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Phonon-limited carrier mobility and resistivity from carbon nanotubes to graphene
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Under which conditions do the electrical transport properties of one-dimensional (1D) carbon nanotubes
(CNTs) and 2D graphene become equivalent? We have performed atomistic calculations of the phonon-limited
electrical mobility in graphene and in a wide range of CNTs of different types to address this issue. The theoretical
study is based on a tight-binding method and a force-constant model from which all possible electron-phonon
couplings are computed. The electrical resistivity of graphene is found in very good agreement with experiments
performed at high carrier density. A common methodology is applied to study the transition from one to two
dimensions by considering CNTs with diameter up to 16 nm. It is found that the mobility in CNTs of increasing
diameter converges to the same value, i.e., the mobility in graphene. This convergence is much faster at high
temperature and high carrier density. For small-diameter CNTs, the mobility depends strongly on chirality,
diameter, and the existence of a band gap.
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I. INTRODUCTION

Graphene and carbon nanotubes (CNTs) are, respectively,
two-dimensional (2D) and one-dimensional (1D) allotropes of
pure sp2 carbon. Their remarkable physical and chemical prop-
erties have been studied extensively [1–4], but investigations of
the electrical transport in graphene and CNTs are usually done
separately. Of course, it is known that graphene is a semimetal
characterized by Dirac cones at the charge-neutrality point
while CNTs can either be metallic or semiconducting depend-
ing on their chirality. Carrier mobilities in graphene and CNTs
may reach very high values, which makes them promising
for high-frequency applications. However, record values differ
considerably between graphene (>105 cm2/V/s) [4–6] and
semiconducting CNTs (>103 cm2/V/s) [7–9]. Furthermore,
in principle one should recover the transport properties of
graphene by increasing the diameter of metallic or semicon-
ducting CNTs, at least in situations in which this transport is
only limited by intrinsic processes such as phonon scattering.
Quite surprisingly, this transition of the transport properties
from one to two dimensions has never been carefully investi-
gated, despite the numerous studies that have been carried out
on electron-phonon coupling in the two materials [1–4,10–23].

In this work, we study the evolution of the phonon-limited
mobility of carriers from CNTs to graphene, i.e., from one
to two dimensions. We calculate the electrical mobility (or
resistivity) using a common methodology, enabling a direct
comparison between graphene and semiconducting/metallic
CNTs of varying diameters. We focus on phonon scattering not
only because it is a limiting mechanism at high carrier density
and high temperature [24], but also because it is intrinsic to
the materials, at variance with scattering by impurities or by
surface optical phonons of nearby oxides, which are dependent
on the geometry, on the quality of the materials, and on
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the nature of the environment. We also leave aside carbon
nanoribbons in this study, since the possible existence of edge
states does not allow for a straightforward analysis of the 1D
to 2D transition.

In the following, we present fully atomistic calculations
of the phonon-limited mobility in graphene and CNTs with
diameter up to 16 nm. We show that the mobility in CNTs
tends to the limit in graphene at large diameter (sometimes
above 10 nm), but that the route to it strongly depends on
size, chirality, and temperature. These behaviors are explained
by specific features of the band structure and of the electron-
phonon coupling.

II. METHODOLOGY

A. Justification of the methodology

A strong motivation for this study is that it sheds light on the
effects of confinement and dimensionality upon the electron-
phonon band structures, the electron-phonon coupling, and
the transport. For example, the scattering of carriers in 1D
semiconductor nanostructures such as nanowires is merely
limited to backscattering when only one electronic band is
populated. This tends to reduce the scattering probability. At
the same time, confinement leads to an enhancement of the
electron-phonon coupling, which is stronger in one dimension
than in two dimensions (and three dimensions) [25–27]. In
this context, it is particularly interesting to investigate these
effects in 1D and 2D carbon allotropes since their band struc-
tures differ considerably from those of usual semiconductor
nanostructures. In addition, it is important to understand how
(and when) the phonon-limited carrier mobility in CNTs of
increasing diameter approaches the limit in graphene as a
function of temperature, carrier density, chirality, and metallic
or semiconducting character.

There are already numerous theoretical studies on the
phonon-limited transport in graphene [15,17–19,22,23,28]
and CNTs [2,11,29–35], but it is only in recent works
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on graphene that the couplings to all phonons have been
calculated from first-principles without extracting parameters
from experiments [20,22,23]. From these works, we learn
that it is essential to consider many different phonon modes,
such as longitudinal acoustic (LA), transverse acoustic
(TA), and optical phonons to predict the temperature- and
density-dependent resistivity of graphene. We deduce that it
is likely the case for CNTs, especially because the k selection
rule is broken in the direction perpendicular to the CNT axis,
in particular in small-diameter CNTs.

Therefore, it is essential to consider all possible electron-
phonon scattering processes to predict the phonon-limited
mobility in CNTs. To catch the 1D-2D transition, it is
also necessary to go well beyond previous calculations
that were limited to small-diameter tubes. However, first-
principles calculations cannot be performed on large-diameter
CNTs because the computational cost increases dramatically
with the number of atoms per unit cell. In this work,
we present calculations combining tight-binding (TB) and
force-constant models for electrons and phonons, respectively.
The parameters of these models were refined on the latest
first-principles calculations [23,36]. The low-field mobility is
computed taking all electron and phonon bands into account,
the carriers being coupled to all possible phonons, including
intra- and intersubband scattering. We show that this approach
gives results for graphene in excellent agreement with first-
principles calculations [23,36] and with experiments [24,37].
The same methodology is then applied to CNTs. In the
following, we present results for p-type graphene and CNTs,
i.e., for the transport of holes. Very similar results are found
for electrons. For the sake of comparison, carrier densities are
given as equivalent surface densities (in cm−2). For a CNT
of diameter d, the 1D and 2D carrier densities are related by
n2D = n1D/(πd).

B. Tight-binding Hamiltonian

The electronic states of graphene and CNTs are written on
the basis of pz orbitals, where z is the axis perpendicular to
the lattice. Interactions are restricted to first-nearest neighbors
(1NNs). The Hamiltonian matrix is therefore defined by two
quantities, namely the onsite energy Ep and the 1NN hopping
term Vppπ , which both depend on the atomic displacements
induced by the phonons. The variations of Vppπ are governed
by a power law [38]

Vppπ = V 0
ppπ

(
d0

d

)nppπ

, (1)

in which d and d0 are the actual and equilibrium bond lengths
between 1NN atoms, respectively. The parameters in Eq. (1)
were set based on the GW calculation data in Ref. [36],
i.e., d0 = 1.42 Å, V 0

ppπ = 3.0 eV (which gives 106 m/s for the
Fermi velocity), and nppπ = 3.47 (which fits the canonical
acoustic gauge field, 5.52 eV).

The variations of the onsite term Ep with atomic displace-
ments were ignored in most previous TB studies [15,19,28,29],
suggesting that they contribute only slightly to the deformation
potentials. In our case, we follow the arguments of Ref. [39]
and introduce in Ep a term proportional to the average of the

relative bond length variation,

Ep = 2

3
αp

3∑
i=1

di − d0

d0
, (2)

where the sum is over the three 1NN atoms. The Dirac point
at d = d0 is taken as the origin of the electronic energies. The
parameter αp in Eq. (2) is set to −4.162 eV, and it has been
extracted from density-functional-theory (DFT) calculations
of the band structure of graphene for different cell sizes.
These DFT calculations were performed with the BIGDFT [40]
code using norm-conserving pseudopotentials [41] and the
generalized gradient approximation [42] for the exchange and
correlation potential. BIGDFT makes use of a systematic real-
space wavelet basis, and it can handle surfacelike boundary
conditions [43]. This allows us to define a common energy
reference for all cell sizes, and it enables a direct comparison
of energy levels [44].

The changes in Vppπ due to bond length variations [Eq. (1)]
contribute to the coupling of electrons to both LA and TA
phonons, whereas those in Ep [Eq. (2)] are only relevant for
LA phonons. Their respective influence on the mobility was
heavily debated [10,11,15,19,28,29], but it is now clear that
both of them must be taken into account [23].

In the case of CNTs, the hopping terms between 1NN
pz orbitals vary slightly from one bond to another due to
the curvature [2,45,46]. As a consequence, there is a small
curvature-induced gap in “metallic” zigzag CNTs scaling as
1/d2. For example, we obtain gaps of 80, 45, and 29 meV in
(9,0), (12,0), and (15,0) CNTs, respectively, in excellent agree-
ment with experiments [47]. For symmetry reasons, armchair
CNTs always preserve their metallic character [2,45,46]. The
σ -π hybridization induced by the curvature [48] is neglected
in the present calculations.

C. Phonons

For the calculation of the phonons, the dynamical matrix is
built by a fourth-nearest-neighbor (4NN) force-constant model
as originally fitted to experimental data by Jishi et al. [49]
and later fitted to ab initio calculations and enhanced by
off-diagonal force constants for the 2NN [50]. For the current
calculations, we refitted the model, taking also the off-diagonal
elements of the 4NN into account. The importance of the
4NN off-diagonal elements had already been noted before
in ab initio phonon calculations [51]. While the phonon
dispersion itself can be fitted very well without the off-diagonal
terms, they have an important impact on the phonon modes:
they are necessary to obtain the correct amplitude for the
admixture of optical components to the acoustic phonon modes
at nonvanishing wave vector. This admixture considerably
influences the contribution of the acoustic modes to the
mobility [36]. For example, the ratio of the acoustic phonon
deformation potential with and without optical phonon mixing
is about 64.2% in our model, which is comparable to the one
in Ref. [36]. The parameters of our force-constant model and
the dispersion obtained from it are given in Appendix A.

D. Electron-phonon coupling

The same parameters are used for the calculations of
the electron and phonon band structures of CNTs and
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graphene—there is no additional parameter. Following
Ref. [26], the matrix element M

k′,b′
k,b for the transition of an

electron from an initial state |k,b〉 to a final state |k′,b′〉 (k′ =
k + q) after emission of a phonon |−q,j 〉 (same formula for
absorption) is given by

M
k′,b′
k,b =

∑
α,i

√
�

2NMωj (q)
e

(j )
αi (q)

×
∑
β,β ′

C
k′,b′∗
β ′ C

k,b
β

∑
m,m′

eik·Rmβ e−ik′ ·Rm′β′

× ∂〈φ(r − Rm′β ′)|H |φ(r − Rmβ)〉
∂R0αi

, (3)

where k and q are the wave vectors of the electron and phonon,
respectively, while b and j are the indexes of the electron
band and phonon mode. C

k,b
β is an eigenvector element of the

electronic Hamiltonian H at equilibrium, where β (or α) is the
atom index in the unit cell. φ(r − Rmβ) is the pz atomic orbital
centered on atom β in the unit cell m. e

(j )
αi (q) is an eigenvector

element of phonon state |q,j 〉, and ωj (q) is the corresponding
eigenfrequency. R0αi is the i component (x,y,z) of vector R0α ,
N is the number of Wigner-Seitz unit cells, and M is the mass
of a carbon atom. The transition rate is given by Fermi’s golden
rule,

Wkb,k′b′ = 2π

�

∑
j

∣∣Mk′,b′
k,b

∣∣2{nq,j δ(Ek′,b′ − Ek,b − �ωj (q))

+ [nq,j + 1]δ(Ek′,b′ − Ek,b + �ωj (q))}, (4)

where Ek,b is the energy of |k,b〉 and nq,j is the equilibrium
phonon occupation number (Bose-Einstein distribution).

The electron-phonon scattering rates are calculated for all
electronic bands within at least 5kBT + 200 meV of the Fermi
level, and for all phonon modes.

E. Mobility

The low-field mobility μ is obtained by the resolution of
the Boltzmann transport equation in the stationary regime.
Under the application of a constant electric field F , the
distribution function in the state |k,b〉 is given to the first
order in F by fb(k) = f 0(Ek,b) + eFgb(k), where f 0 is the
Fermi-Dirac distribution function. In CNTs, gb(k) is solution
of the following equations:

∑
b′

∫
gb(k){Wkb,k′b′ [1 − f 0(Ek′,b′ )] + Wk′b′,kbf

0(Ek′,b′ )}

− gb′ (k′){Wk′b′,kb[1 − f 0(Ek,b)]+ Wkb,k′b′f 0(Ek,b)}dk′

= 2π

L
vb(k)

(
∂f 0

∂E

)
Ek,b

, (5)

where vb(k) = �
−1∂Ek,b/∂k is the group velocity along the

electric field and L is the length of the CNT. The mobility is
then given by

μ = −e

∑
b

∫
gb(k)vb(k)dk∑

b

∫
f 0(Ek,b)dk

. (6)

Equations (5) and (6) remain valid for graphene using the
substitutions dk′ → d2k′ and 2π/L → 4π2/S, where S is the
sample surface.

The linearized Boltzmann transport equation is solved
exactly. Brillouin zone integrations are performed on a
nonhomogeneous 1D grid for CNTs and on a triangular mesh
for graphene (e.g., 8600 k-points in one dimension and 17 124
triangles in two dimensions for a surface carrier density of
13.6 × 1012 cm−2 and T = 300 K).

III. RESULTS AND DISCUSSION

A. Application to graphene

Figure 1 presents the electrical resistivity ρ of graphene
calculated versus temperature T for several carrier densities
n2D. In accordance with early theoretical predictions [17]
and experiments [24], the resistivity is proportional to T 4

at low temperature, while at higher temperature it varies
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FIG. 1. (Color online) Comparison of the resistivity of graphene
vs temperature for different hole densities. (a) Present work (solid
lines) and experimental data (dotted lines), which correspond to the
temperature-dependent part of the resistivity measured in Ref. [24].
(b) Present work (solid lines) and DFT calculations [23].
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linearly with T (the threshold depends strongly on n2D).
In the T 4 regime, short-wavelength acoustic phonons are
frozen out, restricting scattering processes to small scattering
angles [17,24]. In agreement with DFT calculations [23], both
LA and TA phonons contribute to the scattering in the T 4 and
T regimes. We also confirm that (i) in the T regime and above,
the resistivity does not depend on n2D [17,24]; (ii) at room
temperature and above, the resistivity is enhanced by optical
phonon scattering [20,23] so that it deviates from the T trend.

In Ref. [24], the resistivity of graphene was measured
at high carrier density (n2D > 1013 cm−3). Its temperature-
dependent component is displayed in Fig. 1 and is com-
pared to our predictions. The agreement between theory and
experiments is fairly good. As shown in Appendix B, in
this range of carrier density, the resistivity is mainly limited
by (intrinsic) phonon scattering, justifying the comparison.
Also, the agreement is excellent with the DFT calculations of
Ref. [23] [Fig. 1(b)].

In Appendix B, we show that our predicted resistivities
also agree with the experimental data of Ref. [37] measured at
lower carrier density. In that case, we have to include scattering
by the surface optical (SO) phonons of the substrate. We also
demonstrate in Appendix B that scattering by intrinsic phonons
becomes more efficient than scattering by SO phonons, not
only at low temperature because it involves lower energy
phonons, but also at high temperature and high carrier density
where SO phonon potentials are efficiently screened.

B. Carrier mobility in CNTs

We consider now zigzag (n,0), armchair (n,n), chiral
(2n,n), and chiral (4n,n) CNTs. (n,n) and (4n,n) CNTs are
always metallic. Zigzag (n,0) and chiral (2n,n) CNTs are
metallic when n is a multiple of 3, and they are semiconducting
otherwise. As discussed above, a gap is induced by the cur-
vature in small-diameter metallic (n,0) CNTs. The electronic
band structures of CNTs (Appendix C) are intimately related
to that of graphene [1,2]. In the 2D k space of graphene, the
1D k vectors allowed for CNTs form a bundle of parallel
lines along the tube direction, the separation between the lines
being inversely proportional to the CNT diameter. This results
in CNT band structures composed of successive subbands,
one for each line. In these conditions, since carrier transport
takes place within an energy window of a few kBT around
the Fermi surface, we anticipate that the transport properties
of CNTs can reach those of graphene in three ways, namely
by increasing (i) the tube diameter, (ii) the carrier density,
or (iii) the temperature. In the three cases, the number of
subbands in the transport energy window will increase in such
a way that the 1D transport will progressively turn into 2D
transport—the quantification of k perpendicular to the tube
axis becoming irrelevant. Figure 2 illustrates the evolution of
the mobility along the three ways. It shows that the mobility
in CNTs actually tends to its limit in graphene but with very
different behaviors depending on the nature of the CNTs. The
reasons why are discussed below.

1. Mobility versus diameter

The carrier mobility in CNTs calculated for n2D =
1012 cm−2 and T = 300 K is plotted as a function of the
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FIG. 2. (Color online) Phonon-limited mobility in CNTs with
different chirality [armchair (n,n), zigzag (n,0), chiral (2n,n), and
chiral (4n,n)] compared to graphene (green line) vs (a) diameter
at 300 K and n2D = 1012 cm−2, (b) carrier density at 300 K and
d ≈ 3.5 nm, and (c) temperature at n2D = 13.6 × 1012 cm−2 and d ≈
3.5 nm.
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diameter d in Fig. 2(a). The mobility is considerably smaller in
semiconducting CNTs with d < 10 nm than in metallic ones,
and it is also much smaller than in graphene for the same carrier
density. This is mainly due to the nonzero mass of the carriers
since the bands are parabolic near their extrema. For d < 4 nm,
the mobility in zigzag semiconducting CNTs scales with
diameter as d2.1, in agreement with early predictions [29] and
measurements [7]. An approximately quadratic relationship
is also obtained for small-diameter (2n,n) semiconducting
CNTs, as reported for different chiralities [32]. The important
reduction of the mobility in semiconducting CNTs with
decreasing size is due to the increase of the effective mass [32]
and to the enhancement of electron-phonon coupling, in
particular with radial breathing modes [2,29,31,32]. The
strong enhancement of the electron-phonon coupling in small-
diameter 1D conductors seems to be a general trend, as shown,
for example, for electrons in thin Si nanowires [26,27]. For
d > 10 nm, the mobility in semiconducting zigzag CNTs
saturates at a constant value, however it is smaller than in
graphene for these particular T and n2D. Quite generally, we
have found that plateaus appear in mobility curves when the
Fermi level lies between two subbands and the upper subband
does not contribute to transport.

For metallic CNTs, the behavior of the mobility versus
diameter is very different [Fig. 2(a)], as expected from the
presence of linearly dispersive bands (Appendix C) [31,52].
At large diameter, the mobility is close to the value in graphene
as several bands are populated, including parabolic bands that
contribute to the diffusive transport. Interestingly, for n2D =
1012 cm−2 and T = 300 K, the mobility in metallic zigzag
CNTs saturates at the same plateau as in semiconducting ones
for 12 < d < 16 nm.

At smaller diameter (4 < d < 12 nm), only linearly disper-
sive bands are occupied in metallic CNTs (Appendix C), and
the mobility increases because the number of allowed scat-
tering processes decreases. The mobility is larger in armchair
than in zigzag CNTs because there is no coupling to the LA
phonons in the linear bands of armchair CNTs for symmetry
reasons [31]. The total scattering by acoustic phonons is,
therefore, much smaller in armchair CNTs (see Sec. III B 4
below). The difference between metallic armchair and zigzag
CNTs is progressively reduced when the temperature or carrier
density are increased [Figs. 2(b) and 2(c)], since carriers start to
occupy parabolic bands in which the scattering by LA phonons
is allowed, in both armchair and zigzag CNTs [31].

In metallic zigzag CNTs with small diameter (d < 3 nm),
the mobility suddenly decreases because the electron-phonon
interaction increases considerably, in particular with LA and
radial breathing modes [31], as in semiconducting CNTs.
For very small diameters, the bands near the neutrality point
become parabolic due to the curvature-induced gap, but
the effect on the mobility is small for all carrier densities
considered here.

The mobility in chiral metallic CNTs [(2n,n) or (4n,n)]
follows the same trends as in zigzag metallic CNTs versus
diameter, carrier density, or temperature. Similarly, the (2n,n)
chiral CNTs show the same behavior as zigzag semiconducting
CNTs. Therefore, chiral and achiral CNTs of the same na-
ture (semiconducting/metallic) exhibit similar phonon-limited
transport properties [32].

2. Mobility versus carrier density

We discuss now the evolution of the carrier mobility as a
function of n2D, the other parameters (T = 300 K, d ≈ 3.5 nm)
being kept constant [Fig. 2(b)]. For carrier densities of the
order of 1012 cm−2, the mobilities of the different types of
CNTs span more than one order of magnitude. Two trends
can be highlighted when n2D is increased. First, the mobility
decreases, almost exactly like 1/n2D as in the case of graphene
(see the plot of μ × n2D versus n2D in Appendix D). The
well-known independence of μ × n2D (or the resistivity) on the
Fermi energy or equivalently on the carrier density in graphene
at 300 K [17,24] is approximately recovered in CNTs at high
carrier density. Second, above ∼2 × 1013 cm−2, the mobilities
of CNTs and graphene tend to converge to the same value. In
that case, the integration over many subbands smooths out the
effects resulting from the 1D character of the CNTs. For n2D

of the order of 1012 cm−2, the mobility is higher in metallic
CNTs than in graphene, but the situation is reversed when
n2D reaches a certain threshold (for example, ∼7 × 1012 cm−2

for armchair CNTs). In fact, the mobility becomes smaller in
metallic CNTs than in graphene when the parabolic subbands
start to be occupied (Appendix C). The opposite situation arises
when the Fermi level only crosses the linear bands.

3. Mobility versus temperature

The variations of the mobility with temperature at fixed
carrier density (1012 cm−2) and diameter (3.5 nm) are plotted
in Fig. 2(c). At high temperature, the mobility in CNTs
decreases roughly like 1/T β where the exponent β is close
to unity as in graphene but differs slightly from case to
case. However, for this particular diameter and carrier density,
the spread of the calculated mobilities is still important at
500 K. This shows that the broadening and the averaging
induced by the temperature are not sufficient to smooth
out 1D band-structure effects at this diameter. As already
discussed for graphene, the exponent β differs from unity
because of the increasing role of optical phonons at high
temperature. However, we show in the next section that the
relative importance of optical phonons at high T strongly
varies from one CNT to another, being huge in armchair
metallic CNTs and remaining modest in semiconducting CNTs
[zigzag or (2n,n)].

4. Role of the different phonons

In this section, we clarify the relative importance of the
different phonons for each type of CNTs, and we compare
with the case of graphene.

Figure 3 shows the ratio between the mobility calculated
by considering phonons with energy up to �ω and the mobility
including all phonons. In graphene, this ratio has a plateau
around 1.5 from 30 to 130 meV [green line in Fig. 3(b)]. This is
consistent with previous studies [23], which reported that high-
energy phonons contribute 30% of the resistivity in graphene
at room temperature. Similar plateaus are found in CNTs but at
different values: 2.5 for armchair CNTs, 1.25 for other metallic
CNTs, and 1.05 for semiconducting CNTs (d ≈ 3.5 nm). This
means that the relative impact of high-energy phonons depends
strongly on the type of CNT. In armchair CNTs, this impact is
huge—about 60% of the resistivity—because the coupling to
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FIG. 3. (Color online) Ratio between the mobility calculated by
considering phonons with energy up to �ω and the mobility calculated
with all phonons (a) for armchair CNTs; (b) for zigzag, (2n,n),
(4n,n) metallic CNTs, and graphene; and (c) for zigzag, (2n,n)
semiconducting CNTs. d ≈ 3.5 nm, n = 1012 cm−2.

LA phonons is forbidden in the linear bands and therefore the
relative contribution of the optical phonons is more important.
The latter is about 20% in other metallic CNTs, and about
5% in semiconducting CNTs, since the coupling to acoustic
phonons is typically strong in parabolic bands.

Figure 4 shows that 33% of the electrical resistivity of
graphene at 300 K comes from the scattering by high-energy
(>130 meV) phonons, in agreement with recent ab initio
calculations [23]. This ratio reaches 60% in 3.5 nm armchair
metallic CNTs where the coupling to the LA phonons is
weak. On the contrary, this ratio is only 5% in 3.5 nm
semiconducting CNTs because the scattering by low-energy
acoustic phonons is very strong and the mobility is low. The
coupling to optical phonons also plays an important role
in high-field transport in graphene and CNTs [53,54]. The
impact of high-energy phonons increases with the temperature
(Fig. 4). The contribution of these phonons to the resistivity
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FIG. 4. (Color online) Ratio between the mobility calculated
by considering phonons with energy below 130 meV and the
mobility calculated with all phonons vs temperature. d ≈ 3.5 nm,
n = 1012 cm−2.

reaches 10% at about 180, 210, 250, and 350 K in armchair
CNTs, graphene, metallic CNTs, and semiconducting CNTs,
respectively.

5. Mobility from CNTs to graphene

Figure 5 illustrates differently how the mobility in CNTs
converges toward the value in graphene when the diameter
is increased. The convergence is quite fast at high carrier
density (13.6 × 1012 cm−2) and high temperature [T > 300 K,
Fig. 5(b)]. For example, at 500 K, the mobility is basically the
same in the three kinds of investigated CNTs as in graphene
for d ≈ 5 nm. The transition from 1D to 2D transport takes
place above a certain diameter, which depends strongly on
temperature and carrier density. Below this threshold, the
transport properties depend strongly on the chirality through
its effect on the band structure.

IV. PERSPECTIVES

Experimentally, the diameter of single-walled CNTs, which
are usually grown, is typically between 0.7 and 4 nm. However,
a recent work reported the synthesis of single-walled CNTs
in the 5–10 nm diameter range (5% of the CNTs even
have a diameter above 10 nm) [55]. Therefore, we believe
that the experimental observation of the 1D-2D transition is
possible, in particular using the same approach allowing us
to reach ultrahigh carrier densities up to 4 × 1014 cm−2 in
graphene [24].

Another interesting perspective of the present work would
be to consider the effects of electron-electron interactions
on the 1D-2D transition in CNTs. As discussed above,
the transport properties in graphene at high carrier density
and temperature (>20 K) are unambiguously dominated by
electron-phonon scattering. However, theoretical [56,57] and
experimental [58] studies show that small-diameter metal-
lic CNTs exhibit Luttinger-liquid behavior characterized by
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FIG. 5. (Color online) Phonon-limited mobility in CNTs vs di-
ameter for T = 100 K (dashed lines), 300 K (dash-dotted lines),
and 500 K (dotted lines). Carrier density: (a) 1012 cm−2, (b) 13.6 ×
1012 cm−2. The horizontal lines indicate the mobility for graphene.
The horizontal scale is smaller in (b) than in (a), highlighting the
faster convergence of all the mobilities at high carrier density.

low-energy collective excitations of the electrons. In that case,
the tunneling of carriers at energies near the Fermi level is
strongly suppressed, so that the conductance increases as a
power law with respect to temperature [58]. On the contrary,
the conductance in semiconducting CNTs strongly decreases
with temperature, as expected for diffusive transport limited by
phonons [7]. All these works deal with small-diameter CNTs at
low carrier density. Therefore, it would be extremely interest-
ing to extend experimental studies on CNTs to larger diameter
and higher carrier density. The electron-phonon interactions
should indeed overcome electron-electron interactions when
the number of populated subbands increases, in particular for
parabolic bands. In these conditions, the carrier mobility in
metallic CNTs should follow our predictions above certain
thresholds that must be found.

V. CONCLUSION

It is shown that the phonon-limited mobility in 1D CNTs
approaches that of 2D graphene continuously by increasing
the size of CNTs, the carrier density, or the temperature. The
physics of this transition has been studied using atomistic
calculations combining a tight-binding model for electrons,
a force-constant model for phonons, the computation of all
the electron-phonon couplings, and a full resolution of the
Boltzmann transport equation. This approach gives carrier
mobility in graphene in excellent agreement with experi-
ments [24] and DFT calculations [23], and therefore it can
be used to predict the mobility in CNTs in a wide range of
configurations. The mobility in CNTs can be higher or lower
than in graphene depending on chirality, diameter, carrier
density, or temperature but it converges to the same value
above varying thresholds. This 1D to 2D transition takes place
when the number of subbands situated in the transport energy
window is sufficiently large to smooth out the effect of the 1D
confinement on the band structure and on the electron-phonon
coupling.
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APPENDIX A: PARAMETERS FOR THE 4NN FORCE
CONSTANT MODEL

We have refitted the force constant method of Ref. [50] to
an ab initio calculation of the phonon-dispersion of graphene
using the ABINIT code [59]. The electronic structure is
calculated in the local-density approximation (LDA) using
a regular 60 × 60 reciprocal mesh in the first Brillouin zone
and an energy cutoff of 35 Ha using a LDA functional. A
thermal Fermi-Dirac smearing of 0.002 Ha is employed. We
find the optimized cell parameter to be 4.631 Å. The dynamical
matrices were calculated using density-functional perturbation
theory (DFPT) on a 30 × 30 q-mesh. Since LDA overbinds,
i.e., phonon frequencies have the tendency to be slightly too
high, a scaling factor is used such that the phonon frequencies
of the LO/TO mode at Gamma match the experimental
value [50].

The (real-space) force constants between two particular
atoms a and b are defined as the second derivatives of the total
energy of the system with respect to the displacements of atom
a in direction i and of atom b in direction j :

C ′
ij = ∂2E

∂xa
i ∂xb

j

. (A1)

In local coordinates, direction x1 is along the line connect-
ing the two atoms, x2 is perpendicular to this line in the plane
of the graphene sheet, and x3 is the out-of-plane direction.
In this local reference frame, we define the longitudinal
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TABLE I. Parameters of the 4NN force constant model with
the off-diagonal couplings. The corresponding dispersion relation
is shown in Fig. 6.

n 1 2 3 4

φl
n (104 dyn/cm) 40.905 7.402 −1.643 −0.609

φti
n (104 dyn/cm) 16.685 −4.051 3.267 0.424

φto
n (104 dyn/cm) 9.616 −0.841 0.603 −0.501

εl/ti
n (104 dyn/cm) 0.000 0.632 0.000 −1.092

εti/l
n (104 dyn/cm) 0.000 −0.632 0.000 −1.092

forces, (φl
n), transverse in-plane (φti

n ), and transverse-out-of-
plane (φto

n ) forces that act on a particular atom when its
nth nearest neighbor is displaced. In the conventional 4NN-
force constant model, only these “diagonal” terms are fitted.
In our model, we include also the “off-diagonal” coupling
between the longitudinal direction and the transverse-in-plane
direction (εl/ti

n and ε
ti/l
n ). The force-constant matrix for the

interaction between two atoms in the local reference frame thus
reads

C′
n =

⎛
⎜⎝

φl
n ε

l/ti
n 0

ε
ti/l
n φti

n 0

0 0 φto
n

⎞
⎟⎠. (A2)

The off-diagonal force constants ε
l/ti
n and ε

ti/l
n obey the

following relations [51]:

ε
l/ti
1 = ε

l/ti
3 = 0, ε

l/ti
2 = −ε

ti/l

2 ,

ε
ti/l

1 = ε
ti/l

3 = 0, ε
l/ti
4 = ε

ti/l

4 . (A3)

During the fitting, we have noticed that the off-diagonal
terms of the second and the fourth nearest neighbor (εl/ti

2 and
ε

l/ti
4 ) are essential. While a fairly decent fit of the phonon

dispersion alone can be achieved without these off-diagonal
terms, the correct ratio of the amplitudes of optical and acoustic
phonon components in the transverse and longitudinal acoustic
branches at q 	= 0 can only be achieved with the inclusion of
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FIG. 6. (Color online) Phonon dispersion of graphene. The red
lines are the frequencies calculated using the 4NN force constant
model, and gray lines are DFT-LDA calculations using ABINIT.
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FIG. 7. (Color online) Comparison between our simulations
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the resistivity of graphene at carrier density varying from 1 (top) to
3 × 1012 cm−2 (bottom) with a step of 0.5 × 1012 cm−2. The blue
horizontal dotted lines represent the impurity-limited resistivity ρ0.

the off-diagonal forces. By using the parameters in Table I,
the ab initio ratio was reproduced to a very good degree. The
comparison of the phonon-dispersion relations between the
ab initio calculation and the 4NN force constant model is
shown in Fig. 6. We note that the agreement is good but the
4NN model cannot reproduce the Kohn anomalies in the two
highest-optical branches. This would require the inclusion of
many more distant neighbor interactions in the model (even
infinitely many, if one wants to reproduce the kink [51]).
However, this does not seem to be necessary for our present
study since the 4NN model gives electron-phonon scattering
rates and carrier mobilities, in excellent agreement with ab
initio calculations for graphene [23].
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FIG. 8. (Color online) ρph (blue makers) and ρSO (red markers)
vs temperature at electron densities 1 (empty markers) and 13.6 ×
1012 cm−2 (filled markers).
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FIG. 9. (Color online) Band structures of metallic armchair (a)–(d), metallic zigzag (e)–(h), and semiconducting zigzag (i)–(l) CNTs with
diameters of 3.5 [(a), (e), and (i)], 6 [(b), (f), and (j)], 10 [(c), (g), and (k)], and 16 nm [(d), (h), and (l)]. The 2D effective carrier density is
fixed at 1012 cm−2. The horizontal line represents the Fermi level at 300 K.

FIG. 10. (Color online) Evolution of the Fermi level at 300 K in the band structure of armchair (a)–(d), metallic zigzag (e)–(h), and
semiconducting zigzag (i)–(l) with a diameter of 3.5 nm and 2D effective carrier density of 1 [(a), (e), and (i)], 6 [(b), (f), and (j)], 13 [(c), (g),
and (k)], and 20 × 1012 cm−2 [(d), (h), and (l)].
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APPENDIX B: RESISTIVITY OF GRAPHENE INCLUDING
SURFACE OPTICAL PHONON SCATTERING

The resistivity of graphene was measured in Ref. [37]
for carrier densities varying from 1 to 3 × 1012 cm−2. In the
following, we show that this resistivity consists of three major
components:

ρ(T ) = ρ0 + ρph(T ) + ρSO(T ), (B1)

where T is temperature, ρ0 is due to impurities, ρph is due to
the intrinsic phonons of graphene, and ρSO is due to the surface
optical phonons of the substrate. ρph is calculated as described
in the body of the paper. ρSO is calculated with the model of
Ref. [60] in which SiO2 is considered for the substrate. ρ0

is determined by taking the difference between experimental
data and the sum of ρph and ρSO at 30 K. Figure 7 compares
the results of the calculation with experimental data [37] in a
wide range of temperature and for different electron densities
n2D. It is clear that they agree very well with each other.

Figure 8 shows the temperature dependence of ρph and
ρSO. At low temperature, the effect of the surface optical
phonon scattering is not significant because the lowest surface
optical phonon energy considered in the model is 59.98 meV.
The surface optical phonon scattering is important at high
temperature when the carrier density is low. It almost domi-
nates the resistivity at n2D = 1012 cm−2. However, at higher
densities, its contribution becomes negligible due to strong
screening [60].

APPENDIX C: BAND STRUCTURES OF CNTs

Figure 9 shows the band structure of metallic armchair,
metallic zigzag, and semiconducting zigzag CNTs for selected
diameters. For small diameter CNTs, only the lowest band is
involved in the transport. The effective mass of semiconducting
CNTs decreases with increasing diameter, leading to higher
mobility in CNTs with large diameter.
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FIG. 11. (Color online) Mobility (μ) multiplied by the carrier
density (n2D) vs n2D in graphene and CNTs (T = 300 K, d ≈ 3.5 nm).
The same data but presented as μ vs n2D are shown in Fig. 2(b).

Figure 10 shows the position of the Fermi level in the band
structure of CNTs with a diameter of 3.5 nm. This figure
helps to interpret the results presented in Fig. 2(b). At high
carrier density, more bands are included in the transport energy
window. That brings in not only bands with finite effective
mass, but also more scattering mechanisms.

APPENDIX D: CARRIER DENSITY
DEPENDENCE OF μ × n2D

Figure 11 shows that, at 300 K, the product μ × n2D

does not depend on the carrier density n2D in graphene. The
same behavior is found for CNTs at high carrier density, but
only approximate deviations are coming from band-structure
effects.
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