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Abstract—Emerging markets for satellite communications,
such as maritime and aeronautical applications, require reliable
communications in challenging conditions and low-cost, low-
complexity user terminals. In this perspective, the synchro-
nization chain is a fundamental part of the receiver and its
design becomes critical. When a quadricorrelator is used as
first stage of the synchronization chain so as to perform a
coarse frequency estimation, then a noncoherent algorithm for
frame synchronization can be employed as second stage. A
popular algorithm for frame synchronization is the post-detection
integration (PDI), whose noncoherent version (NCPDI) is quite
robust to non-negligible residual frequency offsets. In this paper
we will assess the performance of NCPDI in presence of a
random uniformly-distributed residual frequency offset and will
find a closed-form approximation for the probability of detection.
Moreover, we will optimize the design parameters of NCPDI for
a system operating at very low signal-to-noise ratio (VL-SNR)
by minimizing the probability of missed detection for a given
probability of false alarm.

Index Terms—frame synchronization; noncoherent post-
detection integration; random frequency offset

I. INTRODUCTION

In the recent years, satellite communications have experi-
enced a remarkable development; new market sectors have
triggered research in new scenarios and forced researchers
to take into account application-driven constraints, stemming
from hardware and commercial perspectives. In particular,
maritime and aeronautical applications require highly reliable
communications even in extremely challenging conditions,
e.g., at very low signal-to-noise ratio (VL-SNR). This is the
case, for example, for the forward link of maritime commu-
nications in polar regions, where the elevation angle of the
satellites is very low. Moreover, such applications also require
low-complexity hardware in order to limit the final cost of the
equipment needed by the user terminals.

In such scenarios, the design of an efficient synchronization
chain is of paramount importance. Indeed, the received signal
is impaired by (i) phase noise introduced by the possibly cheap
local oscillator of the user terminal, (ii) a frequency offset
generated by oscillator misalignment, and (iii) timing errors
produced by an inexact sampling. To overcome these impair-

ments, many communication standards (e.g., the DVB-S2X
[1]) define special frames providing extra pilot fields that can
be conveniently exploited for synchronization. Therefore, the
correct detection of the start of the superframe, and hence the
pilot fields, is necessary for all the following synchronization
blocks.

The synchronization problem does not have a unique so-
lution. However, the first block in the synchronization chain
usually performs either a coarse frequency estimation or a
frame acquisition, leaving timing, fine frequency, and phase
estimations for the following blocks. A widely used algorithm
for coarse frequency synchronization, completely agnostic of
any signal parameter and non pilot-aided, is the quadricor-
relator [2]. The output of the coarse frequency estimator
has usually a low residual frequency offset (whose value
depends on the considered application), and the algorithm for
frame acquisition (when performed as second stage in the
synchronization chain) has to exhibit a good resilience to small
frequency offsets.

Frame acquisition is based on the discretization of the un-
certainty region into a finite number of cells, each of which is
associated to a hypothesis. In this way, the acquisition problem
is transformed into a detection problem where the receiver has
to decide between the hypothesis of synchronous cell (H1) and
that of misaligned cell (H0). In general, the received frame is
composed of a known preamble field followed by the payload
data field, and frame synchronization is normally performed
on the preamble. Such a structure can be applied to both burst
and continuous transmissions, while the extra pilot fields (like
those provided for example by the DVB-S2X standard [1])
may be exploited to improve its performance. Further, in case
of continuous transmission, the frame acquisition can be used
in conjunction with a verification stage based on the regularity
of the frame structure. However, the verification stage is less
critical than the acquisition one [3], and hence it will not be
considered in this paper.

Concerning the choice of a suitable algorithm for frame
synchronization, post-detection integration (PDI) is one of the
most popular solutions [4]. Thorough analyses of PDI and
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its many versions can be found in [3]-[6] and references
therein. If the quadricorrelator [2] is used as first stage of the
synchronization chain, then the noncoherent version of PDI
(NCPDI) can still be used despite the residual frequency offset
[6]. Being the simplest among all the PDI versions, NCPDI
provides excellent performance with a low computational cost,
even when the residual frequency offset is non-negligible [6].

In this paper, we extend the analysis of NCPDI carried out
in [7] by assuming a random residual frequency offset. The
residual frequency uncertainty after coarse frequency offset
correction depends on the system parameters (more so in
the considered VL-SNR scenarios), is unknown, and may
vary from frame to frame. Optimizing the NCDPI parame-
ters, therefore, calls for taking these variations into account.
Towards this, in this paper we model the residual frequency
offset as a random variable and derive the average probability
of detection. Similar premises were assumed in [6], where
the considered test statistic was dependent on the residual
frequency offset. By contrast, we will use a test statistic
independent of the frequency offset, allowing a significant
reduction of the receiver complexity. We will find a closed-
form approximated expression for the probability of detection,
and then optimize the design parameters of the NCPDI in order
to maximize the probability of detection for a given probability
of false alarm.

II. SYSTEM MODEL

Let us consider the received signal on the forward link
of a satellite communication system. The system could be
broadband or broadcast. Without loss of generality, we assume
a generic transmission format with known preamble followed
by data. For example, the superframe structure provided by the
DVB-S2X standard [1] would fit the considered structure as
the start-of-superframe (SoSF) field is located at the beginning
of the superframe, as shown in Fig. 1. However, for the sake
of generality, we will not exploit the regular repetition of the
frame structure (typical of continuous transmissions) but rely
on a frame-by-frame detection approach so as to include burst
transmissions in the system model. For the sake of analytical

Fig. 1. Superframe structure according to the DVB-S2X standard.

tractability, we will assume the channel to be impaired by
additive white Gaussian noise (AWGN) only. In other words,
we will neglect the effects, linear and nonlinear, introduced by
the satellite transponder, as well as propagation impairments
like rain attenuation. Moreover, we will also assume the
absence of adjacent channel interference. These assumptions
are realistic if the on-board power amplifier (whose character-
istics are usually linearized) is sufficiently backed-off from
its saturation point, and if the signal bandwidth is smaller
than the bandwidths of the on-board filters (input and output

multiplexers). This is the case, for example, of a multicarrier-
per-transponder scenario where the different signals occupy
disjoint bands inside the transponder bandwidth.

Under these assumptions, the received signal before the
front-end filter is

xR(t) = s(t) + w(t)

= α
√
Es

+∞∑
k=−∞

akp (t− kTs) e(2π∆ft+ϕ) + w(t)

where Es is the average signal energy, {ak} are the transmitted
symbols assumed to have mean zero and unit variance (i.e.,
E{ak} = 0 and E{|ak|2} = 1), p(t) is the shaping pulse, Ts
the symbol period, 4f a random frequency offset uniformly
distributed in [−β/Ts, β/Ts], ϕ a random phase offset in
[0, 2π), and w(t) is the additive white Gaussian noise (AWGN)
with power spectral density 2N0. In order to model the
possible absence of signal, we introduce an auxiliary random
variable α distributed as Bernoulli of parameter ps, implying
that the signal is missing with probability 1 − ps. After a
block performing coarse frequency estimation (by means of
the quadricorrelator [2]), the normalized maximum residual
frequency offset β is typically in the range [0, 0.05].

As front-end filter, a matched filter is assumed. Therefore,
if the frequency offset is small if compared to the signal
bandwidth, the filtered signal reads

r(t) ∼= α
√
Es

+∞∑
k=−∞

akRp (t− kTs) e(2π∆ft+ϕ) + n(t)

where Rp(t) = p(t) � p∗(−t) and n(t) = w(t) � p∗(−t), and
the symbol ⊗ denotes convolution. The filtered signal is then
sampled at the time instant τ = (m + ∆)Ts + δ, where ∆
denotes the integer timing offset and δ the fractional timing
offset. In the following, we will assume δ ∈ [−Ts/2, Ts/2] to
be unknown but deterministic. Hence, the m-th sample reads

rm = α
√
Es

+∞∑
k=−∞

akRp[(m+ ∆− k +D)Ts]

× e[2πF (m+∆+D)+ϕ] + nm (1)

where we have introduced the normalized offsets F = ∆fTs
and D = δ/Ts. The noise samples are complex circularly-
symmetric Gaussian random variables having E{nm} = 0,
E{nmn∗k} = 2N0Rp[(m − k)Ts]. In the following we
assume the shaping pulse p(t) to be a square-root raised
cosine (SRRC) pulse. Therefore, Rp(nTs) = δ[n] where δ[n]
is the Kronecker delta, and the noise correlation becomes
E{nmn∗k} = 2N0δ[n]. The noise variance will be denoted
in the following as E{|nm|2} = 2σ2.

III. NONCOHERENT POST-DETECTION INTEGRATION
(NCPDI) ALGORITHM

The NCPDI algorithm [4] correlates the received signal with
a sequence of known pilot symbols. Let us assume the frame
length to be LF symbols, and the length of the pilot sequence
to be LP symbols. For the ease of presentation, we assume



the known symbols to be located at the very beginning of the
frame, implying that

ak =

{
ck if |k|LF

∈ [0, LP − 1]

dk if |k|LF
∈ [LP , LF − 1]

where {ck} are the known pilot symbols, {dk} are the un-
known information symbols, and |.|N denotes the modulo-N
operator. The algorithm computes the correlation

xi =
1

M

(i+1)M−1∑
m=iM

rmc
∗
m (2)

where m ∈ [0, LP − 1], and LP = ML with M,L ∈ N. In
other words, the portion of the received signal that has to be
correlated with the pilot field is partitioned in L sub-blocks
formed by M samples each [7]. The correlation xi is computed
over each sub-block, then it is scaled as yi = xi/

√
L, and

finally accumulated as

Λ =

L−1∑
i=0

|yi|2 (3)

in order to form the test statistic [7]. Finally, the test statistic
Λ is compared to a threshold ξ so as to decide on signaling
the start of a frame [4].

For the hypothesis testing, we define two hypotheses:
• H0: absence of signal (i.e., α = 0) or misalignment (i.e.,
α = 1 and ∆ 6= 0);

• H1: correct synchronization (i.e., α = 1 and ∆ = 0).

A. Analysis of H1

Let us start the statistical characterization of the algorithm
by considering H1. This hypothesis corresponds to assuming
α = 1 and ∆ = 0, hence (2) reads

xi =

(i+1)M−1∑
m=iM

√
Es

+∞∑
k=−∞

{
akc
∗
m

M
Rp [(m− k +D)Ts]

× e(2πF (m+D)+ϕ)+
1

M
nmc

∗
m

}
=

√
Es
M

Rp (DTs)

(i+1)M−1∑
m=iM

|cm|2 e(2πF (m+D)+ϕ)+γi+ηi

= νi + γi + ηi (4)

where the useful part of the correlation νi has been isolated.
The two remaining terms are the contribution of the intersym-
bol interference (ISI) γi, defined as

γi =
1

M

(i+1)M−1∑
m=iM

ζmc
∗
m (5)

with

ζm =
√
Ese

(2πF (m+D)+ϕ)
+∞∑

k=−∞
k 6=m

akRp [(m− k +D)Ts] (6)

and the contribution of the AWGN ηi, defined as

ηi =
1

M

(i+1)M−1∑
m=iM

nmc
∗
m .

The noise component ηi is complex circularly-symmetric
Gaussian-distributed with mean zero and variance

E
{
|ηi|2

}
=

2σ2

M
= 2σ2

η

because |cm|2 = 1 [1]. Therefore, the noise term statistics
are independent of the various offsets (phase, timing, and the
frequency offsets).

By conditioning with respect to F and ϕ, and by invoking
the central limit theorem, the random variables {ζm} in (6)
result to be complex circularly-symmetric Gaussian-distributed
with mean zero (because E{ak} = 0) and variance

E
{
|ζm|2 |H1, F, ϕ

}
= Es

+∞∑
k=−∞

k 6=0

R2
p [(k+D)Ts] = 2σ2

ζ|H1
.

Therefore, the ISI component γi in (5) is a complex circularly-
symmetric Gaussian variable with mean zero and variance

E
{
|γi|2 |H1

}
=

2σ2
ζ|H1

M
= 2σ2

γ|H1
.

Note that {ζm} in (6) are not uncorrelated. However, the terms
of E{|γi|2} having the form E{ζmc∗mζ∗ncn} vanish because
E{c∗mcn} = 0 for m 6= n. It is also worth noting that the ISI
variance depends on the fractional timing offset only, which
is assumed to be deterministic.

As done before, we first evaluate the statistics of xi in (4)
by conditioning with respect to the random frequency offset F
and phase ϕ. Using the fact that {γi} and {ηi} are zero-mean,
we see that

E {xi|H1, F, ϕ} =

√
Es
M

Rp (DTs) e
ϕ

(i+1)M−1∑
m=iM

e2πF (m+D)

=
√
EsRp(DTs) e

[2πF(iM+D)+ϕ] sinc (MF )

sinc (F )

= µxi|H1
.

The test statistic Λ in (3) is then distributed according to the
non-central χ2 distribution with 2L degrees of freedom. Each
of the component random variables has variance

E
{
|yi|2 |H1, F, ϕ

}
= 2σ2

y|H1
=

1

L

(
2σ2

γ|H1
+2σ2

η

)
=

1

LP

Es +∞∑
k=−∞

k 6=0

R2
p [(k+D)Ts]+2σ2

 .
Under these assumptions, the probability of correct syn-

chronization (also known as probability of detection), can be
expressed in closed form [8] as

PD|F,ϕ = P {Λ > ξ|H1, F, ϕ}

= QL

(
d

σy|H1

,

√
ξ

σy|H1

)



where Qn(a, b) is the Marcum-Q function of order n [9], ξ
is a threshold, and d is the non-centrality parameter of the χ2

distribution defined as

d2 =

L−1∑
i=0

|E {yi|H1, F, ϕ}|2

= EsR
2
p (DTs)

sinc2 (MF )

sinc2 (F )
.

The unconditional probability of detection can be computed
by numerical integration as

PD =
1

2β

−β∫
−β

QL

(∣∣∣∣Rp (DTs)
sinc (MF )

sinc (F )

∣∣∣∣ √Esσy|H1

,

√
ξ

σy|H1

)
dF

(7)

since it is independent of ϕ.
A closed-form approximation of (7) can be obtained by a

Taylor expansion of the Marcum-Q function. To this purpose,
we recall the definition of the Marcum-Q function

Qn (a, b) =

+∞∫
b

e−
z2+a2

2

(z
a

)n−1

zIn−1 (az) dz (8)

where Iν(x) is the modified Bessel function of the first kind
of order ν, we define for the sake of notation

k = |Rp (DTs)|
√
Es

σy|H1

b =

√
ξ

σy|H1

g (F ) = k

∣∣∣∣ sinc (MF )

sinc (F )

∣∣∣∣
and replace (8) in (7). We can rewrite (7) as

PD =
1

2β

−β∫
−β

+∞∫
b

e−
z2+g(F )2

2

(
z

g(F )

)L−1

zIL−1 (zg(F )) dzdF

=
1

2β

+∞∫
b

e−
z2

2 zL
−β∫
−β

e−
g(F )2

2 (g(F ))
1−L

IL−1 (zg(F )) dFdz

=
1

2β

+∞∫
b

e−
z2

2 zL
(z

2

)L−1

×
−β∫
−β

e−
g(F )2

2 0F̃1

(
;L;

z2g2(F )

4

)
dFdz (9)

where 0F̃1(; a; z) is the regularized confluent hypergeometric
function [10]. Then, we approximate the inner integrand with
its fourth-order Taylor expansion evaluated in F = 0. The
solution of the inner integral can be expressed as a linear

combination of Marcum-Q and Nuttall-Q functions [11]. The
latter is a generalization of the Marcum-Q and is defined as

Qm,n (a, b) =

+∞∫
b

e−
z2+a2

2 zmIn (az) dz .

By resorting to the recursive relation of the Nuttall-Q function
[11]

Qm,n (a, b) = aQm−1,n+1 (a, b)+(m+n−1)Qm−2,n (a, b)

+ bm−1e−
b2+a2

2 In (ab)

and to the relation between the Nuttall-Q and the Marcum-Q
functions [11]

Qn+1,n (a, b) = anQn+1 (a, b)

we can approximate (7) as

PD ∼= AQL

(
k, b̂
)

+BQL+1

(
k, b̂
)

+ Cb̂L+1e−
b̂2+k2

2 IL−1

(
kb̂
)

(10)

where A, B, and C are normalization constants (omitted for
lack of space) depending on M , L, k, and β, and

b̂ =

√
ξ + ε

σy|H1

.

The introduction of the heuristic threshold shift ε helps in com-
pensating for the error caused by the truncation of the Taylor
expansion of the inner integrand in (9). Future investigations
will be focused on finding an analytical expression for ε.

B. Analysis of H0

Under the H0 hypothesis, the integer timing offset is non-
zero, i.e., ∆ 6= 0. The sampled signal in (1) becomes then

rm = αζm + nm

where ζm is defined in a slightly different way with respect
to (6), namely

ζm =
√
Ese

(2πF (m+D+∆)+ϕ)
+∞∑

k=−∞

akRp [(k +D)Ts] .

The output of the correlator xi now reads

xi =
1

M

(i+1)M−1∑
m=iM

αζmc
∗
m + nmc

∗
m

= αγi + ηi

while the definitions of ηi, γi, yi, and Λ remain unchanged.
The noise term ηi has the same statistics computed before,
whereas ζm is still complex Gaussian-distributed with mean
zero but now it has variance equal to

var {ζm|H0, F, ϕ} = 2σ2
ζ|H0

= Es

+∞∑
k=−∞

R2
p [(k +D)Ts] .



As before, the ISI term γi is complex Gaussian-distributed
with mean zero and variance

var {γi|H0} =
2σ2

ζ|H0

M
= 2σ2

γ|H0
.

By conditioning with respect to F and ϕ, the correlator output
is therefore a complex Gaussian variable with mean zero and
variance

var {xi|H0, F, ϕ} = 2σ2
x|H0

= E
{
|α|2

}
2σ2

γ|H0
+ 2σ2

η

=
1

M

[
psEs

+∞∑
k=−∞

R2
p [(k +D)Ts] + 2σ2

]
.

As a consequence, the test statistic Λ follows the central χ2

distribution with 2L degrees of freedom, each of which having
variance equal to σ2

y|H0
= σ2

x|H0
/L. Hence, the probability of

false alarm can be computed as

PFA = P {Λ > ξ|H0, F, ϕ}

= exp

{
− ξ

2σ2
y|H0

}
L−1∑
k=0

1

k!

(
ξ

2σ2
y|H0

)k
(11)

which is independent of both F and ϕ [8].

C. Optimization of the correlation length

For a given probability of false alarm, we will find the
couple (ξopt, Lopt) that maximizes the probability of detection.
Since LP = ML, to each value of L corresponds one single
value for M . As starting point for the optimization, we will
use the value of M provided by the coherent integration length
dimensioning (CHILD) rule

Mchild ∼=
3

8F
(12)

which provides an upper bound for the value of Mopt [7]. Since
the correlation length provided by the CHILD rule depends
on the frequency offset (which has to be known), we adopt as
starting point for the optimization the value corresponding to
the worst case scenario (i.e., when F = β).

IV. NUMERICAL RESULTS

For the sake of simplicity, we assess the performance of the
NCPDI on the AWGN channel by assuming absence of frac-
tional timing errors (i.e., D = 0). Since the fractional timing
error is assumed deterministic, considering a non-zero value
would change the results only quantitatively. This assumption
allows us to discard the ISI contribution γi and to consider
the thermal noise only as source of nuisance. As operative
regime, we focus on the VL-SNR region, which corresponds
to the most challenging scenario for the synchronization chain.
Namely, we investigate the algorithm performance at SNR
equal to -5 dB. By employing a quadricorrelator as first stage
of the chain, a maximum residual normalized frequency offset
β equal to 5% has been considered. Even though the quadri-
correlator can provide even lower residual frequency offsets,

we have chosen such a value so as to make a conservative
assumption.

First, we validate the approximation in (10) by comparing it
with the exact expression of the average probability of detec-
tion in (7), evaluated via numerical integration. As reported
in Fig. 2, the approximation is very good even at very low
probabilities. The approximation in (10) will be used later in
the characterization of the performance of the algorithm.
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approx M = 5, ε = 0.06
approx M = 6, ε = 0.07
approx M = 7, ε = 0.08
approx M = 8, ε = 0.09

Fig. 2. Exact and approximated probabilities of detection for different values
of the correlation length M .

Further, we optimize the correlation length M in order to
minimize the average probability of missed detection PMD =
1−PD for a given probability of false alarm PFA. By assuming
PFA = 10−5, we numerically evaluate the threshold ξ and
the number of sub-blocks L used in (11). Then, by assuming
LP = 270 (which is the length of the SoSF field in the
DVB-S2X standard [1]), we compute the correlation length
M = bLP /Lc, where bzc denotes the highest integer lower
than z. For different values of M we get different thresholds,
and we use these to compute the corresponding values of
PD by resorting to (10). The resulting curve in Fig. 3 shows
that the optimal value for M (at SNR equal to -5 dB) is
Mopt = 5, which is lower than the value obtained by the
CHILD rule Mchild = 7.5 in the worst case scenario (i.e.,
with F = 0.05). This result is in apparent contradiction
to the CHILD rule in (12), since to a lower (on average)
frequency offset should have corresponded a larger value of
M . However, the CHILD rule does not take into account the
signal processing performed by the NCPDI algorithm, and
provides only an upper bound to the optimal correlation length
Mopt [7]. Indeed, as M increases, L decreases and a sufficient
averaging effect in (3) does not occur, leading to higher noise
and poorer performance. On the other hand, decreasing M
reduces the reliability of the correlation (2), leading to a
performance degradation. Moreover, since the curve is steep,
a wrong choice of M can have a significant impact on the
probability of missed detection.

Finally, the performance of the NCPDI has been assessed
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Fig. 3. Probability of missed detection as a function of the correlation length
M at SNR = −5 dB corresponding to a probability of false alarm equal to
10−5, for F random uniformly distributed in [−0.05, 0.05].

in terms of receiver operating characteristics (ROC), which
is the specific performance measure for a detection scheme.
For each value of PFA, the corresponding values of threshold
ξ and correlation length M have been computed by means
of (11). As before, PMD has been evaluated by means of
(10) and validated via numerical simulations for different
values of ξ and M . Concerning the numerical simulations,
for each point at least 100 missed detections have occurred
over a maximum value of simulated frame equal to 107.
The resulting ROCs are shown in Fig. 4, highlighting the
dependence of the optimal correlation length M on PFA.
Therefore, different systems, having different specifics (e.g.,
complexity constraints limiting the correlation length M or
the number of sub-blocks L) and/or performance requirements
(e.g., different required probabilities of false alarm or missed
detection), will have different optimal design parameters.
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Fig. 4. ROCs for NCPDI at SNR = −5 dB and random F uniformly
distributed in [−0.05, 0.05] for different values of M .

V. CONCLUSIONS

In this paper, we have considered the problem of optimizing
the NCDPI algorithm for frame synchronization in presence of
an unknown frequency offset. Taking a Bayesian approach, we
have modelled the residual frequency offset (i.e., the output of
a coarse frequency offset estimator) as a uniformly distributed
random variable. In such a scenario, we have derived the exact
average probability of detection (in integral form) and a tight
closed-form approximation. The derived expression is then
used to optimize the NCDPI parameters, and the performance
of the resulting detector is enumerated. It can be verified
that the proposed methodology provides for a robust design
that can be used in a number of challenging scenarios like
aeronautical and maritime communications.

VI. ACKNOWLEDGEMENT

This work was partly funded by the European Space
Agency’s ARTES-5.1 project "Novel ground components pro-
totype beyond DVB-S2 for broadband satellite networks"
(AO/1-7621/13/NL/NR, Activity Reference 6-.016) under
the contract 4000110120/14/NL/NR, and by the Erasmus+
Traineeship Program.

REFERENCES

[1] ETSI EN 302 307-2 Digital Video Broadcasting (DVB), Second gen-
eration framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband
satellite applications, Part II: S2-Extensions (DVB-S2X), Available on
ETSI web site (http://www.etsi.org).

[2] A. N. D’Andrea and U. Mengali, “Design of quadricorrelators for
automatic frequency control systems,” IEEE Trans. Commun., vol. 41,
no. 6, pp. 988–997, June 1993.

[3] R. Pedone, M. Villanti, A. Vanelli-Coralli, G. Corazza, and P. Math-
iopoulos, “Frame synchronization in frequency uncertainty,” IEEE Trans.
Commun., vol. 58, no. 4, pp. 1235–1246, April 2010.

[4] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication.
Addison-Wesley, 1995.

[5] M. Villanti, P. Salmi, and G. Corazza, “Differential post detection inte-
gration techniques for robust code acquisition,” IEEE Trans. Commun.,
vol. 55, no. 11, pp. 2172–2184, Nov 2007.

[6] G. Corazza and R. Pedone, “Generalized and average likelihood ratio
testing for post detection integration,” IEEE Trans. Commun., vol. 55,
no. 11, pp. 2159–2171, Nov 2007.

[7] G. E. Corazza, R. Pedone, and M. Villanti, “Frame acquisition for
continuous and discontinuous transmission in the forward link of satel-
lite systems,” International Journal of Satellite Communications and
Networking, vol. 24, no. 2, pp. 185–201, 2006.

[8] J. Proakis and M. Salehi, Digital Communications, 5th ed., McGraw-
Hill, Ed., 2008.

[9] J. Marcum, “Table Q-functions, U.S. air force project RAND res. memo.
m-339, ASTIA document AD 1165451,” Rand Corp., Santa Monica, CA,
USA, Tech. Rep., 1950.

[10] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables. U.S. Department of
Commerce, National Bureau of Standard, Applied Mathematics Series,
1972.

[11] A. Nuttall, “Some integral involving the Q-function,” Naval Underwater
Systems Center, New London, Connecticut, USA, Tech. Rep., April
1972.


