
MatrixMiner: A Red Pill to Architect Informal Product
Descriptions in the Matrix

Sana Ben Nasr,
Guillaume Bécan,

Mathieu Acher, João
Bosco Ferreira Filho, and

Benoit Baudry
Inria - IRISA

University of Rennes 1, France

Nicolas Sannier
SNT Centre for Security,

Reliability and Trust
University of Luxembourg

Jean-Marc Davril
University of Namur, FUNDP
Faculty of Computer Science

Namur, Belgium

ABSTRACT
Domain analysts, product managers, or customers aim to
capture the important features and differences among a set
of related products. A case-by-case reviewing of each prod-
uct description is a laborious and time-consuming task that
fails to deliver a condensed view of a product line. This pa-
per introduces MatrixMiner : a tool for automatically syn-
thesizing product comparison matrices (PCMs) from a set
of product descriptions written in natural language. Ma-
trixMiner is capable of identifying and organizing features
and values in a PCM – despite the informality and absence of
structure in the textual descriptions of products. Our empir-
ical results of products mined from BestBuy show that the
synthesized PCMs exhibit numerous quantitative, compara-
ble information. Users can exploit MatrixMiner to visualize
the matrix through a Web editor and review, refine, or com-
plement the cell values thanks to the traceability with the
original product descriptions and technical specifications.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.9
[Software Engineering]: Management—Software config-
uration management; D.2.1 [Software Engineering]: Re-
quirements/Specifications—Methodologies

General Terms
Design, Management

Keywords
Software Product Lines, Variability Mining, Product Com-
parison Matrices

1. INTRODUCTION
Domain experts, product managers, or even customers on

their daily life activities need to capture and understand

the important features and differences among a set of re-
lated products. The motivation for a customer is to choose
the product that will exhibit adequate characteristics and
support features of interest. In an organization, the iden-
tification of important features may help to transition to a
product line; determine business advantage of some products
as they hold specific features; or penetrate a new market.
Analyzing manually a set of related products is notori-

ously hard [7, 10]. There is a huge amount of scattered and
informal data to collect, review, compare, and structure. A
case-by-case review of each product description is labour-
intensive, time-consuming, and quickly becomes impractical
as the number of considered products grows.
Given a set of textual product descriptions, MatrixMiner

provides automated techniques to synthesize product com-
parison matrices (PCMs), i.e., tabular data that describe
products along different features [4]. It enables the extrac-
tion and organization of information despite informality and
absence of structure in the textual artifacts. Numerous tools
have been implemented to mine variability [12,14] and sup-
port domain analysis [2, 6–8, 10, 13], but none of them ad-
dress the problem of structuring the information in a PCM.
With the extraction of PCMs, organizations or individuals
can obtain a synthetic, structured, and reusable model for
the understanding of the differences and the comparison of
products. Instead of reading and confronting the informa-
tion product by product, PCMs offer a product line view to
practitioners. It is then immediate to identify recurrent fea-
tures of a domain, to understand the specific characteristics
of a given product, or to locate the features supported and
unsupported by some products.
MatrixMiner undertakes the underlying challenges behind

the processing of informal and unstructured textual overviews.
Our empirical results of thousands of products mined from
BestBuy show that the synthesized PCMs exhibit numerous
quantitative, comparable information. Users can then ex-
ploitMatrixMiner to visualize the matrix through a Web ed-
itor and review, refine, or complement the cell values thanks
to a traceability with the original product overviews (texts)
and technical specifications (roughly a list of features).
MatrixMiner targets domain analysts, software practition-

ers, customers, or organisations that want to build and main-
tain PCMs. Afterwards users can, from PCMs, (1) gener-
ate other domain models, such as feature models [7,14]; (2)
recommend features [10] (3) perform automatic reasoning
(e.g. [9]); or (4) devise configurators or comparators;

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...

http://dx.doi.org/10.1145/2786805.2803180

982

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31222586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Extraction process; the resulting PCM can be visualized/edited in a Web environment (see Figure 2)

2. AUTOMATIC EXTRACTION
The extraction process of MatrixMiner is summarized in

Figure 1 and consists of two primary phases. In the first
phase, domain specific terms are extracted from a set of in-
formal product descriptions (steps Ê and Ë), while in the
second phase the PCM is constructed (steps Ì to Ï). For
step Ê, the raw product descriptions are extracted along
different categories of products. We provide means to ei-
ther (1) manually select the products to be included in the
comparison; or (2) group together closest products within a
category. We now outline the rest of the procedure.

Terms Mining. Step Ë is based on a novel natural lan-
guage processing approach, named contrastive analysis [5],
for the extraction of domain specific terms from natural lan-
guage documents. In this context, a term is a conceptually
independent linguistic unit, which can be composed by a
single word or by multiple words. A multi-word is concep-
tually independent if it occurs in different contexts (i.e. it is
normally accompanied with different words). For instance,
"Multiformat Media Reader" is a term, while "Reader" is not
a term, since in the textual product descriptions considered
in our study it often appears coupled with the same word
(i.e. "Media"). In particular, multi–words term extraction
is carried out by identifying multi–word terms candidates in
an automatically Part–Of–Speech (POS) tagged and lem-
matized text, making use of different kinds of linguistic fea-
tures. POS tagging is the assignment of a grammatical tag
(e.g. noun, adjective, verb, etc.) to each word in the cor-
pus. These candidates are then weighted with the C–NC
value, currently considered as the state–of–the–art method
for terminology extraction [5]. This metric establishes how
much a multi-word is likely to be conceptually independent
from the context in which it appears. The ranking of iden-
tified multi–words terms is then revised on the basis of a
contrastive score calculated for the same terms.

Building the PCM. Once the top list of terms is identi-
fied for each product, we start the construction of the PCM:
In step Ì we divide the set of terms in two categories: quan-
tified terms containing measures (e.g. "1920 x 1080 Reso-
lution") including intervals (e.g. "Turbo Boost up to 3.1
GHz"); and descriptive terms containing noun phrases and
adjectival phrases (e.g. "Multiformat Media Reader"). The
key idea is to perform separately descriptive terms (DTs)
clustering from quantified terms (QTs) clustering. A DTs
cluster gives the possible descriptor values (e.g. "Multifor-
mat") while a QTs cluster provides the potential quantifier
values (e.g. "1920 x 1080") for the retrieved feature. In

step Í we compute terms similarity to generate a weighted
terms relationship graph for each category. To identify co-
herent clusters, we first determine the similarity of each pair
of terms by using syntactical heuristic. In step Î we apply
terms clustering in each graph to identify descriptive terms
clusters and quantified terms clusters. The underlying idea
is that a cluster of tight-related terms with different granu-
larities can be generated by changing the clustering thresh-
old value [6]. Finally, step Ï extracts features and cell values
to build the PCM. To extract the feature name from a clus-
ter, we developed a process that involves selecting the most
frequently occurring phrase from among all of the terms in
the cluster. This approach is similar to the method pre-
sented in [11] for summarizing customer reviews. For exam-
ple, "1920 x 1080 Resolution" and "1366 x 768 Resolution"
represent QTs cluster that gives "Resolution" as a features
name and two potential values: "1920 x 1080" and "1366 x
768". Terms which are not clustered will be considered as
boolean features. Finally we distinguish different types of
features (see Figure 2): boolean which have Yes/No values,
quantified when their values contain measures (e.g. "Resolu-
tion", "Hard Drive", etc.), descriptive if their values contain
only noun and adjectival phrases (e.g. "Media Reader"), and
empty values. The resulting PCM can be visualized and re-
fined afterwards (see next section).

3. MATRIXMINER
MatrixMiner offers an interactive mode where the user

can import a set of product descriptions, synthesize a com-
plete PCM, and exploit the result. We have pre-computed
a series of PCMs coming from different categories of Best-
Buy [15] (Printers, Cell phones, Digital SLR Cameras, Lap-
tops, TVs, Washing Machines, Ranges, etc.). Our tool also
provides the ability to visualize the resulting PCM in the
context of the original textual product descriptions and also
the technical specification typically to control or refine the
synthesized information. MatrixMiner1 is available online.

3.1 Implementation and Used Technologies
Stanford CoreNLP2 provides a set of natural language

analysis tools which can take raw text input and give the
base forms of words, their parts of speech, etc. Stanford
CoreNLP integrates many NLP tools, including the Part-
Of-Speech (POS) tagger that reads text in some language
and assigns parts of speech to each word (and other token),
1http://matrix-miner.variability.io
2http://nlp.stanford.edu

983

http://matrix-miner.variability.io
http://nlp.stanford.edu


Figure 2: The editor of MatrixMiner in action
such as noun, verb, adjective, etc. To tokenize and remove
stop words from text we use Lucene3 which is a widely used
Information Retrieval (IR) library. Levenshtein computes
syntactical similarity based on words’ morphology. It comes
from the the Simmetrics4 library. The specific source code
of the extraction procedure is available online5. Our Web
environment reuses the editor of OpenCompare6.

3.2 Empirical Results
We evaluate our proposal against numerous categories

of products mined from BestBuy, which provides descrip-
tions for hundreds of thousands of products, including: (1)
technical specifications, which describe the technical char-
acteristics of products through feature lists; (2) products
overviews, texts describing features of products using natu-
ral language. We mined 2692 raw product overviews. Cur-
rently, we have implemented a mining procedure on top of
BestBuy API [15] for retrieving numerous product pages
along different categories. Only the extraction phase is spe-
cific to BestBuy. Another extraction engine is required like
we did for Wikipedia [4] or any other sources.
Given a set of textual product overviews, we want to syn-

thesize all the gathered information into a PCM. We empir-
ically observed that, given a supervised scoping (selection of
products), the synthesized PCMs exhibit numerous quanti-
tative and comparable information. We reported that PCMs
of 10 products comprise in average 12.5% of quantified fea-
tures and 15.6% of descriptive features. We also noticed
that a significant portion of features (49.7%) and cell values
(26.2%) is recovered in the technical specifications, showing
the usefulness of our approach. With our automated extrac-
tion from overviews, our qualitative review shows that there
is also a potential to complement technical specifications of
3https://lucene.apache.org
4http://sourceforge.net/projects/simmetrics
5https://github.com/sbennasr/matrix-miner-engine
6https://github.com/gbecan/OpenCompare

products: "Flip-and-Fold Design" is a boolean feature in the
overview PCM of Laptops but it does not exist in the spec-
ification PCM. Our synthesized overviews PCMs can even
refine specifications, e.g. "Media Reader" has three possible
values ("digital", "multiformat" and "2-in-1", see Figure 2) in
the overview PCM. However it is simply a boolean feature
in the specification PCM. This tool provides a snapshot for
the product descriptions. Though products may change at
a fast pace, changes are not that dynamic as changes appear
more in a matter of weeks or months.

3.3 Importing, Visualizing, and Editing
The empirical insights drive the design of theMatrixMiner

environment dedicated to the visualisation and edition of
PCMs. The results indeed suggest that automation has a
great potential but also some limitations. Human interven-
tion is beneficial to (1) refine/correct some values (2) re-
organize the matrix for improving readability of the PCM.
As a result we developed an environment for supporting

users in these activities. Our tool provides the capability
for tracing products and features of the extracted PCM to
the original product overviews and the technical specifica-
tions. Hence the PCM can be interactively controlled, com-
plemented or refined by a user. Moreover users can restruc-
ture the matrix through the grouping or ordering of features.
Overall, the features available are the following:
• select a set of comparable products. Users can rely on
a number of filters (e.g. category, brand, sub categories,
etc. See Figure 2, A );

• ways to visualize the PCM with a traceability with orig-
inal product descriptions. For each cell value, the corre-
sponding product description is depicted with the high-
light of the feature name and value in the text. For
instance, "500GB Hard Drive" is highlighted in the text
when a user clicks on "500GB" (see Figure 2, B and C );

• ways to visualize the PCM with a traceability with the
technical specification (see Figure 2, D ). For each cell

984

https://lucene.apache.org
http://sourceforge.net/projects/simmetrics
https://github.com/sbennasr/matrix-miner-engine
https://github.com/gbecan/OpenCompare


value, the corresponding specification is displayed includ-
ing the feature name, the feature value and even other
related features. Regarding our running example, "Hard
Drive Capacity" and two related features ("Hard Drive
Type" and "Hard Drive RPM") are depicted together with
their corresponding values;

• basic features of a PCM editor. Users can remove the
insignificant features, complete missing values, refine in-
complete values or revise suspect values if any – typically
based on information contained in the textual description
and the technical specification;

• advanced features of a PCM editor: means to filter and
sort values (see Figure 2, E and F ); ways to distinguish
Yes, No and empty cells using different colors to improve
the readability of the PCM; prioritise features by chang-
ing the columns order (one cannot objectively know the
preferred feature of a user), etc.

4. RELATED WORK
Numerous techniques for synthesising feature models have

been proposed (e.g. [1, 3, 7, 14]). MatrixMiner can be used
to fed them. The closest work is by Davril et al. [7] who
presented an automated approach for constructing feature
models from publicly available product descriptions found in
online product repositories such as SoftPedia. They based
the feature extraction technique on their previously data
mining procedure [10]. Then the synthesis is performed from
a PCM manually elaborated. MatrixMiner can be used to
speed up and improve the elaboration of the matrix. An
open problem for feature model synthesis is how to deal with
numerical, unknown, or empty values contained in PCMs.
Nadi et al. [12] developed a comprehensive infrastructure

to extract configuration constraints automatically from C
code. Alves et al. [2], Niu et al. [13], Weston et al. [16], and
Chen et al. [6] applied information retrieval techniques to
abstract requirements from existing specifications, typically
expressed in natural language. Weston et al. [16] provided
a tool framework ArborCraft that automatically processes
natural-language requirements documents into a candidate
feature model, which can be refined by the requirements en-
gineer. Our goal is to organize the variability information
in a comparable way (through a PCM), hence raising spe-
cific challenges. Closest to our work is Ferrari et al. [8] who
applied natural language processing techniques to mine com-
monalities and variabilities from brochures. In our context
a notable difference is that (1) the textual corpus is smaller,
i.e., overviews are short texts while brochures per vendors
typically exhibit numerous documents, pages and words; (2)
we aim to structure features and extract corresponding val-
ues in a comparison matrix; (3) to keep the traceability of
the synthesized PCM with the original product descriptions
and technical specification for further refinement or mainte-
nance by users.

5. CONCLUSION
We presented MatrixMiner, a Web environment with an

interactive support for automatically synthesizing product
comparison matrices (PCMs) from a set of informal product
descriptions written in natural languages. Instead of reading
and confronting the information of products case-by-case,
we aimed to deliver a compact, synthetic, and structured
view of a product line – a PCM. Our empirical evaluation

on BestBuy products showed that the synthesized PCMs
exhibit numerous quantitative, comparable information; yet
users may need to complement or even refine cell values. For
this reason, MatrixMiner also provides the ability to trac-
ing products and features of a PCM to the original product
descriptions (textual overviews as well as technical specifi-
cations). Likewise users can understand, control and refine
the information of the synthesized PCMs within the context
of product descriptions.

6. REFERENCES
[1] M. Acher, A. Cleve, G. Perrouin, P. Heymans,

C. Vanbeneden, P. Collet, and P. Lahire. On
extracting feature models from product descriptions.
In VaMoS’12. ACM, 2012.

[2] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,
P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An
exploratory study of information retrieval techniques
in domain analysis. In SPLC, 2008.

[3] G. Bécan, M. Acher, B. Baudry, and S. Nasr.
Breathing ontological knowledge into feature model
synthesis: an empirical study. ESE, 2015.

[4] G. Bécan, N. Sannier, M. Acher, O. Barais, A. Blouin,
and B. Baudry. Automating the formalization of
product comparison matrices. In ASE. ACM, 2014.

[5] F. Bonin, F. Dell’Orletta, G. Venturi, and
S. Montemagni. A contrastive approach to multi-word
term extraction from domain corpora. In LREC, 2010.

[6] K. Chen, W. Zhang, H. Zhao, and H. Mei. An
approach to constructing feature models based on
requirements clustering. In RE, 2005.

[7] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher,
J. Cleland-Huang, and P. Heymans. Feature model
extraction from large collections of informal product
descriptions. In ESEC/FSE’13, 2013.

[8] A. Ferrari, G. O. Spagnolo, and F. dell’Orletta.
Mining commonalities and variabilities from natural
language documents. In SPLC, 2013.

[9] J. Guo, E. Zulkoski, R. Olaechea, D. Rayside,
K. Czarnecki, S. Apel, and J. M. Atlee. Scaling exact
multi-objective combinatorial optimization by
parallelization. In ASE, 2014.

[10] N. Hariri, C. Castro-Herrera, M. Mirakhorli,
J. Cleland-Huang, and B. Mobasher. Supporting
domain analysis through mining and recommending
features from online product listings. IEEE
Transactions on Software Engineering, 99:1, 2013.

[11] M. Hu and B. Liu. Mining and summarizing customer
reviews. In KDD, 2004.

[12] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki.
Mining configuration constraints: Static analyses and
empirical results. In ICSE, 2014.

[13] N. Niu and S. M. Easterbrook. Concept analysis for
product line requirements. In AOSD, 2009.

[14] S. She, U. Ryssel, N. Andersen, A. Wasowski, and
K. Czarnecki. Efficient synthesis of feature models.
Information & Software Technology, 56(9), 2014.

[15] http://www.bestbuy.com. Bestbuy, 2014.
[16] N. Weston, R. Chitchyan, and A. Rashid. A

framework for constructing semantically composable
feature models from natural language requirements. In
SPLC, 2009.

985

http://www.bestbuy.com

	Introduction
	Automatic Extraction
	MatrixMiner
	Implementation and Used Technologies
	Empirical Results
	Importing, Visualizing, and Editing

	Related Work
	Conclusion
	References

