclidean distance among the constellation points [3].

In practical systems, the bits at the output of the encoder
select the points in the 4D constellation to be transmitted.
However, the pulse shaping and the transmission over the
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Fig. 2. The 2D projection of the 64-LAM constellation. The number of
occurrences for each point in 4D is reported for each transmitted symbol.

channel normally occur separately per polarization. This im-
plies that each selected 4D symbol has to be projected on
the two 2D planes, one per polarization, before being linearly
modulated by means of pulse shaping, and finally transmitted
over the channel. Since at a given time instant the projected
2D symbols on each polarization are correlated (because of
the shaping introduced by the 4D design [14]), the optimal
detector has to operate jointly on both the polarizations.

1) 64-LAM: To obtain the 64-LAM constellation, we first
select the smallest sphere around the origin which contains at
least 64 vertices of the D, lattice. In this case, the spherical cut
selects 88 points of which 40 points have lower amplitudes and
the remaining 48 points have the highest amplitude. The final
constellation is obtained by selecting all the vertices with lower
amplitudes and only 24 points with highest. In order to choose
this 24 points, a GA is implemented to maximize the AMI of
the constellation. We show the 2D projection of the resulting
constellation in Fig. 2. Also, the number of occurrences for
each point is reported in this figure.

2) labelling for 64-LAM Constellation: In the D, lattice,
each point has up to 24 neighbours (the number of neighbours
is called the kissing number of the lattice). This indicates that
having a Gray mapping which allows for 1 bit flip for all
the couples of neighbouring points is not possible. Actually,
by some combinatorial analysis, it can be shown that even a
mapping allowing a difference of 2 bits between neighbour-
ing symbols is still not possible for 64-LAM constellation.
Therefore, we have used a GA for finding a labelling which
optimizes the PAMI of the constellation.

B. Enhanced Poly-polarization Multiplexing

The 4D constellation design for enhanced poly-polarization
multiplexing (EPPM) has been studied by Yofune et al. in a
series of papers (see for example [S] and [15]). For the sake
of completeness, we also compare our proposed constellation
with those reported in these papers. For more details on
these constellations we kindly refer the readers to [5] and
the references within. We show the 2D projection of this
constellation in Fig. 3. Also, the number of occurrences for
each point is reported in this figure.
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Fig. 3. The 2D projection of the 64-EPPM constellation. The number of
occurrences for each point in 4D is reported for each transmitted symbol.

C. Cartesian Product of Optimized 2D Constellations

As shown in [14], the 4D design induces a correlation
among the 2D symbols obtained by projecting the 4D constel-
lation onto the two 2D polarization planes. As stated before,
the optimal detector is joint over the two polarizations, i.e.,
it takes into account the correlation between the received
samples on both the polarizations when computing the log
likelihood ratios. Of course, this increases the overall complex-
ity of the detection procedure. A simpler detector operating
separately on the two polarization (i.e., treating the received
samples from different polarizations as independent) would
have a poorer performance than the optimal detector. However,
such a loss can be mitigated by an accurate design of the
2D projected constellation. Indeed, 4D constellations that can
be decomposed as a Cartesian product of two 2D constel-
lations have independent projected constellations (which are
coincident with the constituting 2D constellations). Of course,
designing a 4D constellation as a Cartesian product of two 2D
constellations results in a shaping loss.

The main question is how big is the shaping loss if the
constellations in 2D are properly optimized. A key objective
of this evaluation is to trade-off the shaping loss vis-a-vis
decoding complexity when 2D constellations are optimized.
We have optimized an 8 point constellation in 2D using the
SA algorithm. This constellation is shown in Fig. 4. We denote
by 8 x8-OPT the constellation in 4D obtained by the Cartesian
product of this constellation with itself.

D. Optimized 4D Constellations

As we have mentioned, the SA algorithm can be easily mod-
ified for optimizing the 4D constellations under the average
power constraint by maximizing the AMI or PAMI. We have
initialized the SA algorithm with the 8 x 8-OPT in order to
speed up the algorithm. The optimized constellation is shown
in Fig. 5. Notice that we show both polarization in a single
figure. We refer to this constellation as the 64-OPT in what
follows. The target SNR for the optimization is chosen to be 10
dB. The coordinates for the points of this constellation together
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Fig. 4. The optimized 8 points constellation in 2 dimension for SNR=10.
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Fig. 5. The optimized 64 points constellation in 4D. The black circles are the
coordinates of the first polarization and the red dashed circles are coordinated
of the second polarization.

with the corresponding labelling can be found in Appendix A.

V. PERFORMANCE COMPARISON AND SIMULATION
RESULTS

In this section we first plot the AMI and PAMI curves, and
then present the BER simulation results for the constellations
we have introduced in Section III.

A. AMI and PAMI Comparison for 64-ary Constellations

In Fig. 6 we show the AMI for 64-ary constellations. For
the SNR values in the interval [6,12], the 64-OPT is better
than 64-LAM, even though this constellation is designed to
optimize the PAMI. For larger SNRs, 64-LAM has a better
AMI. This is not surprising, because 64-LAM has a better
minimum Euclidean distance, which indeed becomes the dom-
inant factor in AMI computation at high SNRs. However, the
interested SNR values are those providing spectral efficiencies
between 0.5 dB to 1.5 dB below the saturation point. In Fig. 6,
we can also notice that 8 x 8-OPT constellation shows a
large degradation for SNR values larger than 10 dB. EPPM



—64-OPT

- - 64-LAM

- -8x8-OPT

64-EPPM

AMI [bits/symbol]

--- BxB-QAM
SNR [dB]
Fig. 6. AMI comparison for 64-ary constellations.
55
5
= —64-OPT
845
€ - -64-LAM
3
2 - - -8x8-OPT
2 4 A
<§( |t |7 64-EPPM
g PG L --- 8x8-QAM
35 ‘
3 K
7 8 9 10 11 12

SNR [dB]

Fig. 7. PAMI comparison for 64-ary constellations.

constellation and 8 x 8-QAM show a loss larger than 0.5 dB
with respect to the 64-OPT.

In Fig. 7, we show the PAMI for constellations with 64
signals. Notice that 64-LAM and 64-EPPM constellations
suffer a significant loss with respect to their AMI values in
the previous figure. This is mainly because a good labelling
does not exit for these constellations. The 64-OPT and 8 x 8-
OPT have almost the same PAMI values at SNR=10 dB.

B. Simulation Results

In this section we provide the bit error rate (BER) sim-
ulations for all the 64-ary constellations introduced in the
previous section. A GEO satellite broadband system employ-
ing both the polarizations for transmission on the user link is
considered. Further, a DVB-S2 air interface [16] is assumed
and we use the LDPC code of the DVB-S2 standard with rate
R =5/6 and the code length n = 64800 bits. The channel is
AWGN and no cross polarization has been considered. As we
can see in Fig. 8, the BER curves confirm closely the PAMI
results which were presented in Fig. 7.
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Fig. 8. BER comparison for 64-ary constellations over the AWGN channel.

VI. CONCLUSIONS AND FURTHER STUDIES

In this paper, we have optimized 64-ary 4D constellations
by maximizing the pragmatic achievable mutual information
(PAMI). A simulated annealing algorithm has been used to
jointly optimize the shape and labelling of the constellation.
We have compared the PAMI of optimized constellation with
LAM, EPPM, and QAM constellations, showing a gain of at
least 0.5 dB over the AWGN channel. On the other hand, the
4D constellation designed by the Cartesian product of two 2D
optimized constellation shows a degradation of only 0.2 dB
with respect to the 4D optimized constellation, resulting more
appealing in systems where the receiver complexity is an issue.
In this paper we have limited ourselves to the AWGN channel.
The performance assessment of 4D constellations over other
channel models where the correlation between the two polar-
izations can be exploited by a joint detector to improve the
performance (e.g., erasure channel, deep fading channel) will
be object of future investigations. Another interesting direction
for further research is to take into account the cross-polar
interference at the constellation design level.
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APPENDIX A

In Table I we provide the coordinates of the 64-OPT
constellation. Notice that the binary labelling for each point is
reported in decimal at the beginning of each row. For example,

the binary labelling corresponding to the point in row 11 is
’001011°.



THE COORDINATE OF THE 64-OPT CONSTELLATION IN 4D.
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0.819531
-0.203173
0.141438
-0.177842
1.100741
-1.195694
0.201804
-0.762647
0.831583
-0.198017
0.189457
-0.181727
1.091693
-1.19357
0.193993
-0.743537
0.838133
-0.747265
0.300484
-0.214198
1.564649
-1.217543
0.167983
-0.647662
0.760562
-0.123657
0.218734
-0.163616
1.171474
-1.64255
0.146498
-0.847559
0.815139
-0.117462
0.161394
-0.106251
1.092972
-1.046511
0.167057
-0.803395
0.855747
-0.157837
0.133551
-0.125721
1.095818
-1.117878
0.184374
-0.754886
0.803038
-0.223387
0.266615
-0.241956
1.251754
-1.235271
0.235401
-0.778252
0.808997
-0.210636
0.212436
-0.158311
1.197888
-1.101382
0.199749
-0.780847

TABLE I

-0.650599 | 0.783234
-1.032884 | 0.788877
-0.004051 | 0.891761
-0.13861 0.725939
0.364006 0.779372
-0.39896 0.810181
0.931051 0.802697
0.607541 0.788062
-0.639384 | -0.203313
-1.037786 | -0.189953
0.027512 | -0.053883
-0.128828 | -0.202543
0.448302 | -0.162538
-0.359385 | -0.166254
0.93641 -0.192896
0.641533 | -0.181698
-0.523245 | 0.188007
-1.237626 | 0.150552
0.079948 0.170029
-0.09935 0.25579
-0.086355 | 0.119476
-0.392582 0.16196
0.794089 0.228777
0.496357 0.215085
-1.292667 | -0.15185
-1.020183 | -0.219344
0.027632 | -0.345939
-0.198903 | -0.243161
1.0817 -0.117722
0.322923 | -0.168589
1.415942 | -0.157298
1.203975 | -0.154092
-0.577882 | 1.169432
-0.983386 | 1.105125
0.060585 1.157558
-0.087128 | 1.538374
0.47274 1.132569
-0.425708 | 1.162975
0.969668 1.186393
0.594136 1.200036
-0.593635 | -1.123004
-0.978909 | -1.205712
0.044069 | -1.569174
-0.094366 | -1.150115
0.391156 | -1.066089
-0.467959 | -1.067192
0.912687 | -1.149613
0.551634 -1.11908
-0.653412 | 0.169144
-1.016917 | 0.192578
0.074235 0.197939
-0.134771 | 0.115858
0.399053 0.174276
-0.374179 | 0.122326
0.976446 0.194867
0.634297 0.216943
-0.634665 | -0.827652
-0.999016 | -0.812733
0.069478 -0.79449
-0.053973 | -0.812503
0.487771 | -0.810947
-0.344639 | -0.87537
0.98353 -0.794465
0.661811 | -0.804369

-0.612464
-0.589036
-1.24174
-0.510649
-0.60412
-0.583647
-0.642245
-0.622796
-0.97634
-0.976069
-1.500724
-0.855103
-0.905415
-1.010295
-0.967122
-0.96092
0.082647
0.067818
0.151495
0.066814
0.040546
0.073242
0.085232
0.099091
-0.032272
-0.060701
0.009512
-0.157441
-0.066364
-0.07312
-0.063966
-0.049581
0.468911
0.408389
1.047462
-0.094519
0.3296
0.557353
0.434978
0.371563
-0.38806
-0.44274
0.100403
-1.01997
-0.513468
-0.403078
-0.412028
-0.458795
1.007653
0.98524
0.969013
1.030041
0.943906
0.973454
1.008063
0.994425
0.642615
0.638088
0.550199
1.303958
0.55627
0.560765
0.621176
0.614651
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