
SimCoTest: A Test Suite Generation Tool for
Simulink/Stateflow Controllers

Reza Matinnejad, Shiva Nejati, Lionel C. Briand
SnT Centre, University of Luxembourg, Luxembourg

{reza.matinnejad,shiva.nejati,lionel.briand}@uni.lu

Thomas Bruckmann
Delphi Automotive Systems, Luxembourg

{thomas.bruckmann}@delphi.com

ABSTRACT
We present SimCoTest, a tool to generate small test suites with
high fault revealing ability for Simulink/Stateflow controllers. Sim-
CoTest uses meta-heuristic search to (1) maximize the likelihood of
presence of specific failure patterns in output signals (failure-based
test generation), and to (2) maximize diversity of output signal
shapes (output diversity test generation). SimCoTest has been eval-
uated on industrial Simulink models and has been systematically
compared with Simuilnk Design Verifier (SLDV), an alternative
commercial Simulink testing tool. Our results show that the fault
revealing ability of SimCoTest outperforms that of SLDV. Further,
in contrast to SLDV, SimCoTest is applicable to Simulink/Stateflow
models in their entirety. A video describing the main features of
SimCoTest is available at: https://youtu.be/YnXgveiGXEA

1. INTRODUCTION
The Simulink/Stateflow (SL/SF) environment is widely used for

model-based design and development of control software systems
in the Cyber Physical Systems (CPSs) domain [13]. In this domain,
system models are largely described in terms of mathematical mod-
els [3] and are typically developed using SL/SF. These models cap-
ture software controllers as well as the system under control which
consists of physical objects and processes [5].

The primary goal of control system modeling is simulation, i.e.,
design time testing of system models. Through simulation, SL/SF
models are executed, i.e., the mathematical formulas are numer-
ically solved for some given inputs to generate outputs. SL/SF
models, after being sufficiently tested, are converted into code. To
be able to generate code from these models, two major adaptations
typically take place: First, continuous-time operators are replaced
with their discrete-time counterparts [14]. Second, the floating-
point computations, such as square roots and trig functions, are
replaced with their corresponding fixed-point approximations. The
former is needed because, in contrast to the simulation environ-
ment, code runs in real time and receives input data as discrete
sequences of events. The latter is necessary since the target hard-
ware platforms, e.g., embedded processors in cars, mostly support
fixed-point computations only [14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Testing SL/SF models is complicated by a number of factors that
distinguish testing these models from the mainstream software test-
ing applied to code: First, the inputs and outputs of SL/SF models
are signals, i.e., variables capturing evolution of values over time.
Second, SL/SF models have continuous-time behaviors (described
using differential equations) since they are expected to capture and
continuously interact with the physical world. Third, automatable
test oracles for SL/SF models are not always available in practice.
More precisely, specifications and formal properties, from which
assertions (explicit oracles [1]) are derived, are expensive and not
generally amenable to capturing continuous dynamics of CPSs [5].
Further, run-time errors (implicit oracles [1]) such as buffer over-
flows are not sufficient as many faults may not lead to run-time
crashes. Hence, engineers often need to manually inspect the out-
puts of the models under test to decide if test cases pass or fail.

Existing approaches and tools for testing and verifying SL/SF
models [14, 12] generate test inputs in terms of single values in-
stead of signals. They are not applicable to testing models with
continuous-time behavior as they often require models to be first
converted into code (or an intermediate discrete model). When
automated oracles are not available, test generation using existing
tools and techniques is solely driven by some notion of structural
coverage. Effectiveness of structural coverage criteria, however,
has yet to be ascertained and empirically evaluated for Simulink
model testing. Specifically, our recent empirical study showed that
fault revealing ability of coverage-adequate test suites generated
by the Simulink Design Verifier (SLDV) tool [12], the only testing
toolbox of Simulink, is rather low [9, 8]. Our study, particularly
showed that although the test suites generated by SLDV are able
to cover the structure, including the faulty parts of SL/SF models,
they fail to produce fault-revealing outputs, i.e., outputs that can be
identified as failures based on a manual oracle [8].

To deal with the above-mentioned challenges, in our earlier work
we proposed a number of test generation algorithms for SL/SF
models. Our algorithms generate test cases in terms of signals,
are applicable to both continuous-time and discrete-time behaviors,
and generate small test suites with high fault revealing power, hence
reducing the cost of manual test oracles [9, 8]. Specifically, we used
meta-heuristic search algorithms [6] to generate test suites based on
our notions of failure-based and output diversity [9, 8]. Our failure-
based algorithm aims to maximize the likelihood of presence of two
specific failure patterns, namely instability and discontinuity, in the
continuous output signals of SL/SF models [9]. Our output diver-
sity algorithm aims to maximize diversity in output signals and pro-
duce output signals with diverse shapes [9, 8]. In this paper, we
present SimCoTest1 (Simulink Controller Tester) tool, that sup-
ports test suite generation for Simulink/Stateflow models based on

1https://sites.google.com/site/simcotesttool/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31223263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

our failure-based and output diversity algorithms [9, 8]. In addition,
SimCoTest includes a mechanism to prioritize test suites based on
their estimated fault revealing ability. SimCoTest automatically ex-
tracts all the information required for test generation from the un-
derlying models. It, further, provides a full-fledged user interface
to help engineers perform several sanity checks on the models prior
to test generation and execute the generated test cases directly from
the tool. Using SimCoTest, we were able to find two real faults
in Delphi models, which had not been previously found by manual
testing based on domain expertise. Further, our experiments show
that SimCoTest is effective and generates test suites with signifi-
cantly higher fault revealing ability, compared to those generated
based on structural coverage, e.g., by SLDV [8].

2. OUTPUT-BASED TEST GENERATION
As mentioned in Section 1, test generation algorithms in Sim-

CoTest operate on model outputs in contrast to existing test gener-
ation algorithms that are white-box and guided by structural cover-
age. Further, we note that most existing Simulink testing tools [14],
including SLDV [12] and Reactis [11], are not compatible, and
hence not applicable, to Simulink models with continuous-time and
floating-point computations as they require the models to be first
converted into an intermediate representation with discrete-time
and fixed-point operators. Our output-based approach, however,
is black-box and applicable to models with continuous-time and
floating-point computations.

Output signals provide a useful source of information for de-
tecting faults in Simulink models as they not only show the val-
ues of model outputs at particular time instants, but also they show
how these values change over time. In particular, SimCoTest im-
plements two output-based algorithms that are discussed below:
failure-based [9] and output diversity [9, 8]. Both of these algo-
rithms implement a whole test suite generation approach [4] and
rely on meta-heuristic search techniques [6].

Our failure-based algorithm aims to maximize objective func-
tions capturing the degree of presence of continuous output failure
patterns [9]. Inspired by discussions with control engineers, in our
earlier work, we proposed and formalized two continuous output
failure patterns, referred to as instability and discontinuity [9]. The
instability pattern is characterized by quick and frequent oscilla-
tions of the controller output over a time interval (see Figure 1(a)),
and the discontinuity pattern captures fast, short-duration and up-
ward or downward pulses in the controller output (see Figure 1(b)).
Presence of either of these patterns in SL/SF model outputs may
have undesirable impact on physical processes or objects that are
controlled by or interact with the model. Given an output signal o,
we defined objective functions approximating the degree of insta-
bility and discontinuity in o, respectively [9]. The higher the value
of these functions for a signal o, the more certain we can be that o
exhibits some instability or discontinuity failure. Our failure-based
algorithm iteratively searches the input space, and at each iteration,
produces a whole test suite containing test inputs that yield outputs
with high values of these functions [9]. Figures 1(a) and (b) show
two output signals of test cases generated by SimCoTest for two
faulty Simulink model examples. Figure 1(a) shows an instabil-
ity failure (the area marked by red line), and Figure 1(b) shows a
discontinuity failure at point A.

Failure-based test generation is useful for revealing faults that
lead to specific and known failure patterns in model outputs. For
other faults, SimCoTest implements an output diversity test gen-
eration algorithm [8]. Similar to above, this algorithm is a meta-
heuristic search algorithm [6], and is guided to produce test out-
puts with diverse signal shapes. Our past experiences [9, 8] show

(c) (d)
0.0 1.0 2.00.0 1.0 2.0

-1.0

-0.5

0.0

0.5

1.0
(b)

Time (s) Time (s)

(a)

C
tr

lS
ig

 O
ut

pu
t

0.0

0.25

0.50

0.75

1.0

C
tr

lS
ig

 O
ut

pu
t

A

Fu
el

Le
ve

l O
ut

pu
t

50

100

75

Faulty Output
Correct Output

0.0 1.0 2.0
Time (s)

0.0 1.0 2.0
Time (s)

Fu
el

Le
ve

l O
ut

pu
t

50

100

75

A

Faulty Output
Correct Output

Figure 1: Examples of Simulink/Stateflow output signals.

that test cases that yield diverse output signals are likely to reveal
different types of faults in Simulink models. The key in our work
is the definition and characterization of output diversity. We pro-
vide two alternative definitions for output diversity: vector-based
and feature-based [9, 8]. The former maximizes Euclidean dis-
tance over output signal vectors. The latter maximizes the distance
between the feature vectors developed based on output signals. In
our previous work, we defined a set of basic features characterizing
distinguishable signal shapes. Each signal feature is characterized
by a quantitative feature function [8]. Given any signal, the ele-
ments of a feature vector corresponding to that signal represent the
values of feature functions applied to that signal. SimCoTest imple-
ments test generation algorithms related to both vector-based and
feature-based notions of output diversity.

We illustrate the differences between test generation based on
structural coverage and based on output diversity using signals
shown in Figures 1(c) and (d). Figures 1(c) and (d) show two dif-
ferent output signals obtained by applying two test cases to a faulty
Simulink model along with the expected outputs (oracles). The
faulty outputs are shown by solid lines and the oracles are shown
by dashed lines. We note that the test input yielding the output in
Figure 1(d) covers exactly the same parts of the model as the test
input yielding the output in Figure 1(c). That is, the two test inputs
achieve exactly the same level of structural coverage. However, the
faulty output in Figure 1(d) almost matches the correct output (the
oracle), while the one in Figure 1(c) drastically deviates from the
oracle. In this domain, small output deviations from oracle are typ-
ically considered to be due to discretization conversions (e.g., re-
placing continuous-time or floating-point operators with discrete-
time or fixed-point operators), and, hence, are not considered as
failures. Therefore, engineers are unlikely to identify any fault
when provided with the output in Figure 1(d). When the goal is
high structural coverage, the test inputs yielding the output in Fig-
ure 1(d) and the one in Figure 1(c) are equally desirable. However,
by relying on the test input that generates the former output, the
fault most likely goes unnoticed. In contrast, our output-based al-
gorithms attempt to generate test cases that yield either outputs ex-
hibiting some failure patterns or diverse output signals with the aim
of increasing the probability of generating outputs that noticeably
diverge from the expected result (e.g., the output in Figure 1(c)).

3. TOOL OVERVIEW
Figure 2 shows an overview of SimCoTest that consists of four

steps: (1) checking SL/SF models to identify basic structural or
syntactic errors (sanity checks), (2) automatically extracting the in-

List of suspected
blocks/params

1.Sanity Checks

produces

Checks model
blocks/params

 Failure-based/
output diversity
test generation
generates

3. Test Generation

Test suites list
(for m outputs)

Prioritization
algorithm

generates

4. Prioritization

Prioritized list
of test suites

Inputs/params
ranges

2. Data Extraction

extracts
TSmTS1

Data extraction
procedure

1 m

Simulink/Stateflow
model

o1
om

i1

in

cpc1

Figure 2: An overview of test suite generation for SL/SF models
in SimCoTest.

Table 1: SimCoTest sanity checks.

Simulink Blocks

Configuration Parameters

1. Simulink blocks for which 'Saturate on Integer Overflow' is not enabled
2. From blocks without a corresponding Goto block
3. Input/output signals for which 'Resolve to Signal Object' is not enabled

SimCoTest Sanity Checks

4. Single parameters with multiple entries
5. Tabular parameters assigned to a single value
6. Tabular parameters with all entries assigned to the same value
7. A configuration parameter with a name pattern x_high has a value
 smaller than its corresponding parameter with a name pattern x_low.

formation required for test generation from SL/SF models (data ex-
traction), (3) generating test suites using our failure-based and out-
put diversity test generation algorithms (test suite generation), and
(4) prioritizing the generated test suites for different model outputs
according to their fault revealing ability (prioritization). Below, we
discuss the four steps of the process in Figure 2.

3.1 Sanity Checks
Prior to test generation, SimCoTest performs a number of sanity

checks on SL/SF models to identify basic errors that can be iden-
tified by evaluating Simulink models’ structure and syntax. Note
that Model Advisor, which is a Simulink toolbox, also performs
a number of sanity checks on Simulink models, e.g., identifying
disconnected model blocks [13]. However, our sanity checks im-
plemented in SimCoTest were identified in the course of our dis-
cussions with control engineers, and are not covered by Simulink
Model Advisor. Figure 1 shows a list of sanity checks implemented
in SimCoTest. The sanity check number one helps engineers to by-
pass overflow/underflow runtime crashes. The check number two is
focused on well-formedness of go-to and from blocks. The check
number three ensures that model input and output signals resolve to
a Simulink signal object, explicitly identifying their data types and
data ranges. The checks number four to seven particularly focus on
well-definedness of configuration parameters in Simulink models.
Configuration parameters are common in automotive applications,
and come in the form of single or tabular values. One common er-
ror is that the default values assigned to configuration parameters
contradict their types (e.g., checks number four and five). In ad-
dition, SimCoTest checks if all elements of a tabular configuration
parameter are assigned to the same value (check number six). Fi-
nally, the check number seven looks for cases where the max value
of a configuration parameter is less than its min value.

3.2 Data Extraction
To be able to perform test generation, SimCoTest requires to get

the simulation time, and further, obtain the names, data types and
data ranges of the input and output variables, and configuration pa-
rameters of the model under test. SimCoTest uses Matlab APIs to
get the model simulation time and iterates over the model blocks
to identify the input and output ports, and the configuration param-
eters. It then automatically extracts data types and data ranges, as

Figure 3: Data extraction results form in SimCoTest

Figure 4: Test generation settings form.

well as default values for the configuration parameters. Figure 3
shows the Data Extraction Results form representing the model
simulation time (0.3 sec) and a list of inputs, configuration param-
eters and outputs. SimCoTest also allows users to change value
ranges for input variables prior to testing. In Figure 3 for exam-
ple, the user has decided to use the range [2, 5] for the first input
of the model (highlighted by red boxes in the figure) instead of the
extracted range [0, 7.9999]. For configuration parameters, the user
may choose to treat them as input variables and let our test genera-
tion algorithms compute their values, or she may decide to fix their
values to their default values.

3.3 Test Generation
As discussed earlier, we assume that test oracles are manual and

are determined by engineers. Hence, the test suite size cannot be
arbitrarily large, and has to be determined by users based on their
manual test oracle budget. SimCoTest receives the test suite size
prior to testing. Since our test generation algorithms generate one
test suite per each model output, users determine the size for each of
these test suites. Figure 4 shows the Test Generation Settings form
where the user can specify the size of the test suites for each al-
gorithm (i.e., failure-based or output diversity) and per each model
output. Users have the option of excluding less important outputs,
i.e., outputs that are unlikely to reveal any fault as their values are
not related to the main system function. Finally, users may deter-
mine the test generation time and start the test generation process.
SimCoTest proceeds with the test suite generation step for all the
algorithms and for all the model outputs, concurrently. Users may
stop the test generation process at any time and before the end of the
allotted time, and access the generated test suites up to that point.

3.4 Prioritization
After test generation, users need to go through the generated test

suites for different outputs and inspect the output signals to decide
if test cases pass or fail. Note that for a test suite ts generated for
an output o, users need to evaluate only the values of o and not the
values generated by ts for outputs other than o. To help users effec-

Figure 5: Test generation results form.

tively inspect test outputs, SimCoTest prioritizes the generated test
suites based on their likelihood of revealing faults. This helps users
prioritize their manual test oracle budget and focus on test suites
and model outputs that are more likely to reveal faults. Our priori-
tization algorithm assigns a priority to each test suite based on the
stability/continuity/diversity of the test cases within the test suite
as well as their accumulative structural coverage. Figure 5 shows
the Test Generation Results form where the outputs are sorted in
the left-hand side list (i.e., the Prioritized Test Suites list), based on
their fault revealing ability as estimated by our prioritization algo-
rithm. Users can click on each output to obtain the corresponding
test suite in the right side of the form (i.e., the Test Cases list). Fur-
ther, for each test case within a test suite, users can see the informa-
tion about signals assigned to input variables and values assigned to
configuration parameters. Finally, SimCoTest enables users to run
each test case in Simulink and generate the simulation results. In
particular, SimCoTest autonomically plots output signals for each
corresponding output variable.

4. EVALUATION
We have evaluated the practical utility of SimCoTest by applying

it to three automotive industrial SL/SF models from Delphi Auto-
motive [9, 8]. These models are representative in terms of the size
and complexity of models developed at Delphi. Specifically, they
contain a total number of 1469 Simulink blocks and include 53
input variables, 126 configuration parameters, and 68 output vari-
ables. Using the test suites generated by SimCoTest, we were able
to identify two faults in these models which had not been previ-
ously found by manual testing: (1) We identified a model output
whose value remained constant, despite its expected behaviour, for
test cases generated by our output diversity algorithm, and (2) Sim-
CoTest was able to help identify a fault in a delay buffer. The test
case that revealed this fault was generated by our output diversity
test generation algorithm, and the fault was identified through man-
ual inspection of the output for this test case. Note that none of
these two faults could be revealed using implicit test oracles since
they do not lead to runtime crashes. Further, engineers did not
know about these faults a priori and did not have formal assertions
capturing them. Finally, the warnings generated by Simulink did
not help reveal these faults.

We empirically evaluated the fault revealing ability of Sim-
CoTest by applying it to 149 faulty versions of the three indus-
trial SL/SF models from Delphi as well as three publicly available
SL/SF models [9, 8]. To do so, we first developed a comprehensive
list of Simulink fault patterns [10] through our discussions with se-
nior Delphi engineers and by reviewing the existing literature on
mutation operators for Simulink models (e.g., [2]). Based on this

list, we then implemented an automated fault seeding program to
generate the faulty versions of the models [9, 8]. In our exper-
iments, we compared the fault revealing ability of the test suites
generated by SimCoTest, based on our failure-based and output
diversity test generation algorithms, with randomly generated and
coverage-adequate test suites. Our experiment results showed that
(1) our output-based test generation algorithms outperform random
and coverage-based test suite generation, (2) in the presence of fail-
ure patterns in the faulty model outputs, failure-based algorithms
outperform the others, particularly with small test suite sizes, and
(3) in the absence of failure patterns in the faulty model outputs,
the output diversity performs the best [9], particularly with rela-
tively larger test suite sizes. Further, we showed that our test suites
generated based on output diversity yields significantly higher fault
revealing rates compared to test suites generated by SLDV [8].

5. CONCLUSION
We presented a tool, SimCoTest, to generate small test suites

with high fault revealing ability for Simulink/Stateflow controller
models. SimCoTest generates test suites for SL/SF models using
our failure-based and output diversity test generation algorithms
and prioritizes them based on their estimated fault revealing ability.
Using SimCoTest, we were able to generate test cases that iden-
tified two faults in representative SL/SF models from Delphi Au-
tomotive. These faults had not been previously found by manual
testing based on domain expertise.

In our earlier work, we developed a tool called CoCoTest [7] to
automatically test closed-loop continuous controllers (i.e., PIDs)
in Simulink models. The underlying algorithms of CoCoTest
were different from those used in SimCoTest. Further, Co-
CoTest required automated oracles and was not applicable to
Simulink/Stateflow models in their entirety.

SimCoTest is implemented as part of an industry-driven research
effort to devise cost-effective and scalable techniques to testing au-
tomotive software components. We are currently taking the neces-
sary steps to integrate SimCoTest into Delphi’s development pro-
cess, so that it can be used by Delphi engineers on a daily basis.

6. REFERENCES
[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle

problem in software testing: A survey. TSE, 41(5):507–525, 2015.
[2] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare, P. Rümmer, and

G. Weissenbacher. Mutation-based test case generation for Simulink models. In
FMCO 2010, pages 208–227. Springer, 2010.

[3] D. K. Chaturvedi. Modeling and simulation of systems using MATLAB and
Simulink. CRC Press, 2009.

[4] G. Fraser and A. Arcuri. Whole test suite generation. TSE, 39(2):276–291,
2013.

[5] E. A. Lee and S. A. Seshia. Introduction to embedded systems: A
cyber-physical systems approach. Lee & Seshia, 2011.

[6] S. Luke. Essentials of metaheuristics, volume 113. Lulu Raleigh, 2009.
[7] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann. Cocotest: a tool for

model-in-the-loop testing of continuous controllers. In ASE2014, pages
855–858. ACM, 2014.

[8] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann. Automated Test Suite
Generation for Time-Continuous Simulink Models. Technical report, UL, 2015.

[9] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann. Effective test suites for
mixed discrete-continuous stateflow controllers. In ESEC/FSE 2015, 2015.

[10] Matinnejad, Reza. The paper extra resources (technical reports and the models).
https://sites.google.com/site/myicseresources/.

[11] Reactive Systems Inc. Reactis Validator.
http://www.reactive-systems.com/
simulink-testing-validation.html, 2010.

[12] The MathWorks Inc. Simulink Design Verifier. http://nl.mathworks.
com/products/sldesignverifier/?refresh=true.

[13] The MathWorks Inc. Simulink.
http://www.mathworks.nl/products/simulink, 2003.

[14] J. Zander, I. Schieferdecker, and P. J. Mosterman. Model-based testing for
embedded systems, volume 13. CRC Press, 2012.

