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1 Introduction and motivation

Gauging has always been an important technique in the construction of physical theories.

For a very simple example of this procedure, consider the action functional of two free

scalar fields ϕ1, ϕ2 ∈ C∞(Σ) over Minkowski space Σ: combining them into one complex

scalar field, φ = ϕ1 + iϕ2, and adding a (rotation-invariant) potential of interactions V ,

the functional takes the form

S[φ] :=

∫
Σ

∂µφ∂µφ+ V (|φ|2) d4x , (1.1)

where the bar denotes complex conjugation. Clearly S is invariant under internal (rigid)

rotations, which in terms of the complex field become phase transformations,

φ(x) 7→ eiαφ(x) , (1.2)

and it is not gauge invariant under those symmetries, i.e. the functional is not invariant if α

is permitted to change together with x, α = α(x). One can fix this “deficiency” by introduc-

ing a gauge field Aµ(x), replacing any derivative by a covariant one, ∂µ → Dµ = ∂µ − iAµ.

The functional, now depending on φ and Aµ, becomes gauge invariant by adding the trans-

formation law Aµ 7→ Aµ + ∂µα for Aµ to the (local) phase transformation of the form (1.2)

for φ.

In a physically more realistic setting one would start with free fermions instead of

scalar fields, but the procedure is essentially the same. The obtained Aµ describes the

photon, while, by increasing the number of initial (fermionic) fields, one constructs the

Standard Model of elementary particle physics in this way, with the additional gauge fields

describing now also the W- and Z-bosons as well as the gluons.

This procedure, called minimal coupling, works even in the much more general context

given by sigma models. Let (Σ, h) be any (pseudo)Riemannian d-dimensional manifold

and replace the “internal space” R2 above, in which the rigid rotations took place, by
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any Riemannian manifold (M, g) where the metric g has a nontrivial isometry group G.

Infinitesimally, the condition on g reads

Lvg = 0 , (1.3)

valid for the vector fields v = ρ(ξ) on M corresponding to arbitrary elements ξ ∈ g ≡
Lie(G), ρ denoting the action of g on M induced by the G-action. Consider the functional

of maps X : Σ→M

S[X] =

∫
Σ

1

2
gij(X) dXi ∧ ∗dXj +

∫
Σ

X∗B, (1.4)

where in the first term, which generalizes the first term of (1.1) to n = dimM scalar fields

taking values in the potentially curved space M , the star denotes the Hodge duality of

differential forms on Σ induced by h. Instead of the potential term in (1.1), which we could

consider in principle as well, we put the pullback of a d-form B defined on M . G-invariance

of the potential is now replaced by G-invariance of B; in fact, this invariance needs to hold

up to a “total divergence” only: assuming the existence of a (d− 1)-form β for any v like

in (1.3) such that

LvB = dβ , (1.5)

the action (1.4) becomes invariant under the rigid symmetry group G.

In the case β = 0, the gauging of such a sigma model is again provided by minimal

coupling. The gauge fields to be introduced are collected into a Lie algebra valued 1-form

on Σ corresponding to a connection in a trivial principal bundle Σ × G, A ≡ Aaea ∈
Ω1(Σ, g), ea denoting a basis of g. Again we merely need to replace dXi everywhere by the

covariant derivative DAX
i ≡ dXi − ρia(X)Aa, where i = 1, . . . , n and ρ(ea) ≡ ρia(X)∂i for

a = 1, . . . ,dim g. While S[X] is invariant w.r.t. the group G, the extended functional of X

and A is invariant w.r.t. the much bigger group G of smooth maps from Σ to G.1 Since any

group of isometries (1.3) is finite dimensional, here necessaril y dimG <∞, while certainly

dimG = ∞. Below we will consider a context where already the rigid symmetry group G

is infinite dimensional (and still not to be confused with the gauge group G = C∞(Σ, G)).

The situation becomes more complicated when β 6= 0 or when one even generalizes the

second term in the sigma model to a Wess-Zumino term. Let Σ̃ be a (d + 1)-dimensional

manifold with boundary Σ, X̃ : Σ̃ → M restricting to X on the boundary, H a closed

(d+ 1)-form on M , and replace
∫

ΣX
∗B by

SWZ =

∫
Σ̃

X̃∗H. (1.6)

1G is called a rigid symmetry group and also coincides with the structure group of the bundle, G is the

gauge (or local) symmetry group.
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Clearly, by Stokes’ theorem, this reduces to the original term if H = dB.2 Using Cartan’s

magic formula, Lv = dιv + ιvd, the condition (1.5) on B can be rewritten as

ιvH = dα , (1.7)

for H = dB (here we have put α = β − ιvB) and it is this condition one requires for a

general, also non-exact H. One sees at once that now minimal coupling would not provide a

satisfactory result: replacing dXi by DAX
i, would contain a term with the 1-forms Aa taken

to the (d+1)-fold wedge-power and even its variation would not localize to a term defined on

the boundary Σ. In fact, in general there exist no additions to the action functional (that

are local on Σ) such that the sigma model with WZ-term becomes gauge invariant, in which

case one speaks of an “anomaly”. There is no anomaly, iff the given (d+1)-form H permits

an equivariantly closed extension [2, 3]. Alternatively, there is no anomaly, iff the couples

(v, α) in (1.7) used for gauging form a Dirac structure [4]. We will come back to this below.

An important example of this is provided by the WZW-model [1, 5]. This is a two-

dimensional sigma model or string theory, dim Σ = 2, with the target space M being chosen

to be a semi-simple Lie group. The metric g, used for the kinetic term in (1.4), is the, e.g.,

left-invariant extension of the Killing-metric, the closed 3-form H is given by the Cartan-

Killing 3-form; in a faithful matrix representation of the group, and up to an irrelevant

prefactor which we fix by some convention, H = 1
3 tr(g

−1dg)∧3. This model has a rigid

symmetry group that is given by two copies of the target group, corresponding to left- and

(independent) right-translations. Gauging this large rigid symmetry is obstructed, only

particular subgroups permit gauging, like choosing G equal to the target group itself (with

the adjoint action); gauging then yields the so-called G/G WZW model [6]:

SG/G[g, A] = Skin[g, A] +

+

∫
Σ

tr
(
A ∧ (g−1 ∧ dg − dg ∧ g−1) +A ∧ gAg−1

)
+ SWZ (1.8)

where Skin is found to be just the usual kinetic term with minimal coupling, Skin =
λ
2

∫
Σ tr(g

−1DAg ∧ ∗g−1DAg) with λ = 1 (the real auxiliary parameter λ is introduced for

later convenience). Using even smaller subgroups leads to G/H WZW models [7]. While

these coset G/H models still carry “physical” degrees of freedom and describe interesting

string theories, the G/G WZW model becomes topological [8].

There is another important topological field theory in two dimensions, the Poisson

sigma model (PSM) [9, 10], which was used by Kontsevich to find his famous quantization

formula [11] (cf. also [12]), but which also permits to concisely treat a large class of two-

dimensional gravity-Yang-Mills theories [13–15]. It was generalized to carry a WZ-term

in [16], in which case it takes the form

S[X,A] =

∫
Σ
Ai ∧ dXi +

1

2
Πij(X)Ai ∧Aj +

∫
Σ̃
X̃∗H, (1.9)

2For non-exact closed forms H, the functional is multi-valued as a functional of X. One may assume

the conditions to be satisfied such that its contribution to the path integral is unique (cf. the discussion

in [1]), but in any case the variation of SWZ depends on X and its variation only.
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where in addition to n = dimM scalar fields Xi the action depends also on a likewise num-

ber of 1-form fields Ai. Π ≡ Πij∂i ∧ ∂j is a bivector field on M . For H = 0, i.e. in the con-

ventional PSM, Π is Poisson. The model (1.9), on the other hand, is topological, iff [16] the

couple (Π, H) satisfies the twisted Poisson condition 1
2 [Π,Π] = 〈H,Π⊗3〉 (cf. also [17, 18]).

A joint generalization of the twisted Poisson sigma model (1.9) and the G/G-WZW

model is given by the so-called Dirac sigma model (DSM) [19]. In fact, like the G/G-

model (1.8), also the DSM carries a kinetic term (with minimal coupling to A). In both of

these two models there are various arguments [8, 19], moreover, that the physical content

of the theory does not change when dropping this term, i.e. taking the limit λ → 0. For

the special case of a Dirac structure being a twisted Poisson structure, after this limit,

the action of the DSM reduces to (1.9), while for the Dirac structure corresponding to

the adjoint action on a group we are left likewisely with the last three terms in (1.8).3

The structural similarity of these terms is striking. But while in the first example the

A-contributions (which do not result from a simple procedure like minimal coupling) can

be obtained from a gauging procedure as outlined above, namely by an equivariantly closed

extension of the 3-form H, the much more general Dirac sigma model, or even its special

case of the twisted PSM (1.9), was never derived or explained like this.

It will turn out that the groups G coming into question for the gauging will all be infi-

nite dimensional.4 Nevertheless, as we see from the answer like (1.9) we want to reproduce,

the number of gauge fields is finite. This is an interesting fact for several reasons: first,

the usual equivariant cohomology procedure yields precisely the same number of 1-form

gauge fields as the dimension of the group G. So, the generalized equivariant cohomology

procedure using an adequate BRST-type language that we will sketch below, is different

from the usual one and capable of producing interesting results. Second, and more im-

portant, in the models under consideration here, one deals with Lie groupoids/algebroids

as generalizations of Lie groups/algebras. These are, on the one hand, generically infinite

dimensional Lie groups/algebras, on the other hand, they are themselves finite dimensional

manifolds (cf., e.g., [20, 21] for an overview). But they are also much more flexible than

mere groups, which, in this context, appear as somewhat (too?) rigid: in the space of

all Dirac sigma models the G/G models appear as isolated points (such as linear Poisson

brackets in the world of arbitrary Poisson structures). So, developping formalisms which

permit such a type of symmetries for the construction of new theories is a promising di-

rection, all the more if the resulting theories do resemble the more traditional ones quite

closely (like in the comparison of (1.8) and (1.9) of our toy models). Certainly such a for-

malism will not be restricted to two spacetime dimensions, we do it here only in a first step

for the purpose of developping the new formalism. We remark in this context, that another

step into the direction of developping (also theories of potentially physical content and in

3For the general DSM, the resulting action takes the form (4.8) or (4.9); the notions needed to understand

the terms in that functional are explained in the course of the present paper or in the original article [19].
4Note in this context that for what follows we dropped the kinetic term and thus the metric g, which, if

required to be left invariant, would necessarily lead to a finite dimensional G. The reason for this is at least

two-fold here: first of all, for kinetic terms the simple recipe of minimal coupling always works. Second, as ar-

gued above, in the resulting theories the physics does not change, if the kinetic term is dropped (limit λ→ 0).
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Figure 1. Schematic picture of a Dirac structure DΠ corresponding to a bivector Π and one that

does not arise in this way (having some directions parallel to TM).

arbitrary dimensions of Σ) was made in [22–24]. We consider the present investigation as

complementary to the tools developped there.

2 Dirac structures/Lie algebroids and the group G to gauge

The goal we want to pursue now is gauging the WZ-term (1.6) for a given closed 3-form

H. For this purpose we need to first identify the group G of rigid symmetries that can

be gauged. We already found above, having a symmetry of H generated by a vector field

v ∈ Γ(TM) should be read as the existence of a corresponding 1-form α ∈ Γ(T ∗M) such

that (1.7) holds true. Now the question of obstructions in the gauging arises.

Here we take recourse to [4]: it was found that, for a very large class of two-dimensional

sigma models, couples (v, α) ∈ Γ(TM ⊕ T ∗M) generate anomaly-free symmetries, iff they

fit into a so-called Dirac structure. A Dirac structure is a maximal collection of such cou-

ples, such that for any two of them, (v, α) and (w, β), one has: 1. α(w) + β(v) = 0 and 2.

The Courant-Dorfman bracket of the two,

[(v, α), (w, β)]D = ([v, w],Lvβ − ιwdα+ ιwιvH) (2.1)

gives another one in the set of permitted couples. We remark that taking the first condition

into account, the bracket becomes a Lie bracket. An important example [17] of a Dirac

structure is provided by (Π, H) defining an H-twisted Poisson structure: in this case one

takes all couples (ιαΠ, α), parametrized by 1-forms α ∈ Ω1(M). In fact, given any tensor

field Π ∈ Γ(TM⊗2) one can define a subbundle DΠ ⊂ TM ⊕ T ∗M by means of the graph

of the map Π] : T ∗M → TM,α 7→ ιαΠ ≡ Π(α, ·). It turns out that DΠ = {(Π](α), α), α ∈
T ∗M} is a Dirac structure, iff Π is H-twisted Poisson [17]. But not any Dirac structure D

arises in this way; there can be directions of D parallel to some directions of TM (e.g. for

H = 0, D = TM is a Dirac structure). Figure 1 gives a schematic overview.
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Now we are ready to define the biggest possible unobstructed rigid symmetry Lie alge-

bras g of a given closed 3-form H. To avoid anomalies we need to choose a Dirac structure

D ⊂ TM ⊕ T ∗M . Then

g = {(v, α) ∈ Γ(D)|ιvH = dα} . (2.2)

Several remarks are in place: the set of all elements (v, α) satisfying (1.7) forms an alge-

bra with respect to the bracket (2.1); this algebra is a Leibniz algebra, but not Lie due

to the missing antisymmetry of that bracket. Restricted to sections Γ(D) of any Dirac

structure D, however, the bracket becomes a Lie bracket. While, on the other hand, the

Lie algebra Γ(D) forms a C∞(M)-module, which implies that it arises from a subbundle

D of TM ⊕ T ∗M , the condition (1.7) does not: if (v, α) satisfies the condition (1.7), then,

for a general function f ∈ C∞(M), (fv, fα) does not. Correspondingly, while any Dirac

structure D defines a particular Lie algebroid structure over M , the Lie algebra g does

not even have the interpretation of sections of any (sub)vector bundle. Note also that

generically the Lie algebra g will be infinite dimensional. Certainly we can still decide to

look for (also finite dimensional) subalgebras h ⊂ g to be gauged, e.g. by requiring that h

leaves invariant also some given metric g on M . We will not restrict us here like this for

what follows, but take any group G the Lie algebra of which is given by g.

Two final remarks: it is curious to note that the condition (1.7) reminds of the con-

dition for v to be a Hamiltonian vector field. In fact, if H is a non-degenerate closed

(d+ 1)-form, it can be viewed of as a higher analogue of a symplectic form and such vector

fields v are then called d-Hamiltonian [25]. Finally, one may ask, why the consideration

in [4] can be applied since it uses the cotangent bundle of loop space although the kinetic

term for the string coordinate X was dropped. In fact, whenever the gauging of a WZ-

term (1.6) will produce a term linear in the gauge field (like in (1.8) or also in (1.9)), the

spatial component of the gauge field A (possibly multiplied by an appropriate function of

X) will provide a momentum p conjugate to X.5

3 BRST-picture of standard and Lie algebroid equivariant cohomology

To gauge the Lie algebra g in (2.2) as a rigid symmetry of the WZ-term (1.6), we will

apply the generalization of the standard equivariant cohomology as developped in [26]. For

this purpose we first recall the standard one, defined by a finite dimensional Lie algebra

h (which may be the intersection of g with the isometry group of a metric g defined on

M , or just an arbitrary finite dimensional Lie algebra acting on M). We will present the

ordinary gauging such that the generalization to g will be straightforward (cf. also [27]).

Denote by ρ : h→ X(M), ea 7→ ρia∂i the action of h on M , where (ea)
dim h
a=1 is a basis of

h and ρia ∈ C∞(M). Then there is a canonical BRST-charge associated to it [28]:

Q = ξaρia(x)
∂

∂xi
− 1

2
Cabcξ

bξc
∂

∂ξa
, (3.1)

5For a more detailed and careful discussion of this point, one may refer to the last section of [19], where it

is argued in what sense one can always work with the same phase space, the kinetic term being present or not.
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where xi are coordinates on M , ξa are odd, degree one variables called “ghosts” in the

BRST language, and Cabc are the structure constants of the Lie algebra. Let E be the triv-

ial vector bundle M × h. Declaring fiber-linear coordinates on E to have degree one (and

thus to be odd), we can consider xi and ξa as coordinates on this graded super-manifold

M that is usually denoted by E[1]. Q is a vector field of degree +1 on M that squares to

zero by the BRST property.

Given more generally any vector bundle E over M , we can introduce such coordinates

on E[1]. A degree +1 vector field then always takes the form (3.1), where now, however,

also Cabc can depend on x. Requiring Q2 = 0 then can be used as a possible definition of

the structure of a Lie algebroid [29].6 Dirac structures are particular Lie algebroids (cf.,

e.g., [19]) and thus they also permit the formulation in terms of a homological Q, of which

we will make use below in the generalization. Lie algebroids with Cabc constant always come

from a Lie algebra action and are called action Lie algebroids.

For any Lie algebroid, the degree -1 vector fields ε, ε′ form a Lie algebra with respect

to the derived bracket [30]:

[ε, ε′]Q := [[ε,Q], ε′] , (3.2)

where the ordinary brackets denote graded commutators. In the case of (3.1) and the action

Lie algebroid, this reproduces the usual Lie bracket in h for the case of constant (w.r.t. the

natural flat connection on the trivial bundle) vector fields, ε = εa ∂
∂ξa with εa constant.

Note, however, that also in this case εa ∈ C∞(M) is permitted and such sections form an

infinite dimensional Lie algebra (which for ρ = 0 would be just C∞(M)⊗ h, but in general

includes also a differentiation w.r.t. the base manifold due to the first term in (3.1)).

Suppose now that H is a closed 3-form satisfying (1.7) for any vector field v originating

from the h-action. So, for any va := ρ(ea) we have an αa such that H(va, ·, ·) = dαa. Note

that, even if they exist, these αa are not unique; they will have to be chosen in such a way

so as to satisfy some additional requirements. All this, including even the condition (1.7)

in fact, will follow from the procedure below.

Being a 3-form on M , H can be also regarded as a 3-form on the bundle E over M

(when pulled back by the projection, denoted by the same letter for simplicity), and thus

likewise as a 3-form on the graded manifold M, H ∈ Ω3(M). Let us define a total de-

gree deg by adding the form degree and the ghost degree. Since H does not contain any

ξa-variables, H has also total degree 3.

We noticed above that the h-action on M can be generated by (constant) degree -1

vector fields ε on M ≡ M × h[1]; we have in particular, (Xconst−1 (M), [·, ·]Q) ∼= (h, [·, ·]).
An h-equivariantly closed extension H̃ of H can now be defined as follows [26]: H̃ is a

differential form on M of total degree 3, deg H̃ = 3, such that

H̃|ξa=0=dξa = H , (d + LQ)H̃ = 0 , LεH̃ = 0 , (3.3)

6According to a more conventional definition, a Lie algebroid is a vector bundle E → M equipped

with a Lie bracket [·, ·]E on its sections ψ, ψ′ and a bundle map ρ : E → TM such that for any function

f ∈ C∞(M) one has [ψ, fψ′]E = f [ψ,ψ′]E+(ρ(ψ) · f)ψ′. The relation with Q is as follows: for any, possibly

overcomplete basis ea ∈ Γ(E) of sections in the bundle, one has [ea, eb]E |x = Cabc(x) and ρ(ea)|x = ρia(x)∂i
for all x ∈M . Alternatively one can identify the Lie bracket [·, ·]E with the bracket defined in (3.2) below.

– 7 –
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where the last equation has to hold for all ε ∈ Xconst−1 (M). The first equation ensures that at

ghost number zero H̃ starts with the given 3-form H (that is why it is called an extension),

the last equation translates into the fact that H̃ depends on the ghosts only through their

differentials; since deg(dξa) = 2, there can be at most one of them, so H̃ = H + αa ∧ dξa

for some 1-forms αa on M . It remains to solve the second condition of (3.3) at each ghost

number. At ghost number 0 and 1 it is fulfilled by construction, saying that H is closed

and reproducing the condition (1.7) valid for each couple (va, αa), va ≡ ρia∂i, respectively,

i.e., in the second case, reducing to the rigid invariance condition of H w.r.t. the h-action

on M .7 The remaining two equations at ghost numbers 2 and 3 provide the constraints

that cannot always be fulfilled: Lvaαb = Ccabαc and ιvaαb+ ιvbαa = 0. Note that the first of

these conditions would be the equivariance condition of a moment map if αa were a function

on a symplectic manifold; it thus can be interpreted as the corresponding higher analogue

for the case that (M,H) is 2-symplectic. This reproduces the standard formulas for an

equivariant extension, cf., e.g., [2], while it is formulated in such a way that a generalization

to arbitrary Lie (and also higher Lie or Lie-n) algebroids will be straightforward.

But before turning to this, we will briefly describe how to obtain the gauge invariant

functional from such a procedure, i.e. after having found H̃. The scalar fields Xi we started

with can be viewed as the pullback of coordinate functions xi on M by the map X : Σ→M ,

Xi = X∗(xi). The original functional S depends on the map X only. To include also the

gauge fields, for each dimension of h one 1-form gauge field on Σ, we may extend the above

map X to a degree-preserving map a : T [1]Σ → E[1] ≡ M × h[1]. Since coordinates on

T [1]Σ are coordinates σµ on Σ together with dσµ, and the latter coordinates are declared

to have degree 1 and thus being odd, functions on T [1]Σ, i.e. of these two type of variables,

are nothing but differential forms on Σ. Thus the pullback of the degree 1 variable ξa on

h[1] has to be a 1-form on Σ. We thus have the identification: Xi = a∗(xi), Aa = a∗(ξa).

H̃ is a differential form on M = E[1] and can thus be viewed as a function on T [1]M
by the above consideration, now extended to the case of graded manifolds (instead of the

ordinary manifold Σ). So, if qα ≡ (xi, ξα) denote the graded coordinates on M, we need

to extend the map a further to a map f : T [1]Σ → T [1]M by prescribing their action

by pullback on the dqαs. Noting that dqα = d(qα) and that the de Rham differential is

a vector field on T [1]M as well as on T [1]Σ (we denote it by the same letter d, under-

standing their difference from the context), the simplest way of fixing f∗ would be to say

that it commutes with d. Let us denote such a map by f0. Then (f0)∗(qα) = a∗(qα) and

(f0)∗(dqα) = da∗(qα); so, for example, (f0)∗(dξa) = dAa. It is, however, useful to twist

this map by a diffeomorphism generated by ιQ ≡ Qα(q) ∂
∂ dqα ,

exp(ιQ)(qα) = qα , exp(ιQ)(dqα) = dqα +Qα(q) , (3.4)

i.e. shifting the image along the tangent direction by the value of the vector field Q:

f∗ = exp(ιQ) ◦ (f0)∗ ◦ exp(−ιQ) . (3.5)

7We already adapted the notation so as to identify the 1-form part of H̃ with the αa appearing in the

condition (1.7), which otherwise follows from the degree 1 equation (note that in condition (1.7) αa is

defined only up to closed contributions).
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Then, by construction, f∗ : C∞(T [1]M)→ C∞(T [1]Σ) is a chain map with respect to the

twisted de Rham differential exp(ιQ)◦d◦exp(−ιQ) = d+LQ =: Q̃ onM, i.e. d◦f∗ = f∗◦Q̃.

For the vector field Q of the action Lie algebroid (3.1), this map f has the remarkable

property of implementing minimal coupling and producing the curvature of the gauge field:

f∗(dxi) = dXi − ρia(X)Aa ≡ DAX
i , f∗(dξa) = dAa +

1

2
CabcA

b ∧Ac ≡ FA , (3.6)

while it still produces the scalar and gauge fields when applied to the coordinates on M ×
h[1]: f∗(xi) = Xi and f∗(ξa) = Aa. The recipe8 now goes as follows: let S[X] =

∫
ΣX

∗B

be invariant under an h-action, or (1.6) its corresponding Wess-Zumino generalization, and

let H̃ be an equivariant extension of H as defined above (in the first case, H = dB), then

the gauge invariant extension of this action9 is a functional of a and takes the form

S[a] ≡ S[X,A] =

∫
Σ̃
f̃∗(H̃) , ∂Σ̃ = Σ , (3.7)

where on the r.h.s. f̃ is the map f for the extension of a to ã : : T [1]Σ̃→M. Note that H̃

has total degree 3 so that we obtain a 3-form on Σ̃ by applying the degree preserving map

f̃∗ to it; except for the WZ-term, this 3-form turns out to be exact and thus the integral

over the additional terms indeed localizes to the boundary Σ.

Now the stage is set for the Lie algebroid generalization of the equivariant cohomology.

Let H be a closed 3-form on M and g as defined in (2.2). Then H̃ is called an equivariantly

closed extension of H in the Lie algebroid sense, or, for short, an E-equivariantly closed

extension of H where E is the Lie algebroid under consideration, if

H̃|gh0 = H , Q̃H̃ = 0 , ε̃H̃ = 0 . (3.8)

Here the first equation denotes setting to zero all coordinates of strictly positive degree on

E[1] as well as their derivatives. Q̃ = d + LQ is the twisted de Rham differential.

More intricate is the specification of the third equation. In any case, ε̃ has to form

a subalgebra of (X−1(T [1](E[1])), [·, ·]
Q̃
≡ [[·, Q̃], ·], which is Lie. One may demand in

addition that ε̃ = Lε where ε ∈ X−1(E[1]), which can be identified with the sections of the

Lie algebroid E. If E = M×h is an action Lie algebroid, we will require that one considers

the sub-Lie algebra of constant sections on E corresponding to elements of h; this then

reproduces standard equivariant cohomology. For the case of a Dirac structure, E = D,

we will require it to satisfy the condition corresponding to the definition of g in (2.2), or

one of its Lie subalgebras. However, we will find it necessary or at least useful below, to

“lift” this picture, i.e. to permit vector fields ε̃ on T [1]E[1] that do not come from E[1] in

the above way; in that case, they will correspond to an extension g̃ of the Lie algebra g.

Note that applying the standard equivariant extension with h = g in general leads to a

different functional than applying the D-equivariant one for the same g; this is particularly

transparent when g is infinite dimensional so that the former procedure will introduce an

infinite number of gauge fields, while the one corresponding to the Dirac structure will

8For an explanation cf, e.g., [2] or [26].
9In the WZ-generalization one would need to add “variation” in front of “action”.
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introduce a finite number of them only, at the price of them being of a Lie algebroid type

instead of a conventional gauge field. We will comment more on these two alternatives and

their relation in a separate paper [31].

4 The Dirac sigma model from gauging

As a warm-up we start with the Poisson sigma model, i.e. with (1.9) for H = 0 and Π

being a Poisson bivector. We thus first determine the maximal Lie algebra g to gauge for

this special case. Since H = 0, the 1-forms α have to be closed, dα = 0. Moreover, v is

completely determined by α, v = Π](α) (this becomes also clear from figure 1, where we see

that the Dirac structure DΠ can be identified with T ∗M). Let us assume for a moment that

H1(M) = 0, i.e. that closed 1-forms are already exact, α = df . In this case the bracket (2.1)

reduces to simply [df, dg]D = d{f, g}Π where {·, ·}Π is the Poisson bracket on M induced

by Π, {f, g}Π = ιdgιdfΠ ≡
(
Π](df)

)
(g). Thus, for H1(M) = 0 the Lie algebra g is isomor-

phic to the Poisson algebra on M modulo constants, (g, [·, ·]) ∼= (C∞(M)/const, {·, ·}Π).

In general, g can be identified with (Ω1
closed(M), [·, ·]D), which also fits into the following

exact sequence of Lie algebras

0→ (C∞(M)/const, {·, ·}Π)
d→ g ∼= (Ω1

closed(M), [·, ·]D)
[ · ]→ H1(M)→ 0 , (4.1)

where H1(M) is viewed upon as an abelian Lie algebra. This is true since the bracket be-

tween two closed 1-forms α and β induced by the bracket (2.1) is even exact, d (Π(α, β)),

so vanishing when taking the cohomology class on the right.

Identifying DΠ with T ∗M (cf. figure 1), we may easily recover its Q-description. The

graded manifold M = T ∗[1]M is symplectic, ω = dxi ∧ dpi. It thus carries a canon-

ical Poisson bracket {·, ·} (of ghost number -1, since gh(ω) = +1). The bivector field

Π can be viewed as a Hamiltonian quadratic in the momenta, i.e. of ghost number 2,

Π = 1
2Πij(x)pipj . Thus its Hamiltonian vector field, Q = {Π, ·} is a (ghost) degree +1

vector field. {Π,Π} = 0 is equivalent to the Poisson condition on Π, so Q squares to

zero, Q2 ≡ Q ◦ Q = 0. Degree -1 vector fields ε = αi(x) ∂
∂pi

are parametrized by 1-forms

α = αi(x)dxi on M . And indeed, the derived bracket (3.2) can be identified with the Lie

algebroid bracket between the sections of T ∗M and agreeing with the Courant-Dorfman

bracket (2.1) restricted to sections of DΠ. Thus the Lie algebra g can be also seen as degree

-1 vector fields ε on M = T ∗[1]M parametrized by α ∈ Ω1
closed(M) and equipped with the

derived bracket [·, ·]Q.

Now we are ready to solve the gauging or extension problem (3.8) in this case, where

we choose ε̃ = Lε with the degree -1 vector fields ε as above. First, we observe that the

symplectic form ω onM provides an obvious solution of this: it carries ghost number one,

so it solves the first of the three conditions (3.8). The second condition, (d +LQ)ω = 0, is

satisfied since the symplectic form is closed and Q is Hamiltonian. It remains to check the

last equation, the vanishing of Lεω = d(ιεω) = −d(αidx
i) ≡ −dα, which is the case due

to the condition on the 1-forms α. It is interesting to note that here it is the last equation

that encodes the condition (1.7) (here in the degenerate case H = 0), in contrast to the
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standard equivariant cohomology, where it was found to show up in the second of these

equations. This is a feature that persists also for non-vanishing H.

Since we are extending H = 0, certainly also H̃ = λω for any λ ∈ R gives a solution. In

fact, a direct, straightforward calculation shows that this is even the most general solution.

We thus apply (3.7) to this solution:∫
Σ̃
f∗(λω) = λ

∫
Σ̃

d

(
Ai ∧ dXi +

1

2
Πij(X)Ai ∧Aj

)
, (4.2)

where we dropped a term proportional to Πij ,l Π
lk Ai ∧ Aj ∧ Ak by means of the Jacobi

identity satisfied by Π. Thus, up to an irrelevant constant prefactor, we indeed obtain the

PSM on the boundary Σ. (Note that (f0)∗(ω) = dXi ∧ dAi, so again the twist by Q is

essential here.) For a generalization of (4.2) to arbitrary dimensions, where one obtains

the AKSZ-sigma models on the boundary of the respective Σ̃, cf. [26].

It may appear strange to apply the extension problem to H = 0. In that case all the

information is contained in the chosen Dirac structure, which corresponded to the choice

of a Poisson structure on M . To obtain from this a constant multiple of the Poisson sigma

model in this way, and nothing else, is, however, comforting. It may be compared with

applying standard equivariant cohomology to M being just a point, where one obtains the

cohomology of the chosen Lie algebra (and nothing else).10

From the initial example we already learn that one will have to impose some kind of

non-zero condition on H to hope for a uniqueness; otherwise, there could be factors of

the above sort. But even requiring that H is non-vanishing when restricted to the twisted

symplectic leaves of Π, the above procedure turns out to not uniquely fix the functional in

general, as the following example shows.

The couple (Π = ∂1 ∧ ∂2 + ∂3 ∧ ∂4 + x1x2∂2 ∧ ∂3, H = −d
(

1
2(x1)2dx2 ∧ dx4

)
) defines

a twisted Poisson structure on M = R4. Since the bivector is non-degenerate, it is even

twisted symplectic; thus there is only one twisted symplectic leaf, which is all of R4, and the

3-form is non-zero almost everywhere (it is non-vanishing except for the 3-plane x1 = 0),

ambiguities of the previous sort would thus be ruled out by a continuity argument. We next

determine the Lie algebra g (2.2) for this choice of a 3-form H and the given Dirac structure.

Since the latter one is again the graph of a bivector, the condition to be in the Dirac struc-

ture is taken care of by using 1-forms α on M to parametrize them. It remains to analyze

the condition (1.7), which now takes the form ιΠ](α)H = dα. The general solution of this

is still an infinite dimensional space, but in some sense much smaller than in the previous

example studied above: one finds α = g(x1, x4)dx1+h(x1, x4)dx4+c(x1x2dx1+dx3), where

h is determined by g up to an additive function of x4 by means of h,1 = −x1g + g,4. Thus

while in the Poisson case studied before one obtained essentially all functions of the Pois-

son manifold parametrizing the Lie algebra, which would be functions of four variables for

M = R4, here the general solution is parametrized by one function g of only two variables,

one function of one variable (from the integration of h), and one constant c. The symmetry

algebra being relatively small in this case, the extension does not become unique anymore

10We are grateful to A. Alekseev for this remark.
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(and despite the fact that the given non-vanishing H would eliminate ambiguities of the

sort of the previous example). For example, in addition to the action (1.9) for the above

data, we can add terms of the form
∫

Σ f(X1)A2 ∧ A3 for an arbitrary function f , which

corresponds to a modified bivector Π→ Π + f(X1)∂2 ∧ ∂3. Remarkably, this change of the

bivector can be made undone by means of a diffeomorphism on M (leaving H invariant)

provided f is vanishing at x1 = 0 (by an x1-dependent shift of x2, as one may easily check);

this is, however, no more the case for f(0) 6= 0. Thus, there exist examples, where the

above-mentioned extension has inequivalent solutions. It turns out that this type of ambi-

guity can be eliminated with an appropriate lift and extension of the symmetry algebra.

Having observed that the symmetry algebra g can be too small in some cases so as to

fix the equivariant extension, we search for an enlargement of it, while still staying inside

the context of E-equivariant cohomology with the conditions (3.8). Dropping the condi-

tion (1.7) for a moment, the symmetry algebra consists of sections of the Dirac structure

D ⊂ TM ⊕ T ∗M , which, in particular, is a Lie algebroid.

Given any Lie algebroid E, its Lie algebra on Γ(E) can be recovered from the Q-

derived bracket (3.2) by means of the degree -1 vector fields ε on M = E[1] (which are

easily seen to correspond to the sections of E). This Lie algebra can be lifted faithfully

to M̃ = T [1]M by means of the Lie derivative, using again the derived bracket con-

struction (3.2), but replacing ε, ε′ by Lε, Lε′ , and Q by Q̃ = d + LQ. We may now

search an extension of the form ε̃ = Lε + . . . for (3.8). For this we have the follow-

ing

Proposition. Let E ≡ (E, ρ : E → TM, [·, ·]E) be a Lie algebroid. The embedding L· of

its Lie algebra (Γ(E), [·, ·]E) into the degree -1 vector fields on T [1]E[1] (equipped with the

derived bracket) has a unique maximal extension GE, which is a semi-direct product:

0→ (Γ(E ⊗ T ∗M), [·, ·]ρ → (GE , [·, ·])
L·←→ (Γ(E), [·, ·]E)→ 0 , (4.3)

where the Lie algebra on Γ(E⊗T ∗M) is induced by a pointwisely defined Lie algebra on E⊗
T ∗M ∼= Hom(TM,E) 3 γ, γ′, [γ, γ′]ρ = −γ ◦ρ◦γ′+γ′ ◦ρ◦γ, and the action of ε ∈ Γ(E) on

γ = γa⊗ea ∈ Γ(T ∗M)⊗Γ(E) ∼= Γ(E⊗T ∗M) is given by ε·γ :=
(
Lρ(ε)γ

a
)
⊗ea+γa⊗[ε, ea]E.

Proof (Sketch). While the derived bracket satisfies a Jacobi-type of equation (its regular

left representation satisfies a Leibniz rule with respect to the bracket), it is not auto-

matically antisymmetric (cf., e.g., [30]); for this one needs that [Q̃, [ε̃, ε̃′]] vanishes for all

ε̃, ε̃′ ∈ GE . Since this has to hold for all ε, ε′ ∈ Γ(E) (with the usual identification), this

implies that the permitted ε̃ are of the form: ε̃ = Lε + θiγai (x) ∂
∂ψa , where θi = dxi and

ψa = dξa are the new “tangent” coordinates on T [1](E[1]) of degree 1 and 2, respectively.

(Note that on a supermanifold E[1] for a Lie algebroid E there are no degree -2 vector fields

so [ε, ε′] vanishes there for degree reasons; this is no more the case on T [1]E[1], where the

degree -2 vector fields are spanned by ∂
∂ψa .) The remainder is a straightforward calculation

using the derived bracket [[ε̃, Q̃], ε̃′] and identifying γai with the components of a section γ

in T ∗M ⊗ E for a basis dxi ⊗ ea.
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We now specialize this algebra to a Dirac structure, E = D, using also its particularities

as compared to general Lie algebroids. For the gauging of a closed 3-form H, the algebra

GD is still too big. First, we certainly need to impose the constraint (1.7) on ε of rigid

invariance of H. But now, in addition to ε ∈ Γ(D), also γ ∈ Γ(D⊗T ∗M) acts on H̃ and we

need to restrict it as well. In the present context we always considered Dirac structures in

split exact Courant algebroids (cf, e.g., [19] for an explanation of this terminology), i.e. in

addition to the projection ρ : D → TM , we also have a projection τ : D → T ∗M (horizontal

projection in figure 1). For any Dirac structure D we can thus define in a canonical way

γ̃ := (τ ⊗ id) ◦ γ ∈ Hom(TM, T ∗M) ∼= Γ(T ∗M ⊗ T ∗M) . (4.4)

Denote by γ̃A ≡ 1
2 γ̃ijdx

i ∧ dxj its antisymmetric or 2-form part. A restriction on γ that

defines a Lie subalgebra and that turns out to fulfill its purpose is given by the following:

g̃ := {(v, α, γ) ∈ GD|ιvH = dα , γ̃A = 0} . (4.5)

Before pronouncing the main result of the present paper, we specialize the above Lie

algebra to the case of D = DΠ of a twisted Poisson structure (Π, H). In that case the

map τ : D → T ∗M is an isomorphism, which we have used already to identify D with

T ∗M in fact, and the anchor map ρ corresponds to simply Π] : T ∗M → TM (cf. also fig-

ure 1). The projection τ being an isomorphism permits to identify γ with γ̃ in this case,

γ ∈ Γ(T ∗M ⊗ T ∗M). Then the restriction on γ in (4.4) just requires it to be a symmetric

tensor, γ ∈ Γ(T ∗MsT ∗M) =: Γ(S2 T ∗M). Any antisymmetric matrix Π induces a Lie

bracket on the symmetric matrices A, B, by means of [A,B]Π := −(AΠB −BΠA). It is

this Lie algebra that extends the previously found Lie algebra g of (2.2) in the form of a

semidirect product, with the action of g on the symmetric tensors just being given by the

Lie derivative with respect to v = Π](α), i.e. α ·γ = LΠ](α)γ. The semi-direct product thus

corresponds to the following exact sequence in this case

0→ (Γ(S2 T ∗M), [·, ·]Π)→ g̃→ ({α ∈ Ω1(M)|ιΠ](α)H = dα}, [·, ·]DΠ
)→ 0 , (4.6)

where [α, β]DΠ
= dιΠ#(α)β+ιΠ#(β)ιΠ#(α)H is the Lie algebroid bracket induced on T ∗M by

the twisted Poisson structure when restricted to set of 1-forms satisfying (1.7). As a vector

space thus g̃ = Γ(T ∗M ⊕ T ∗MsT ∗M) ∼= Ω1(M)⊕Γ(S2(T ∗M)), the 1-forms are equipped

with the above Lie algebroid bracket, the symmetric tensor with the pointwisely defined

Lie algebra induced by Π, and the 1-forms act on them by means of the Lie derivative

w.r.t. their anchor projection Π].

With this choice (4.4), represented by particular degree -1 vector fields on T [1]D[1] as

explained above, one finally obtains the following

Theorem. Let H be a closed 3-form on M and D a Dirac structure on (TM⊕T ∗M)H such

that the pullback of H to a dense set of orbits of D is non-zero. Then the g̃-equivariantly

closed extension H̃ (3.8) of H is unique and
∫

Σ̃
f̃∗(H̃) yields the (metric-independent part

of) the Dirac sigma model [19] on Σ = ∂Σ̃.
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Figure 2. Dirac structure as a graph of an orthogonal operator O ∈ Γ(End(TM)). While with

respect to the frame T ∗M/TM only (twisted) Poisson and presymplectic structures can be written

as a graph, cf. figure 1, the frame E+/E−, introduced by means of an auxiliary metric, permits to

write every Dirac structure D as a graph (since necessarily D ∩ E± = 0).

Proof. The proof is a rather straightforward, somewhat lengthy calculation. Let us present

its major stages. For a convenient description of couples (v, α) forming a Dirac structure

one may use the identification of D with TM induced by a metric g: such a metric permits

the identification TM ⊕ T ∗M ∼= TM ⊕ TM and the introduction of the eigenvalue sub-

bundles E± = {v ⊕±v} of the involution (v, α) 7→ (α, v). Clearly, E+ as well as E− can

be identified with TM (projection to the first factor). In this setting any Dirac structure

corresponds to a point-wise orthogonal operator O ∈ Γ(End(TM)), viewed as a map from

E+
∼= TM to E− ∼= TM (see figure 2, as well as [19] for the full argument), subject to the

following (twisted Jacobi-type) integrability condition

g
(
O−1∇(id−O)ξ1(O)ξ2, ξ3

)
+ cycl(1, 2, 3) =

1

2
H((id−O)ξ1, (id−O)ξ2, (id−O)ξ3). (4.7)

If the operator (id +O) is invertible, this corresponds precisely to the Dirac structure DΠ

of a twisted Poisson structure with bivector Π = (id − O) · (id + O)−1 (cf. also [32] and

figure 1); in this case, the condition (4.7) can be rewritten as 1
2 [Π,Π] = 〈H,Π⊗3〉. Such as

for the graph of a bivector Π we could parametrize the elements of the corresponding Dirac

structure DΠ by elements α ∈ T ∗M (cf. figure 1), now for an arbitrary Dirac structure D

we can parametrize its elements by vectors w ∈ TM ; then the pair (v, α) ∈ TM ⊕ T ∗M
takes the form (w −Ow, g(w +Ow, ·)).

For the equivariant cohomology construction we use the above identification of D with

a tangent bundle, equipped with a non-standard Lie algebroid structure: so, D[1] ∼= T [1]M

— where again we declared fiber-linear coordinates to be odd of degree +1. TheQ-structure

is of the form (3.1) with the anchor map ρ = (id−O) (cf. the end of the previous paragraph)

and the structure functions Cabc(x) being induced by the Courant-Dorfmann bracket (2.1),

which explicitly are given by eq. (40) in [19].
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As explained above the target Q-manifold of the sigma model is the shifted tangent

bundle to D, M̃ = T [1]D[1], equipped with the Q-structure Q̃ = d+ LQ, and the algebra

of symmetries encoded in the degree −1 vector fields ε̃ is given by g̃ defined by eq. (4.4),

cf. the Proposition above.

Now starts the purely computational part of the proof, performed in some local coor-

dinates. One starts with the most general superfunction H̃ on T [1]D[1] of total degree 3,

the degree matching the dimension of Σ̃, and applies the conditions (3.8) to this ansatz,

where the first of them can be taken account of directly in the ansatz. Note then that

T [1]D[1] is naturally equipped with a double Z-grading: the first one coming from the shift

in D[1], called ghost-number previously, and the second one from the tangent bundle and

being the form degree (of the differential form living on D[1]). Thus, a superfunction of

total degree 3 contains six types of terms: compare for example ηdx1dx2 and dηdx1, where

x’s are coordinates on M and η a fiber-linear coordinate on D[1]. Since the differential Q̃

is of total degree 1 and mixes the double grading, the condition Q̃H̃ = 0 determines one

half of the (degree (0, 0)) coefficients in terms of the other half.

It then remains to solve the conditions ε̃H̃ = 0. The vector field ε̃ is lowering the

total degree by 1. Consequently, ε̃H̃ contains four types of terms which have to vanish

independently. It is useful here to first consider only the extension part of g̃, i.e. the

vector fields parametrized by γ̃ with ε ≡ 0: the terms of form-degree 1 not containing

coordinates of total degree 2 (of the form f(x)ηdx, but not proportional to dη) enforce a

relation between two groups of coefficients out of three, left when restricting to H̃ being

Q̃-closed; the relation on the terms of form-degree 2 determines these coefficients up to

a global prefactor. One then is left with establishing the relation of those terms to the

form-degree 3 term in H̃, which is nothing but H due to the first condition in (3.8). This

is done by considering the unextended part of g̃, i.e. vector fields ε̃ = Lε parametrized by g:

due to the condition that we impose on the pullback of H to the orbits of D, ensuring that

ιvH 6= 0, the equation (1.7), which enters due to the definitions (4.5) or (2.2), is satisfied for

some non-vanishing dα. This, together with the relation on the form-degree 2 terms of ε̃H̃,

determines the above-mentioned prefactor and implies the uniqueness of the extension. One

can verify (using the orthogonality of O and the integrability condition (4.7) on it) that the

result is compatible with the conditions coming from the other form-degrees, furthermore.

The remaining part is a straightforward computation of f̃∗(H̃) as described in the

second half of section 3. Performing partial integration of the result using Stokes’ theorem,

one obtains the (topological part of the) functional of the DSM in the following form:

S0
DSM =

∫
Σ
g(dX ∧, (id +O)A) + g(A ∧, OA) +

∫
Σ̃
H . (4.8)

The full action functional of the DSM of [19] results from adding a kinetic term with min-

imal coupling, Sλkin = λ
2

∫
Σ g((dX − V ) ∧, ∗(dX − V )) with V ≡ A−OA; SDSM ≡ SλDSM =

S0
DSM + Sλkin. But, as mentioned in the introduction, this term only serves as a regulator,

not influencing the “physics” of the model otherwise, which results from the limit λ → 0

corresponding to (4.8) already.

– 15 –



J
H
E
P
1
1
(
2
0
1
3
)
1
1
0

T
*
M

TM

D

A

V

Figure 3. Schematic picture of the field content of the Dirac sigma model. Beside the map

X : Σ → M , there are 1-form fields taking values in the Dirac structure D chosen to define the

model: A ∈ Ω1(Σ, X∗D). The projection of A into the TM and T ∗M directions are called V

and A, respectively. They are not independent fields, however. The complete field content of the

Dirac sigma model combines into vector bundle maps from TΣ to the subbundle D ⊂ TM ⊕ T ∗M
defined by the Dirac structure.

Despite its appearance, the functional (4.8) does not depend on the auxiliary metric

at all. This becomes evident by rewriting it into the form:

S0
DSM =

∫
Σ
Ai ∧ dXi − 1

2
Ai ∧ V i +

∫
Σ̃
X̃∗H , (4.9)

with Ai ≡ gij(X)(A−OA)j and V i ≡ Ai −O(X)ijAj . The price to pay here is that the

variables A and V are not independent, but are just the T ∗M - and TM -components of the

independent gauge field along the Dirac structure, as illustrated in figure 3. This becomes

particularly evident in the case of the Dirac structure DΠ, where V i = Πji(X)Aj (cf. fig-

ure 1), with Ai being independent 1-form fields, in which case the action (4.9) evidently

reduces to the one of the twisted Poisson sigma model (1.9).11

We briefly remark that such as any Lie algebroid E →M also a Dirac structure induces

a (possibly) singular foliation on M into orbits (integration of the image of the anchor map

ρ : E → TM). For the case of a Dirac structure D these turn out to be H-twisted sym-

plectic. The condition that the pullback of H to any (non-trivial) leaf is non-zero excludes

ambiguities like those encountered in the Poisson sigma model (3.7). We stress that it is

sufficient that the pullback is non-zero somewhere on such a leaf, not non-zero everywhere

on it. The extension from g to g̃, on the other hand, excludes ambiguities of the sort

mentioned in the example following the one of the PSM.

The Dirac sigma model contains a metric independent part which for a twisted Poisson

structure (Π, H) is precisely given by (1.9). The metric dependent part only serves as a

kind of regulator and it consists simply of a standard kinetic term (like in (1.4)) minimally

coupled.

11For some more explicit formulas and a detailed presentation of the above procedure for the twisted

Poisson sigma model the reader may consult also [33].
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5 Summary and outlook

The main result of the paper is that a BRST-type adaptation of standard equivariant co-

homology given by the formulas (3.8), applied appropriately to twisted Poisson and, more

generally, Dirac structures, can explain the form of the twisted Poisson sigma model and

the (essential part of the) Dirac sigma model, respectively. The main idea for this formu-

lation of equivariant cohomology goes back to [26], but we adapted it by the lift from g to

g̃, which was essential for the uniqueness result.

We have chosen conditions for the main result, the above Theorem, that are sufficient

for uniqueness. It may well be possible to relax them keeping a unique extension. In

fact, we know examples like of an H-twisted Poisson structure Π on a three-dimensional

manifold M , which necessarily violates the condition since the leaves are even dimensional,

where one still gets uniqueness of the extension problem. Also it may be interesting to

parametrize the ambiguities in the general case (or under weaker assumptions).

In this article we focused mainly on a careful formulation of the extension problem,

making as clear as possible its ingredients and prerequisites. It is in principle also inter-

esting to explain in some detail, how this indeed yields a gauge invariant functional and

how the infinitesimal gauge transformations can be described as inner automorphisms of

an appropriate bundle. For this we may, however, refer to [26, 34] and a short paper [31]

parallel to this one where we focus on the novelties that algebroid methods in general offer

even in conventional contexts such as the one of standard gauging problems. We remark

as an aside in this context that the extension part of (4.6) by symmetric tensors γ permit

to recover precisely trivial gauge symmetries (in the sense of, e.g., [35]). Moreover, one

may replace the two separate conditions on (v, α) ∈ Γ(D) and γ given by (1.7) and (4.4),

respectively, by a single one combining the two while still keeping the topological part of

the Dirac sigma model gauge invariant. This can have some technical advantages in some

contexts. Also the presence of the kinetic term deforms/changes the gauge symmetries.

We may come back to these issues in more detail elsewhere.

Finally, we remark that there were several attempts in the mathematics literature to

define Lie algebroid equivariant cohomology, cf, e.g., [36–38]. We believe that for general

Lie n-algebroids there should be a formulation that contains the eqs. (3.8). On the other

hand, the details of the additional structures (given by the Dirac structure and the split-

ting) needed to obtain the results of the present paper may add another class of examples

to the general development of a theory of algebroid equivariant cohomology that one may

want to reproduce in a more general context.
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