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A B S T R A C T

Several real-world binary classification problems are example-
dependent cost-sensitive in nature, where the costs due to misclassifica-
tion vary between examples and not only within classes. However, stan-
dard binary classification methods do not take these costs into account,
and assume a constant cost of misclassification errors. This approach is
not realistic in many real-world applications. For example in credit card
fraud detection, failing to detect a fraudulent transaction may have an
economical impact from a few to thousands of Euros, depending on
the particular transaction and card holder. In churn modeling, a model
is used for predicting which customers are more likely to abandon a
service provider. In this context, failing to identify a profitable or un-
profitable churner has a significant different economic result. Similarly,
in direct marketing, wrongly predicting that a customer will not accept
an offer when in fact he will, may have different financial impact, as not
all customers generate the same profit. Lastly, in credit scoring, accept-
ing loans from bad customers does not have the same economical loss,
since customers have different credit lines, therefore, different profit.

Accordingly, the goal of this thesis is to provide an in-depth analysis
of example-dependent cost-sensitive classification. We analyze four real-
world classification problems, namely, credit card fraud detection, credit
scoring, churn modeling and direct marketing. For each problem, we
propose an example-dependent cost-sensitive evaluation measure.

We propose four example-dependent cost-sensitive methods; the first
method is a cost-sensitive Bayes minimum risk classifier which consists
in quantifying tradeoffs between various decisions using probabilities
and the costs that accompany such decisions. Second, we propose a
cost-sensitive logistic regression technique. This algorithm is based on a
new logistic regression cost function; one that takes into account the real
costs due to misclassification and correct classification. Subsequently,
we propose a cost-sensitive decision trees algorithm which is based on
incorporating the different example-dependent costs into a new cost-
based impurity measure and a new cost-based pruning criteria. Lastly,
we define an example-dependent cost-sensitive framework for ensem-
bles of decision-trees. It is based on training example-dependent cost-
sensitive decision trees using four different random inducer methods
and then blending them using three different combination approaches.
Moreover, we present the library CostCla developed as part of the the-
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sis. This library is an open-source implementation of all the algorithms
covered in this manuscript.

Finally, the experimental results show the importance of using the
real example-dependent financial costs associated with real-world ap-
plications. We found that there are significant differences in the results
when evaluating a model using a traditional cost-insensitive measure
such as accuracy or F1Score, than when using the financial savings.
Moreover, the results show that the proposed algorithms have better
results for all databases, in the sense of higher savings.
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1
I N T R O D U C T I O N

1.1 motivation and scope

Classification, in the context of machine learning, deals with the prob-
lem of predicting the class of a set of examples given their features.
Traditionally, classification methods aim at minimizing the misclassifi-
cation of examples in which an example is misclassified if the predicted
class is different from the true class. Such a traditional framework as-
sumes that all misclassification errors carry the same cost. This is not
the case in many real-world applications. Methods that use different
misclassification costs are known as cost-sensitive classifiers. Typical
cost-sensitive approaches assume a constant cost for each type of er-
ror, in the sense that, the cost depends on the class and is the same
among examples [Elkan, 2001; Kim et al., 2012].

This class-dependent approach is not realistic in many real-world ap-
plications. For example in credit card fraud detection, failing to detect
a fraudulent transaction may have an economical impact from a few to
thousands of Euros, depending on the particular transaction and card
holder [Ngai et al., 2011]. In churn modeling, a model is used for pre-
dicting which customers are more likely to abandon a service provider.
In this context, failing to identify a profitable or unprofitable churner
has a significant different economic result [Verbraken et al., 2013]. Sim-
ilarly, in direct marketing, wrongly predicting that a customer will not
accept an offer when in fact he will, may have different financial impact,
as not all customers generate the same profit [Zadrozny et al., 2003].
Lastly, in credit scoring, accepting loans from bad customers does not
have the same economical loss, since customers have different credit
lines, therefore, different profits [Verbraken et al., 2014].

Methods that use different misclassification costs are known as cost-
sensitive classifiers. In particular, we are interested in methods that
are example-dependent cost-sensitive, in the sense that the costs vary
among examples and not only among classes [Elkan, 2001]. However,
the literature on example-dependent cost-sensitive methods is limited,
mostly because there is a lack of publicly available datasets that fit the
problem [Aodha and Brostow, 2013]. Example-dependent cost-sensitive
classification methods can be grouped according to the step where the
costs are introduced into the system. Either the costs are introduced
prior to the training of the algorithm, after the training or during train-
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2 introduction

Prior Training

During Training

After Training

· Cost-proportionate rejection sampling

· Cost-proportionate over sampling

· Cost-sensitive logistic regression

· Cost-sensitive decision trees

· Ensembles of cost-sensitive decision trees

· Bayes minimum risk

Figure 1.1: Different example-dependent cost-sensitive algorithms grouped ac-
cording to the stage in a classification system where they are used.

ing [Wang, 2013]. In Figure 1.1, the different algorithms are grouped
according to the stage in a classification system where they are used.

The first set of methods that were proposed to deal with cost-
sensitivity consist in re-weighting the training examples based on their
costs, either by cost-proportionate rejection-sampling [Zadrozny et al.,
2003], or cost-proportionate over-sampling [Elkan, 2001]. The rejection-
sampling approach consists in randomly selecting examples from a
training set, and accepting each example with probability equal to the
normalized misclassification cost of the example. On the other hand,
the over-sampling method consists in creating a new set, by making n
copies of each example, where n is related to the normalized misclassi-
fication cost of the example. These methods however, fail to introduce
the example-dependent cost to the training of the different algorithms,
and only rely on modifying the prior distribution of the training data.

The focus of this thesis is to investigate and define different example-
dependent cost-sensitive classification algorithms, that not only focus
on modifying the distribution of the training data but also introduce
the different real financial costs during the training of the algorithms.
We summarize the contributions of this thesis in the following section.
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1.2 contributions

This dissertation summarizes several contributions to the field of
example-dependent cost-sensitive machine learning.

(a) Cost-sensitive financial evaluation measure
Binary classification algorithms are normally evaluated using cost-
insensitive evaluation measures, such as misclassification rate or
F1Score. However, these measures may not be the most appropri-
ate evaluation criteria when evaluating real-world cost-sensitive
problems, because they tacitly assume that misclassification er-
rors carry the same cost. In this thesis, we propose a new sav-
ings example-dependent cost-sensitive evaluation measure. The
savings take into account the actual financial impact of the differ-
ent misclassification errors. This work was published in [Correa
Bahnsen et al., 2013].

(b) Cost-sensitive credit card fraud detection
Preventing credit card fraud is a classical example of a cost-
sensitive problems, as the cost of a false negative is significantly
different than the cost of a false positive. We discuss the partic-
ularities of credit card fraud detection and propose a financial
evaluation measure that takes into account the economical costs
associated with credit card fraud. Moreover, we propose to create
a new set of features based on analyzing the periodic behavior of
the time of a transaction using a modelling with a von Mises dis-
tribution. This work was published in [Correa Bahnsen et al., 2013,
2014b] and is under review in Correa Bahnsen et al. [2015d,e].

(c) Example-dependent cost-sensitive real-world problems
We analyze and propose financial evaluation measures for other
real-world applications, namely, credit card fraud detection ,
churn modeling and direct marketing. The different analyses were
presented in [Correa Bahnsen et al., 2014b,a, 2015b].

(d) Cost-sensitive Bayes minimum risk
In this thesis we propose a direct cost approach to make the clas-
sification decision based on the expected costs. This method is
an extension of Bayes minimum risk, and consists in quantifying
tradeoffs between various decisions using probabilities and the
costs that accompany such decisions. This model was published
in [Correa Bahnsen et al., 2013, 2014b].

(e) Cost-sensitive logistic regression and decision trees
The Bayes minimum risk method only introduces the costs after
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the training of an algorithm, leaving opportunities to investigate
the potential impact of algorithms that take into account the real
financial example-dependent costs during the training of an al-
gorithm. We propose a new cost-sensitive logistic regression. The
method consists in introducing example-dependent costs into a lo-
gistic regression, by changing the objective function of the model
to one that is cost-sensitive. We then apply a similar approach by
introducing the costs in a cost-sensitive decision tree. The method
is based on a new splitting criteria which is cost-sensitive, used
during the tree construction. These methods were published in
[Correa Bahnsen et al., 2014a, 2015a].

(f) Ensembles of cost-sensitive decision trees
Based on the cost-sensitive decision tree algorithm, we expand the
cost-sensitive decision trees by creating a framework for an ensem-
ble of cost-sensitive decision trees. This new method, step on the
advantages of ensemble learning in order to create a more robust
model. This work was submitted for review [Correa Bahnsen et al.,
2015c].

(g) CostCla: A cost-sensitive classification library
The algorithms developed as part of this thesis are publicly avail-
able as part of the open-source CostSensitiveClassification1 library.

1.3 outline

Part I of this manuscript is focused on giving the general concepts
of classification and cost-sensitive classification. In particular, in Chap-
ter 2, we give a background on classification. Then, in Chapter 3, we
present the cost-sensitive problem and define the difference between
cost-insensitive, class-dependent cost-sensitive and example-dependent
cost-sensitive classification problems. Lastly, we give an introduction of
the different evaluation measures used throughout this thesis.

Part II is dedicated to explaining the particularities of the four real-
world classification problems that are the focus of this thesis, in par-
ticular, credit card fraud detection, credit scoring, churn modeling and
direct marketing. In general, we show why each of the applications is
example-dependent cost-sensitive, and we elaborate a framework for
the analysis of each problem. This part is organized in two chapters.
First, in Chapter 4, we discuss the applications within financial risk
management. Second, in Chapter 5, we analyze marketing analytics ap-
plications.

1 https://github.com/albahnsen/CostSensitiveClassification

https://github.com/albahnsen/CostSensitiveClassification
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Part III is focused on introducing our proposed example-dependent
cost-sensitive methods. First, in Chapter 6, we present the Bayes mini-
mum risk method. Then, we introduce the cost-sensitive logistic regres-
sion algorithm in Chapter 7. Afterwards, in Chapter 8, we show and
discuss the cost-sensitive decision trees algorithm. Lastly, in Chapter 9,
we present our framework for ensembles of cost-sensitive decision trees.

Chapter 10 concludes the thesis, and elaborates on possible lines
for future research. Lastly, in the Appendix A, we present the library
CostCla developed as part of the thesis. This library is an open-source
implementation of all the algorithms covered in this manuscript.

1.4 publications
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sandar Stojanovic, Djamila Aouada and Björn Ottersten. In Pro-
ceedings of IEEE International Conference on Machine Learning
and Applications, 2013.
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Stojanovic, Djamila Aouada and Björn Ottersten. In Proceedings of
SIAM International Conference on Data Mining, 2014.
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2015.
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B A S I C S O N C L A S S I F I C AT I O N

Outline

In this chapter, we introduce classification models from a machine learn-
ing perspective. First, in Section 2.1, we give a self contained intro-
duction to classification, including the most-common algorithms, and
the main applications of classification models. Then, in Section 2.2, we
present the different evaluation measures that are normally used for
analyzing the performance of classification methods.

2.1 introduction

In machine learning, classification refers to the attempt of identifying
to which of a set of classes a new example belongs, based on learning
from examples whose class membership is known. A classification task
begins with a training set in which the class of a set of examples is
known. For example, a classification model that predicts credit card
fraud is developed by analyzing many observed credit transactions over
a period of time. The class in this case is a variable which indicates for
each example whether or not the transaction was or not a fraud. Also,
the features, are the transaction attributes like place, amount and time
of the transaction.

Then, during the training process, a classification algorithm finds the
patterns and relationships between the values of the features and the
values of the target class. Different algorithms use different methods
and techniques to estimate these relationships. Afterwards, these rela-
tionships are summarized in a model that is able to make predictions
on new sets of data.

In general, there are two types of classification models: binary and
multi-class. In binary classification problems, the objective is to classify
examples between two classes, usually referred to as the negative and
positive classes. On the other hand, multi-class problems are not bound
to two classes but instead aim to classify examples among a number of
classes. In this work we focus on binary classification problems.

Binary classification algorithms are widely used across a variety of
domains. For example in the medical field, models have been used for
making predictions about tumors, probability of a disease, probability
of selecting the right drug for a particular patient, and estimating the

9
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Step 1: Training

Step 2: Prediction

Class label y

Training Set Strain

Classification

Algorithm

f(Strain)

Testing Set Stest Prediction

f(Stest)

Predicted

class c

Figure 2.1: Classification process

probability of relapsing, among others [Herland et al., 2014]. In the fi-
nancial sector, classification models have been successfully applied for
fraud detection, credit scoring, portfolio management and algorithmic
trading. Also, in marketing, several models are being currently used
for churn modeling, customer targeting, behavior prediction and direct
marketing [Baesens, 2014]. Additionally, classification algorithms are
used in many other emerging applications such as terrorism prevention,
malware detection, computer security, energy consumption prediction,
spam classification, and others [Kriegel et al., 2007].

Formally, a binary classification algorithm deals with the problem
of predicting the class yi of a set S of examples or instances i, given
their k features xi ∈ Rk. The objective is to construct a function f(S) that
makes a prediction ci of the class of each example i from S using its
feature vector xi, where |S| = N. Moreover, some algorithms allow to
not only estimate the prediction, but also its confidence, in the form of
the probability p̂i of belonging to the positive class, i.e. ci = 1. The way
for finding from p̂i to ci is simply by defining a probability threshold t,
and applying the following formula

ci =

 0 if p̂i 6 t

1 otherwise,
(2.1)

Usually t = 1
2 [Hastie et al., 2009]. However, if t 6= 1

2 , the function that
generates the predicted class labels c = [ci] is denoted as ft.

In Figure 2.1, the process of training and prediction in a classification
algorithm are summarized. First, during the training phase, using a
training set Strain, an algorithm is trained to predict y, where y = [yi].
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Figure 2.2: Example of a classification algorithm. Using a set of examples from
two classes, a classification algorithm is learned in order to separate
between the positives and the negatives.

Then the algorithm is used to estimate the classes c of a set of testing
examples Stest.

There exists several algorithms that can be used for classification tasks.
In general a classification algorithm is learned with the objective of find-
ing patterns that separate between the different classes [Hastie et al.,
2009]. In order to clarify this intuition, in Figure 2.2 an example of a clas-
sification algorithm is shown. Let us consider a set of examples, where
the red points represent the positive examples and the blue ones the
negative examples. The objective of a classifier is to find the best way to
separate between the positive and negative examples. Then, the output
of a classifier learned using the set of training examples is shown as the
dashed black line. It is observed that this classifier is able to separate
almost all the examples using a linear classifier. However, not all ex-
amples are correctly classified. In particular, there are four negative ex-
amples that were predicted as positive, and five positive examples that
were predicted as negative. In the next section, we present the standard
methods for evaluating the performance of a classification algorithm.

2.2 traditional evaluation measures

When evaluating the performance of a classification algorithm, the first
thing to do is to check the number of examples that were misclassified,
since the true class of the examples is known. Therefore, evaluating
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Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
True Positive (TP) False Positive (FP)

ci = 1

Predicted Negative
False Negative (FN) True Negative (TN)

ci = 0

Table 2.1: Classification confusion matrix

the error of a model is as simple as counting the number of times an
example is misclassified divided by the number of examples

Err(f(S)) = 1−
1

N

N∑
i=1

1yi(ci), (2.2)

where 1q(z) is an indicator function that is calculated as:

1q(z) =

 1 if z = q

0 if z 6= q.
(2.3)

Moreover the accuracy is defined as the percentage of times the algo-
rithm made the correct prediction

Acc(f(S)) = 1− Err(f(S)). (2.4)

However, just knowing these statistics is not enough to make deci-
sions, as in many applications it is important to know where the errors
are coming from. In particular, the misclassified examples may belong
only to one class, which may give interesting insights about the prob-
lem. A way to observe the different errors is by looking at the confusion
matrix, as shown in Table 2.1. Afterwards, using the cost matrix several
statistics are extracted. In particular:

Recall =
TP

TP+ FN
(2.5)

Precision =
TP

TP+ FP
(2.6)

F1Score = 2
Precision · Recall
Precision+ Recall

(2.7)
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Figure 2.3: Example of a classification algorithm. Using a set of examples from
two classes, a classification algorithm is learned in order to separate
between the positives and the negatives.

As an illustrative example, the different statistics are calculated for
the example presented in Section 2.1. First, the confusion matrix is cal-
culated as follows:

Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
36 4

ci = 1

Predicted Negative
5 68

ci = 0

Then using the confusion matrix, the different statistics are calculated
as: Error = 11.11%, Recall = 87.8%, Precision = 90% and F1Score = 88.8%.

There are, however, several instances that are misclassified, that is be-
cause the simple linear classifier that was used in this example may not
be good enough to separate between the positive and negative classes.
In order to make a comparison, using the same example, a new algo-
rithm is learned. This time the algorithm made the correct prediction
more often as shown in Figure 2.3. Afterwards, the confusion matrix is
calculated as follows:

Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
37 2

ci = 1

Predicted Negative
4 70

ci = 0
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Then the different statistics are calculated as: Error = 5.3%, Recall =
90.2%, Precision = 94.9% and F1Score = 92.5%. It is observed that in
this case the FP are reduced more than the FN, this leads to a higher
increase in precision than in recall. There is not a single rule regarding
which one is more important than the other, it depends on the applica-
tion. For example in applications with a high false negative cost such
as failing to identify a tumor in a medical exam, the recall should be
the priority, even if that implies having a significant number of false
positives. On the other hand, In applications such as spam detection,
predicting a normal email as spam it may have a large impact on the
customer, therefore, in this example is better to allow some false nega-
tives and focus on the false positives.

It is not always straightforward to define the right tradeoff between
false positives and false negatives. The best approximation to solve that,
is to focus on the actual costs incurred by the different decisions. This
is usually solved using cost-sensitive classification methods.

2.2.1 Brier score

Traditional evaluation measures of binary classification problems, such
as Accuracy and F1Score, provide a way to analyze the performance of
a model. However, when using the classifier output as a basis for deci-
sion making, there is a need of a measure that takes into account not
only the misclassification of a classifier predicted class c, but also the
quality of the estimated probabilities p̂ [Cohen and Goldszmidt, 2004].
The most appropriate is the Brier score [Brier, 1950]. The Brier score
belongs to the class of so-called proper scores which are used in evalu-
ating the subjective probability assessment of the prediction [DeGroot
and Fienberg, 1983]. The Brier score is the average squared difference
between the estimated probability and the true class label. It is defined
as:

BS(f(S)) =
1

N

N∑
i=1

(p̂i − yi)
2. (2.8)

The main justification of this score is based on decision theoretic con-
siderations, in the sense that, a forecaster should pay a price propor-
tional to the confidence with which it asserts its decision.
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C O S T- S E N S I T I V E C L A S S I F I C AT I O N

Outline

In this chapter, we introduce the problem of cost-sensitive classifica-
tion. Standard classification models aim at minimizing the misclassifica-
tion of examples, in which an example is misclassified if the predicted
class is different from the true class. However, this is not the case in
many real-world applications. In this chapter, first, we introduce cost-
sensitive classification in Section 3.1. Then, in Section 3.2, we present
the problem of class-dependent cost-sensitive classification. Then, in
Section 3.3, we present the general framework of example-dependent
cost-sensitive classification. Within this section, we first introduce a
method for defining the type of cost-sensitivity of a problem. After-
wards, we present the different cost-sensitive performance evaluation
measures. Lastly, we present state-of-the-art example-dependent cost-
sensitive methods, namely, cost-proportionate rejection-sampling and
cost-proportionate over-sampling.

3.1 introduction

Classification methods are used to predict the class of different exam-
ples given their features. Standard methods aim at maximizing the accu-
racy of the predictions, in which an example is correctly classified if the
predicted class is the same the as true class. This traditional approach
assumes that all correctly classified and misclassified examples carry
the same cost. This, however, is not the case in many real-world appli-
cations. Methods that use different misclassification costs are known as
cost-sensitive classifiers. Typical cost-sensitive approaches assume a con-
stant cost for each type of error, in the sense that, the cost depends on
the class and is the same among examples [Elkan, 2001; Kim et al., 2012].
Nevertheless, this class-dependent approach is not realistic in many real-
world applications.

For example in credit card fraud detection, failing to detect a fraud-
ulent transaction may have an economical impact from a few to thou-
sands of Euros, depending on the particular transaction and card holder
[Sahin et al., 2013]. In churn modeling, a model is used for predicting
which customers are more likely to abandon a service provider. In this
context, failing to identify a profitable or unprofitable churner has a sig-
nificant different financial impact [Glady et al., 2009]. Similarly, in direct

15
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marketing, wrongly predicting that a customer will not accept an offer
when in fact he will, has a different impact than the other way around
[Zadrozny et al., 2003]. Also in credit scoring, where declining good
customers has a non constant impact since not all customers generate
the same profit [Verbraken et al., 2014]. Lastly, in the case of intrusion
detection, classifying a benign connection as malicious has a different
cost than when a malicious connection is accepted [Ma et al., 2011].

In order to deal with these specific types of cost-sensitive problems,
called example-dependent cost-sensitive, some methods have been pro-
posed recently. However, the literature on example-dependent cost-
sensitive methods is limited, mostly because there is a lack of publicly
available datasets that fit the problem [Aodha and Brostow, 2013]. Stan-
dard solutions consist in modifying the training set by re-weighting
the examples proportionately to the misclassification costs [Elkan, 2001;
Zadrozny et al., 2003].

3.2 class-dependent cost-sensitive classification

The literature in cost-sensitive classification is mostly focused in class-
dependent problems [Elkan, 2001], where the cost of misclassification is
associated with the class. Usually, the cost of misclassifying a positive
example is denoted by CFN and the one of misclassifying a negative ex-
ample is denoted by CFP. Conceptually, CFN > 0 and CFP > 0; moreover,
they are normally defined such that CFN +CFP = 2 [Flach et al., 2011],
as when CFN = CFP = 1 represents the case of cost-insensitive classifi-
cation. Using the previous notation, a class-dependent cost measure is
defined as [Wang et al., 2014]:

Costcd(f(S)) = CFP · FP+CFN · FN. (3.1)

Over the past decades, various algorithms have been proposed for
class-dependent cost-sensitive classification in literature. Several au-
thors have used modifications of the decision trees that take into ac-
count the different class-dependent costs [Draper et al., 1994; Ting, 2002;
Ling et al., 2004; Li et al., 2005; Kretowski and Grześ, 2006; Vadera, 2010;
Lomax and Vadera, 2013]. Similarly, applications of bagging and boost-
ing algorithms have been used for cost-sensitive classification [Nesbitt,
2010; Street, 2008; Masnadi-shirazi and Vasconcelos, 2011; Fan et al.,
1999]. Recently, various variations to support vector machines have also
been used for this problem [Li et al., 2010; Masnadi-shirazi, 2010]. Lastly,
online learning algorithms have also been used for cost-sensitive tasks
[Wang et al., 2014].

Following the example shown in Section 2.1, we now assume that
misclassifying a negative example has a cost of CFN = 0.2 and for a pos-
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Figure 3.1: Class-dependent cost-sensitive classification algorithm. Since the
cost of misclassifying positives and negatives is different, the algo-
rithm focus on maximizing the correct classification of the positives.

itive example, the cost is CFP = 1.8. Under this scenario, misclassifying a
positive example has a much higher cost than misclassifying a negative
one. Taking that into account, in Figure 3.1, we show an algorithm (Al-
gorithm3), that focused on maximizing the correct classification of the
positives. In the following table, we compare the results of the standard
measures and the class-dependent cost, of Algorithm3 and the classifi-
cation algorithms presented in Figure 2.2 (Algorithm1) and Figure 2.3
(Algorithm2):

Algorithm Error Recall Precision F1Score Costcd

Algorithm1 11.11% 87.8% 90% 88.8% 9.8

Algorithm2 5.3% 90.2% 94.9% 92.5% 7.6

Algorithm3 7.97% 92.68% 86.36% 89.41% 6.6

It is found, that by focusing on the positives, Algorithm3 arises to
a lower cost, even though the traditional metrics are worse for Algo-
rithm3 than for Algorithm2. In conclusion, it is of highly importance to
take into account the cost when evaluating and training a classification
model.

3.3 example-dependent cost-sensitive classification

The class-dependent framework introduced in the previous section is
highly restrictive, as assuming that the different costs are constant be-
tween classes is not realistic in many real world applications. In fraud
detection, fraudulent transactions can have a financial impact from hun-
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Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
CTPi CFPi

ci = 1

Predicted Negative
CFNi CTNi

ci = 0

Table 3.1: Classification cost matrix

Negative C∗
FNi

=
(CFNi−CTNi)

(CFPi−CTNi)

Positive C∗
TPi

=
(CTPi−CTNi)

(CFPi−CTNi)

Table 3.2: Simplified classification cost matrix [Elkan, 2001]

dreds or thousands of Euros [Sahin et al., 2013]. In this context, the
example-dependent costs can be represented using a 2x2 cost matrix
[Elkan, 2001], that introduces the costs associated with two types of cor-
rect classification, cost of true positives (CTPi), cost of true negatives
(CTNi), and the two types of misclassification errors, cost of false posi-
tives (CFPi), cost of false negatives (CFNi), as defined in Table 3.1.

Conceptually, the cost of correct classification should always be lower
than the cost of misclassification. These are referred to as the “reason-
ableness“ conditions [Elkan, 2001], and are defined as CFPi > CTNi and
CFNi > CTPi . Taking into account the “reasonableness“ conditions, a
simpler cost matrix with only one degree of freedom has been defined
in [Elkan, 2001], by scaling and shifting the initial cost matrix. The sim-
pler cost-matrix is shown in Table 3.2.

3.3.1 Example-dependent evaluation measures

Common cost-insensitive evaluation measures, such as misclassification
rate or F1Score, assume the same cost for the different misclassification
errors. Using these measures is not suitable for example-dependent cost-
sensitive binary classification problems. Indeed, two classifiers with
equal misclassification rates but different numbers of false positives and
false negatives do not have the same impact on cost since CFPi 6= CFNi ;
therefore, there is a need for a measure that takes into account the ac-
tual costs {CTPi ,CFPi ,CFNi ,CTNi} of each example i, as introduced in
Section 3.3.

Let S be a set of N examples i, N = |S|, where each example is repre-
sented by the augmented feature vector x∗i = [xi,CTPi ,CFPi ,CFNi ,CTNi ]
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and labeled using the class label yi ∈ {0, 1}. A classifier f which gener-
ates the predicted label ci for each element i is trained using the set S.
Then the cost of using f on S is calculated by

Cost(f(S)) =

N∑
i=1

Cost(f(x∗i )), (3.2)

where

Cost(f(x∗i )) =yi(ciCTPi + (1− ci)CFNi)+

(1− yi)(ciCFPi + (1− ci)CTNi). (3.3)

However, the total cost may not be easy to interpret. In [Whitrow et al.,
2008], a normalized cost measure was proposed, by dividing the total cost
by the theoretical maximum cost, which is the cost of misclassifying
every example. The normalized cost is calculated using

Costn(f(S)) =
Cost(f(S))∑N

i=1CFNi · 10(yi) +CFPi · 11(yi)
. (3.4)

We propose similar approach in [Correa Bahnsen et al., 2014a], where
the savings of using an algorithm are defined as the cost of the algo-
rithm versus the cost of using no algorithm at all. To do that, the cost of
the costless class is defined as

Costl(S) = min{Cost(f0(S)),Cost(f1(S))}, (3.5)

where

fa(S) = {a}, with a ∈ {0, 1}. (3.6)

The cost improvement can be expressed as the cost savings as com-
pared with Costl(S).

Savings(f(S)) =
Costl(S) −Cost(f(S))

Costl(S)
. (3.7)

In order to illustrate this concept, we use the same example shown in
Section 2.1. However, now we add the variation in the costs by showing
the examples with the highest cost darker, and the ones with the lowest
cost lighter. The new example is shown in Figure 3.2. Moreover, in the
following table we summarize the different example-dependent costs:

Class Cost light Cost normal Cost dark

Negative 0.1 0.5 5.0

Positive 1.0 2.0 10.0
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Figure 3.2: Example with example-dependent costs. Examples with the highest
cost in darker colors, and the ones with the lowest cost are in lighter
colors.
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Figure 3.3: Example-dependent cost-sensitive classification algorithm. The al-
gorithm focus first on correctly classify the dark examples, as the
cost of misclassification in this cases is several times more expensive
than the other cases.

Taking into account the example-dependent costs, in Figure 3.3 (Al-
gorithm4), we show a new algorithm that gives a higher importance on
correctly classify the dark examples, as the cost of misclassification in
this cases is several times more expensive than the other cases. Further-
more, in the following table, we compare the results of the standard
measures and the example-dependent savings of Algorithm4 and the
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classification algorithms presented in Figure 2.2 (Algorithm1), Figure
2.3 (Algorithm2) and Figure 3.1 (Algorithm3):

Algorithm Error Recall Precision F1Score Savings

Algorithm1 11.11% 87.8% 90% 88.8% 46.86%

Algorithm2 5.3% 90.2% 94.9% 92.5% 68.36%

Algorithm3 7.97% 92.68% 86.36% 89.41% 48.07%

Algorithm4 6.19% 92.68% 90.48% 91.56% 87.42%

With these examples, we illustrate the impact that the costs have on
the algorithms. Moreover, we highlight the importance of using the dif-
ferent costs when evaluating the different models. It is worth mention-
ing how distinct are the results if the costs are ignored and an algo-
rithm is trained and evaluated not taking into account the different costs
present in most real-world applications.

3.3.2 Binary classification cost characteristic

A classification problem is said to be cost-insensitive if costs of both
errors are equal. It is class-dependent cost-sensitive if the costs are dif-
ferent but constant. Finally we talk about an example-dependent cost-
sensitive classification problem if the cost matrix is not constant for all
the examples.

However, the definition above is not general enough. There are many
cases when the cost matrix is not constant and still the problem is cost-
insensitive or class-dependent cost-sensitive. For example, if the costs
of correct classification are zero, CTPi = CTNi = 0, and the costs of
misclassification are CFPi = a0 · zi and CFNi = a1 · zi, where a0 and
a1, are constants and zi is a random variable. This is an example of a
cost matrix that is not constant. However, C∗FNi and C∗TPi are constant,
i.e. C∗FNi = (a1 · zi)/(a0 · zi) = a1/a0 and C∗TPi = 0 ∀i. In this case the
problem is cost-insensitive if a0 = a1, or class-dependent cost-sensitive
if a0 6= a1, even given the fact that the cost matrix is not constant.

Nevertheless, using only the simpler cost matrix is not enough to de-
fine when a problem is example-dependent cost-sensitive. To achieve
this, we defined the following cost characteristic for a given binary clas-
sification problem as:

bi = C
∗
FNi

−C∗TPi , (3.8)

and define its mean and standard deviation as µb and σb, respectively.
Using µb and σb, we analyze different binary classification problems.

A binary classification problem is defined according to the following
conditions:
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µb σb Type of classification problem

1 0 cost-insensitive

6= 1 0 class-dependent cost-sensitive

6= 0 example-dependent cost-sensitive

3.3.3 State-of-the-art methods

As mentioned earlier, taking into account the different costs associated
with each example, some methods have been proposed to make classi-
fiers example-dependent cost-sensitive. These methods may be grouped
in two categories. Methods based on changing the class distribution
of the training data, which are known as cost-proportionate sampling
methods; and direct cost methods [Wang, 2013].

A standard method to introduce example-dependent costs into classi-
fication algorithms is to re-weight the training examples based on their
costs, either by cost-proportionate rejection-sampling [Zadrozny et al.,
2003], or over-sampling [Elkan, 2001]. The rejection-sampling approach
consists in selecting a random subset Sr by randomly selecting exam-
ples from S, and accepting each example iwith probabilitywi/max

1,...,N
{wi},

where wi is defined as the expected misclassification error of example i:

wi = yi ·CFNi + (1− yi) ·CFPi . (3.9)

Lastly, the over-sampling method consists in creating a new set So, by
making wi copies of each example i. However, cost-proportionate over-
sampling increases the training since |So| >> |S|, and it also may result
in over-fitting [Drummond and Holte, 2003]. Furthermore, none of these
methods uses the full cost matrix but only the misclassification costs.

The second approach consists in using the predicted probability p̂i,
estimated using a given classifier f, and modify the threshold t such
that the savings are maximized. This method is called cost-sensitive
thresholding [Sheng and Ling, 2006]. The idea behind this approach
is to adaptively modify the probability threshold of an algorithm ft in
order to maximize the savings Savings(ft(S)) of the algorithm ft on a
given set S. The threshold is calculated using the following equation

tthresholding = arg max
t

Savings(ft(S)). (3.10)
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Outline

In this chapter, we present two different real-world example-dependent
cost-sensitive problems related to financial risk modeling, namely, credit
card fraud detection and credit scoring. Both problems are example-
dependent cost-sensitive, as failing to identify a fraudulent transaction
may have a financial impact ranging from tens to thousands of Euros.
Similarly, in credit scoring, approving a customer that later does not pay
his debt has a significant impact on a bank profit. First, in Section 4.1,
we introduce the credit card fraud detection problem and propose new
periodic features. Lastly, in Section 4.2, we present the credit scoring
problem and propose a new financial evaluation measure for this prob-
lem.

4.1 credit card fraud detection

The use of credit and debit cards has increased significantly in the last
years, unfortunately so has the fraud. Because of that, billions of Eu-
ros are lost every year. According to the European Central Bank [Euro-
pean Central Bank, 2014], during 2012 the total level of fraud reached
1.33 billion Euros in the Single Euro Payments Area, which represents
an increase of 14.8% compared with 2011. Moreover, payments across
non traditional channels (mobile, internet, ...) accounted for 60% of the
fraud, whereas it was 46% in 2008. This opens new challenges as new
fraud patterns emerge, and current fraud detection systems are not be-
ing successful in preventing fraud. Furthermore, fraudsters constantly
change their strategies to avoid being detected, something that makes
traditional fraud detection tools such as expert rules inadequate.

The use of machine learning in fraud detection has been an interest-
ing topic in recent years. Several detection systems based on machine
learning techniques have been successfully used for this problem [Bhat-
tacharyya et al., 2011]. When constructing a credit card fraud detec-
tion model, there are several problems that have an important impact
during the training phase: Skewness of the data, cost-sensitivity of the
application, short time response of the system, dimensionality of the
search space and how to preprocess the features [Bolton et al., 2002;
Bachmayer, 2008; Whitrow et al., 2008; Pozzolo et al., 2014a; Van Vlas-
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selaer et al., 2015]. We are interested in addressing the cost-sensitivity
and the features preprocessing issues.

Credit card fraud detection is by definition a cost-sensitive problem,
in the sense that the cost due to a false positive is different than the
cost of a false negative. When predicting a transaction as fraudulent,
when in fact it is not a fraud, there is an administrative cost that is
incurred by the financial institution. On the other hand, when failing to
detect a fraud, the amount of that transaction is lost [Hand et al., 2007].
Moreover, it is not enough to assume a constant cost difference between
false positives and false negatives, as the amount of the transactions
varies quite significantly; therefore, its financial impact is not constant
but depends on each transaction.

When constructing a credit card fraud detection model, it is very im-
portant to use those features that will help the algorithm make the best
decision. Typical models only use raw transactional features, such as
time, amount, place of the transaction. However, these approaches do
not take into account the spending behavior of the customer, which
is expected to help discover fraud patterns [Bachmayer, 2008]. A stan-
dard way to include these behavioral spending patters was proposed
in [Whitrow et al., 2008], where Whitrow et al. proposed a transaction
aggregation strategy in order to take into account a customer spending
behavior. The derivation of the aggregated features consists in group-
ing the transactions made during the last given number of hours, first
by card or account number, then by transaction type, merchant group,
country or other, followed by calculating the number of transactions or
the total amount spent on those transactions.

In this section, we first present a new cost-based measure to evaluate
credit card fraud detection models, taking into account the different fi-
nancial costs incurred by the fraud detection process. Afterwards, we
propose an expanded version of the transaction aggregation strategy,
by incorporating a combination criteria when grouping transactions,
i.e., instead of aggregating only by card holder and transaction type,
we combine it with country or merchant group. This allows to have
a much richer feature space. Moreover, we are interested in analyzing
the impact of adding the time of a transaction. The logic behind it, is
that a customer is expected to make transactions at similar hours. We,
hence, propose a new method for creating features based on the peri-
odic behavior of a transaction time, using the von Mises distribution
[Fisher, 1996]. In particular, these new time features should estimate if
the time of a new transaction is within the confidence interval of the
previous transaction time. Furthermore, we present the real credit card
fraud dataset provided by a large European card processing company
used for the experiments in this thesis.
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4.1.1 Credit card fraud detection evaluation

A credit card fraud detection algorithm consists in identifying those
transactions with a high probability of being fraud, based on histor-
ical fraud patterns. The use of machine learning in fraud detection
has been an interesting topic in recent years. Different detection sys-
tems that are based on machine learning techniques have been success-
fully used for this problem, in particular: neural networks [Maes et al.,
2002], Bayesian learning [Maes et al., 2002], artificial immune systems
[Bachmayer, 2008], association rules [Sánchez et al., 2009], hybrid mod-
els [Krivko, 2010], support vector machines [Bhattacharyya et al., 2011],
peer group analysis [Weston et al., 2008], online learning [Pozzolo et al.,
2014a], discriminant analysis [Mahmoudi and Duman, 2015] and social
network analysis [Van Vlasselaer et al., 2015].

Most of these studies compare their proposed algorithm with a bench-
mark algorithms and then make the comparison using a standard
binary classification measure, such as misclassification error, receiver
operating characteristic (ROC), Kolmogorov-Smirnov (KS) or F1Score
statistics [Bolton et al., 2002; Hand et al., 2007; Pozzolo et al., 2014a].
However, these measures may be not the most appropriate evaluation
criteria when evaluating fraud detection models, because they tacitly
assume that misclassification errors carry the same cost, similarly with
the correct classified transactions. This assumption does not hold in
practice, since wrongly predicting a fraudulent transaction as legitimate
carries a significantly different financial cost than the inverse case. Fur-
thermore, the accuracy measure also assumes that the class distribution
among transactions is constant and balanced [Provost et al., 1998], and
typically the distributions of a fraud detection dataset are skewed, with
a percentage of frauds ranging from 0.005% to 0.5% [Bachmayer, 2008;
Bhattacharyya et al., 2011].

In order to take into account the different costs of fraud detection
during the evaluation of an algorithm, we may use the cost matrix de-
fined in Table 3.1. Hand et al. [Hand et al., 2007] proposed a cost matrix,
where in the case of false positive the associated cost is the adminis-
trative cost CFPi = Ca related to analyzing the transaction and con-
tacting the card holder. This cost is the same assigned to a true positive
CTPi = Ca, because in this case, the card holder will have to be contacted.
However, in the case of a false negative, in which a fraud is not detected,
the cost is defined to be a hundred times larger, i.e. CFNi = 100Ca. This
same approach was also used in [Bachmayer, 2008].

Nevertheless, in practice, losses due to a specific fraud range from
few to thousands of Euros, which means that assuming constant cost for
false negatives is unrealistic. In order to address this limitation, we pro-
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Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
CTPi = Ca CFPi = Ca

ci = 1

Predicted Negative
CFNi = Amti CTNi = 0

ci = 0

Table 4.1: Credit card fraud cost matrix

pose a cost matrix that takes into account the actual example-dependent
financial costs. Our cost matrix defines the cost of a false negative to be
the amount CFNi = Amti of the transaction i. We argue that this cost
matrix is a better representation of the actual costs, since when a fraud
is not detected, the losses of that particular fraud correspond to the
stolen amount. The costs are summarized in Table 4.1.

Afterwards, using (3.3) a cost measure for fraud detection is calcu-
lated as:

Cost(f(S)) =

N∑
i=1

yi(1− ci)Amti + ciCa, (4.1)

then, the savings of an algorithm are calculated using (3.7).

4.1.2 Feature engineering for fraud detection

When constructing a credit card fraud detection algorithm, the initial
set of features (raw features) include information regarding individual
transactions. It is observed throughout the literature, that regardless
of the study, the set of raw features is quite similar. This is because
the data collected during a credit card transaction must comply with
international financial reporting standards [American Institute of CPAs,
2011]. In Table 4.2, the typical credit card fraud detection raw features
are summarized.

4.1.2.1 Customer spending patterns

Several studies use only the raw features in carrying their analysis
[Brause et al., 1999; Minegishi and Niimi, 2011; Panigrahi et al., 2009;
Sánchez et al., 2009]. However, as noted in [Bolton and Hand, 2001],
a single transaction information is not sufficient to detect a fraudulent
transaction, since using only the raw features leaves behind important
information such as the consumer spending behavior, which is usually
used by commercial fraud detection systems [Whitrow et al., 2008].
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Attribute name Description

Transaction ID Transaction identification number

Time Date and time of the transaction

Account number Identification number of the customer

Card number Identification of the credit card

Transaction type ie. Internet, ATM, POS, ...

Entry mode ie. Chip and pin, magnetic stripe, ...

Amount Amount of the transaction in Euros

Merchant code Identification of the merchant type

Merchant group Merchant group identification

Country Country of trx

Country 2 Country of residence

Type of card ie. Visa debit, Mastercard, American Express...

Gender Gender of the card holder

Age Card holder age

Bank Issuer bank of the card

Table 4.2: Summary of typical raw credit card fraud detection features

To deal with this, in [Bachmayer, 2008], a new set of features were
proposed such that the information of the last transaction made with
the same credit card is also used to make a prediction. The objective, is
to be able to detect very dissimilar continuous transactions within the
purchases of a customer. The new set of features include: time since the
last transaction, previous amount of the transaction, previous country
of the transaction. Nevertheless, these features do not take into account
consumer behavior other than the last transaction made by a client, this
leads to having an incomplete profile of customers.

A more compressive way to take into account a customer spending
behavior is to derive some features using a transaction aggregation strat-
egy. This methodology was initially proposed in [Whitrow et al., 2008].
The derivation of the aggregation features consists in grouping the trans-
actions made during the last given number of hours, first by card or
account number, then by transaction type, merchant group, country or
other, followed by calculating the number of transactions or the total
amount spent on those transactions. This methodology has been used
by a number of studies [Bhattacharyya et al., 2011; Weston et al., 2008;
Tasoulis and Adams, 2008; Correa Bahnsen et al., 2013; Sahin et al., 2013;
Correa Bahnsen et al., 2014b; Pozzolo et al., 2014a].

When aggregating a customer transactions, there is an important
question on how much to accumulate, in the sense that the marginal
value of new information may diminish as time passes. Whitrow et al.
[2008] discuss that aggregating 101 transactions is not likely to be
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more informative than aggregating 100 transactions. Indeed, when time
passes, information lose their value, in the sense that a customer spend-
ing patterns are not expected to remain constant over the years. In par-
ticular, Whitrow et al. define a fixed time frame to be 24, 60 or 168

hours.
The process of aggregating features consists in selecting those trans-

actions that were made in the previous tp hours, for each transaction i
in the dataset S,

Sagg ≡ TRXagg(S,i, tp) =
{
xamtl

∣∣∣∣ (xidl = xidi

)
∧
(
hours(xtimei , xtimel ) < tp

)}N
l=1

, (4.2)

where N = |S|, | · | being the cardinality of a set, xtimei is the time of
transaction i, xamti is the amount of transaction i, xidi the customer iden-
tification number of transaction i, and hours(t1, t2) is a function that
calculates the number of hours between the times t1 and t2. Afterwards
the feature number of transactions and amount of transactions in the
last tp hours are calculated as:

xa1i = |Sagg|, (4.3)

and

xa2i =
∑

xamt∈Sagg

xamt, (4.4)

respectively.
We note that this aggregation is not enough, in the sense that the

combination of different features is not being taken into account. For
example, it is not only interesting to see the total transactions, but also
group them following a certain criteria, such as: transactions made in
the last tp hours, in the same country and of the same transaction type.
For calculating such features, first we expand (4.2) as follows

Sagg2 ≡TRXagg(S, i, tp, cond1, cond2) =
{
xamtl

∣∣∣∣(
xidl = xidi

)
∧
(
hours(xtimei , xtimel ) < tp

)
∧(

x
cond1
l = xcond1i

)
∧
(
x
cond2
l = xcond2i

)}N
l=1

. (4.5)

where, cond1 and cond2, could be either of the features of a transaction
listed in Table 4.2. Then, the features are calculated as:

xa3i = |Sagg2|, (4.6)
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Raw features Aggregated features

Id Time Type Country Amt xa1i xa2i xa3i xa4i
1 01/01 18:20 POS LUX 250 0 0 0 0

2 01/01 20:45 POS LUX 400 1 250 1 250

3 01/01 22:40 ATM LUX 250 2 650 0 0

4 02/01 00:50 POS GER 50 3 900 0 0

5 02/01 19:18 POS GER 100 3 700 1 50

6 02/01 23:45 POS GER 150 2 150 2 150

7 03/01 06:00 POS LUX 10 3 400 0 0

Table 4.3: Example calculation of aggregated features. For all aggregated fea-
tures tp = 24.

and

xa4i =
∑

xamt∈Sagg2

xamt. (4.7)

To further clarify how the aggregated features are calculated we show
an example. Consider a set of transactions made by a client between the
first and third of January of 2015, as shown in Table 4.3. Then we esti-
mate the aggregated features (xa1i , xa2i , xa3i and xa4i ) by setting tp = 24

hours. The different aggregated features give us different information
of the customer spending behavior. Moreover, the total number of ag-
gregated features can grow quite quickly, as tp can have several values,
and the combination of combination criteria can be quite large as well.
In this thesis, we use a total of 280 aggregated features. In particular
we set the different values of tp to: 1, 3, 6, 12, 18, 24, 72 and 168 hours.
Then calculate the aggregated features using (4.2), and also using (4.5)
with the following grouping criteria: country, type of transaction, entry
mode, merchant code and merchant group.

4.1.2.2 Time features

When using the aggregated features, there is still some information that
is not completely captured by those features. In particular we are inter-
ested in analyzing the time of the transaction. The logic behind this, is
that a customer is expected to make transactions at similar hours. The
issue when dealing with the time of the transaction, specifically, when
analyzing a feature such as the mean of transactions time, is that it is
easy to make the mistake of using the arithmetic mean. Indeed, the
arithmetic mean is not a correct way to average time because, as shown
in Figure 4.1, it does not take into account the periodic behavior of the
time feature. For example, the arithmetic mean of transaction time of
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Figure 4.1: Analysis of the time of a transaction using a 24 hour clock. The
arithmetic mean of the transactions time (dashed line) do not accu-
rately represents the actual times distribution.

four transactions made at 2:00, 3:00, 22:00 and 23:00 is 12:30, which is
counter intuitive since no transaction was made close to that time.

We propose to overcome this limitation by modeling the time of the
transaction as a periodic variable, in particular using the von Mises dis-
tribution [Fisher, 1996]. The von Mises distribution, also known as the
periodic normal distribution, is a distribution of a wrapped normal dis-
tributed variable across a circle. The von Mises probability distribution
of a set of examples D = {t1, t2, · · · , tN} for a given angle tx is given by

f (tx|µvM,σvM) =
e

1
σvM

cos(tx−µvM)

2πI0

(
1

σvM

) (4.8)

where I0(κ) is the modified Bessel function of order 0, and µvM, σvM are
the periodic mean and periodic standard deviation, respectively, and
are defined as

µvM(D) = 2 · arctan

 φ(√
ψ2 +φ2 +ψ

)
 , (4.9)

and

σvM(D) =

√√√√√√ln
 1(

φ
N

)2
+
(
ψ
N

)2
, (4.10)
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Figure 4.2: Fitted von Mises distribution including the periodic mean (dashed
line) and the probability distribution (purple area).

respectively. Where φ =
∑
tj∈D sin(tj) and ψ =

∑
tj∈D cos(tj) [Bishop,

2006].
In particular we are interested in calculating a confidence interval (CI)

for the time of a transaction. For doing that, initially we select a set of
transactions made by the same client in the last tp hours,

Sper ≡ TRXvM(S, i, tp) =
{
xtimel

∣∣∣∣ (xidl = xidi

)
∧(

hours(xtimei , xtimel ) < tp

)}N
l=1

. (4.11)

Afterwards, the probability distribution function of the time of the set
of transactions is calculated as:

xtimei ∼ vonmises

(
µvM(Sper),

1

σvM(Sper)

)
. (4.12)

In Figure 4.2, the von Mises distribution calculation for the earlier ex-
ample is shown. It is observed that the arithmetic mean is quite different
from the periodic mean, the latter being a more realistic representation
of the actual transactional times. Then, using the estimated distribution,
a new set of features can be extracted, ie., a binary feature (xp1i ) if a new
transaction time is within the confidence interval range with probability
α. An example is presented in Figure 4.3. Furthermore, other features
can be calculated, as the confidence interval range can be calculated for
several values of α, and also the time period can have an arbitrary size.

Additionally, following the same example presented in Table 4.3, we
calculate a feature xp1i , as a binary feature that takes the value of one if
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Figure 4.3: Expected time of a transaction (green area). Using the confidence
interval, a transaction can be flag normal or suspicious, depending
whether or not the time of the transaction is within the confidence
interval.

Raw features Arithmetic Periodic features

Id Time mean mean Confidence interval x
p1
i

1 01/01 18:20 — — — —

2 01/01 20:45 — — — —

3 01/01 22:40 19:27 19:27 15:45 - 23:10 True

4 02/01 00:50 20:28 20:28 17:54 - 23:03 False

5 02/01 19:18 16:44 22:44 18:51 - 00:17 True

6 02/01 23:45 16:19 21:07 15:21 - 02:52 True

7 03/01 06:00 18:43 22:43 17:19 - 01:46 False

Table 4.4: Example calculation of periodic features.

the current time of the transaction is within the confidence interval of
the time of the previous transactions with a confidence of α = 0.9. The
example is shown in Table 4.4, where the arithmetic and periodic means
differ, as for the last transaction both means are significantly different.
Moreover, the new feature helps to get a better understanding of when
a customer is expected to make transactions.

Finally, when calculating the periodic features, it is important to use
longer time frames tp, since if the distribution is calculated using only a
couple of transactions it may not be as relevant of a customer behavior
patterns, compared against using a full year of transactions. Evidently,
if tc is less than 24 hours, any transaction made afterwards will not be
expected to be within the distribution of previous transactional times.
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To avoid this, we recommend using at least the previous 7 days of trans-
actional information, therefore, having a better understanding of its be-
havioral patterns. Lastly, this approach can also be used to estimate
features such as the expected day of the week of transactions, as some
customers may only use their credit cards during the weekend nights,
or during working hours.

4.1.3 Database

For this thesis we use a dataset provided by a large European card
processing company. The dataset consists of fraudulent and legitimate
transactions made with credit and debit cards between January 2012

and June 2013. The total dataset contains 120,000,000 individual trans-
actions, each one with 27 attributes, including a fraud label indicating
whenever a transaction is identified as fraud. This label was created in-
ternally in the card processing company, and can be regarded as highly
accurate. In the dataset only 40,000 transactions were labeled as fraud,
leading to a fraud ratio of 0.025%.

4.2 credit scoring

In this section, we consider the second financial risk management appli-
cation, namely, credit scoring. In order to mitigate the impact of credit
risk and make more objective and accurate decisions, financial institu-
tions use credit scores to predict and control their losses. The objective
in credit scoring is to classify which potential customers are likely to
default a contracted financial obligation based on the customer’s past
financial experience, and with that information decide whether to ap-
prove or decline a loan [Anderson, 2007]. This tool has become a stan-
dard practice among financial institutions around the world in order
to predict and control their loans portfolios. When constructing credit
scores, it is a common practice to use standard cost-insensitive binary
classification algorithms such as logistic regression, neural networks,
discriminant analysis, genetic programing, decision trees, among oth-
ers [Hand and Henley, 1997; Correa Bahnsen and Gonzalez Montoya,
2011].

Formally, a credit score is a statistical model that allows the estima-
tion of the probability p̂i = P(yi = 1|xi) of a customer i defaulting a
contracted debt. Additionally, since the objective of credit scoring is to
estimate a classifier ci to decide whether or not to grant a loan to a
customer i, a threshold t is defined such that if p̂i < t, then the loan is
granted, i.e., ci(t) = 0, and denied otherwise, i.e., ci(t) = 1.
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Figure 4.4: Credit scoring sensitivity versus specificity thresholding procedure.

There exists different approaches for defining the probability thresh-
old. The sensitivity versus specificity (SvsS) approach is the most widely
used among financial institutions [Anderson, 2007], where specificity is
the true positive rate F0(t) for a threshold t, and the sensitivity is one mi-
nus the false positive rate F1(t) given a threshold t [Hernandez-Orallo
et al., 2012]. In this method the objective is to fix the threshold at the
point where the sensitivity is equal to the specificity F0(t) = 1− F1(t),
where F0(t) and F1(t) are calculated using:

Fa(t) =
1

Na
|{xi|xi ∈ Sa ∧ p̂i 6 t}|, for a ∈ {0, 1}. (4.13)

Lastly, the SvsS threshold tSvsS is found by using

tSvsS = arg min
t

|F0(t) − (1− F1(t))|. (4.14)

This process is further clarified in Figure 4.4.
After the classifier ci is estimated, there is a need to evaluate its per-

formance. In practice, many statistical evaluation measures are used to
assess the performance of a credit scoring model. Measures such as
the area under the receiver operating characteristic curve (AUC), Brier
score, Kolmogorov-Smirnoff (K-S) statistic, F1-Score, and misclassifica-
tion are among the most common [Beling et al., 2005]. Nevertheless,
none of these measures takes into account the business and economical
realities that take place in credit scoring. Costs that the financial insti-
tution had incurred to acquire customers, or the expected profit due to
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a particular client, are not considered in the evaluation of the different
models. This is explored in detail in the next section.

4.2.1 Financial evaluation of a credit scorecard

Typically, a credit risk model is evaluated using standard cost-
insensitive measures. However, in practice, the cost associated with ap-
proving what is known as a bad customer, i.e., a customer who de-
faulted his credit loan, is quite different from the cost associated with
declining a good customer, i.e., a customer who successfully repaid his
credit loan. Furthermore, the costs are not constant among customers.
This is because loans have different credit line amounts, terms, and
even interest rates. Some authors have proposed methods that include
the misclassification costs in the credit scoring context [Verbraken et al.,
2014; Alejo and Garc, 2013; Beling et al., 2005; Oliver and Thomas, 2009].
However, they assume a constant misclassification cost, which is not the
case in credit scoring.

Initial approaches to include the different costs have been published
in recent years, particularly the one proposed by Beling et al. [Beling
et al., 2005; Oliver and Thomas, 2009], in which the costs of misclas-
sification are assigned for each error. Specifically, setting the cost of a
false positive CFP to the loan’s annual interest rate charged to the cus-
tomer intr, the cost of a false negative CFN to the loss given default Lgd,
which is the percentage of loss over the total credit line when the cus-
tomer defaulted, and setting to zero the costs of true positive CTP and
true negative CTN. Using that, they proposed the expected cost (EC)
method to find the probability threshold that minimizes those costs,
tec = CFN

CFN+CFP
=

Lgd
Lgd+intr

. Nevertheless, this approach assumes a con-
stant cost within examples, which is a strong assumption, since in prac-
tice each example carries a very different cost given by the different
credit limits and conditions of each loan. Consequently, there is a need
for an example-dependent cost matrix that takes into account the cost
of misclassifying each example.

4.2.1.1 Example-dependent cost-sensitive evaluation measure

In order to take into account the varying costs that each example car-
ries, we propose a cost matrix with example-dependent misclassifica-
tion costs as given in Table 4.5. First, we assume that the costs of a
correct classification, CTPi and CTNi , are zero for every customer i. We
define CFNi the losses if the customer i defaults to be proportional to
his credit line Cli. We define the cost of a false positive per customer
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Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
CTPi = 0 CFPi = ri +C

a
FP

ci = 1

Predicted Negative
CFNi = Cli · Lgd CTNi = 0

ci = 0

Table 4.5: Credit scoring example-dependent cost matrix

CFPi as the sum of two real financial costs ri and CaFP, where ri is the
loss in profit by rejecting what would have been a good customer.

The profit per customer ri is calculated as the present value of the
difference between the financial institution gains and expenses, given
the credit line Cli, the term li and the financial institution lending rate
intri for customer i, and the financial institution of cost funds intcf.

ri = PV(A(Cli, intri , li), intcf, li) −Cli, (4.15)

with A being the customer monthly payment and PV the present value
of the monthly payments, which are calculated using the time value of
money equations [Lawrence and Solomon, 2012],

A(Cli, intri , li) = Cli
intri(1+ intri)

li

(1+ intri)
li − 1

, (4.16)

and

PV(A, intcf, li) =
A

intcf

(
1−

1

(1+ intcf)li

)
. (4.17)

The second term CaFP is related to the assumption that the financial
institution will not keep the money of the declined customer idle. It will
instead give a loan to an alternative customer [Nayak and Turvey, 1997].
Since no further information is known about the alternative customer,
it is assumed to have an average credit line Cl and an average profit r.
The false positive cost for an alternative customer becomes

CaFP = −r · π0 +Cl · Lgd · π1 (4.18)

In other words, it is minus the profit of an average alternative customer
plus the expected loss, taking into account that the alternative customer
will pay his debt with a probability equal to the prior negative rate, and
similarly will default with probability equal to the prior positive rate.

4.2.1.2 Calculation of the credit limit

One key parameter of our model is the credit limit. There exists sev-
eral strategies to calculate the Cli depending on the type of loans, the
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state of the economy, the current portfolio, among others [Anderson,
2007; Lawrence and Solomon, 2012]. Nevertheless, given the lack of in-
formation regarding the specific business environments of the consid-
ered datasets, we simply define Cli as

Cli = min
{
q · Inci,Clmax,Clmax(debti)

}
, (4.19)

where Inci and debti are the monthly income and debt ratio of the
customer i, respectively, q is a parameter that defines the maximum Cli
as a function of the Inci, and Clmax the maximum overall credit line.
Lastly, the maximum credit line given the current debt is calculated as
the maximum credit limit such that the current debt ratio plus the new
monthly payment does not surpass the customer monthly income. It is
calculated as

Clmax(debti) = PV (Inci · Pm(debti), intri , li) , (4.20)

and

Pm(debti) = min
{
A(q · Inci, intri , li)

Inci
, (1− debti)

}
. (4.21)

4.2.2 Databases

For this thesis we use two different publicly available credit scoring
datasets. The first dataset is the 2011 Kaggle competition Give Me
Some Credit1, in which the objective is to identify those customers of
personal loans that will experience financial distress in the next two
years. The second dataset is from the 2009 Pacific-Asia Knowledge Dis-
covery and Data Mining conference (PAKDD) competition2. Similarly,
this competition had the objective of identifying which credit card ap-
plicants were likely to default and by doing so deciding whether or not
to approve their applications. The Kaggle Credit and PAKDD Credit
datasets contain information regarding the features, and more impor-
tantly about the income of each example, from which an estimated
credit limit Cli can be calculated.

The Kaggle Credit dataset contains 112,915 examples, each one with
10 features and the class label. The proportion of default or positive ex-
amples is 6.74%. On the other hand, the PAKDD Credit dataset contains
38,969 examples, with 30 features and the class label, with a proportion
of 19.88% positives. This database comes from a Brazilian financial in-
stitution, and as it can be inferred from the competition description, the
data was obtained around 2004.

1 http://www.kaggle.com/c/GiveMeSomeCredit/
2 http://sede.neurotech.com.br:443/PAKDD2009/
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Parameter
Kaggle PAKDD

Credit Credit

Interest rate (intr) 4.79% 63.0%

Cost of funds (intcf) 2.94% 16.5%

Term (l) in months 24 24

Loss given default (Lgd) 75% 75%

Times income (q) 3 3

Maximum credit line (Clmax) 25,000 25,000

Table 4.6: Credit scoring model parameters

Since no specific information regarding the datasets is provided, we
assume that they belong to average European and Brazilian financial
institutions. This enable us to find the different parameters needed to
calculate the cost measure. In Table 4.6, the different parameters are
shown. In particular, we obtained the average interest rates in Europe
during 2013 from the European Central Bank [ECB, 2014], and the av-
erage interest and exchange rates in Brazil during 2004 from Trading
Economics [Economics, 2014]. Because the income is not in the same cur-
rency on both datasets, we convert the PAKDD Credit dataset to Euros.
Additionally, we use a fixed loan term l for both datasets, considering
that in the Kaggle Credit dataset the class was constructed to predict
two years of credit behavior, and because the PAKDD Credit dataset
is related to credit cards the term is fixed to two years [Lawrence and
Solomon, 2012]. Moreover, we set the loss given default Lgd using infor-
mation from the Basel II standard3, q to 3 since it is the average personal
loan requests related to monthly income, and the maximum credit limit
Clmax to 25,000 Euros.

4.3 summary of the datasets

For each dataset we used a pre-defined cost matrix as shown in Sec-
tion 4.1 and Section 4.2. Additionally, for each database, three differ-
ent datasets are extracted: training, validation and testing, each one
containing 50%, 25% and 25% of the examples, respectively. After-
wards, because classification algorithms suffer when the label distri-
bution is skewed towards one of the classes [Hastie et al., 2009], an
under-sampling of the positive examples is made, in order to have a bal-
anced class distribution. Moreover, we perform the cost-proportionate
rejection-sampling and cost proportionate over-sampling procedures,
that we previously described in Section 3.3.3. Table 4.7, summarizes the
different datasets. It is important to note that the sampling procedures

3 http://www.bis.org/publ/bcbsca.htm.
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were only applied to the training dataset since the validation and test
datasets must reflect the real distribution.

Database Set N π1 Cost (Euros)

Fraud Total 236,735 1.50 895,154

Detection Training (t) 94,599 1.51 358,078

Under-sampled (u) 2,828 50.42 358,078

Rejection-sampled (r) 94,522 1.43 357,927

Over-sampled (o) 189,115 1.46 716,006

Validation 70,910 1.53 274,910

Testing 71,226 1.45 262,167

Credit Total 112,915 6.74 83,740,181

Scoring 1 Training (t) 45,264 6.75 33,360,130

Under-sampled (u) 6,038 50.58 33,360,130

Rejection-sampled (r) 5,271 43.81 29,009,564

Over-sampled (o) 66,123 36.16 296,515,655

Validation 33,919 6.68 24,786,997

Testing 33,732 6.81 25,593,055

Credit Total 38,969 19.88 3,117,960

Scoring 2 Training (t) 15,353 19.97 1,221,174

Under-sampled (u) 6,188 49.56 1,221,174

Rejection-sampled (r) 2,776 35.77 631,595

Over-sampled (o) 33,805 33.93 6,798,282

Validation 11,833 20.36 991,795

Testing 11,783 19.30 904,991

Table 4.7: Summary of the financial datasets, where N is the number of exam-
ples and π1 is the percentage of positive examples.
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M A R K E T I N G A N A LY T I C S

Outline

In this chapter, we present two different marketing real-world example-
dependent cost-sensitive problems, namely, churn modeling and direct
marketing. Both problems deal with identifying those customers with
certain characteristic with the objective to maximize the results of the
different CRM strategies. First, we introduce the churn modeling prob-
lem and present the proposed financial evaluation measure for a churn
campaign in Section 5.1. Lastly in Section 5.2, the direct marketing
problem is presented including the proposed example-dependent cost-
sensitive cost matrix for evaluating this problem.

5.1 churn modeling

Customer churn predictive modeling deals with predicting the prob-
ability of a customer defecting using historical, behavioral and socio-
economical information. This tool is of great benefit to subscription
based companies allowing them to maximize the results of retention
campaigns. The problem of churn predictive modeling has been widely
studied by the data mining and machine learning communities. It is
usually tackled by using classification algorithms in order to learn the
different patterns of both the churners and non-churners. Nevertheless,
current state-of-the-art classification algorithms are not well aligned
with commercial goals, in the sense that, the models miss to include
the real financial costs and benefits during the training and evaluation
phases. In the case of churn, evaluating a model based on a traditional
measure such as accuracy or predictive power, does not yield to the
best results when measured by the actual financial cost, i.e., investment
per subscriber on a loyalty campaign and the financial impact of failing
to detect a real churner versus wrongly predicting a non-churner as a
churner.

In this section, we propose a cost-sensitive framework for customer
churn predictive modeling. First, in Section 5.1.1, we introduce the prob-
lem of chrun modeling. Then in Section 5.1.2, we present a financial
based measure for evaluating the effectiveness of a churn campaign tak-
ing into account the available portfolio of offers, their individual finan-
cial cost and probability of offer acceptance depending on the customer
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profile. Finally, in Section 5.1.3, we describe the real-world churn mod-
eling dataset that will be used during the experiments.

5.1.1 Flow analysis of a churn campaign

The two main objectives of subscription-based companies are to acquire
new subscribers and retain those they already have, mainly because
profits are directly linked with the number of subscribers. In order to
maximize the profit, companies must increase the customer base by
incrementing sales while decreasing the number of churners. Further-
more, it is common knowledge that retaining a customer is about five
times less expensive than acquiring a new one [Farris et al., 2010], this
creates pressure to have better and more effective churn campaigns.

A typical churn campaign consists in identifying from the current
customer base which ones are more likely to leave the company, and
make an offer in order to avoid that behavior. With this in mind the
companies use intelligence to create and improve retention and collec-
tion strategies. In the first case, this usually implies an offer that can be
either a discount or a free upgrade during certain span of time. In both
cases the company has to assume a cost for that offer, therefore, accurate
prediction of the churners becomes important. The logic of this flow is
shown in Figure 5.1.

The churn campaign process starts with the sales that every month
increase the customer base, however, monthly there is a group of cus-
tomers that decide to leave the company for many reasons. Then the
objective of a churn model is to identify those customers before they
take the decision of defecting.

Using a churn model, those customers more likely to leave are pre-
dicted as churners and an offer is made in order to retain them. How-
ever, it is known that not all customers will accept the offer, in the case
when a customer is planning to defect, it is possible that the offer is not
good enough to retain him or that the reason for defecting can not be
influenced by an offer. Using historical information, it is estimated that
a customer will accept the offer with probability γ. On the other hand,
there is the case in which the churn model misclassified a non-churner
as churner, also known as false positives, in that case the customer will
always accept the offer that means and additional cost to the company
since those misclassified customers do not have the intentions of leav-
ing.

In the case were the churn model predicts customers as non-churners,
there is also the possibility of a misclassification, in this case an actual
churner is predicted as non-churner, since these customers do not re-
ceive an offer and they will leave the company, these cases are known
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Figure 5.1: Flow analysis of a churn campaign [Verbraken, 2012]

as false negatives. Lastly, there is the case were the customers are ac-
tually non-churners, then there is no need to make a retention offer to
these customers since they will continue to be part of the customer base.

It can be seen that a churn campaign (or churn model) has three
main points. First, avoid false positives since there is a financial cost of
making an offer where it is not needed. Second, find the right offer to
give to those customers identified as churners. And lastly, to decrease
the number of false negatives.

From a machine learning perspective, a churn model is a classifica-
tion algorithm. In the sense that using historical information, a predic-
tion of which current customers are more likely to defect, is made. This
model is normally created using one of a number of well established al-
gorithms (Logistic regression, neural networks, random forests, among
others) [Ngai et al., 2009; KhakAbi et al., 2010]. Then, the model is eval-
uated using measures such as misclassification error, receiver operat-
ing characteristic (ROC), Kolmogorov-Smirnov (KS) or F1Score statistics
[Verbeke et al., 2012]. However, these measures may not be the most ap-
propriate evaluation criteria when evaluating a churn model, because
they tacitly assume that misclassification errors carry the same cost, sim-
ilarly with the correct classified examples. This assumption does not
hold in many real-world applications such as churn modeling, since
when misidentifying a churner the financial losses are quite different
than when misclassifying a non-churner as churner [Glady et al., 2009].
Furthermore, the accuracy measure also assumes that the class distri-
bution among examples is constant and balanced [Provost et al., 1998],
and typically the distributions of a churn data set are skewed [Verbeke
et al., 2012].

In the next section, we propose a new financial based measure for
evaluating the effectiveness of a voluntary churn campaign taking into
account the available portfolio of offers, their individual financial cost
and probability of acceptance depending on the customer profile.
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5.1.2 Propose evaluation measure of a churn campaign

Different studies have proposed measures to deal with these cost-
sensitivity related to evaluating a churn model. In [Neslin et al., 2006],
a profit-based measure was proposed by starting with the confusion
matrix and multiplying it with the expected profit of each case.

Profit1 = (TP+ FP)

[
(γCLV +Co(1− γ)(−Ca))π1γ

−Co −Ca

]
−N ·Ca, (5.1)

with Ca being the fixed administrative cost of running the campaign,
Co the average cost of the retention offer, Ca the cost of contacting the
customer, π1 the prior churn rate and CLV the average customer life-
time value or the present value of the expected profit that a customer
will generate. Moreover, as discussed in [Verbraken et al., 2013], if the
average instead of the total profit is considered and the fixed cost N ·Ca
is discarded since it is irrelevant for the classifier selection, the profit
can be expressed as:

Profit2 =TP (γ(CLV −Co −Ca) + (1− γ)Ca)

+ FP(−Co −Ca). (5.2)

Nevertheless, equations (5.1) and (5.2) assume that every customer
has the same CLV and Co, whereas this is not true in practice. In fact,
different customers have a very different CLV , and not all offers can be
made to every customer, neither do they have the same impact across
customers. In order to obtain a more business oriented measure, we
first analyze the financial impact of the different decisions, i.e., false
positives, false negatives, true positives and true negatives, for each cus-
tomer.

In Figure 5.2, the financial impact of a churn model is shown. Note
than we take into account the costs and not the profit in each case.
When a customer is predicted to be a churner, an offer is made with the
objective of avoiding the customer defecting. However, if a customer is
actually a churner, he may or not accept the offer with a probability γi.
If the customer accepts the offer, the financial impact is equal to the cost
of the offer (Coi) plus the administrative cost of contacting the customer
(Ca). On the other hand, if the customer declines the offer, the cost is the
expected income that the clients would otherwise generate, also called
customer lifetime value (CLVi), plus Ca. Lastly, if the customer is not
actually a churner, he will be happy to accept the offer and the cost will
be Coi plus Ca.
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Figure 5.2: Financial impact of the different decisions, i.e., False positives, false
negatives, true positives and true negatives

In the case that the customer is predicted as non-churner, there are
two possible outcomes. Either the customer is not a churner, then the
cost is zero, or the customer is a churner and the cost is CLVi.

The different costs are summarized in Table 5.1. Then using the cost
matrix, and the example-dependent cost-sensitive framework as de-
scribed in Section 3.3.1, an example-dependent cost statistic is calcu-
lated as:

Costi = yi(ciCTPi + (1− ci)CFNi)

+ (1− yi)(ciCFPi + (1− ci)CTNi)

= yi(ci (γi(Coi −CLVi −Ca) −Coi) +CLVi)

+ ci(Coi +Ca), (5.3)

leading to a total cost of:

Cost =

N∑
i=1

Costi. (5.4)

Furthermore, using (3.7), the savings are calculated as:

Savings =
Costl −Cost

Costl
, (5.5)

Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive CTPi = γiCoi CFPi = Coi +Ca
ci = 1 +(1− γi)(CLVi +Ca)

Predicted Negative
CFNi = CLVi CTNi = 0

ci = 0

Table 5.1: Proposed churn modeling example-dependent cost matrix



48 marketing analytics

In almost all cases the costless class (Costl) will be the negative class,
as typically the distribution of a churn dataset is skewed towards the
non-churners [Verbeke et al., 2012]. Given that Costl can be expressed
as Cost(f0), or simply Cost with ci = 0 ∀i:

Costl =

N∑
i=1

yiCLVi. (5.6)

This is consistent with the notion that if no model is used, the total cost
would be the sum of the customer lifetime values of the actual churners,
which gives the insight that the Savings measure consists in comparing
the financial impact of the campaign of using a classification model
against not using a model at all.

5.1.2.1 Customer lifetime value

Lastly, one of the key values to calculate the Savings is the customer
lifetime value. Within marketing there exists a common misconception
between customer profitability and customer lifetime value. The two
terms are usually used in an interchangeable way, creating confusion
of what the actual objective of a churn modeling campaign should be.
Several studies have proposed models providing a unique definition of
both terms [Neslin et al., 2006; Pfeifer et al., 2004; Milne and Boza, 1999;
van Raaij et al., 2003]. Customer profitability indicates the difference
between the income and the cost generated by a customer i during a
financial period t. It is defined as:

CPi,t = µ · si,t, (5.7)

where si,t refers to the consumption of customer i during time period t,
and µ refers to the average marginal profit by unit product usage.

Moreover, we are interested to see what is the expected income that
a particular customer will generate in the future, in other words, calcu-
lating the expected sum of discount future earnings [Neslin et al., 2006].
Therefore, the CLVi is defined as:

CLVi =

T∑
t=1

µ · si,t
(1+ r)t

, (5.8)

where r is the discount rate, and T the number of time period. Typically
T should be considered large enough since without prior knowledge
a customer is expected to keep being a customer for the foreseeable
future. In practice T is set up to be infinity [Glady et al., 2009]. Also, for
simplicity, it can be assumed that si,t+1 = si,t · (1+ g) ∀i, t, which means
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that there is a constant growth g in the customer consumption. Given
that, the customer lifetime value can be re-written as

CLVi =

∞∑
t=1

(1+ g)t

(1+ r)t
· µ · si,1, (5.9)

which in the case of g < r, this is a geometric series and can be expressed
as

CLVi =
µ · si,1
(r− g)

. (5.10)

5.1.3 Churn modeling database

For our experiments we use a dataset provided by a TV cable provider.
The dataset consists of active customers during the first semester of 2014.
The total dataset contains 9,410 individual registries, each one with 45

attributes, including a churn label indicating whenever a customer is
a churner. This label was created internally in the company, and can
be regarded as highly accurate. In the dataset only 455 customers are
churners, leading to a churn ratio of 4.83%.

5.1.3.1 Offer acceptance calculation

In practice companies have a set of offers to make to a customer as
part of the retention campaign. They vary from discounts to upgrades,
among others. In the particular case of a TV cable provider, the offers
include adding a new set of channels, changing the TV receiver to one
with new technology (i.e., high definition, video recording, 4K), or to
offer a discount on the monthly bill. Unsurprisingly, not all offers apply
to all clients. For instance, a customer that already has all the channels
can not be offered a new set of channels. Moreover, an offer usually
means an additional cost to the company and not all offers have the
same cost or the same impact in reducing churn.

Taking into account the cost and the implication of the offers, the
problem can be summarized in making each customer the offer that will
maximize the acceptance rate and more importantly reduce the overall
cost.

In order to calculate the acceptance probability γi a champion-
challenger process was made. First, the customers were grouped into
clusters according to their behavioral and socio-economical character-
istics. In particular the K-means algorithm was used [Marslan, 2009].
Then for a period of two months, randomly selected offers were made
to the customers and their response was evaluated. Unfortunately, for
confidentiality reasons we can not describe the different clusters, or the
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Figure 5.3: Acceptance rate (γ) of the best offer for each customer profile. As
expected, the higher the churn rate the lower the acceptance rate,
as it is more difficult to make a good offer to a customer which is
more likely to defect.

actual offer made to each customer. Nevertheless, in Figure 5.3, the aver-
age churn rate and acceptance rate γi per cluster is shown. As expected,
the higher the churn rate the lower the acceptance rate, as it is more
difficult to make a good offer to a customer that is more likely to defect.

5.2 direct marketing

In direct marketing the objective is to classify those customers who are
more likely to have a certain response to a marketing campaign [Ngai
et al., 2009]. We used a direct marketing dataset [Moro et al., 2011]
available on the UCI machine learning repository [Bache and Lichman,
2013]. The dataset contains 45,000 clients of a Portuguese bank who
were contacted by phone between March 2008 and October 2010 and
received an offer to open a long-term deposit account with attractive
interest rates. The dataset contains features such as age, job, marital
status, education, average yearly balance and current loan status and
the label indicating whether or not the client accepted the offer.

This problem is example-dependent cost sensitive, since there are dif-
ferent costs of false positives and false negatives. Specifically, in direct
marketing, false positives have the cost of contacting the client, and false
negatives have the cost due to the loss of income by failing to contact a
client that otherwise would have opened a long-term deposit.

We propose a direct marketing example-dependent cost matrix as
shown in Table 5.2. Where Ca is the administrative cost of contacting
the client, as is credit card fraud, and Inti is the expected income when
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Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
CTPi = Ca CFPi = Ca

ci = 1

Predicted Negative
CFNi = Inti CTNi = 0

ci = 0

Table 5.2: Direct marketing example-dependent cost matrix

a client opens a long-term deposit. This last term is defined as the long-
term deposit amount times the interest rate spread.

In order to estimate Inti, first the long-term deposit amount is as-
sumed to be a 20% of the average yearly balance, and lastly, the in-
terest rate spread is estimated to be 2.463%, which is the average be-
tween 2008 and 2010 of the retail banking sector in Portugal as re-
ported by the Portuguese central bank. Given that, the Inti is equal
to (balance ∗ 20%) ∗ 2.463%.

5.3 summary of the datasets

In this section we present the different marketing datasets. For each
dataset we used a pre-define cost matrix as shown in Section 5.1 and
Section 5.2. Moreover, the datasets are split in training, validation and
testing, each one containing 50%, 25% and 25% of the examples, respec-
tively. Afterwards, an under-sampling of the positive examples is made,
and we perform the cost-proportionate rejection-sampling and cost pro-
portionate over-sampling procedures, as described in Section 3.3.3. Ta-
ble 5.3, summarizes the different datasets.
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Database Set N π1 Cost (Euros)

Churn Total 9,410 4.83 580,884

Modeling Training (t) 3,758 5.05 244,542

Under-sampled (u) 374 50.80 244,542

Rejection-sampled (r) 428 41.35 431,428

Over-sampled (o) 5,767 31.24 2,350,285

Validation 2,824 4.77 174,171

Testing 2,825 4.42 162,171

Direct Total 37,931 12.62 59,507

Marketing Training (t) 15,346 12.55 24,304

Under-sampled (u) 3,806 50.60 24,304

Rejection-sampled (r) 1,644 52.43 20,621

Over-sampled (o) 22,625 40.69 207,978

Validation 11,354 12.30 16,154

Testing 11,231 13.04 19,048

Table 5.3: Summary of the marketing datasets, where N is the number of ex-
amples and π1 is the percentage of positive examples.
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B AY E S M I N I M U M R I S K

Outline

In this chapter, we propose the cost-sensitive Bayes minimum risk clas-
sifier. The method consists in quantifying tradeoffs between various
decisions using probabilities and the costs that accompany such deci-
sions. First, in Section 6.1, we present the Bayes minimum risk algo-
rithm. Then, in Section 6.2, we discuss the impact of calibrating the
probabilities in the model. Finally, in Section 6.3, using the five real-
world cost-sensitive databases, we compare the results of the proposed
algorithm, against state-of-the-art methods.

6.1 bayes minimum risk model

As defined in [Jayanta K. et al., 2006], the BMR classifier is a decision
model based on quantifying tradeoffs between various decisions using
probabilities and the costs that accompany such decisions. This is done
in a way that for each example the expected losses are minimized. In
what follows, we consider the probability estimates p̂i as known, regard-
less of the algorithm used to calculate them. The risk that accompanies
each decision is calculated using the cost matrix as described in Table
3.1. In the specific framework of binary classification, the risk of predict-
ing the example i as negative is

R(ci = 0|xi) = CTNi(1− p̂i) +CFNi · p̂i, (6.1)

and

R(ci = 1|xi) = CTPi · p̂i +CFPi(1− p̂i), (6.2)

is the risk when predicting the example as positive, where p̂i is the
estimated positive probability for example i. Subsequently, if

R(ci = 0|xi) 6 R(ci = 1|xi), (6.3)

then the example i is classified as negative. This means that the risk
associated with the decision ci is lower than the risk associated with
classifying it as positive.
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6.2 calibration of probabilities

When using the output of a binary classifier as a basis for decision mak-
ing, there is a need for a probability that not only separates well be-
tween positive and negative examples, but that also assesses the real
probability of the event [Cohen and Goldszmidt, 2004].

In this section, two methods for calibrating probabilities are explained.
First, the method proposed in [Elkan, 2001] to adjust the probabilities
based on the difference in bad rates between the training and testing
datasets. Then, the method proposed in Hernandez-Orallo et al. [2012],
in which calibrated probabilities are extracted after modifying the ROC
curve using the ROC convex hull methodology, is described.

6.2.1 Calibration due to a change in base rates

One of the reasons why a probability may not be calibrated is because
the algorithm is trained using a dataset with a different base (or positive)
rate than the one on the evaluation dataset. This is something common
in machine learning since using under-sampling or over-sampling is
a typical method to solve problems such as class imbalance and cost
sensitivity [Hulse and Khoshgoftaar, 2007].

In order to solve this and find probabilities that are calibrated, in
[Elkan, 2001] a formula that corrects the probabilities based on the dif-
ference of the base rates is proposed. The objective is using p̂ which
was estimated using a population with base rate π1, to find p̂ ′ for the
real population which has a base rate π ′1. A solution for p̂ ′ is given as
follows:

p̂ ′ = π ′1
p̂− p̂π1

π1 − π1p̂+ π
′
1p̂− π1π

′
1

. (6.4)

6.2.2 Calibration using the ROC convex hull

In order to illustrate the ROC convex hull approach proposed in
[Hernandez-Orallo et al., 2012], let us consider the set of probabilities
given in Figure 6.1a. Their corresponding ROC curve is shown in Fig-
ure 6.1b. It can be seen that this set of probabilities is not calibrated,
since when fpr = 0.1 there is a positive example followed by 2 negative
examples. This inconsistency is represented in the ROC curve as a non
convex segment over the curve.

In order to obtain a set of calibrated probabilities, first the ROC curve
must be modified in order to be convex. The way to do that, is to find the
convex hull [Hernandez-Orallo et al., 2012] to find the minimal convex
set containing the different points of the ROC curve. In Figure 6.1c,



6.2 calibration of probabilities 57
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0.3 0

0.4 1

0.5 0

0.6 1

0.7 1

0.8 0

0.9 1

1.0 1

(a) Set of probabilities
and their respective
class label

(b) ROC curve of the set of probabil-
ities

(c) Convex hull of the ROC curve

Prob Cal Prob

0.0 0

0.1 0.333

0.2 0.333

0.3 0.333

0.4 0.5

0.5 0.5

0.6 0.666

0.7 0.666

0.8 0.666

0.9 1

1.0 1

(d) Calibrated prob-
abilities

Figure 6.1: Estimation of calibrated probabilities using the ROC convex hull.

the convex hull algorithm is applied to the previously evaluated ROC
curve shown in Figure 6.1b. It is shown that the new curve is convex,
and includes all the points of the previous ROC curve.

Now that there is a new convex ROC curve or ROCCH, the calibrated
probabilities can be extracted as shown in Figure 6.1d. The procedure
to extract the new probabilities is to first group the probabilities accord-
ing to the points in the ROCCH curve, and then make the calibrated
probabilities be the slope of the ROCCH for each group.
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6.3 experiments

For the experiments we use five datasets from four different real world
example-dependent cost-sensitive problems: Credit card fraud detec-
tion (see Section 4.1), credit scoring (see Section 4.2), churn modeling
(see Section 5.1) and direct marketing (see Section 5.2). The different
datasets are summarized in Table 4.7 and Table 5.3.

For the experiments, we first used three classification algorithms, deci-
sion tree (DT ), logistic regression (LR) and random forest (RF). Using the
implementation of Scikit-learn [Pedregosa et al., 2011], each algorithm
is trained using the different training sets: training (t), under-sampling
(u), cost-proportionate rejection-sampling (r) [Zadrozny et al., 2003] and
cost-proportionate over-sampling (o) [Elkan, 2001]. Afterwards, we eval-
uate the results of the algorithms using BMR methods. In particular, we
check the impact on the results of the different calibration methods. The
implementation of the cost-sensitive algorithms is done using the Cost-
Cla library, see Appendix A.

The results are shown in Table 6.1. First, when observing the results
of the cost-insensitive methods (CI), that is, DT , LR and RF algorithms
trained on the t and u sets, the RF algorithm produces the best result
by savings in three out of the five sets, followed by the LR−u. It is also
clear that the results on the t dataset are not as good as the ones on
the u dataset, this is highly related to the unbalanced distribution of the
positives and negatives in all the databases.

In the case of cost-proportionate sampling methods (CPS), specifically
the cost-proportionate rejection sampling (r) and cost-proportionate
over sampling (o), it is observed that in four cases the savings in-
crease quite significantly. It is on the fraud detection database where
these methods do not outperform the algorithms trained on the under-
sampled set. This may be related to the fact that in this database the
initial percentage of positives is 1.5% which is similar to the percentage
in the r and o sets. However, it is 50.42% in the u set, which may help
explain why this method performs much better as measured by savings.

Afterwards, in the case of the BMR algorithms, the results show that
this method outperforms the previous ones in four cases and has al-
most the same result in the other set. In the fraud detection set, the
results are better, since the savings of the three classification algorithms
increase when using this methodology. Moreover, we found that by cali-
brating the probabilities, the results of the Bayes minimum risk increase.
In Figure 6.2, we compare the different families of algorithms, by calcu-
lating in each dataset the performance of the methods compared with
the best method. First, it is shown the huge difference of using only
cost-insensitive methods, compared with any of the cost-sensitive fam-
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Table 6.1: Results of the algorithms measured by savings



60 bayes minimum risk

CI CPS BMR CAL BMR
0

20

40

60

80

100

P
er
ce
nt
ag

e 
of
 b
es
t m

od
el

Figure 6.2: Comparison of the average savings of the algorithms versus the
highest savings by family of classifiers. When the probabilities are
calibrated there is a significant increase in savings.

ilies. Furthermore, the Bayes minimum risk methods outperforms the
cost-proportionate sampling methods.

Moreover, we evaluate the Brier score of the different algorithms. The
objective of this, is because as mention in [Cohen and Goldszmidt, 2004],
when using the output of a binary classifier as a basis for decision mak-
ing, there is a need for a probability that not only separates well be-
tween positive and negative examples, but that also assesses the real
probability of the event. The results are shown in Table 6.2. First of all,
as expected, the logistic regression models are very well calibrated re-
gardless of the dataset used for train them. This is because, the logistic
regression algorithm is intended to estimate the most reliable probabili-
ties as we will discuss in Chapter 7.

When comparing the results of the Bayes minimum risk with and
without calibration, it is clear that the calibration of the probabilities
lead to a lower Brier score as shown in Figure 6.3. Interestingly, the
results of Brier score and the savings are highly correlated, confirming
the intuition behind the need to calibrate the probabilities before using
the Bayes minimum risk method.
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Table 6.2: Results of the algorithms measured by Brier score
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Figure 6.3: Comparison of the average Brier score of the algorithms versus
the lowest Brier score by family of classifiers. Overall, the models
that are calibrated are indeed the ones with the best Brier score.
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C O S T- S E N S I T I V E L O G I S T I C R E G R E S S I O N

Outline

In this chapter, we propose a cost-sensitive logistic regression algorithm.
The model consists in a new logistic regression cost function, one that
takes into account the real costs due to misclassification and correct
classification. First, in Section 7.1, we give the background behind lo-
gistic regression. Then, in Section 7.2, we describe the cost-sensitive lo-
gistic regression. For this, we carry a deep analysis of the logistic re-
gression implicit misclassification costs in Section 7.2.1. Then in Section
7.2.2, we give a new version of the logistic regression cost function. Fi-
nally, in Section 7.3, we compare the results of the proposed algorithm
against state-of-the-art methods, using the five real-world cost-sensitive
databases presented in Part II.

7.1 logistic regression

Logistic regression is a classification model that, in the specific context
of binary classification, estimates the posterior probability of the posi-
tive class, as the logistic sigmoid of a linear function of the feature vector
[Bishop, 2006]. The estimated probability is evaluated as

p̂i = P(y = 1|xi) = hθ(xi) = g
( k∑
j=1

θjx
j
i

)
, (7.1)

where hθ(xi) refers to the hypothesis of i given the parameters θ, the
feature vector xi for example i and g(·) is the logistic sigmoid function
defined as

g(z) =
1

(1+ e−z)
. (7.2)

In Figure 7.1, the logistic sigmoid function is shown.
The problem then becomes on finding the right parameters that min-

imize a given cost function. Usually, in the case of logistic regression,
the cost function J(θ) refers to the negative logarithm of the likelihood,
such that

J(θ) =
1

N

N∑
i=1

Ji(θ), (7.3)
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Figure 7.1: Sigmoid function

where

Ji(θ) = −yi log(hθ(xi)) − (1− yi) log(1− hθ(xi)). (7.4)

Therefore, the parameters are estimated by minimizing (7.4) θ̂ =

arg minθ J(θ).
There are several methods used to estimate the logistic regression, in

particular, maximum likelihood [Hastie et al., 2009], Newton, coordinate
descent [Murphy, 2012] and dual coordinate descent [Yu et al., 2011].
Nevertheless, all these methods rely on the assumption of convexity of
the logistic regression cost function J(θ).

7.2 cost-sensitive logistic regression

In this section we present our cost-sensitive logistic regression algo-
rithm. First, we motivate the need to modify the logistic regression, as
we analyze the implicit costs that the logistic regression assigned to each
misclassification error during the estimation of the parameters θ. Then,
we show our proposed algorithm.

7.2.1 Implicit costs of the logistic regression

The logistic regression cost function, as described in (7.4), implicitly
assume that false positives and false negatives have the same costs, i.e.
CFPi = CFNi ∀i ∈ {1, · · · ,N}. This can be easily shown by analyzing the
logistic cost function for both values of yi and the algorithm prediction
hθ(xi)):
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- If yi = 0 and hθ(xi) ≈ 0, then

Ji(θ) = −yi log(hθ(xi)) − (1− yi) log(1− hθ(xi))
≈ −(0) log((0)) − (1− (0)) log(1− (0))

≈ 0.

- If yi = 0 and hθ(xi) ≈ 1, then

Ji(θ) ≈ −(0) log((1)) − (1− (0)) log(1− (1))

≈∞.

- If yi = 1 and hθ(xi) ≈ 0, then

Ji(θ) ≈ −(1) log((0)) − (1− (1)) log(1− (0))

≈∞.

- If yi = 1 and hθ(xi) ≈ 1, then

Ji(θ) ≈ −(1) log((1)) − (1− (1)) log(1− (1))

≈ 0.

Then, we collect the previous results in a cost matrix:

Actual Positive Actual Negative

yi = 1 yi = 0

Predicted Positive
CTPi ≈ 0 CFPi ≈∞

ci = 1

Predicted Negative
CFNi ≈∞ CTNi ≈ 0

ci = 0

Table 7.1: Logistic regression cost matrix

This confirms that the logistic regression cost function implicitly as-
sume that false positives and false negatives have the same costs. How-
ever, as discussed in Chapter 4 and Chapter 5, this is not the case in
several real-world applications.

7.2.2 Cost-sensitive logistic regression cost function

In order to incorporate the different real costs, as showed in Table 3.1,
into the logistic regression, we start by analyzing the expected costs
that a modified logistic regression cost function should make for each
misclassification and correct classification case.
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Jci (θ) =



CTPi if yi = 1 and hθ(xi) ≈ 1

CTNi if yi = 0 and hθ(xi) ≈ 0

CFPi if yi = 0 and hθ(xi) ≈ 1

CFNi if yi = 1 and hθ(xi) ≈ 0.

Then, as we already have the real costs, we create a new cost-sensitive
logistic regression cost function, by including the different costs into the
logistic function,

Jc(θ) =
1

N

N∑
i=1

(
yi(hθ(xi)CTPi + (1− hθ(xi))CFNi)

+(1− yi)(hθ(xi)CFPi + (1− hθ(xi))CTNi)
)

. (7.5)

Since this new cost function is not convex, we estimate the parame-
ters θ with genetic algorithms, as this optimization heuristic does not
require the underlying function to be differentiable or convex [Haupt
and Haupt, 2004].

7.3 experiments

For the experiments we use five datasets from four different real world
example-dependent cost-sensitive problems: Credit card fraud detec-
tion (see Section 4.1), credit scoring (see Section 4.2), churn modeling
(see Section 5.1) and direct marketing (see Section 5.2). The different
datasets are summarized in Table 4.7 and Table 5.3.

In particular, we are interested in comparing the results of the
different logistic regression models. First we train a logisitc regres-
sion (LR) using the training (t), under-sampled (u), cost-proportionate
rejection-sampling (r) [Zadrozny et al., 2003] and cost-proportionate
over-sampling (o) [Elkan, 2001] datasets. Afterwards, we evaluate the
results of the algorithms using BMR, see Chapter 6. Lastly, we calculate
the cost-sensitive logistic regression (CSLR). We use the logistic regres-
sion implementation of Scikit-learn [Pedregosa et al., 2011], and the Cost-
Cla library, see Appendix A, for the cost-sensitive algorithms. Unless
otherwise stated, the random selection of the training set was repeated
50 times, and in each time the models were trained and results collected,
this allows us to measure the stability of the results.

In Table 7.2, we show the results of each algorithm in the different
databases measured by savings. Firstly, the proposed CSLR has the
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Figure 7.2: Comparison of the average savings and F1Score of the algorithms
versus the the best model. The models that perform the best mea-
sured by F1Score are not the best in terms of savings.

highest savings in the fraud, churn and credit 1 databases, moreover,
in the credit 2 and marketing databases, it is the second best model. It
is interesting to see how different the results from a standard logistic
regression and the cost-sensitive logistic regression are. Moreover, we
also calculate the results of the F1Score for each model, as shown in Ta-
ble 7.3. It is observed that the CSLR algorithm is not the one that gives
the best results measured by F1Score. In fact, there is not a clear relation
between the results measured by savings or F1Score.

Finally, we compute the perBest statistic for the savings and the
F1Score. This statistic is calculated as the average result of each algo-
rithm compared with the best in each set. The results are shown in Fig-
ure 7.2. On average, the CSLR is the best model, as it yield to 95.5% of
the best model in the different databases. Nevertheless, when measured
by F1Score, it only yield to 74.7% of the best model. This leads to the
conclusion of the importance of using a cost-sensitive measure such as
savings when evaluating real-world example-dependent cost-sensitive
problems.

Moreover, it is observed that the standard logistic regression trained
using the training set is the model that performs the worst measured by
both savings and F1Score. This is related not only to the cost-sensitivity
of the problems, but also to the highly unbalanced distribution of pos-
itive and negatives presented in all the databases. This is the reason
why by using an under-sampling procedure, the results are improved
by both measures.
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C O S T- S E N S I T I V E D E C I S I O N T R E E S

Outline

In this chapter, we propose the example-dependent cost-sensitive deci-
sion tree algorithm. This algorithm is based on incorporating the differ-
ent example-dependent costs into a new cost-based impurity measure
and a new cost-based pruning criteria. First, in Section 8.2, we give the
background behind the decision tree algorithm. Then, in Section 8.3, we
introduce the cost-sensitive decision tree method. For this, we first show
the new cost-sensitive impurity measure that introduces the different
costs when evaluating the performance of a split. Then, we introduce a
new cost-sensitive pruning criteria. Finally, in Section 8.4, we compare
the results of the proposed algorithm against state-of-the-art methods
using the five real-world cost-sensitive databases.

8.1 introduction

Decision trees are one of the most widely used machine learning algo-
rithms [Maimon, 2008]. The technique is considered to be white box, in
the sense that is easy to interpret, and has a very low computational
cost, while maintaining a good performance as compared with more
complex techniques [Hastie et al., 2009]. There are two types of decision
tree depending on the objective of the model. They work either for clas-
sification or regression. In this section we focus on binary classification
decision tree.

Standard decision tree algorithms focus on inducing trees that maxi-
mize accuracy. However this is not optimal when the misclassification
costs are unequal [Elkan, 2001]. This has led to many studies that de-
velop algorithms that aim to introduce the cost-sensitivity into the al-
gorithms [Lomax and Vadera, 2013]. These studies have focused on
introducing the class-dependent costs [Draper et al., 1994; Ting, 2002;
Ling et al., 2004; Li et al., 2005; Kretowski and Grześ, 2006; Vadera,
2010], which is not optimal for some applications. For example in credit
card fraud detection, it is true that false positives have a different cost
than false negatives, nevertheless, false negatives may vary significantly,
which makes class-dependent cost-sensitive methods not suitable for
this problem.

In this chapter, we propose a cost-sensitive decision tree algo-
rithm. The algorithm is based on incorporating the different example-

69



70 cost-sensitive decision trees

dependent costs into a new cost-based impurity measure and a
new cost-based pruning criteria. We evaluate the proposed example-
dependent cost-sensitive decision tree using three different databases.
In particular, a credit card fraud detection, a credit scoring and a di-
rect marketing databases. The results show that the proposed method
outperforms state-of-the-art example-dependent cost-sensitive methods.
Furthermore, when compared against a standard decision tree, our
method builds significantly smaller trees in only a fifth of the time.

8.2 decision trees

There are two types of decision tree depending on the objective of the
model. They work either for classification or regression. In this section
we focus on binary classification decision tree.

8.2.1 Construction of classification trees

Classification trees is one of the most common types of decision tree, in
which the objective is to find the Tree that best discriminates between
classes. In general the decision tree represents a set of splitting rules
organized in levels in a flowchart structure.

8.2.1.1 Splitting criteria

In the Tree, each rule is shown as a node, and it is represented as (xj, lj),
meaning that the set S is split in two sets Sl and Sr according to xj and
lj:

Sl = {x∗i |x
∗
i ∈ S∧ x

j
i 6 l

j}, (8.1)

and

Sr = {x∗i |x
∗
i ∈ S∧ x

j
i > l

j}, (8.2)

where xj is the jth feature represented in the vector xj = [xj1, x
j
2, ..., xjN],

and lj is a value such thatmin(xj) 6 lj < max(xj). Moreover, S = Sl∪Sr.
After the training set have been split, the percentage of positives in

the different sets is calculated. First, the number of positives in each set
is estimated by

S1 = {x∗i |x
∗
i ∈ S∧ yi = 1}, (8.3)

then the percentage of positives is calculates as

π1 = |S1|/|S|. (8.4)



8.2 decision trees 71

Figure 8.1: Impurity measures for a binary classification, as a function of the
proportion of positive examples in the set (Cross-entropy is scaled)
[Hastie et al., 2009].

Then, the impurity of each leaf is calculated using either a misclassi-
fication error, entropy or Gini measures:

- Misclassification

Im(π1) = 1−max(π1, 1− π1) (8.5)

- Entropy

Ie(π1) = −π1 logπ1 − (1− π1) log(1− π1) (8.6)

- Gini

Ig(π1) = 2π1(1− π1) (8.7)

In Figure 8.1, the three measures are shown. All measures are similar,
with the exception that the gini index and the cross-entropy are differ-
entiable, which makes them more suitable for numerical optimization.

Finally the gain of the splitting criteria using the rule (xj, lj) is cal-
culated as the impurity of S minus the weighted impurity of each leaf:

Gain(xj, lj) = I(π1) −
|Sl|

|S|
I(πl1) −

|Sr|

|S|
I(πr1), (8.8)
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where I(π1) can be either of the impurity measures Ie(π1) or Ig(π1).
Subsequently, the gain of all possible splitting rules is calculated. The

rule with maximal gain is selected

(bestx,bestl) = arg max
(xj,lj)

Gain(xj, lj), (8.9)

and the set S is split into Sl and Sr according to that rule.

8.2.1.2 Tree growing

In order to grow a tree typical algorithms use a top-down induction
using a greedy search in each iteration [Rokach and Maimon, 2010]. In
each iteration, the algorithms evaluates all possible splitting rules and
pick the one that maximizes the splitting criteria. After the selection of
a splitting rule, each leaf is further selected and it is subdivides into
smaller leafs, until one of the stopping criteria is meet. In Algorithm 8.1,
the pseudocode of the tree growing procedure is presented.

Algorithm 8.1. Pseudocode of the tree growing procedure.
1: function TreeGrow(S)
2: Tree = Empty

3: if Stopping(Tree, S) then
4: return Tree
5: end if
6: # For all features
7: for j = 1 to k do
8: # For all possible thresholds
9: for m = 1 toNk do

10: Gains(j,m) = Gain(xj, ljm, S)
11: end for
12: end for
13: # Select the threshold with the highest gain
14: (j∗, l∗) = argmax(j,m)Gains

15: # Split the set using the best rule
16: Sl = {x∗i |x

∗
i ∈ S∧ xj

∗

i 6 l∗}

17: Sr = {x∗i |x
∗
i ∈ S∧ xj

∗

i > l
∗}

18: # Recursively continue growing tree
19: TreeGrow(Sl)
20: TreeGrow(Sr)
21: # Return the tree
22: return Tree
23: end function
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8.2.1.3 Stopping criteria

As the growing phase of the algorithm continue, at each iteration the
stopping criteria are evaluated [Rokach and Maimon, 2010]. The most
common stopping criteria are:

- All examples in the set belong to the same class. Meaning that
either π1 = 1 or π1 = 0.

- The maximum number of iterations have been reached.

- The number of examples in S are less than the minimum number
of examples defined for a split.

- The number of examples in Sl or Sr are less than the minimum
number of examples defined for a leaf.

- The best splitting rule has a Gain lower than a defined threshold.

8.2.1.4 Pruning techniques

After a decision tree has been fully grown, there is the big chance that
the algorithm generates a large tree that is probably over fitting the train-
ing data. In order to solve this in [Breiman et al., 1984] originally suggest
the use of pruning techniques after the tree growing phase. The overall
objective of pruning is to eliminate branches that are not contributing
to the generalization accuracy of the tree [Rokach and Maimon, 2010].

In general pruning techniques start from a fully grown tree, and re-
cursively check if by eliminating a Branch there is an Improvement in
the error rate Err of the Tree. There are two main methods to calculate
the Improvement of the error rate Err of the Tree, cost-complexity and
error based pruning:

- Cost-complexity pruning:

Initially proposed by Breiman [Breiman et al., 1984], this method
evaluate iterative if the removal of a Branch improve the error
rate Err of a Tree, weighted by the difference of the number of
leafs trees.

PCcc =
Err(EB(Tree,branch),S) − Err(Tree, S)

|Tree|− |EB(Tree,branch)|
(8.10)

where Err(Tree, S) calculate the error rate of the Tree in set S and
EB(Tree,branch) is an auxiliary function that removes branch
from Tree and return a new Tree. At each iteration, the current
Tree is compared against all possible Branches.
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- Error based pruning:

This method proposed by Quinlan [Quinlan, 1992] is more pes-
simistic and instead of using the error rate Err calculate the upper
bound of the confidence interval of the error ErrUB calculated as-
suming a normal distribution with a defined significance level Zα.

PCeb =
ErrUB(EB(Tree,branch), S) − ErrUB(Tree, S)

|Tree|− |EB(Tree,branch)|
(8.11)

where

ErrUB(Tree,S) = Err(Tree, S)

+Zα

√
Err(Tree, S)(1− Err(Tree, S))

|S|
(8.12)

Moreover, as a difference from cost-complexity pruning, in the
error based method, at each iteration not all the branches are com-
pared, but only the ones on the same level. Meaning leafs are only
compared against other leafs that are in the same level of itera-
tions when the Tree was constructed. This allows for much faster
pruning procedure.

In Algorithm 8.2, the general method of pruning is shown. The prun-
ing procedure consists in evaluating the Improvement of eliminating
all possible branches in a Tree, and then eliminate the one with the
higher Improvement and repeat the process until a stopping criteria is
meet.

Algorithm 8.2. Pseudocode of the tree pruning procedure.
1: function TreePruning(S, Tree)
2: # For all branches
3: for branch in Tree.branches do
4: # Evaluate the pruning criteria
5: Improvements(branch) = PC(S, Tree,branch)
6: end for
7: # Select the branch to prune
8: branch∗ = argmaxbranchImprovements
9: # Prune selected branch

10: Tree = EB(TreeTree,branch∗)
11: # Recursively continue pruning the tree
12: TreePruning(S, Tree)
13: return Tree
14: end function
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8.2.1.5 Categorical features

When using continuous features the splitting is done by testing all pos-
sible thresholds on the database and selecting the one that maximizes
the desired measure. Nevertheless, this is not straight forward when
using a categorical feature, since testing all possible ways of binning
the feature becomes prohibitively time consuming the feature has many
categories. Instead, a common method for doing this is to calculate π1
of each category, then sort it, and applied the method as a continuous
feature [Marslan, 2009].

8.2.2 Decision tree algorithms

Two main branches of decision trees has being studied in the last years.
The main difference is the impurity measure used when splitting. First
the CART algorithm that is based in the Gini index, and later the ID3

and C4.5 which uses the entropy measure.

- CART or classification and regression trees was introduced by
Brieman et al. in 1984 [Breiman et al., 1984]. It is based on using
the Gini index as the impurity measure and the tree is grow un-
til all examples in each leaf belong to the same class. Afterwards,
the tree is pruned using the cost-complexity method [Rokach and
Maimon, 2010; Marslan, 2009].

- ID3 algorithm uses entropy as the impurity measure. The growing
of the tree stop when all examples belong of each leaf belongs to
the same class. In ID3 no pruning is applied [Quinlan, 1992].

- C4.5 the extension of ID3 both proposed by Quinlan [Quinlan,
1992]. Both are similar regarding the measure used, but C4.5 de-
fine the stopping criteria during the growth process to be when
the number of examples in a set is less than a threshold. Moreover,
after the tree is created a error based pruning is applied [Rokach
and Maimon, 2010].

8.3 example-dependent cost-sensitive decision trees

In this section, we first propose a new method to introduce the costs into
the decision tree induction stage, by creating new-cost based impurity
measures. Afterwards, we propose a new pruning method based on
minimizing the cost as pruning criteria.
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8.3.1 Cost-sensitive impurity measures

Standard impurity measures such as misclassification, entropy or Gini,
take into account the distribution of classes of each leaf to evaluate the
predictive power of a splitting rule, leading to an impurity measure that
is based on minimizing the misclassification rate. However, as has been
previously shown in Chapter 6 and Chapter 7, minimizing misclassifi-
cation does not lead to the same results than minimizing cost. Instead,
we are interested in measuring how good is a splitting rule in terms
of cost not only accuracy. For doing that, we propose a new example-
dependent cost based impurity measure that takes into account the cost
matrix of each example.

We define a new cost-based impurity measure taking into account
the costs when all the examples in a leaf are classified both as negative
using f0 and positive using f1

Ic(S) = min
{
Cost(f0(S)),Cost(f1(S))

}
. (8.13)

The objective of this measure is to evaluate the lowest expected cost of
a splitting rule. Following the same logic, the classification of each set
is calculated as the prediction that leads to the lowest cost

f(S) =

 0 if Cost(f0(S)) 6 Cost(f1(S))

1 otherwise
(8.14)

Finally, using the cost-based impurity, the splitting criteria cost based
gain of using the splitting rule (xj, lj) is calculated with (8.8).

8.3.2 Cost-sensitive pruning

Most of the literature in class-dependent cost-sensitive decision tree fo-
cuses on using the misclassification costs during the construction of
the algorithms [Lomax and Vadera, 2013]. Only few algorithms such as
AUCSplit [Ferri et al., 2002] have included the costs both during and
after the construction of the tree. However, this approach only used the
class-dependent costs, and not the example-dependent costs.

We propose a new example-dependent cost-based impurity measure,
by replacing the error rate Err in (8.10) with the cost of using the Tree
on S i.e., by replacing with Cost(f(S)).

PCc =
Cost(f(S)) −Cost(f∗(S))

|Tree|− |EB(Tree,node)|
, (8.15)

where f∗ is the classifier of the tree without the selected node
EB(Tree,node).
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Using the new pruning criteria, nodes of the tree that do not con-
tribute to the minimization of the cost will be pruned, regardless of the
impact of those nodes on the accuracy of the algorithm. This follows
the same logic as in the proposed cost-based impurity measure, since
minimizing the misclassification is different than minimizing the cost,
and in several real-world applications the objectives align with the cost
not with the misclassification error.

8.4 experiments

In this section we present the experimental results. First, we evalu-
ate the performance of the proposed CSDT algorithm and compare it
against a classical decision tree (DT ). We evaluate the different trees us-
ing them without pruning (notp), with error based pruning (errp), and
also with the proposed cost-sensitive pruning technique (costp). The
different algorithms are trained using the training (t), under-sampling
(u), cost-proportionate rejection-sampling (r), and cost-proportionate
over-sampling (o) datasets. We use the decision trees implementation
of Scikit-learn [Pedregosa et al., 2011], and the CostCla library, see Ap-
pendix A, for the cost-sensitive algorithms.

For the experiments we use three datasets from three different real
world example-dependent cost-sensitive problems: Credit card fraud
detection (see Section 4.1), credit scoring (see Section 4.2) and direct
marketing (see Section 5.2). The different datasets are summarized in
Table 4.7 and Table 5.3.

We evaluate a decision tree constructed using the Gini impurity mea-
sure, with and without the pruning defined in (8.10). We also apply
the cost-based pruning procedure given in (8.15). Lastly, we compared
against the proposed CSDT constructed using the cost-based impurity
measure defined in (8.13), using the two pruning procedures.

In Figure 8.2, the results using the three databases are shown. In par-
ticular we first evaluate the impact of the algorithms when trained using
the training set. There is a clear difference between the savings of the
DT and the CSDT algorithms. However, that difference is not observ-
able on the F1Score results. Since the CSDT is focused on maximizing
the savings not the accuracy or F1Score. There is a small increase in
savings when using the DT with cost-sensitive pruning. Nevertheless,
in the case of the CSDT algorithm, there is no change when using any
pruning procedure, neither in savings or F1Score.

In addition, we also evaluate the algorithms on the different sets,
under-sampling, rejection-sampling and over-sampling. The results are
shown in Table 8.1. Moreover, in Figure 8.3, the average results of the
different algorithms measured by savings is shown. The best results are
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Fraud Detection Direct Marketing Credit Scoring

set Algorithm %Sav F1Score %Sav F1Score %Sav F1Score

t DTnotp 31.76 0.4458 19.11 0.2976 18.95 0.3062

DTerrp 31.76 0.4458 19.70 0.3147 18.95 0.3062

DTcostp 35.89 0.4590 28.08 0.3503 27.59 0.3743

CSDTnotp 70.85 0.2529 69.00 0.2920 49.28 0.3669

CSDTerrp 70.85 0.2529 68.97 0.3193 48.85 0.3669

CSDTcostp 71.16 0.2522 69.105 0.2878 49.39 0.3684

u DTnotp 52.39 0.1502 49.80 0.3374 48.91 0.2983

DTerrp 52.39 0.1502 49.80 0.3374 48.91 0.2983

DTcostp 70.26 0.2333 53.20 0.3565 49.77 0.3286

CSDTnotp 12.46 0.0761 64.21 0.2830 30.68 0.2061

CSDTerrp 14.98 0.0741 66.21 0.2822 41.49 0.2564

CSDTcostp 15.01 0.0743 68.07 0.2649 44.89 0.2881

r DTnotp 34.39 0.4321 68.59 0.3135 48.97 0.3931

DTerrp 34.39 0.4321 68.79 0.3196 48.97 0.3931

DTcostp 38.99 0.4478 69.27 0.3274 50.48 0.3501

CSDTnotp 70.85 0.2529 66.87 0.2761 31.25 0.1940

CSDTerrp 70.85 0.2529 67.47 0.2581 40.69 0.2529

CSDTcostp 71.09 0.2515 68.08 0.2642 44.51 0.2869

o DTnotp 31.72 0.4495 60.30 0.3674 47.39 0.3994

DTerrp 31.72 0.4495 60.30 0.3674 47.39 0.3994

DTcostp 37.35 0.4575 69.44 0.3108 50.92 0.3977

CSDTnotp 70.84 0.2529 68.75 0.2935 41.37 0.2205

CSDTerrp 70.84 0.2529 68.75 0.2935 41.38 0.3457

CSDTcostp 71.09 0.2515 68.75 0.2935 41.65 0.2896

Table 8.1: Results on the three datasets of the cost-sensitive and standard
decision tree, without pruning (notp), with error based prun-
ing (errp), and with cost-sensitive pruning technique (costp). Es-
timated using the different training sets: training, under-sampling,
cost-proportionate rejection-sampling and cost-proportionate over-
sampling
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Figure 8.2: Results of the DT and the CSDT . For both algorithms, the results
are calculated with and without both types of pruning criteria.
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Figure 8.3: Average savings on the three datasets of the different cost-sensitive
and standard decision tree, estimated using the different train-
ing sets: training, under-sampling, cost-proportionate rejection-
sampling and cost-proportionate over-sampling.

found when using the training set. When using the under-sampling set
there is a decrease in savings of the CSDT algorithm. Lastly, in the case
of the cost-proportionate sampling sets, there is a small increase in sav-
ings when using the CSDT algorithm.

Finally, we also analyze the different models taking into account the
complexity and the training time. In particular we evaluate the size of
each Tree. In Table 8.2, and Figure 8.4, the results are shown. The CSDT
algorithm creates significantly smaller trees, which leads to a lower
training time. In particular this is a result of using the non weighted
gain, the CSDT only accepts splitting rules that contribute to the over-
all reduction of the cost, which is not the case if instead the weighted
gain was used. Even that the DT with cost pruning, produce a good re-
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Fraud Detection Direct Marketing Credit Scoring

set Algorithm |Tree| Time |Tree| Time |Tree| Time

t DTnotp 488 2.45 298 1.58 292 1.58

DTerrp 488 3.90 298 2.13 292 2.13

DTcostp 446 19.19 291 5.23 280 5.23

CSDTnotp 89 1.47 51 0.40 69 0.40

CSDTerrp 88 1.87 51 0.64 69 0.64

CSDTcostp 89 1.74 51 0.45 69 0.45

u DTnotp 308 1.10 198 1.00 167 1.00

DTerrp 308 1.43 198 1.14 167 1.14

DTcostp 153 2.59 190 1.34 142 1.34

CSDTnotp 14 0.20 23 0.17 42 0.17

CSDTerrp 14 0.23 23 0.19 42 0.19

CSDTcostp 14 0.24 23 0.18 42 0.18

r DTnotp 268 0.98 181 0.90 267 0.90

DTerrp 268 1.24 181 0.95 267 0.95

DTcostp 153 2.48 162 1.20 261 1.20

CSDTnotp 18 0.22 10 0.07 70 0.07

CSDTerrp 18 0.23 10 0.07 70 0.07

CSDTcostp 18 0.23 10 0.07 70 0.07

o DTnotp 425 2.30 340 1.80 277 1.80

DTerrp 425 3.98 340 2.65 277 2.65

DTcostp 364 10.15 288 5.99 273 5.99

CSDTnotp 37 1.58 51 0.38 70 0.38

CSDTerrp 37 1.90 51 0.45 70 0.45

CSDTcostp 37 1.98 51 0.42 70 0.42

Table 8.2: Training time and tree size of the different cost-sensitive and stan-
dard decision tree, estimated using the different training sets: train-
ing, under-sampling, cost-proportionate rejection-sampling and cost-
proportionate over-sampling, for the three databases.
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Figure 8.4: Average tree size (a) and training time (b), of the different cost-
sensitive and standard decision tree, estimated using the different
training sets.

sult measured by savings, it is the one that takes the longer to estimate.
Since the algorithm first creates a big decision tree using the Gini im-
purity, and then attempt to find a smaller tree taking into account the
cost. Measured by training time, the CSDT is by all means faster to train
than the DT algorithm, leading to an algorithm that not only gives bet-
ter results measured by savings but also one that can be trained much
quicker than the standard DT .
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E N S E M B L E S O F C O S T- S E N S I T I V E D E C I S I O N T R E E S

Outline

In this chapter, we propose a framework of ensembles of example-
dependent cost-sensitive decision-trees. The algorithms are based in
training example-dependent cost-sensitive decision trees using four dif-
ferent random inducer methods and then blending them using three
different combination approaches. First, in Section 9.2, we give the back-
ground behind ensemble learning. Then, in Section 9.3, we present the
ensembles of cost-sensitive decision-trees framework. Moreover, in Sec-
tion 9.4, we prove theoretically that combining individual cost-sensitive
classifiers achieves better results in the sense of higher financial savings.
Finally, in Section 9.5, we compare the results of the proposed algorithm,
against state-of-the-art methods, using the five real-world cost-sensitive
databases.

9.1 introduction

Ensemble learning is a widely studied topic in the machine learning
community. The main idea behind the ensemble methodology is to com-
bine several individual base classifiers in order to have a classifier that
outperforms each of them [Rokach, 2009].

In the context of cost-sensitive classification, some authors have pro-
posed methods for using ensemble techniques. In [Masnadi-shirazi and
Vasconcelos, 2011], the authors proposed a framework for cost-sensitive
boosting that is expected to minimized the losses by using optimal cost-
sensitive decision rules. In [Street, 2008], a bagging algorithm with adap-
tive costs was proposed. In his doctoral thesis, Nesbitt [Nesbitt, 2010],
proposed a method for cost-sensitive tree-stacking. In this method dif-
ferent decision trees are learned, and then combined in a way that a
cost function is minimize. Lastly in [Lomax and Vadera, 2013], a survey
of application of cost-sensitive learning with decision trees is shown,
in particular including other methods that create cost-sensitive ensem-
bles. However, in all these methods, the misclassification costs only de-
pendent on the class, therefore, assuming a constant cost across exam-
ples. As a consequence, these methods are not well suited for example-
dependent cost-sensitive problems.

In this chapter, we propose a framework of ensembles of example-
dependent cost-sensitive decision-trees. The algorithms are based in

83
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training example-dependent cost-sensitive decision trees using four dif-
ferent random inducer methods and then blending them using three
different combination approaches. Moreover, we propose two new cost-
sensitive combination approaches, cost-sensitive weighted voting and
cost-sensitive stacking. The latter being an extension of our previously
proposed cost-sensitive logistic regression. We evaluate the proposed
framework using five different databases from four real-world problems.
In particular, credit card fraud detection, churn modeling, credit scoring
and direct marketing. The results show that the proposed method out-
performs state-of-the-art example-dependent cost-sensitive methods in
three databases, and have a similar result in the other two.

9.2 ensemble methods

Nowadays, ensemble methods are one of the most popular and well
studied machine learning techniques [Zhou, 2012], and it can be noted
that since 2009 all the first-place and second-place winners of the KDD-
Cup competition1 used ensemble methods. The core principle in en-
semble learning, is to induce random perturbations into the learning
procedure in order to produce several different base classifiers from a
single training set, then combining the base classifiers in order to make
the final prediction. In order to induce the random permutations and
therefore create the different base classifiers, several methods have been
proposed, in particular: bagging [Breiman, 1996], pasting [Breiman,
1999], random forests [Breiman, 2001] and random patches [Louppe
and Geurts, 2012]. Finally, after the base classifiers are trained, they
are typically combined using either majority voting, weighted voting or
stacking [Zhou, 2012].

As shown in Figure 9.1, there are three main reasons regarding why
ensemble methods perform better than single models: statistical, com-
putational and representational [Dietterich, 2000]. First, from a statisti-
cal point of view, when the learning set is too small, an algorithm can
find several good models within the search space, that arise to the same
performance on the training set S. Nevertheless, without a validation
set, there is a risk of choosing the wrong model. The second reason is
computational; in general, algorithms rely on some local search opti-
mization and may get stuck in a local optima. Then, an ensemble may
solve this by focusing different algorithms to different spaces across
the training set. The last reason is representational. In most cases, for a
learning set of finite size, the true function f cannot be represented by
any of the candidate models. By combining several models in an ensem-

1 https://www.sigkdd.org/kddcup/

https://www.sigkdd.org/kddcup/
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Figure 9.1: Main reasons regarding why ensemble methods perform better
than single models: statistical, computational and representational
[Dietterich, 2000].

ble, it may be possible to obtain a model with a larger coverage across
the space of representable functions.

The most typical form of an ensemble is made by combining T dif-
ferent base classifiers. Each base classifier M(Sj) is trained by applying
algorithm M to a random subset Sj of the training set S. For simplicity
we define Mj ≡ M(Sj) for j = 1, . . . , T , and M = {Mj}

T
j=1 a set of base

classifiers. Then, these models are combined using majority voting to
create the ensemble H as follows

fmv(S,M) = arg max
c∈{0,1}

T∑
j=1

1c(Mj(S)). (9.1)

9.2.1 Theoretical performance of an ensemble

If we assume that each one of the T base classifiers has a probability ρ
of being correct, the probability of an ensemble making the correct de-
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cision, assuming independence, denoted by Pc, can be calculated using
the binomial distribution [Hansen and Salamon, 1990]

Pc =

T∑
j>T/2

(
T

j

)
ρj(1− ρ)T−j. (9.2)

Furthermore, as shown in Lam and Suen [1997], if T > 3 then:

lim
T→∞Pc =


1 if ρ > 0.5

0 if ρ < 0.5

0.5 if ρ = 0.5,

(9.3)

leading to the conclusion that

ρ > 0.5 and T > 3 ⇒ Pc > ρ. (9.4)

9.3 ensembles of cost-sensitive decision trees

In this section we present our framework of ensembles of example-
dependent cost-sensitive decision-trees. The algorithms are based in
training example-dependent cost-sensitive decision trees, see Chapter 8,
using four different random inducer methods and then blending them
using three different combination approaches. Moreover, we propose
two new cost-sensitive combination approaches, cost-sensitive weighted
voting and cost-sensitive stacking. The latter being an extension of our
proposed cost-sensitive logistic regression, see Chapter 7.

The remainder of the section is organized as follows: First, we intro-
duce the different random inducers used to create the base classifiers.
Then, we present the combination methods. Finally, we define our pro-
posed algorithms.

9.3.1 Random inducers

With the objective of creating an ensemble of example-dependent cost-
sensitive decision trees, we first create T different random subsamples
Sj for j = 1, . . . , T , of the training set S, and train a CSDT algorithm on
each one. In particular we create the different subsets using four differ-
ent methods: bagging [Breiman, 1996], pasting [Breiman, 1999], random
forests [Breiman, 2001] and random patches [Louppe and Geurts, 2012].

In bagging [Breiman, 1996], base classifiers are built on randomly
drawn bootstrap subsets of the original data, hence producing different
base classifiers. Similarly, in pasting [Breiman, 1999], the base classifiers
are built on random samples without replacement from the training
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Figure 9.2: Visual representation of the random inducers algorithms.

set. In random forests [Breiman, 2001], using decision trees as the base
learner, bagging is extended and combined with a randomization of the
input features that are used when considering candidates to split inter-
nal nodes. In particular, instead of looking for the best split among all
features, the algorithm selects, at each node, a random subset of fea-
tures and then determines the best split only over these features. In the
random patches algorithm [Louppe and Geurts, 2012], base classifiers
are created by randomly drawn bootstrap subsets of both examples and
features. To further clarify the difference between the random inducer
methods, in Figure 9.2, we show a visual representation of the random
inducers algorithms.

9.3.2 Combination methods

Lastly, the base classifiers are combined using either majority voting,
cost-sensitive weighted voting and cost-sensitive stacking. Majority vot-
ing consists in collecting the predictions of each base classifier and se-
lecting the decision with the highest number of votes, see (9.1).

9.3.2.1 Cost-sensitive weighted voting

This method is an extension of weighted voting. First, in the traditional
approach, a similar comparison of the votes of the base classifiers is
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made, but giving a weight αj to each classifier Mj during the voting
phase [Zhou, 2012]

fwv(S,M,α) = arg max
c∈{0,1}

T∑
j=1

αj1c(Mj(S)), (9.5)

where α = {αj}
T
j=1. The calculation of αj is related to the performance of

each classifier Mj. It is usually defined as the normalized misclassifica-
tion error ε of the base classifier Mj in the out of bag set Soobj = S− Sj

αj =
1− ε(Mj(S

oob
j ))∑T

j1=1
1− ε(Mj1(S

oob
j1

))
. (9.6)

However, as previously discussed, the misclassification measure is not
suitable in many real-world classification problems. We herein propose
a method to calculate the weights αj taking into account the actual sav-
ings of the classifiers. Therefore using (3.7), we define

αj =
Savings(Mj(S

oob
j ))∑T

j1=1
Savings(Mj1(S

oob
j ))

. (9.7)

This method guaranties that the base classifiers that contribute to a
higher increase in savings have more importance in the ensemble.

9.3.2.2 Cost-sensitive stacking

The staking method consists in combining the different base classifiers
by learning a second level algorithm on top of them [Wolpert, 1992].
In this framework, once the base classifiers are constructed using the
training set S, a new set is constructed where the output of the base
classifiers are now considered as the features while keeping the class
labels.

Even though there is no restriction on which algorithm can be used as
a second level learner, it is common to use a linear model [Zhou, 2012],
such as

fs(S,M,β) = g

 T∑
j=1

βjMj(S)

 , (9.8)

where β = {βj}
T
j=1, and g(·) is the sign function g(z) = sign(z) in

the case of a linear regression or the sigmoid function, defined as
g(z) = 1/(1+ e−z), in the case of a logistic regression.
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Moreover, following the logic used in [Nesbitt, 2010], we propose
learning the set of parameters β using our cost-sensitive logistic regres-
sion (CSLR), see Chapter 7. The CSLR algorithm consists in introducing
example-dependent costs into a logistic regression, by changing the ob-
jective function of the model to one that is cost-sensitive. For the specific
case of cost-sensitive stacking, we define the cost function as:

J(S,M,β) =
N∑
i=1

[
yi

(
fs(xi,M,β) · (CTPi −CFNi) +CFNi

)
+ (1− yi)

(
fs(xi,M,β) · (CFPi −CTNi) +CTNi

)]
. (9.9)

Then, the parameters β that minimize the logistic cost function are used
in order to combine the different base classifiers. However, as discussed
in Chapter 7, this cost function is not convex for all possible cost matri-
ces, therefore, we use genetic algorithms to minimize it.

Similarly to cost-sensitive weighting, this method guarantees that the
base classifiers that contribute to a higher increase in savings have more
importance in the ensemble. Furthermore, by learning an additional
second level cost-sensitive method, the combination is made such that
the overall savings measure is maximized.

9.3.3 Algorithms

Finally, Algorithm 9.1 summarizes the ECSDT methods. In total, we
evaluate 12 different algorithms, as four different random inducers (bag-
ging, pasting, random forest and random patches) and three different
combinators (majority voting, cost-sensitive weighted voting and cost-
sensitive stacking) can be selected in order to construct the cost-sensitive
ensemble.

Algorithm 9.1. The proposed ECSDT algorithms.
Require: CSDT (an example-dependent cost-sensitive decision tree al-

gorithm), T the number of iterations, S the training set, inducer, Ne
number of examples for each base classifier,Nf number of examples
for each base classifier, combinator.

1: function ECSDT(S, T , inducer,Ne,Nf, combinator)
2: Step 1: Create the set of base classifiers
3: for j← 1 to T do
4: switch(inducer)
5: case Bagging:
6: Sj ← Sample Ne examples from S with replacement.
7: case Pasting:
8: Sj ← Sample Ne examples from S without replacement.
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9: case Random forests:
10: Sj ← Sample Ne examples from S with replacement.
11: case Random patches:
12: Sj ← Sample Ne examples and Nf features from S with re-

placement.
13: end switch
14: Mj ← CSDT(Sj)

15: Soobj ← S− Sj

16: αj ← Savings(Mj(S
oob
j ))

17: end for
18: Step 2: Combine the different base classifiers
19: switch(combinator)
20: case Majority voting:
21: H← fmv(S,M)

22: case Cost-sensitive weighted voting:
23: H← fwv(S,M,α)
24: case Cost-sensitive stacking:
25: β← arg minβ∈RT J(S,M,β)
26: H← fs(S,M,β)
27: end switch
28: return H
29: end function

9.4 theoretical analysis of the ecsdt

Although the above proposed algorithm is simple, there is no work that
has formally investigated ensemble performance in terms other than
accuracy. In this section, our aim is to prove theoretically that combining
individual cost-sensitive classifiers achieves better results in the sense of
higher savings.

We denote Sa a ∈ {0, 1}, as the subset of S where the examples belong
to the class a:

Sa = {x∗i |yi = a, i ∈ 1, . . . ,N}, (9.10)

where S = S0 ∪ S1, S0 ∩ S1 = ∅, and Na = |Sa|. Also, we define the
average cost of the base classifiers as:

Cost(M(S)) =
1

T

T∑
j=1

Cost(Mj(S)). (9.11)

Firstly, we prove the following lemma that states the cost of an ensemble
H on the subset Sa is lower than the average cost of the base classifiers
on the same set for a ∈ {0, 1}.
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Lemma 9.1. Let H be an ensemble of T > 3 classifiers M =

{M1,M2, . . . ,MT }, and S a testing set of size N. If each one of the base classi-
fiers has a probability of being correct higher or equal than one half, ρ > 1

2 , and
the reasonableness conditions of the cost matrix are satisfied, then the following
holds true

Cost(H(Sa)) 6 Cost(M(Sa)), a ∈ {0, 1}, (9.12)

Proof. First, we decompose the total cost of the ensemble by applying
equations (3.2) and (3.3). Additionally, we separate the analysis for a =

0 and a = 1:
• a = 0 :

Cost(H(S0)) =

N0∑
i=1

yi(ciCTPi + (1− ci)CFNi)+

(1− yi)(ciCFPi + (1− ci)CTNi). (9.13)

Moreover, we know from (9.2) that the probability of an ensemble mak-
ing the right decision, i.e., yi = ci, for any given example, is equal to Pc.
Therefore, we can use this probability to estimate the expected savings
of an ensemble:

Cost(H(S0)) =

N0∑
i=1

PcCTNi + (1− Pc)CFPi . (9.14)

• a = 1 :

In the case of S1, and following the same logic as when a = 0, the cost
of an ensemble is:

Cost(H(S1)) =

N1∑
i=1

PcCTPi + (1− Pc)CFNi . (9.15)

The second part of the proof consists in analyzing the right hand side
of (9.12), specifically, the average cost of the base classifiers on set Sa. To
do that, with the help of (3.2) and (9.11), we may express the average
cost of the base classifiers as:

Cost(M(Sa)) =
1

T

T∑
j=1

Na∑
i=1

Cost(Mj(x∗i )). (9.16)

We define the set of base classifiers that make a negative prediction as

Ti0 = {Mj(x∗i )|Mj(x∗i ) = 0, j ∈ 1, . . . , T }, (9.17)
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similarly, the set of classifiers that make a positive prediction as

Ti1 = {Mj(x∗i )|Mj(x∗i ) = 1, j ∈ 1, . . . , T }. (9.18)

Then, by taking the cost of negative and positive predictions from (3.6),
the average cost of the base learners becomes:

Cost(M(Sa)) =
1

T

Na∑
i=1

(
|Ti0| ·Cost(f0(x∗i ))

+ |Ti1| ·Cost(f1(x∗i ))
)

. (9.19)

We separate the analysis for a = 0 and a = 1:
• a = 0 :

Cost(M(S0)) =

N0∑
i=1

(
|Ti0|

T
·CTNi +

|Ti1|

T
·CFPi

)
. (9.20)

Furthermore, we know from (9.2) that an average base classifier will
have a correct classification probability of ρ, then |Ti0|

T = ρ, leading to:

Cost(M(S0)) =

N0∑
i=1

(
ρ ·CTNi + (1− ρ) ·CFPi

)
. (9.21)

• a = 1 :

Similarly, for the set S1, the average classifier will have a correct classifi-
cation probability of ρ, then |Ti1|

T = ρ.
Therefore,

Cost(M(S1)) =

N1∑
i=1

(
ρ ·CTPi + (1− ρ) ·CFNi

)
. (9.22)

Finally, by replacing in (9.12) the expected savings of an ensemble with
(9.14) for a = 0 and (9.15) for a = 1, and the average cost of the base
learners with (9.21) for a = 0 and (9.22) for a = 1, (9.12) is rewritten as:
for a = 0:

N0∑
i=1

(
PcCTNi + (1− Pc)CFPi

)
6

N0∑
i=1

(
ρ ·CTNi + (1− ρ) ·CFPi

)
,

(9.23)

for a = 1:
N1∑
i=1

(
PcCTPi + (1− Pc)CFNi

)
6

N1∑
i=1

(
ρ ·CTPi + (1− ρ) ·CFNi

)
.

(9.24)
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Since ρ > 1
2 , then Pc > ρ from (9.4), and using the reasonableness condi-

tions described in Section 3.3, i.e, CFPi > CTNi and CFNi > CTPi , we find
that (9.23) and (9.24) are True.

Lemma 9.1 separates the costs on sets S0 and S1. We are interested
in analyzing the overall savings of an ensemble. In this direction, we
demonstrate in the following theorem, that the expected savings of an
ensemble of classifiers are higher than the expected average savings of
the base learners.

Theorem 9.2. Let H be an ensemble of T > 3 classifiers M = {M1, . . . ,MT },
and S a testing set of size N, then the expected savings of using H in S are
lower than the average expected savings of the base classifiers, in other words,

Savings(H(S)) > Savings(M(S)). (9.25)

Proof. Given (3.7), (9.25) is equivalent to

Cost(H(S)) 6 Cost(M(S)). (9.26)

Afterwards, by applying the cost definition of (3.3), and grouping the
sets of negative and positive examples using (9.10), (9.26) becomes∑

a∈{0,1}
Cost(H(Sa)) 6

∑
a∈{0,1}

Cost(M(Sa)), (9.27)

which can be easily proved using Lemma 9.1, since, if the cost of an
ensemble H is lower than the average cost of the base classifiers on both
S0 and S1, implies that it is also lower on the sum of the cost on both
sets, therefore, proving Theorem 9.2.

9.5 experiments

For the experiments we use five datasets from four different real world
example-dependent cost-sensitive problems: Credit card fraud detec-
tion (see Section 4.1), credit scoring (see Section 4.2), churn modeling
(see Section 5.1) and direct marketing (see Section 5.2). The different
datasets are summarized in Table 4.7 and Table 5.3.

We first use three classification algorithms, decision tree (DT ), lo-
gistic regression (LR) and random forest (RF). Using the implementa-
tion of Scikit-learn [Pedregosa et al., 2011], each algorithm is trained
using the different training sets: training (t), under-sampling (u), cost-
proportionate rejection-sampling (r) [Zadrozny et al., 2003] and cost-
proportionate over-sampling (o) [Elkan, 2001]. Afterwards, we evaluate
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Table 9.1: Results of the CI and BMR algorithms measured by savings

the results of the algorithms using BMR, see Chapter 6. Then, the cost-
sensitive logistic regression (CSLR), see Chapter7, and cost-sensitive de-
cision tree (CSDT ), see Chapter 8, are also evaluated. Lastly, we calcu-
late the propose ensembles of cost-sensitive decision trees algorithms. In
particular, using each of the random inducer methods, bagging (CSB),
pasting (CSP), random forests (CSRF) and random patches (CSRP), and
then blending the base classifiers using each one of the combination
methods; majority voting (mv), cost-sensitive weighted voting (wv) and



9.5 experiments 95

Fa
m

il
y

A
lg

or
it

hm
Fr

au
d

C
hu

rn
C

re
di

t
1

C
re

di
t

2
M

ar
ke

ti
ng

C
ST

C
SL

R
-t

0
.6

1
1

3
±

0
.0

2
6

2
0

.1
1

1
8
±

0
.0

4
8

4
0
.4

5
5

4
±

0
.1

0
3

9
0

.2
7

4
8
±

0
.0

0
6

9
0

.4
4

8
4
±

0
.0

0
7

2

C
SD

T-
t

0
.7

1
1

6
±

0
.2

5
5

7
0

.1
1

1
5
±

0
.0

3
7

8
0
.4

8
2

9
±

0
.0

0
9

8
0

.2
8

3
5
±

0
.0

0
7

8
0

.4
7

4
1
±

0
.0

0
6

3

EC
SD

T
C

SB
-m

v-
t

0
.7

1
2

4
±

0
.0

1
6

2
0

.1
2

3
7
±

0
.0

3
6

8
0
.4

8
6

2
±

0
.0

1
0

2
0

.2
9

4
5
±

0
.0

1
0

5
0

.4
8

3
7
±

0
.0

0
7

8

C
SB

-w
v-

t
0
.7

2
7

6
±

0
.0

1
1

6
0

.1
5

3
9
±

0
.0

2
5

5
0
.4

8
6

2
±

0
.0

1
0

2
0

.2
9

4
8
±

0
.0

1
0

6
0

.4
8

3
8
±

0
.0

0
7

9

C
SB

-s
-t

0
.7

1
8

1
±

0
.0

1
0

9
0

.1
4

4
1
±

0
.0

3
6

4
0
.4

8
4

7
±

0
.0

0
9

6
0

.2
8

5
6
±

0
.0

0
8

8
0

.4
7

6
9
±

0
.0

0
7

8

C
SP

-m
v-

t
0
.7

1
0

6
±

0
.0

1
1

3
0

.1
2

2
7
±

0
.0

3
9

9
0
.4

8
5

3
±

0
.0

1
0

4
0

.2
9

1
9
±

0
.0

0
9

7
0

.4
8

3
1
±

0
.0

0
8

1

C
SP

-w
v-

t
0
.7

2
4

4
±

0
.0

2
0

2
0

.1
5

0
1
±

0
.0

3
0

2
0
.4

8
5

4
±

0
.0

1
0

5
0

.2
9

2
1
±

0
.0

0
9

8
0

.4
8

3
2
±

0
.0

0
8

2

C
SP

-s
-t

0
.7

2
1

2
±

0
.0

0
6

7
0

.1
4

8
8
±

0
.0

2
7

2
0
.4

8
4

8
±

0
.0

0
8

4
0

.2
8

7
0
±

0
.0

0
8

4
0

.4
7

5
2
±

0
.0

0
8

9

C
SR

F-
m

v-
t

0
.6

4
9

8
±

0
.0

5
9

8
0

.0
3

0
0
±

0
.0

4
8

8
0
.4

9
8

0
±

0
.0

1
2

0
0

.2
2

7
4
±

0
.0

5
2

0
0

.3
9

2
9
±

0
.0

6
5

5

C
SR

F-
w

v-
t

0
.7

2
4

9
±

0
.0

7
4

2
0

.0
6

2
4
±

0
.0

4
7

7
0
.4

9
7

9
±

0
.0

1
2

4
0

.2
9

4
8
±

0
.0

0
7

9
0

.4
7

2
8
±

0
.0

1
2

5

C
SR

F-
s-

t
0
.6

7
3

1
±

0
.0

9
3

1
0

.0
5

8
6
±

0
.0

5
0

7
0
.4

8
3

9
±

0
.0

1
6

0
0

.2
5

1
8
±

0
.0

2
8

1
0

.3
8

5
4
±

0
.0

8
9

9

C
SR

P-
m

v-
t

0
.7

2
2

0
±

0
.0

0
8

2
0

.1
3

2
1
±

0
.0

2
8

0
0.

51
54
±

0.
00

77
0

.3
0

5
3
±

0
.0

0
8

7
0

.4
9

6
0
±

0
.0

0
7

5

C
SR

P-
w

v-
t

0.
73

48
±

0.
01

31
0

.1
6

1
5
±

0
.0

2
5

2
0
.5

1
5

2
±

0
.0

0
8

3
0

.3
0

1
5
±

0
.0

0
8

6
0

.4
8

8
5
±

0
.0

0
7

6

C
SR

P-
s-

t
0
.7

3
3

6
±

0
.0

1
0

8
0.

16
52
±

0.
02

64
0

.4
9

8
9
±

0
.0

0
8

8
0

.2
9

5
6
±

0
.0

0
7

8
0

.4
8

7
8
±

0
.0

0
8

0

(M
od

el
s

w
it

h
th

e
hi

gh
es

t
sa

vi
ng

s
ar

e
m

ar
ke

d
in

bo
ld

)

Table 9.2: Results of the CST and ECSDT algorithms measured by savings

cost-sensitive stacking (s). Unless otherwise stated, the random selec-
tion of the training set was repeated 50 times, and in each time the
models were trained and results collected, this allows us to measure the
stability of the results. The implementation of the cost-sensitive algo-
rithms is done using the CostCla library, see Appendix A.

The results are shown in Table 9.1 and Table 9.2. First, when observing
the results of the cost-insensitive methods (CI), that is, DT , LR and RF
algorithms trained on the t and u sets, the RF algorithm produces the
best result by savings in three out of the five sets, followed by the LR−u.
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Family Algorithm F-Rank perBest

ECSDT CSRP-wv-t 2.6 98.35

ECSDT CSRP-s-t 3.4 97.72

ECSDT CSRP-mv-t 4.0 94.99

ECSDT CSB-wv-t 5.6 95.49

ECSDT CSP-wv-t 7.4 94.72

ECSDT CSB-mv-t 8.2 91.39

ECSDT CSRF-wv-t 9.4 84.35

BMR RF-t-BMR 9.4 86.16

ECSDT CSP-s-t 9.6 93.80

ECSDT CSP-mv-t 10.2 91.00

ECSDT CSB-s-t 10.2 93.12

BMR LR-t-BMR 11.2 73.98

CPS RF-r 11.6 77.37

CST CSDT-t 12.6 88.69

CST CSLR-t 14.4 83.34

ECSDT CSRF-mv-t 15.2 70.88

ECSDT CSRF-s-t 16.0 75.68

CI RF-u 17.2 52.83

CPS LR-r 19.0 63.39

BMR DT-t-BMR 19.0 60.05

CPS LR-o 21.0 53.05

CPS DT-r 22.6 35.33

CI LR-u 22.8 40.43

CPS RF-o 22.8 34.81

CI DT-u 24.4 27.01

CPS DT-o 25.0 24.25

CI DT-t 26.0 16.14

CI RF-t 26.2 16.73

CI LR-t 28.0 1.19

Table 9.3: Savings Friedman ranking and average percentage of best result

It is also clear that the results on the t dataset are not as good as the
ones on the u, this is highly related to the unbalanced distribution of
the positives and negatives in all the databases.

In the case of cost-proportionate sampling methods (CPS), specifically
the cost-proportionate rejection sampling (r) and cost-proportionate
over sampling (o). It is observed than in four cases the savings in-
creases quite significantly. It is on the fraud detection database where
these methods do not outperform the algorithms trained on the under-
sampled set. This may be related to the fact that in this database the
initial percentage of positives is 1.5% which is similar to the percentage
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Algorithm Fraud Churn Credit1 Credit2 Marketing

RF-u 17 18 5 23 23

RF-r 20 13 3 3 19

RF-t-BMR 14 14 8 2 9

CSDT-t 10 11 16 14 12

CSRP-wv-t 1 2 2 5 3

Table 9.4: Savings ranks of best algorithm of each family by database
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Figure 9.3: Comparison of the savings of the algorithms versus the highest
savings in each database. The CSRP −wt is very close to the best
result in all the databases. Additionally, even though the LR−BMR
is the best algorithm in two databases, the performance in the other
three is very poor.

in the r and o sets. However it is 50.42% in the u set, which may help
explain why this method performs much better as measured by savings.

Afterwards, in the case of the BMR algorithms, the results show that
this method outperforms the previous ones in four cases and has almost
the same result in the other set. In the fraud detection set, the results
are quite better, since the savings of the three classification algorithms
increase when using this methodology. The next family of algorithms
is the cost-sensitive training, which includes the CSLR and CSDT tech-
niques. In this case, only in two databases the results are improved.
Lastly, we evaluate the proposed ECSDT algorithms. The results show
that these methods arise to the best overall results in three sets, while
being quite competitive in the others.

Subsequently, in order to statistically sort the classifiers we computed
the Friedman ranking (F-Rank) statistic [Demšar, 2006]. This rank in-
creases with the cost of the algorithms. We also calculate the average
savings of each algorithm compared with the highest savings in each
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(a) Comparison of the Friedman ranking.
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(b) Comparison of the average savings of the algorithms
versus the highest savings.

Figure 9.4: Comparison of the results by family of classifiers. The ECSDT
family has the best performance measured either by Friedman rank-
ing or average percentage of best model.

set (perBest), as a measure of how close are the savings of an algorithm
to the best result. In Table 9.3, the results are shown. It is observed that
the first six algorithms, according to the F-Rank, belong to the ECSDT
family. In particular, the best three classifiers is the ensemble of cost-
sensitive decision trees using the random patches approach. Giving the
best result the one that blends the base classifiers using weighted vot-
ing method. Moreover as shown in Table 9.4, this method ranks on each
dataset 1

st, 2
nd, 2

nd, 5
th and 3

rd, respectively. For comparison the best
method from an other family is the RF with BMR, which ranks 14

th,
14

th, 8
th, 2

nd and 9
th.
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(b) Comparison by combination of base classifiers ap-
proach.

Figure 9.5: Comparison of the Friedman ranking within the ECSDT family.
Overall, the random inducer method that provides the best results
is the CSRP. Moreover, the best combination method compared by
Friedman ranking is the cost-sensitive weighted voting.

Moreover, when analyzing the perBest statistic, it is observed that it
follows almost the same order as the F-Rank. Notwithstanding, there
are cases in which algorithms ranks are different in the two statistics,
for example the CSDT − t algorithm has a lower F-Rank than the RF−
BMR, but the perBest if better. This happens because, the F-Rank does
not take into account the difference in savings within algorithms. This
can be further investigated in Figure 9.3. Even that ranks of the BMR
models are better than the CSDT , the latter is on average closer to the
best performance method in each set. Moreover, it is confirmed that the
CSRP−wt is very close to the best result in all cases. Lastly, it is shown
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Figure 9.6: Comparison of the Friedman ranking of the savings and F1Score
sorted by F1Score ranking. The best two algorithms according to
their Friedman rank of F1Score are indeed the best ones measured
by the Friedman rank of the savings. However, this relation does
not consistently hold for the other algorithms as the correlation
between the rankings is just 65.10%.

why the F-Rank of the LR− BMR is high, given the fact that is the best
model in two databases. The reason for that, is because the performance
on the other sets is very poor.

Furthermore Figure 9.4a, shows the Friedman ranking of each family
of classifiers. The ECSDT methods are overall better, followed by the
BMR and the CST methods. As expected, the CI family is the one that
performs the worst. Nevertheless, there is a significant variance within
the ranks in the ECSDT family, as the best one has a Friedman ranking
of 2.6 and the worst 16. Similar results are found when observing the
perBest shown in Figure 9.4b. However, in the case of the perBest, the
CST methods perform better than the BMR. It is important, in both
cases it is confirmed that the ECSDT family of methods is the one that
arise to the best results as measured by savings.

We further investigate the different methods that compose the ECSDT
family, first by inducer methods and by the combination approach. In
Figure 9.5a, the Friedman ranking of the ECSDT methods grouped by
inducer algorithm are shown. It is observed that the worst method is the
random forest methodology. This may be related to the fact that within
the random inducer methods, this is the only one that also modified
the learner algorithm in the sense that it randomly select features for
each step during the decision tree growing. Moreover, as expected the
bagging and pasting methods perform quite similar, after all the only
difference is that in bagging the sampling is done with replacement,
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Table 9.5: Results of the CI and BMR algorithms measured by F1Score

while it is not the case in pasting. In general the best methodology is
random patches. Additionally, in Figure 9.5b, a similar analysis is made
taking into account the combination of base classifiers approach. In this
case, the best combination method is weighted voting, while majority
voting and staking have a similar performance.

Finally, in Table 9.5 and Table 9.6 the results of the algorithms mea-
sured by F1Score are shown. It is observed that the model with the high-
est savings is not the same as the one with the highest F1Score in all of
the databases as selecting a method by a traditional statistic does not



102 ensembles of cost-sensitive decision trees

Fam
ily

A
lgorithm

Fraud
C

hurn
C

redit
1

C
redit

2
M

arketing

C
ST

C
SLR

-t
0.

2
0

3
1±

0.
0

0
6

5
0.

1
1

3
4±

0.
0

1
5

1
0.

1
4

5
4±

0.
0

5
1

7
0.

3
3

6
3±

0.
0

0
4

5
0.

2
3

3
9±

0.
0

0
5

1

C
SD

T-t
0.

2
5

2
2±

0.
0

9
8

0
0.

1
2

8
8±

0.
0

1
9

4
0.

2
7

5
4±

0.
0

0
5

9
0.

3
4

8
3±

0.
0

0
4

6
0.

2
6

8
0±

0.
0

0
6

0

EC
SD

T
C

SB-m
v-t

0.
2

1
1

2±
0.

0
1

2
5

0.
1

4
8

1±
0.

0
1

2
2

0.
2

9
2

7±
0.

0
1

0
8

0.
3

5
0

3±
0.

0
0

4
6

0.
2

7
5

8±
0.

0
0

7
2

C
SB-w

v-t
0.

2
1

1
2±

0.
0

0
9

1
0.

1
6

8
6±

0.
0

1
2

5
0.

2
9

2
6±

0.
0

1
0

8
0.

3
5

0
3±

0.
0

0
4

6
0.

2
7

5
7±

0.
0

0
7

2

C
SB-s-t

0.
2

0
7

2±
0.

0
1

0
3

0.
1

5
5

4±
0.

0
1

2
1

0.
2

8
1

8±
0.

0
0

7
5

0.
3

5
3

3±
0.

0
0

4
6

0.
2

7
9

9±
0.

0
0

7
4

C
SP-m

v-t
0.

2
0

9
8±

0.
0

1
2

6
0.

1
4

8
0±

0.
0

1
3

6
0.

2
9

0
3±

0.
0

1
0

8
0.

3
4

9
9±

0.
0

0
4

4
0.

2
7

4
9±

0.
0

0
6

4

C
SP-w

v-t
0.

2
0

9
9±

0.
0

0
5

4
0.

1
6

5
1±

0.
0

1
2

0
0.

2
9

0
5±

0.
0

1
1

0
0.

3
4

9
8±

0.
0

0
4

5
0.

2
7

4
9±

0.
0

0
6

4

C
SP-s-t

0.
2

0
6

4±
0.

0
0

6
9

0.
1

5
9

0±
0.

0
0

9
9

0.
2

8
0

9±
0.

0
0

6
2

0.
3

5
2

4±
0.

0
0

4
6

0.
2

7
7

8±
0.

0
1

0
4

C
SR

F-m
v-t

0.
2

2
0

8±
0.

0
0

2
2

0.
1

0
8

1±
0.

0
2

2
4

0.
2

9
9

4±
0.

0
2

2
6

0.
3

5
6

0±
0.

0
1

1
8

0.
2

7
8

0±
0.

0
1

0
6

C
SR

F-w
v-t

0.
2

1
7

5±
0.

0
0

1
9

0.
1

2
2

0±
0.

0
2

3
4

0.
2

9
9

2±
0.

0
2

3
6

0.
3

5
4

9±
0.

0
0

6
9

0.
2

5
5

2±
0.

0
1

8
7

C
SR

F-s-t
0.

2
1

6
9±

0.
0

0
4

5
0.

1
3

0
4±

0.
0

1
6

2
0.

2
9

1
6±

0.
0

2
3

6
0.

3
5

4
0±

0.
0

0
7

1
0.

2
5

7
8±

0.
0

1
8

6

C
SR

P-m
v-t

0.
2

6
9

1±
0.

0
0

5
4

0.
1

5
1

1±
0.

0
1

1
0

0.
4

0
3

1±
0.

0
0

7
9

0.
3

7
4

3±
0.

0
0

5
0

0.
2

9
1

6±
0.

0
0

6
2

C
SR

P-w
v-t

0.
2

7
8

0±
0.

0
0

4
1

0.1710±
0.0140

0.4049±
0.0066

0.
3

7
2

1±
0.

0
0

5
1

0.
2

7
8

1±
0.

0
0

6
3

C
SR

P-s-t
0.

2
7

3
5±

0.
0

1
4

8
0.

1
6

2
2±

0.
0

1
0

3
0.

3
9

5
3±

0.
0

1
4

1
0.

3
7

2
0±

0.
0

0
4

9
0.

2
9

2
2±

0.
0

1
3

7

(M
odels

w
ith

the
highest

F
1
S
c
o
re

are
m

arked
in

bold)

Table 9.6: Results of the CST and ECSDT algorithms measured by F1Score

give the same result as selecting it using a business oriented measure
such as financial savings. This can be further examined in Figure 9.6,
where the ranking of the F1Score and savings are compared. It is ob-
served that the best two algorithms according to their Friedman rank of
F1Score are indeed the best ones measured by the Friedman rank of the
savings. However, this relation does not consistently hold for the other
algorithms as the correlation between the rankings is just 65.10%.



10
C O N C L U S I O N S

This thesis deals with the problem of example-dependent cost-sensitive
classification. Several real-world business applications of classification
models are example-dependent cost-sensitive, in the sense that the ob-
jective of using an algorithm is related to maximizing the profit of
the company. Moreover, the different costs due to misclassification
vary among examples. Particularly, we focused on four different real-
world applications: credit card fraud detection, credit scoring, churn
modeling and direct marketing. In all cases, evaluating a classifica-
tion algorithm using traditional statistics such as misclassification rate
or F1Score, do not accurately represent the business oriented goals.
Moreover, we found, significant differences in the results, when using
traditionally cost-insensitive methods against example-dependent cost-
sensitive methods.

First in Part I, we laid out the background for general classification
methods, and their respective evaluation measures. Moreover, we intro-
duced the problem of cost-sensitive learning. In particular, we defined
the differences between class-dependent and example-dependent prob-
lems. In addition, we presented an evaluation measure that takes into
account the real financial gains and losses of practical applications.

Then in Part II, we analyzed and discussed four real-world classifica-
tion problems, that were the focus of this thesis, in particular, credit card
fraud detection, credit scoring, churn modeling and direct marketing. In
general, we showed why each of the applications is example-dependent
cost-sensitive, and we elaborated a framework for the analysis of each
problem.

Finally in Part III, we introduced our proposed example-dependent
cost-sensitive methods. First, we presented a cost-sensitive Bayes min-
imum risk classifier. This method worked by comparing the expected
financial losses of different outcomes when classifying the examples in
the different classes. Then, we focused on introducing the costs to the al-
gorithms during the training phase. In particular, we presented the cost-
sensitive logistic regression and cost-sensitive decision trees algorithms.
The cost-sensitive decision tree algorithm proved to be highly effective
while maintaining the simplicity and interpretability of decision trees.
However, this method suffers from high variance. To overcome this lim-
itation, we proposed a framework for ensembles of cost-sensitive de-
cision trees. We have shown theoretically and experimentally that the
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method of ensembles of cost-sensitive decision trees ranks the best and
outperforms state-of-the-art example-dependent cost-sensitive method-
ologies, when measured by financial savings.

This thesis showed the importance of using the real example-
dependent financial costs associated with real-world applications. In
particular, we found significant differences in the results when evalu-
ating a model using a traditional cost-insensitive measure such as the
accuracy or F1Score, than when using the savings, leading to the con-
clusion of the importance of using the real practical financial costs of
each context. Lastly, in Appendix A, we presented the library CostCla
that we developed as part of the thesis. This library is an open-source
implementation of all the algorithms covered in this manuscript.

10.1 future research directions

We foresee that the framework we developed through this thesis should
open the door to developing more business focused algorithms, and
that ultimately, the use of the actual financial costs during training will
become a common practice. There is a list of points related to this work
that can be further investigated. In the following, we address some is-
sues.

- Multi-class example-dependent cost-sensitive classification. This
thesis focused on binary cost-sensitive classification problems.
Nevertheless, not all cost-sensitive applications are two-class
problems. Some studies have started to look into Multi-class
class-dependent cost-sensitive classification [Zhou and Liu, 2010].
Therefore, we expect that an interesting line of future work should
include expanding our framework to multi-class problems.

- Cost-sensitive calibration. When evaluating how well a set of
probabilities are calibrated, for example using the Brier score, the
measure does not take into account the cost of each example.
Therefore, the calibration methods that attempt to improve those
kinds of measures, as the ones presented in Section 6.2, also fail to
take into account the real cost-sensitive costs related to each appli-
cation. Future work should include a deep analysis of the impact
of the costs during the calibration of probabilities.

- Staking cost-sensitive decision trees. Even though we explore the
method of staking in Section 9.3.2.2, we foresee that a deeper anal-
ysis of the impact of having several layers of example-dependent
cost-sensitive methods could enhance the performance of the sys-
tem.
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- Example-dependent cost-sensitive boosting. In Chapter 9, we
only focused our attention to independent ensemble methods, in
particular bagging algorithms. However, there is an other branch
of ensemble methods, those that are dependent, such as boosting
[Schapire, 1990], adaboost [Freund and Schapire, 1996] or gradient
boosting [Friedman, 2001, 2002]. For some applications these meth-
ods have proved to outperform the bagging algorithms [Zhou,
2012], therefore, we think that future research should focus on cre-
ating a framework for example-dependent cost-sensitive boosting
algorithms.

- Online example-dependent cost-sensitive classification. The
methods covered in this thesis are all batch methods, in the
sense that the batch algorithms keep the system weights constant
while calculating the evaluation measures. However, in some ap-
plications such as fraud detection, the evolving patterns due to
change in the fraudsters behavior are not captured by using batch
methods. Therefore, the need to investigate this problem from an
online-learning perspective [Pozzolo et al., 2014b].





A
C O S T C L A : A C O S T- S E N S I T I V E C L A S S I F I C AT I O N
L I B R A RY I N P Y T H O N

CostCla is a Python open source cost-sensitive classification library
built on top of Scikit-learn, Pandas and Numpy. CostCla provides a
wide range of state-of-the-art example-dependent cost-sensitive meth-
ods for binary classification tasks. Source code, binaries and docu-
mentation are distributed under 3-Clause BSD license in the website
http://albahnsen.com/CostSensitiveClassification/.

a.1 library overview

CostCla is a easy to use Python library for example-dependent cost-
sensitive classification problems. It includes many example-dependent
cost-sensitive algorithms. Since it is part of the scientific Python ecosys-
tem, it can be easily integrated with other machine learning libraries.

Python offers several machine learning packages, some including
classification algorithms like Scikit-learn [Pedregosa et al., 2011], PyBrain
[Schaul and Felder, 2010], PyMC [Patil et al., 2010], mlpy [Albanese et al.,
2012] and Orange [Demšar et al., 2013]. Nevertheless, all these packages
are based on a cost-insensitive classification framework, in which all
misclassification errors carry the same cost. As has been highlighted
throughout this thesis, this is not the case in many real-world applica-
tions.

The core of the library consists of a number of state-of-the-art
example-dependent cost-sensitive classification algorithms, such as
cost-proportionate rejection-sampling [Zadrozny et al., 2003], cost-
proportionate over-sampling [Elkan, 2001], Bayes minimum risk (see
Chapter 6), cost-sensitive logistic regression (see Chapter 7), cost-
sensitive decision trees (see Chapter 8), and the cost-sensitive ensemble
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methods: cost-sensitive bagging, cost-sensitive pasting, cost-sensitive
random forest and cost-sensitive random patches (see Chapter 9).

Moreover, the library also includes three different example-
dependent cost-sensitive databases. In particular two credit scoring
databases (see Section 4.2), and one direct marketing database (see Sec-
tion 5.2).

a.2 usage

In this section we provided a quick example of the usage of the CostCla
library, and compare the results of different algorithms using a credit
scoring database.

• Prepare dataset and load libraries

from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
from costcla.datasets import load_creditscoring2
from costcla.sampling import cost_sampling
from costcla.metrics import savings_score
from costcla import models
data = load_creditscoring2()
X_train, X_test, y_train, y_test,
cost_mat_train, cost_mat_test = \
train_test_split(data.data, data.target, data.cost_mat)

• Random forest

f_RF = RandomForestClassifier()
f_RF.fit(X_train, y_train)
y_pred = f_RF.predict(X_test)
print savings_score(y_test, y_pred, cost_mat_test)

0.042197359989

• Cost-proportionate rejection sampling

X_cps_r, y_cps_r, cost_mat_cps_r = \
cost_sampling(X_train, y_train, cost_mat_train,

method=’RejectionSampling’)
f_RF.fit(X_train, y_train)
y_pred = f_RF.predict(X_test)
print savings_score(y_test, y_pred, cost_mat_test)

0.280743761779
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• Bayes minimum risk

f_RF.fit(X_train, y_train)
y_prob_test = f_RF.predict_proba(X_test)
f_BMR = models.BayesMinimumRiskClassifier()
f_BMR.fit(y_test, y_prob_test)
y_pred = f_BMR.predict(y_prob_test, cost_mat_test)
print savings_score(y_test, y_pred, cost_mat_test)

0.285102564249

• Cost-sensitive decision tree

f_CSDT = models.CSDecisionTreeClassifier()
f_CSDT.fit(X_train, y_train, cost_mat_train)
y_pred = f_CSDT.predict(X_test)
print savings_score(y_test, y_pred, cost_mat_test)

0.289489571352

• Cost-sensitive random patches

f_CSRP = models.CSRandomPatchesClassifier()
f_CSRP.fit(X_train, y_train, cost_mat_train)
y_pred = f_CSRP.predict(X_test)
print savings_score(y_test, y_pred, cost_mat_test)

0.306607400467

In Table A.1 we summarize the results of the different algorithms. It is
observed that the library follows the same API structure of Scikit-learn,
therefore, making CostCla highly compatible with the most widely used
machine learning library in Python.

Algorithm Savings

Random forest 0.0422

Cost-proportionate rejection sampling 0.2807

Bayes minimum risk 0.2851

Cost-sensitive decision tree 0.2895

Cost-sensitive random patches 0.3066

Table A.1: Results of the different algorithms using the CostCla library
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a.3 installation

CostCla requires some prerequisite packages to be previously installed.
Nevertheless, all are cross-platform an freely available online:

- Python version > 2.7

- Numpy version > 1.8.0

- Pandas version > 0.14.0

- Scikit-learn version > 0.15.0b2

- pyea version > 0.1

The easiest way to install CostCla is with pip:

pip install costcla
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