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Abstract—Legal policy simulation is an important decision-
support tool in domains such as taxation. The primary goal of
legal policy simulation is predicting how changes in the law affect
measures of interest, e.g., revenue. Currently, legal policies are
simulated via a combination of spreadsheets and software code.
This poses a validation challenge both due to complexity reasons
and due to legal experts lacking the expertise to understand
software code. A further challenge is that representative data
for simulation may be unavailable, thus necessitating a data
generator. We develop a framework for legal policy simulation
that is aimed at addressing these challenges. The framework uses
models for specifying both legal policies and the probabilistic
characteristics of the underlying population. We devise an auto-
mated algorithm for simulation data generation. We evaluate our
framework through a case study on Luxembourg’s Tax Law.

Index Terms—Legal Policies, Simulation, UML Profiles, Model-
Driven Code Generation, Probabilistic Data Generation

I. INTRODUCTION

In legal domains such as taxation and social security,
governments need to formulate and implement complex policies
to meet a range of objectives, including a balanced budget and
equitable distribution of wealth. These policies are reviewed
and revised on an ongoing basis to keep them aligned with
fiscal, monetary, and social targets at any given time.

Legal policy simulation is a key decision-support tool to
predict the impact of proposed legal reforms, and to develop
confidence that the reforms will bring about the intended
consequences without causing undesirable side effects. In
applied economics, this type of simulation falls within the
scope of microsimulation. Microsimulation encompasses a
variety of techniques that apply a set of rules over individual
units (e.g., households, physical persons, or firms) to simulate
changes [1]. The rules may be deterministic or stochastic,
with the simulation results being an estimation of how these
rules would work in the real world. For example, in the
taxation domain, one may use a sample, say 1000 households
from the entire population, to simulate how a set of proposed
modifications to the tax law will impact quantities such as due
taxes for individual households or at an aggregate level.

Existing legal policy simulation frameworks, e.g., EURO-
MOD [1] and ASSERT [2], use a combination of spreadsheets
and software code written in languages such as C++ for
implementing legal policies. Directly using spreadsheets and
software code nevertheless complicates the validation of the
implemented policies. Particularly, spreadsheets tend to get
too complex, making it difficult to check whether the policy

implementations match their specifications [3]. The difficulty to
validate legal policies is only exacerbated when software code
is added to the mix, as legal experts often lack the expertise
necessary to understand software code. This validation problem
also has implications for software systems, as many legal
policies need to be implemented into public administration and
eGovernment applications.

A second challenge in legal policy simulation is posed by
the absence of complete and accurate simulation data. This
could be due to various reasons. For example, in regulated
domains such as healthcare and taxation, access to real data is
highly restricted; to use real data for simulation, the data may
first need to undergo a de-identification process which may
in turn reduce the quality and resolution of the data. Another
reason is that the data needed for simulation may not have
been collected. For example, tax simulation often requires
a detailed breakdown of the declared tax deductions at the
household level. Such fine-grained data may not have been
recorded due to the high associated costs. Finally, when new
policies are being introduced, no real data may be available for
simulation. Due to these reasons, a simulation data generator
is often needed in order to produce artificial (but realistic)
data, based on historical aggregate distributions and expert
estimates. A manual, hard-coded implementation of such a
data generator is costly, and provides little transparency about
the data generation process.

Contributions. Motivated by the challenges above, we develop
in this paper a model-based framework for the simulation of
legal policies. Our work focuses on procedural policies. These
policies, which are often the primary targets for simulation,
provide an explicit process to be followed for compliance.
Procedural policies are common in many legal domains such as
taxation and social security where the laws and regulations are
prescriptive. In this work, we do not address declarative policies,
e.g., those concerning privacy, which are typically defined using
deontic notions such as permissions and obligations [4].

Our simulation framework leverages our previous work [5],
where we developed a UML-based modeling methodology
for specifying procedural policies (rules) and evaluated its
feasibility and usefulness. We adapt this methodology for
use in policy simulation. Building on this adaptation, we
develop a model-based technique for automatic generation
of simulation data, using an explicit specification of the
probabilistic characteristics of the underlying population.
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Our work addresses a need observed during our collaboration
with the Government of Luxembourg. In particular, the Govern-
ment needs to manage the risks associated with legal reforms.
Policy simulation is one of the key risk assessment tools used
in this context. Our proposed framework fully automates, based
on models, the generation of the simulation infrastructure. In
this sense, the framework can be seen as a specialized form of
model-driven code and data generation for policy simulators.
While the framework is motivated by policy simulation, we
believe that it can be generalized and used for other types of
simulation, e.g., system simulation.

Specifically, the contributions of this paper are as follows,
with 2) and 3) being the main ones:

1) We augment our previously-developed methodology for
policy modeling [5] so as to enable policy simulation.

2) We develop a UML profile to capture the probabilistic
characteristics of a population. Our profile supports a variety
of probabilistic notions, including probabilistic attributes,
multiplicities and specializations, as well as conditional
probabilities.

3) We automatically derive a simulation data generator from
the population characteristics captured by the above profile.
To ensure scalability, the data generator provides a built-in
mechanism to narrow data generation to what is relevant
for a given set of policy models.

We evaluate our simulation framework using six policies
from Luxembourg’s Income Tax Law and automatically-
generated simulation data with up to 10,000 tax cases. The
results suggest that our framework is scalable and that the
data produced by our data generator is consistent with known
distributions about Luxembourg’s population.

Structure. Section II provides an overview of our framework.
Sections III through V describe the technical components of
the framework. Section VI discusses evaluation. Section VII
compares with related work. Section VIII concludes the paper.

II. SIMULATION FRAMEWORK OVERVIEW

Fig. 1 presents an overview of our framework. In Step 1,
Model legal policies, we express the policies of interest by
interpreting the legal texts describing the policies. This step
yields two outputs: First, a domain model of the underlying
legal context expressed as a UML class diagram, and second,
for each policy, a policy model describing the realization of
the policy using a specialized and restricted form of UML
activity diagrams. This step has been already addressed in our
previous work [S]. We briefly explain our background work in
Section III-A and elaborate, in Section III-B, the extensions we
have made to the work in order to support policy simulation.

In Step 2, Annotate domain model with probabilities, we
enrich the domain model (from Step 1) with probabilistic infor-
mation to guide simulation data generation. This information
may originate from various sources, including expert estimates,
and business and census data. The conceptual basis for this step
is a UML profile that provides the required expressive power for
capturing the probabilistic characteristics of a population. We
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Fig. 1. Simulation Framework Overview

present this UML profile and illustrate it over a real example
in Section IV.

In Step 3, Generate simulation data, we automatically
generate an instance of the domain model based on the
probabilistic annotations from Step 2. Our data generation
process is discussed in Section V. Finally, in Step 4, Perform
simulation, we execute the policy models (from Step 1) over
the simulation data (from Step 3) to compute the simulation
outcomes. Noteworthy details about this step are presented
alongside our modeling extensions in Section III-B.

The simulation results are subsequently presented to the
user so that they can be checked against expectations. If the
results do not meet the expectations, the policy models may be
revised and the simulation process repeated. Our framework
additionally supports result differencing, meaning that the
user can provide an original and a modified set of policies,
subject both sets to the same simulation data, and compare the
simulation results to quantify the impact. This type of analysis
does not add new conceptual elements to our framework and
is thus not further discussed in the paper.

III. LEGAL POLICY MODELS

To enable automated analysis, including simulation, legal
policies need to be interpreted and captured in a precise manner.
To this end, we developed in our previous work [5] a modeling
methodology for specifying (procedural) legal policies. The
modeling methodology produces two main outputs, as already
described and illustrated in Fig. 1: (1) a domain model, and
(2) a set of policy models.

Our main contributions in this paper are adding probabilistic
annotations to the domain model and using these annotations
for automated simulation data generation (Sections IV and V).
Nevertheless, policy models are also a critical component of
our framework as these models need to be executed over the
simulation data for producing the simulation results. In this
section, we first briefly review and illustrate our tailored UML
activity diagram notation for policy models. We then present
the adaptations we made to support simulation.

A. Legal Policy Modeling Notation

Fig. 2 shows a simplified policy model that calculates the
tax deduction granted to a taxpayer for disability (invalidity).
The stereotypes used in the model are from a previously-
developed UML profile [5]. This earlier profile extends
activity diagrams with additional semantics for expressing
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Fig. 2. Policy Model for Calculating Invalidity Tax Deduction (Simplified)

policy models. The model in Fig. 2 envisages three alter-
native deduction calculations, denoted by the actions with
the «calculate» stereotype. Each calculation is defined by a
corresponding formula («formula»). Based on the taxpayer’s
eligibility, assessed through decisions (denoted by the «decision»
stereotype), the appropriate calculation is selected. For instance,
if a given taxpayer is not disabled, this policy yields a value
of zero; otherwise, another alternative is selected based on
disability type (e.g., Standard deduction).

The gray boxes in the model of Fig. 2 represent input
parameters. For succinctness, we have omitted several details
from the model, e.g., the input types and the stereotypes
denoting the input origins. Each input is either a value or
an OCL query. In the simplest case, an OCL query could point
to an attribute from the domain model, e.g., actual_amount.
An example of a more complex query is for incomes, where
for a given taxpayer and a tax year, all incomes admitting a
tax card are retrieved.

The action annotated with an «assert» defines a statement
that must hold for policy compliance. This stereotype is not
used for simulation purposes, as the main motivation for the
stereotype is to define a test oracle and verify whether the
output from a system under test complies with a given policy.

Our policy models are automatically transformable to
OCL [5], [6]. However, OCL is inadequate for simulation
purposes as OCL operations cannot have side effects and are
thus unable to make updates. In the next subsection, we describe
how our current work adapts policy models for simulation and
changes the transformation target language to Java to support
operations with side effects.

B. Extending Policy Models to Support Simulation

A simple but important requirement for simulation is to
be able to record the simulation results. This requirement
cannot be met in a straightforward manner through OCL, due
to the language being side-effect-free. To accommodate this
requirement, we extend our profile for UML activity diagrams
with an additional stereotype, discussed below, and change the
target language for model transformation from OCL to Java.
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Fig. 3. Modeling Extension to Enable Operations with Side Effects

The new stereotype, «update», makes it possible to update
any object (in an instantiation of the domain model), including
input parameters. To use the model of Fig. 2 for simulation,
we need to record the amount of the disability deduction once
it has been calculated. To do so, we attach an «update» to
the final action in the model of Fig. 2. The modified action is
shown in Fig. 3.

With regards to model transformation, we have revised
our original transformation rules [6] so that, instead of OCL
expressions, the rules will generate Java code with calls to
an OCL evaluator. This allows us to handle updates through
Java, while still using OCL for querying the domain model.
Fig. 4 shows a fragment of the Java code generated for the
policy model of Fig. 2, after applying the modifications of
Fig. 3. As shown by the code fragment, Java handles loops
(L. 8), condition checking (e.g., L. 12), and operations with
side effects (e.g., L. 20); whereas OCL handles queries (e.g.,
L. 5-7). For succinctness and due to the similarity of our revised
transformation rules to the original ones, we do not elaborate
the transformation of policy models in this paper.

The resulting Java code will be executed over the simulation
data produced by the process described in Section V.
lpublic static void invalidity (EObject input,
2 0CLInJava.setContext (input) ;
3String OCL = "FromAgent.TAX YEAR";

4 int tax_year = OCLInJava.evallnt (input, OCL);
50CL = "self.incomes—>select (i:Income | i.year=tax year and

6 i.taxCard.oclIsUndefined())";

7 Collection<EObject> incomes = OCLInJava.evalCollection (input,OCL);
8 for (EObject inc: incomes) {

9 OCLInJava.newlteration("inc", inc, "incomes", incomes) ;

10 OCL = "self.disability type <> Disability Types::OTHER";

11 boolean is_disabled = OCLInJava.evalBoolean (input,OCL);
12 if(is_disabled == true) {

String ADName) {

13 OCL = "self.disabilityType = Disability::Vision";

14 boolean is_disability vision = OCLInJava.evalBoolean (input, OCL);

15 if (is_disability vision == true) {

16 OCL = "inc.prorata_period";

17 double prorata_period = OCLInJava.evalDouble (input, OCL) ;

18 double vision_deduction = 1455;

19 double expected amount = prorata_period * vision_deduction;

20 OCLInJava.update (input, "inc.taxCard.invalidity", expected_amount);

Fig. 4. Fragment of Generated Java Code for the Policy Model of Fig. 2

IV. EXPRESSING POPULATION CHARACTERISTICS

In this section, we present our UML profile for capturing
the probabilistic characteristics of a population. The profile,
which extends UML class diagrams, is shown in Fig. 5. The
shaded elements in the figure represent UML metaclasses
and the non-shaded elements — the stereotypes of the profile.
Below, we explain the stereotypes and illustrate them over
a (partial) domain model of Luxembourg’s Income Tax Law,
shown in Fig. 6. The rectangles with thicker borders in Fig. 6
are constraints (not to be confused with classes). References
to Fig. 5 for the stereotypes and Fig. 6 for the examples are
not repeated throughout the section.



o «probabilistic type» extends the Class and EnumerationLiteral
metaclasses with relative frequencies. For example, «proba-
bilistic type» is applied to the specializations of Income, stating
that 60% of income types are Employment, 20% are Pension,
and the remaining 20% are Other. In this example, the relative
frequencies for the specializations of Income add up to 1.
This means that no residual frequency is left for instantiating
Income (the parent class). Here, instantiating an Income is not
possible as Income is an abstract class. One could nevertheless
have situations where the parent class is also instantiable. In
such situations, the relative frequency of a parent class is the
residual frequency from its (immediate) subclasses. An example
of «probabilistic type» applied to enumeration literals can be
found in the (truncated) Disability enumeration class. Here,
we are stating that 90% of the population does not have any
disability, while 7.5% has vision problems.

o «probabilistic value» extends the Property and Constraint
metaclasses. Extending the Property metaclass is aimed at
augmenting class attributes with probabilistic information.

As for the Constraint metaclass, the extension is aimed at
providing a container for expressing probabilistic information
used by two other stereotypes, «multiplicity» and «dependency»
(discussed later). The «probabilistic value» stereotype has an
attribute, precision, to specify decimal-point precision, and
an attribute, usesOCL, to state whether any of the attributes
of the stereotype’s subtypes uses OCL to retrieve a value
from an instance of the domain model. A «probabilistic value»
can be: (1) a «fixed value», (2) «from chart», which could
in turn be a bar or a histogram, or (3) «from distribution»
of a particular fype, e.g., normal or triangular. The names
and values of distribution parameters are specified using the
parameterNames and parameterValues attributes, respectively.
The index positions of parameterNames match those of the
corresponding parameterValues. The same goes with the index
positions of items/bins and frequencies in «from chart».

To illustrate, consider the disabilityRate attribute of Taxpayer.
The attribute is drawn from a histogram, stating that 40%
of disability rates are between 0 and 0.2, 30% are between
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Fig. 5. Profile for Expressing Probabilistic Characteristics of a Population
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Fig. 6. Partial Domain Model of Luxembourg’s Income Tax Law Annotated with Probabilistic Information



0.21 and 0.5, and so on. An example of «probabilistic value»
specified using an OCL query is the amount attribute of
Expense. This attribute is modeled as a uniform distribution
ranging from 50 € up to a maximum of half of the income’s
gross value for which the expense has been declared.

o «multiplicity» extends the Association and Property metaclasses.
This stereotype is used for attaching probabilistic cardinalities
to: (1) association ends (specified as targetMember) and (2)
attributes defined as collections. To illustrate, consider the
association between TaxPayer and Income. The multiplicity
on the Income end is expressed as a constraint named income
mult, which states that the multiplicity is a random variable
drawn from a certain bar chart.

e «use existing» extends the Property and Association metaclasses
to enable reusing an object from an existing object pool, as
opposed to creating a new one. The object to be reused or
created will be assigned to an attribute or to an association
end. An application of «use existing» involves defining two
collections: (1) a collection ¢y, --- , g, of OCL queries; (2)
a collection py,--- , p, of probabilities. Each p; specifies the
probability that an object will be picked from the result-set of
q;. Within the result-set of the g; picked, all objects have an
equal chance of being selected. The residual probability, i.e.,
1 — 57 pi, is that of creating a new object.

To illustrate, consider the beneficiary end of the association
between TaxPayer and Expense. The «use existing» stereotype
applied here states that in 70% of situations, the beneficiary
is an existing household member; for the remaining 30%, a
new TaxPayer needs to be created. «use existing» envisages
collections of queries and probabilities, instead of an individual
query and an individual probability, as in UML, one can apply a
particular stereotype only once to a model element. In the case
of «use existing», one may want to define multiple object pools
with their probabilities. For example, the 70% of household
members above could have been organized into smaller pools
based on the family relationship to the taxpayer (e.g., parent
or children), each pool having its own probability.

e «dependency» is aimed at supporting conditional probabili-
ties. This stereotype is refined into two specialized stereotypes:
«value dependency» and «type dependency». The former applies
to properties only; whereas the latter applies to both properties
and associations. In either case, the conditional probabilities are
specified by a constraint annotated with «probabilistic value».
This constraint is connected to the dependency in question via
the OCLTrigger aggregation.

To illustrate «value dependency», consider the disability-
Type and disabilityRate attributes of TaxPayer. The value of
disabilityRate is influenced by disabilityType. Specifically, if
the taxpayer has no disability, then disabilityRate is zero. If
disabilityType is vision, then the distribution of disabilityRate
follows the histogram given in the constraint named, rate for
vision disability. Note that disability types other than vision are
handled by the generic histogram attached to the disabilityRate
attribute of TaxPayer. The condition under which a particular
«dependency» applies is provided as part of the constraint that

defines the conditional probability. For example, the condition
associated with rate for vision disability is the following OCL
expression: self.disabilityType = Disability::Vision.

As for «type dependency», the same principles as above

apply. The distinction is that this stereotype influences the
choice of the object that fills an association end, rather than
the choice of the value for an attribute. To illustrate, consider
the association between TaxPayer and Income. The «type
dependency» stereotype attached to this association conditions
the type of income upon the taxpayer’s age. Specifically, for a
taxpayer older than 60, Income is more likely to be a Pension
(85%) than an Employment (10%) or Other (5%).
o Consistency constraints: Certain consistency constraints
must be met for a sound application of the profile. Notably,
these constraints include: (1) Mutually-exclusive application of
certain stereotypes, e.g., «fixed value» and «from histogram»;
(2) Well-formedness of the the probabilistic information, e.g.,
sum of probabilities not exceeding one, and correct naming
of distribution parameters; and (3) Information completeness,
e.g., ensuring that a context is provided when OCL is used
in stereotype attributes. These constraints are specified at the
level of the profile using OCL, providing instant feedback to
the modeler when a constraint is violated.

V. SIMULATION DATA GENERATION

In this section, we describe the process for automated
generation of simulation data (Step 3 of the framework in
Fig. 1). An overview of this process is shown in Fig. 7. The
inputs to the process are: a domain model annotated with the
profile of Section IV and the set of policy models to simulate.
The process has four steps, detailed in Sections V-A through
V-D. We discuss the practical considerations and limitations
of the process in Section V-E.

Annotated dgmain model Policy models (set)

¥
Slice @ Identify (2 Classify @
domain model | \traversal order ) . . .o path segments
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Fig. 7. Overview of Simulation Data Generation

A. Domain Model Slicing

In Step 1 of the process in Fig. 7, Slice domain model, we
extract a slice model containing the domain model elements
relevant to the input policy models. This step is aimed at
narrowing data generation to what is necessary for simulating
the input policy models, and thus improving scalability.

The slice model is built as follows. First, all the OCL
expressions in the input policy model(s) are extracted. These
expressions are parsed with each element (class, attribute,
association) referenced in the expressions added to the slice
model. Next, all the elements in the (current) slice model are
inspected and the stereotypes applied to them retrieved. The
OCL expressions in the retrieved stereotypes are recursively
parsed, with each recursion adding to the slice any newly-
encountered element. The recursion stops when no new
elements are found.
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In Fig. 8(a), we show an example slice model, obtained
from the domain model of Fig. 6 specifically for simulating the
policy model of Fig. 2. Among other elements, the Expense
class has been excluded from the slice because, to simulate
the policy model of Fig. 2, we do not require instances of
Expense. To avoid clutter in Fig. 8(a), we have not shown the
constraints. For the policy model in Fig. 2, all the constraints
in the domain model of Fig. 6 are part of the slice. The slice
model of Fig. 8(a) also includes three abstract classes, namely
Income, FromLaw, and FromAgent. Obviously, these abstract
classes will not be instantiated during data generation (Step 4).
Nevertheless, these classes are necessary for OCL evaluation
and may further play a role in determining the order of object
instantiations. We describe how we determine this order next.

B. Identifying a Traversal Order

In Step 2 of the process in Fig. 7, Identify traversal order,
we compute a total ordering of the classes in the slice model,
and for each such class, a total ordering of its attributes. These
orderings are used later (in Step 4) to ensure that any model
element m is instantiated after all model elements upon which
m depends. An element m depends on an element m’ if some
OCL expression in a stereotype attached to m directly or
indirectly references m’.

The orderings are computed via topological sorting [7] of
a class-level Dependency Graph (DG), and for each class,
of an attribute-level DG. The class-level DG is a directed
graph whose nodes are the classes of the slice model and
whose edges are the inverted dependencies, which we call
precedences, between these classes. More precisely, there is a
precedence edge from class Cj to class C; if C'; depends on Cj,
thus requiring that the instantiation of C; should precede that
of C. Further, there will be edges from C; to all descendants
of C; as per the generalization hierarchy of the slice model.
An attribute-level DG is a graph where the nodes are attributes
and the edges are inverted attribute dependencies. Note that
the above consideration about descendants is only for classes
and does not apply to attributes.

In Fig. 8(b), we illustrate DGs and topological sorting over
the slice model of Fig. 8(a). The upper part of Fig. 8(b) is
the class-level DG, and the lower part — the attribute-level
DG for the TaxPayer class. Each of the other classes in the
slice has its own attribute-level DG (not shown). All the edges
in the class-level DG are induced by the «type dependency»
stereotype that is attached to the association between TaxPayer

and Income (Fig. 6), specifically by the OCL constraint named
income types based on age. Since the instantiation of TaxPayer
should precede that of Income, there are precedence edges
from TaxPayer to all Income subclasses as well. The numbers
in the DGs of Fig. 8(b) denote one possible total ordering for
the respective DGs. Computing these orderings is linear in the
size of the DGs [7] and thus inexpensive.

If the class-level or any of the attribute-level DGs are cyclic,
topological sorting will fail, indicating that the stereotypes
of the slice model are causing cyclic dependencies. In such
situations, the cyclic dependencies are reported to the analyst
and need to be resolved before data generation can proceed.

The orderings computed in this step ensure that the data
generation process will not encounter an uninstantiated object
or an unassigned value at the time the object or value is needed.
Nevertheless, these orderings do not guarantee that the data
generation process will not fall into an infinite loop caused by
cyclic association paths in the slice model. In the next step,
we describe our strategy to avoid such infinite loops.

C. Classifying Path Segments

To instantiate the slice model, we need to traverse its
associations. Traversal is directional, thus necessitating that we
keep track of the direction in which each association is traversed.
We use the term segment to refer to an association being
traversed in a certain direction. For example, the association
between TaxPayer and Income has two segments: one from
TaxPayer to Income, and the other from Income to TaxPayer.

In Step 3 of the process in Fig. 7, Classify path segments,
the segments of the slice model are classified as Safe, Potential-
lyUnsafe, or Excluded. The resulting classification will be used
in Step 4 to guide the instantiation. The classification is done
via a depth-first search of the segments in the slice model. The
search starts from a root class. When there is only one policy
model to simulate, this root is the (OCL) context class of that
policy. For example, for the slice model of Fig. 2, the root
would be TaxPayer. When simulation involves multiple policy
models, we pick as root the context class from which all other
context classes can be reached via aggregations. For example,
if the model of Fig. 2 is to be simulated alongside another
policy model whose context is Expense, the root would still
be TaxPayer as Expense is reachable from TaxPayer through
aggregations. If no such root class can be found, a unifying
interface class has to be defined and realized by the context
classes. This interface class will then be designated as the root.
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= IDlsab“ltV N FromLaw FromAgent ! 2 1
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Fig. 8. (a) Excerpt of Slice Model for Simulating Policy Model of Fig. 2, (b) Topological Sorting of Elements in (a)



Given a root class, segment classification is performed as
follows: We sort the outgoing segments from the current class
(starting with root) based on the indices of the classes at the
target ends of the segments. We then recursively traverse the
segments in ascending order of the indices. The indices come
from the ordering of classes computed in Step 2. For example,
the index for TaxPayer is 4, as shown in Fig. 8(b). A segment
is Safe if it reaches a class that is visited for the first time. A
segment is PotentiallyUnsafe if it reaches a class that has been
already visited. A segment going in the opposite direction of
a Safe or a PotentiallyUnsafe segment is Excluded.

That above exploration is further extended to attributes typed
by some class of the slice model, as assigning a value to such
attributes amounts to instantiating a class. For a given class,
the traversal order of attributes is determined by the attribute
ordering for that class, as computed in Step 2.

To illustrate, consider the slice model of Fig. 8(a). Start-
ing from the root class, TaxPayer, the outgoing segments,
TaxPayer— Income and Income— TaxCard, are classified as
Safe; and the opposite segments, Income— TaxPayer and
TaxCard—Income, as Excluded. In Fig. 8(a), there is no
PotentiallyUnsafe segment as there is no cyclic association path
in the slice model. For the sake of argument, had there been
an association between TaxCard and TaxPayer, the segment
TaxCard— TaxPayer would have been PotentiallyUnsafe.

In the next step, we use the segment classification to ensure
that simulation data generation terminates.

D. Instantiating the Slice Model

The last step of the process of Fig. 7, Instantiate slice model,
generates the simulation data. This data is generated by the
recursive algorithm of Alg. 1, named SDG. SDG takes as
input: (1) the slice model from Step 1, (2) a class to instantiate,
(3) the orderings computed in Step 2, (4) the path segment
classification from Step 3, and (5) the last traversed segment
or attribute of the slice model. The algorithm is initially called
over the root class discussed in Step 3 with the last traversed
segment or attribute being nul/l. The number of executions of
SDG over the root class is a user-customizable parameter (say
10,000). SDG has four main parts, explained below.

(1) Class selection and instantiation (L. 1-14). If the «use
existing» stereotype is present, SDG attempts to return an
object from already-existing ones (L. 2-4). If this fails, the
input class, C in Alg. 1, has to be instantiated. To do so, SDG
selects and instantiates a non-abstract class from the following
set: {C}U{all descendants of C}. The selection is based on
the «type dependency» and «probabilistic type» stereotypes
attached to C. If these stereotypes are absent or fail to yield a
specific class, a random (non-abstract) class from the above
set is selected and instantiated (L. 11).

(2) Attribute value assignment (L. 15-28). C’s attributes are
assigned values based on C’s attribute-level ordering from
Step 2 (L. 15). Values for primitive attributes are generated by
processing «value dependency» and «probabilistic value», if
either stereotype is present (L. 16-19). If a primitive attribute
is unassigned after this processing, a random value is assigned

to it (L. 21). For an attribute typed by a class from the slice
model, we determine, based on the attribute’s multiplicity and
any attached «multiplicity» stereotype, the required number of
objects and recursively create these objects (L. 23-28).

(3) Segment traversal (L. 29-41). For each outgoing (as-
sociation) segment from C, the required number of objects
is determined and the objects are created similarly to non-
primitive attributes described above (L. 31-33). The traversal
exercises (based on the ordering of classes): (1) all Safe
segments, and (2) any PotentiallyUnsafe segment which
has not been already traversed at that specific recursion
depth (L. 37-38). Excluded segments are ignored during
traversal. Handling PotentiallyUnsafe and Excluded segments
in the above-described manner avoids the possibility of infinite
recursions. The instantiation process for traversed segments is
recursive (L. 39-41).

(4) Handling Excluded segment multiplicities (L. 42-49).
Since the algorithm traverses the associations in one direction,
the multiplicities of Excluded segments need separate treatment.
The algorithm attempts to satisfy these multiplicities by: (1)
randomly selecting an appropriate number of objects (of the
desired type) from the pool of existing objects, (2) cloning the
selected objects and all related objects, and (3) updating the
association underlying the Excluded segment in question to
avoid the violation of multiplicity constraints (L. 47-49).

E. Practical Considerations and Limitations

Our simulation data generation strategy is aimed at producing
a large instance model (i.e., with thousands of objects) while
respecting the probabilistic characteristics of the underlying
population. The strategy was prompted by the scalability chal-
lenge that we faced when attempting to use constraint solving
for simulation data generation. In particular, we observed that,
in our context, current constraint solving tools, e.g., Alloy [§]
and UML2CSP [9], could generate, within reasonable time,
only small instance models. These tools further lack means for
data generation based on probabilistic characteristics.

As we will argue in Section VI, our data generation strategy
meets the above scalability requirement. However, the strategy
has limitations: (1) As noted in Section V-B, the strategy works
only when cyclic OCL dependencies between classes are absent.
(2) The strategy guarantees the satisfaction of multiplicity
constraints only in the direction of the traversal. Multiplicity
constraints in the opposite direction may not be satisfied if
appropriate objects cannot be found in the already-existing ob-
ject pool. Further, to avoid infinite loops, the strategy traverses
cyclic association paths only once. Consequently, multiplicities
on cyclic associations paths may be left unsatisfied and further
unsatisfiable multiplicity constraints will go undetected. (3) The
strategy does not guarantee that constraints other than those
specified in our profile will be satisfied.

VI. TooL SUPPORT AND EVALUATION

In this section, we describe the implementation of our
simulation framework and report on a case study where we
apply the framework to Luxembourg’s Income Tax Law.



Alg. 1: Simulation Data Generator (SDG)

Inputs : (1) a slice model S; (2) a class C € S to instantiate; (3) the orderings,
O, from Step 2; (4) path segment classifications, P, from Step 3; and
(5) the last traversed segment or attribute, source € S (initially null)
Output: an instance of class C

Let res be the instance to generate (initially null)

if (source is not null) then

res <— Attempt «use existing» of source (if the stereotype is present)
if (res is not null) then return res

5 chosen < null /* chosen will be set to either C or some descendant thereof */
6 if (source is not null) then

7 }chosen <« Attempt «type dependency» of source

8 if (chosen is null) then

if C’s immediate subclasses have «probabilistic type» then

| chosen <« Attempt «probabilistic type» from C

else chosen «— Randomly pick, from C and all descendants, a non-abstract class
12 if (chosen is null) then return null

13 else

14 | res <+ Instantiate (chosen)

15 | foreach (att € SortAttributesByOrder (O, chosen)) do

16 if (att is not typed by some class of S) then

17 att <— Attempt «value dependency» of att

18 if (att is not defined) then

19 | att < Attempt «probabilistic value» of att

20 if (att is not defined) then

21 | att < a random value

22 else

23 mult < Attempt «multiplicity» of att

24 if (mult is null) then mult < random value from multiplicity range of att
25 Let att_objects be an (initially empty) set of instances
26 for (i < 0; i < mult) do

27 | att_objects.add (SDG (S, typeOf (att), O, P, att))
28 att < att_objects

29 Let paths be the Safe and PotentiallyUnsafe outgoing segments from chosen
30 | foreach (seg € SortSegmentsByOrder (paths, O)) do

31 nextC <« target class of seg

32 mult < Attempt «multiplicity» of seg

33 if (mult is null) then mult +— random number from multiplicity range of seg

34 Let objects; and objectss be two (initially empty) sets of instances

35 for (i < 0; i < mult) do

36 PP

37 if (seg is PotentiallyUnsafe in P) then

38 | Switch seg from PotentiallyUnsafe to Excluded in P’

39 objects; .add (SDG (S, nextC, O, P’, seg))

40 Let association be the underlying association of seg

41 res.setLinks (association, objects;)

2 if (minimal multiplicity of seg’s opposite segment > 1) then

43 op_mult < Attempt «multiplicity» of seg’s opposite

44 if (op_mult is null) then op_mult<—rand. number from mult. range of seg’s opposite

45 for (j + 0; j < (op_mult — 1)) do

46 Let clone be a deep clone of a randomly-picked instance from the
object pool having the same type as the target class of seg’s opposite
segment (clone # objects; .last() and clone ¢ objectsz)

47 clone.removeRandomLink (association)

48 objects.add (clone)

49 objects .last ().setLinks (association, objectss)

50 return res

BN

. Implementation

The manual steps (Steps 1 and 2) in the framework of Fig. 1
can be done using any modeling environment that supports
UML and profiles, e.g., Papyrus (eclipse.org/papyrus/). The
implementation for Steps 3 and 4 of the framework is based on
the Eclipse Modeling Framework (eclipse.org/modeling/emf/).
We use Acceleo (eclipse.org/acceleo/) for deriving the Java
simulation code from legal policies. To evaluate and parse
OCL expressions, we use EclipseOCL (eclipse.org/modeling/).
For graph analyses, including topological sorting and cycle
detection, we use JGraphT (jgrapht.org). And, for generating
random values based on given probability distributions, we use

Apache Commons Mathematics Library (commons.apache.org).

Statistical tools such as R (r-project.org) would provide an
alternative to Apache Commons Mathematics Library, but not to
our data generator (Alg. 1). Without additional implementation,
these tools are unable to instantiate object-oriented models as
they do not provide a mechanism to handle the instantiation

order and the interdependencies between model elements (see
Section V). Our implementation is approximately 11K lines
of code, excluding comments, the third-party libraries above,
and the automatically-generated simulation code.

B. Case Study

We investigate, through a case study on Luxembourg’s
Income Tax Law, the following Research Questions (RQs):
RQ1I1: Do data generation and simulation run in reasonable
time? One should be able to generate large amounts of data
and run the policy models of interest over this data reasonably
quickly. The goal of RQI is to determine whether our data
generator and simulator have reasonable executions times.

RQ2: Does our data generator produce data that is consistent
with the specified characteristics of the population? A basic
and yet important requirement for our data generator is that
the generated data should be aligned with what is specified
via the profile. RQ2 aims to provide confidence that our data
generation strategy, including the specific choices we have
made for model traversal and for handling dependencies and
multiplicities, satisfies the above requirement.

RQ3: Are the results of different data generation runs
consistent? Our data generator is probabilistic. While multiple
runs of the generator will inevitably produce different results
due to random variation, one would expect some level of
consistency across the data produced by different runs. If the
results of different runs are inconsistent, one can have little
confidence in the simulation outcomes being meaningful. RQ3
aims to measure the level of consistency between data generated
by different runs of our data generator.

For our case study, we consider six representative policies
from Luxembourg’s Income Tax Law (circa 2013). Two of
these policies concern tax credits and the other four — tax
deductions. The credits are for salaried workers (CIS) and
pensioners (CIP); the deductions are for commuting expenses
(FD), invalidity (ID), permanent expenses (PE), and long-term
debts (LD). A simplified version of ID was shown in Fig. 2.
Initial versions of these six policy models and the domain
model supporting these policies (as well as other policies not
considered here) were built in our previous work [5].

The six policy models in our study have an average of 35
elements, an element being an input, output, decision, action,
flow, intermediate variable, expansion region, or constraint.
The largest model is FD (60 elements); the smallest is PE (25
elements). The domain model has 64 classes, 17 enumerations,
53 associations, 43 generalizations, and 344 attributes.

These existing models were enhanced to support simu-
lation and validated with (already-trained) legal experts in
a series of meetings, totaling ~12 hours. The probabilistic
information for annotating the domain model was derived from
publicly-available census data provided by STATEC (statis-
tiques.public.lu/). Specifically, from this data, we extracted
information about 13 quantities including, among others, age,
income and income type. The stereotype annotations in the
partial domain model of Fig. 6 are based on the extracted
information, noting that the actual numerical values were
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rounded up or down to avoid cluttering the figure with long
decimal-point values.

To answer the RQs, we ran the simulator (automatically

derived from the six policy models) over simulation data
(automatically generated by Alg. 1). We discuss the results
below. All the results were obtained on a computer with a
3.0GHz dual-core processor and 16GB of memory.
RQI. The execution times of the data generator and the
simulator are influenced mainly by two factors: the size of the
data to produce —here, the number of tax cases— and the number
and complexity of the policy models to simulate. Note that the
data generator instantiates only the slice model that is relevant
to the policies of interest and not the entire domain model.
This is why the selected policy models have an influence on
the the execution time of the data generator.

To answer RQ1, we measured the execution times of the
data generator and the simulator with respect to the above two
factors. Specifically, we picked a random permutation of the
six policies —ID, CIS, PE, FD, LD, CIP- and generated 10,000
tax cases, in increments of 1,000, first for ID, then for ID
combined with CIS, and so on. When all the six policies are
considered, a generated tax case has an average of ~24 objects.
We then ran the simulation for different numbers of tax cases
and the different combinations of policy models considered.
Since the data generation process is probabilistic, we ran the
process (and the simulations) five times. In Figs. 9(a) and (b),
we show the execution times (average of the five runs) for the
data generator and for the simulator, respectively.

As suggested by Fig. 9(a), the execution time of the data
generator increases linearly with the number of tax cases. We
further observed a linear increase in the execution time of the
data generator as the size of the slice model increased. This is
indicated by the proportional increase in the slope of the curves
in Fig. 9(a). Specifically, the slice models for the six policy sets
used in our evaluation, i.e., (1) ID, (2) ID + CIS, ..., (6) ID +
CIS + PE + FD + LD + CIP, covered approximately 4%, 5%,
7%, 13%, 20%, and 22% of the domain model, respectively.
We note that as more policies are included, the slice model
will eventually saturate, as the largest possible slice model is
the full domain model.

With regards to simulation, the execution times partly depend
on the complexity of the workflows in the underlying policies
(e.g., the nesting of loops), and partly on the OCL queries
that supply the input parameters to the policies. The latter
factor deserves attention when simulation is run over a large
instance model. Particularly, OCL queries containing iterative
operations may take longer to run as the instance model grows.
The non-linear complexity seen in the fifth and sixth curves
(from the bottom) in Fig. 9(b) is due to an OCL allinstances()
call in LD, which can be avoided by changing the domain
model and optimizing the query. This would result in the fifth
and sixth curves to follow the same linear trend seen in the
other curves. Since the measured execution times are already
small and reasonable, such optimization is warranted only when
the execution times need to be further reduced.

As suggested by Figs. 9(a) and (b), our data generator and

simulator are highly scalable: Generating 10,000 tax cases
covering all six policies took ~30 minutes. Simulating the
policies over 10,000 tax cases took ~24 minutes.

RQ2. To answer RQ?2,
we compare information
from STATEC for age, in-
come and income type, all
represented as histograms,
against histograms built
over generated data of var-
ious sizes. Similar to RQI, _
we ran the data generator T TR
five times and took the av- Number of generated tax cases
erage for analysis. Among

alternative ways to com-
pare histograms, we use
Euclidean distance which
is widely used for this
purpose [10]. Fig. 9(c)
presents Euclidean dis-
tances for the age, in-
come, and income type
histograms as well as the
Euclidean distance for the
normalized aggregation of
the three. As indicated by
the figure, the Euclidean
distance for the aggrega-
tion falls below 0.05 for
2000 or more tax cases
produced by our data gen- S S
erator. This suggests a " NUmber of generated tax cases
close alignment between

the generated data and
Luxembourg’s real popu-
lation across the three cri-
teria considered.
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The above analysis provides confidence about the quality
of the data produced by our data generator. The analysis
further establishes a lower-bound for the number of tax cases
to generate (2,000) to reach a high level of data quality.

RQ3. We answer RQ3 using the Kolmogorov-Smirnov (KS)
test [11], a non-parametric test to compare the cumulative
frequency distributions of two samples and determine whether
they are likely to be derived from the same population.

This test yields two values: (1) D, representing the maximum
distance observed between the cumulative distributions of the
samples. The smaller D is, the more likely the samples are to be
derived from the same population; and (2) p-value, representing
the probability that the two cumulative sample distributions
would be as far apart as observed if they were derived from
the same population. If the p-value is small (< 0.05), one can
conclude that the two samples are from different populations.

To check the consistency of data produced across different
runs of our data generator, we ran the generator five times,



TABLE I

PAIRWISE KOLMOGOROV-SMIRNOV (KS) TEST APPLIED TO FIVE SAMPLES (P, --- , P5) OF 5000 TAX CASES
Age Income Income type
Dy Py by Ds Dy Dy by Ds Dy Dy by Ds
P D 0.015 [0.009 [0.012 [0.009 0.013 [0.015 [0.012 [0.016 0.007 [0.004 [0.011 0.012
' | p-value | 0.63 0.98 0.8 0.98 0.7 0.62 0.79 0.44 0.99 1 0.87 0.93
P D - 0.011 0.011 0.017 - 0.015 [0.013 [0.012 - 0.007 ]0.004 |0.002
2 [p-value |- 0.86 0.85 0.41 B 0.61 0.7 0.9 B 0.99 1 1
P D - - 0.016 | 0.011 - 0.016 |0.012 - - 0.011 0.005
* [“pvalue | - - 0.51 0.91 - 0.5 0.83 - - 0.89 1
P D - - - 0.015 - - 0.017 - - - 0.005
* [Tpvalue | - - - 0.53 - - 0.39 - B - 1

each time generating a sample of 5000 tax cases. We then
performed pairwise KS tests for the age, income, and income
type information from the samples. Table I shows the results,
with Py, -, P5 denoting the samples from the different runs.
As shown by the table, the maximum D is 0.017 and the
minimum p-value is 0.39. The KS tests thus give no counter-
evidence for the samples being from different populations.
The results in Table I provide confidence that our data
generator yields consistent data across different runs.

VII. RELATED WORK

Legal policy simulation. As we discussed in the introduction,
there are a number of legal policy simulation tools in the
area of applied economics, e.g., [1], [2]. These tools do not
adequately address the expertise gap between legal experts and
system analysts. Our framework takes a step towards addressing
this gap by providing a more abstract way to specify legal
policies and the simulation data generation process, so that
the resulting specifications would be palatable to legal experts
with a reasonable amount of training.
Model-based instance generation. Automated instantiation
of (meta-)models is useful in many situations, e.g., during
testing [12] and system configuration [13]. Several instance
generation approaches are based on exhaustive search, using
tools such as Alloy [8] and UML2CSP [9]. Model instances
generated by Alloy are typically counter-examples showing
the violation of some logical property. As for UML2CSP,
the main motivation is to generate a valid instance as a way
to assess the correctness and satisfiability of the underlying
model. Approaches based on exhaustive search, as we noted
in Section V-E, do not scale well in our application context.
A second class of instance generation approaches rely on non-
exhaustive techniques, e.g., predefined generation patterns [14],
[15], metaheuristic search [16], mutation analysis [17], and
model cloning [18]. Among these, metaheuristic search shows
the most promise in our context. Nevertheless, further research
is necessary to address the scalability challenge and generate
large quantities of data using metaheuristic search.

VIII. CONCLUSION

We proposed a model-based framework for legal policy sim-
ulation. The framework includes an automated data generator.
The key enabler for the generator is a UML profile for capturing
the probabilistic characteristics of a given population. Using
legal policies from the tax domain, we conducted an empirical
evaluation showing that our framework is scalable, and pro-
duces consistent data that is aligned with census information.

In the future, we plan to investigate whether our data
generation process can be enhanced with constraint solving
capabilities via metaheuristic search in order to support
additional constraints. We further plan to conduct a more
detailed evaluation to investigate the overall accuracy of our
simulation framework. This requires the generated data and
the simulation results to be validated with legal experts and
further against complex correlations in census information.
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