
Faculty of Science, Technology and Communication

Principles and design of global
proactive scenarios over a network of

proactive engines

Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of Master in

Information and Computer Sciences

Author:
Gilles Neyens

Supervisor:
Prof. Denis Zampunieris

Reviewer:
Prof. Steffen Rothkugel

Advisor:
Remus Dobrican

September 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31222569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration of Honour

I hereby declare that the work in this document is completely my own
work. No part of this document is taken from other people’s work without
giving them credit. All references have been clearly listed in the bibliogra-
phy.

Gilles Neyens

i

Abstract

This thesis examines Global Proactive Scenarios (GPaSs) in the context of
proactive computing. GPaSs are Proactive Scenarios (PaSs) that dynami-
cally collect information, provide strategies for cooperative reasoning and
support collective decision making [1]. More precisely we will extract
properties from GPaSs and define them. Based on these properties we will
then create templates for GPaSs, which will help to facilitate and standard-
ize the creation of future GPaSs. The applicability of these templates is
showed through the design of GPaSs for three example applications and
finally we will implement one of these applications as a proof of concept
example to showcase the usage of the templates in the real world.

Acknowledgements

First of all, I would like to thank my supervisor Professor Denis Zam-
punieris for welcoming me in his team again and for the guidance and
support during my thesis.

I would also like to express my thanks to Professor Steffen Rothkugel and
Remus Dobrican for accepting to be the members of this thesis committee.

Furthermore, I would like to express my gratitude to Sandro Reis for his
technical support during my thesis.

Finally, I express my special thanks to Marlene Müller, Sergio Marques
Dias and Denis Shirnin for their moral support and for making the last
years a great experience.

i

Contents

Declaration of Honesty i

Abstract i

Acknowledgements i

1 Introduction 1
1.1 Purpose of the thesis . 1
1.2 Structure of the thesis . 1

2 State of the art 3
2.1 Proactive systems . 3

2.1.1 Proactive engine . 3
2.1.1.1 Meta-Scenarios, Scenarios and Rules 3
2.1.1.2 Algorithm and rule structure 3

2.2 Network of proactive engines (smartphone version) 5
2.3 Global Proactive Scenarios . 7
2.4 Ambient intelligence . 7
2.5 Collaborative applications . 8

3 Properties of GPaS 9
3.1 Basic properties of PaS . 9

3.1.1 Proactive . 9
3.1.2 Anticipating . 10

3.2 General properties of GPaSs 10
3.2.1 Collaborative . 10

3.2.1.1 Active collaboration 10
3.2.1.2 Reactive collaboration 11

3.2.2 Fault-tolerant . 11
3.2.2.1 Active collaboration 11
3.2.2.2 Reactive collaboration 12

3.3 Architecture specific properties 12
3.3.1 System-System . 12

3.3.1.1 Continuous 12
3.3.2 System - User . 12

3.3.2.1 Continuous 13
3.3.2.2 Ambient . 13

3.3.3 User-User . 13
3.3.3.1 Initiated . 13
3.3.3.2 Monitored . 14

ii

4 Model 15
4.1 General properties of GPaS . 15

4.1.1 Active collaboration . 15
4.1.1.1 One by one 16
4.1.1.2 All at once . 19

4.1.2 Reactive Collaboration 21
4.1.3 Fault-tolerant . 22

4.1.3.1 Fault-tolerance for active collaboration . . . 23
4.1.3.2 Fault-tolerance for reactive collaboration . . 25

4.2 Architecture specific properties 27
4.2.1 System-System . 27

4.2.1.1 Continuous 27
4.2.2 System-User . 28

4.2.2.1 Continuous 28
4.2.2.2 Ambient . 28

4.2.3 User-User . 29
4.2.3.1 Initiated . 29
4.2.3.2 Monitored . 29

5 Examples of model applications 31
5.1 Airplane collision avoidance (System-System) 33

5.1.1 General description and assumptions 33
5.1.2 Template usage . 33
5.1.3 Static diagram . 34
5.1.4 Sequence diagrams . 34
5.1.5 Airplane rules . 37

5.1.5.1 Update Data 37
5.1.5.2 Change Direction 38

5.1.6 Airport rules . 39
5.1.6.1 Get Data . 39
5.1.6.2 Register new plane 40
5.1.6.3 Check Collision 40
5.1.6.4 Unregister Plane 41
5.1.6.5 Calculate Collision Free Route 41
5.1.6.6 Check Timeout 42
5.1.6.7 Correct Data 43
5.1.6.8 Check Collision Single Plane 44

5.2 House temperature negotiation (System-User) 44
5.2.1 General description and assumptions 44
5.2.2 Template usage . 45
5.2.3 Static diagram . 46
5.2.4 Sequence diagrams . 46
5.2.5 House rules . 48

5.2.5.1 Check near devices 48

iii

5.2.5.2 Ask preferences 48
5.2.5.3 Save preferences 49
5.2.5.4 Wait for preferences 50
5.2.5.5 Find Compromise 50
5.2.5.6 Adapt House Temperature 51
5.2.5.7 Check timeout 51

5.2.6 Guest rules . 52
5.2.6.1 AnswerPreferences 52

5.3 FAME (User-User) . 53
5.3.1 General description and assumptions 53
5.3.2 Template usage . 53
5.3.3 Static diagram . 54
5.3.4 Sequence diagrams . 54
5.3.5 Initiator rules . 56

5.3.5.1 Start negotiation 56
5.3.5.2 Negotiate time slots 57
5.3.5.3 Receive available time slots 58
5.3.5.4 Display available time slots 59
5.3.5.5 Send meeting date 60
5.3.5.6 Check timeout 61
5.3.5.7 Display error message 62

5.3.6 Friends rules . 62
5.3.6.1 Receive meeting date 62
5.3.6.2 Receive request 63
5.3.6.3 Check available time slots 64

6 Proof of concept:FAME 65
6.1 Database . 65
6.2 User interface . 66

6.2.1 Start Negotiation screen 66
6.2.2 Meeting Suggestion Notification 67

6.3 Algorithm . 68
6.4 Future features . 70

7 Conclusion 72
7.1 Summary . 72
7.2 Future work . 72

Acronyms 77

iv

List of Figures

2.1 The algorithm to run a rule . 5
2.2 GCM registration . 6
2.3 GCM communication . 7

4.1 Schema for One by One collaboration 16
4.2 Schema for All at once collaboration 19
4.3 Schema for reactive collaboration 21
4.4 Fault-tolerance for active collaboration 23
4.5 Database table for running instances of scenarios 24
4.6 Fault-tolerance for reactive collaboration 25
4.7 Database table for reactive fault tolerance 26
4.8 Continuous rule . 27
4.9 Ambient intelligence in a proactive engine 28
4.10 User initiating the GPaS . 29
4.11 Monitoring through user interface 29
4.12 Monitoring through preferences 30

5.1 Static diagram arrows . 33
5.2 Airplane collision avoidance static diagram 34
5.3 Registration of new air plane and collision check 35
5.4 Collision check with subsequent route correction 36
5.5 Error correction and plane removal 36
5.6 Normal execution for the temperature negotiation 46
5.7 Normal execution for the temperature negotiation 47
5.8 Execution for temperature negotiation with timed out guests 47
5.9 FAME GPaS : Static diagram 54
5.10 Normal execution of FAME GPaS 55
5.11 Failed execution of FAME GPaS 56

6.1 Extra database table . 65
6.2 Start negotiation screen . 66
6.3 Choose participants screen . 67
6.4 Meeting suggestion notification 68

v

1 Introduction

Contents
1.1 Purpose of the thesis . 1
1.2 Structure of the thesis 1

This chapter will give the reader a short overview about the background
and structure of this thesis. The reader will be given some information
about important computer science paradigms related to this work, which
will be explained in more detail in chapter 2. Afterwards he will be given
a small summary of the work of this thesis and he will be introduced to the
structure of this thesis.

1.1 Purpose of the thesis

The work of this thesis is based on proactive computing, more precisely
on a Proactive Engine (PE) developed by Prof. Zampunieris and his team.
This proactive engine was running on a server and not connected to any
other engines. However, in a world where the usage of mobile phones over-
took the usage of traditional desktop computers [2] new possibilities arise.
While these mobile devices do not have the same computing power as a
desktop computer they are omnipresent in the recent world and the user
can take them with him wherever he goes. This opens the way for new
applications based on the location of the user and based on collaboration
between different devices. Therefore proactive engines should not only be
able to enhance the user’s experience on its traditional desktop computer
but also on his mobile devices and by collaborating with other proactive
engines. The technical part of such a connection was already developed for
desktop computers and for smartphones [3, 4, 5]. However, as the proactive
engines are rule-based, there is also a need for rule templates and design
principles that will simplify and standardize the creation of Scenarios that
enable collaboration between proactive engines. The idea of such scenarios
called Global Proactive Scenarios (GPaSs) was already introduced previ-
ously [1]. In this thesis we will concentrate on the definition of properties
for these scenarios and on the design of rule templates and design princi-
ples to make the GPaSs satisfy these properties.

1.2 Structure of the thesis

In the following chapters we will first have a more detailed look at the state
of the art of the fields concerned by this thesis, including proactive sys-
tems, collaborative applications and ambient system intelligence. We will

1

also describe the framework that was used to create the proof of concept
application of this thesis. In the following chapters we will then identify
and define properties of GPaSs. We will then try to model these proper-
ties by giving either rule templates for satisfying a specific property or by
giving design principles that can be followed in order to satisfy a prop-
erty. Using these models we will then propose three example applications
to show the applicability of the model and finally we will implement one
of these applications as a proof of concept using the Proactive Engine for
Mobile Devices (PEMD) framework for Android smartphones.

2

2 State of the art

Contents
2.1 Proactive systems . 3

2.1.1 Proactive engine . 3

2.1.1.1 Meta-Scenarios, Scenarios and Rules . . . 3

2.1.1.2 Algorithm and rule structure 3

2.2 Network of proactive engines (smartphone version) . 5
2.3 Global Proactive Scenarios 7
2.4 Ambient intelligence . 7
2.5 Collaborative applications 8

2.1 Proactive systems

Proactive systems are systems that are based on the notion of proactive
computing, initially defined by Tennenhouse [6, 7]. In proactive comput-
ing the human user is no longer the center of the interaction between hu-
mans and computers but takes the role of a supervisor, which watches over
the actions executed by a Proactive System (PS). A PS thus does not neces-
sary need explicit user input and can act on its own initiative [6] to other
events such as the lack of user input. Therefore PSs need to be aware of
their current context, extract the relevant information for their tasks from
it and then react accordingly. [8] The idea of proactive computing lead to
the development of a PE by Professor Zampunieris and his team, which
was used since in a multitude of projects at the University of Luxembourg,
mainly in the domains of E-Learning and cognitive science. [9, 10, 11]

2.1.1 Proactive engine

2.1.1.1 Meta-Scenarios, Scenarios and Rules

Before we will describe the PE we will first define the concepts of Meta-
Scenarios, Scenarios and Rules. A Scenario is a set of rules that will be ex-
ecuted for a given event,a Rule is a part of a Scenario that executes specific
actions if some conditions are met and a Meta-Scenario is a context-aware
continuous never-ending rule. [12]

2.1.1.2 Algorithm and rule structure

The PE developed consists of a Rule-running system (RRS), which period-
ically executes so-called rules. This RRS is composed of two First in First

3

out (FIFO) queues called currentQueue and nextQueue. The currentQueue
contains the rules that need to be executed at the current iteration of the
RRS, while the nextQueue contains the rules that were generated during
the current iteration. At the end of each iteration the rules from the nex-
tQueue will be added to the currentQueue and the next Queue will be
emptied.
A rule consists of any number of input parameters and five execution steps
[13]. These five steps have each a different role in the execution of the rule.

1. Data acquisition
During this step the rule gathers data that is important for its sub-
sequent steps. This data is provided by the context manager of the
proactive engine, which can obtain this data from different sources
such as sensors or a simple database.

2. Activation guards
The activation guards will perform checks based on the context in-
formation whether or not the conditions and actions part of the rule
should be executed. If the checks are true, the activated variable of
this rule will be set to true.

3. Conditions
The objective of the conditions is to evaluate the context in greater
detail than the activation guards. If all the conditions are met as well,
the Actions part of the rule is unlocked.

4. Actions
This part consists of a list of instructions that will be performed if the
activation guards and condition tests are passed.

5. Rule generation
The rule generation part will be executed independently whether the
activation guards and condition checks were passed or not. I this
section the rule creates other rules in the engine or in some cases just
clones itself.

During an iteration of the RRS, each rule is executed one by one. The al-
gorithm to execute a rule is presented in Figure 2.1. The data acquisition
part of the rule is run first. If the data acquisition fails none of the other
parts of the rule is executed. Upon successful data acquisition the activa-
tion guards part is executed and evaluated. If the tests pass, the conditions
part is executed. If again all the tests of the conditions part pass the actions
part of the rule is executed. Finally the rule generation part of the rule is
executed independent of whether the activation guards or conditions tests
were passed.

4

1 . repeat for each data a c q u i s i t i o n request DA
a . perform DA
b . i f e r r o r then

r a i s e exception on system manager console and go to step 7
e l s e
create new l o c a l v a r i a b l e and i n i t i a l i z e i t with the

r e s u l t of DA
2 . create new l o c a l Boolean v a r i a b l e ” a c t i v a t e d ” i n i t i a l i z e d to

f a l s e
3 . repeat for each a c t i v a t i o n guard t e s t AG

a . evaluate AG
b . i f r e s u l t == f a l s e then go to step 6

e l s e i f AG == l a s t a c t i v a t i o n guard t e s t
then a c t i v a t e d = true

4 . repeat for each condi t ions t e s t C
a . evaluate C
b . i f r e s u l t == f a l s e then go to step 6

5 . repeat for each ac t ion i n s t r u c t i o n A
a . perform A
b . i f e r r o r then r a i s e exception on system manager console and

go to step 7
6 . repeat for each rule generat ion R

a . perform R
b . i n s e r t newly generated rule as the l a s t ru le of the system

7 . delete a l l l o c a l v a r i a b l e s
8 . discard rule from the system

Figure 2.1: The algorithm to run a rule

2.2 Network of proactive engines (smartphone version)

In this section we present how PEs were connected, or more precisely how
Proactive Engines for Mobile Devices (PEMDs) were enabled to communi-
cate with each other. PEMDs, as the name says, are proactive engines run-
ning on mobile devices. In order to use these devices to their full potential
a communication between these devices is needed. This communication is
achieved by using Google Cloud Messaging (GCM) for Android-based mo-
bile devices.[5] At the installation each device first needs to register with
the GCM server and receives back a registration ID (Figure 2.2). This ID
is then passed along with a username to our relay server and stored in the
database of this server. After this registration process the device is ready to
communicate with other devices. PEMDs communicate by sending rules to
each other. These rules are encoded in JSON and on the receiving engine
they get decoded again and added to the nextQueue of the RRS.

5

Figure 2.2: GCM registration

The communication itself is done in 6 steps like shown in Figure 2.3.

1. The device sends a rule to the relay server with the username of the
device that should receive the rule and with its own registration ID.

2. The relay server looks up the registration ID of the other device in the
database and pushes the message to the GCM cloud.

3. The GCM cloud delivers the message to the correct device.

4. The device that received the message sends back a confirmation to
the sender device by first sending it to the relay server.

5. The relay server pushes the confirmation message to the GCM cloud.

6. The the GCM cloud delivers the confirmation message to the initial
device.

The confirmation is used in order to avoid losing messages in the network.
Each engine keeps track of the messages it sent and sends the message
again if no confirmation message arrived. Also each engine keeps track
of received messages in order to avoid receiving the same rule twice.

6

Figure 2.3: GCM communication

2.3 Global Proactive Scenarios

In the context of networks of proactive engines the concept of Global Proac-
tive Scenarios was introduced [1]. GPaSs are an information sharing mech-
anism composed of proactive rules that have the following characteris-
tics:detection of unexpected events (similar to a normal PaS), information
collection from remote devices running a PE, strategy supply for coopera-
tive reasoning and the support for collective decision making.
GPaSs are well suited for large-scale networks with a large number of de-
vices running a PE. They support multiple information sharing strategies,
which can be chosen based on the need of an application. Several of these
strategies are introduced in this thesis under the form of rule templates.
GPaSs can be triggered in different ways. The two most common triggers
are the detection of a foreseen event by a rule or simply user input. Once
triggered the GPaSs will try to achieve their objective(s) by executing the
rules they are composed of. Generally this happens by gathering informa-
tion from remote PEs and then taking decisions based on this information.

2.4 Ambient intelligence

Ambient intelligence describes computer or simply electronic systems that
sense the presence of people and react to their presence. The possibility
for ambient intelligence is given by the recent emergence of different tech-
nologies such as the miniaturization of microprocessors, mobile phones or
the embedment of computing power in every day objects.[14] Currently
Google © is even working on interactive clothes. [15] Other technologies

7

such as RFID tags, Bluetooth or simple sensors allow the computing de-
vices to detect the presence of a user (and of his smart phone/tablet etc.).

This omnipresence of computing devices opens the road for new types
of applications like smart houses (Gator Tech Smart House [16] ,MavHome
[17]). Other application areas include hospitals where the Lutheran Gen-
eral Hospital in Chicago has built a pavilion for children where they are en-
tertained during their examination sessions through ambient intelligence
[18], transportation where the driver can be warned from dangerous situa-
tions [19] or even in education where the Northwestern University created
an intelligent classroom, which helps students during their lessons [20]. In
the workplace an ambient system like the MOSES system [21] can help re-
minding the worker of its tasks left to do by keeping track of his actions
and the objects on its work desk with an RFID tag.
In this thesis we use the concept of ambient intelligence to define one of
the properties of GPaSs.

2.5 Collaborative applications

Collaborative applications, also called collaborative software, are applica-
tions that help human users to work together. This includes everything
that improves the work flow, may it be a tool for simplifying the organi-
zation of meetings over different time zones, multi-user drawing tools like
VideoDraw [22] or text editors like NTE [23]. Other collaborative systems
like Group Kit [24] specialized in providing a framework for easily creat-
ing collaborative applications. In this thesis we will use a GPaS in order
to implement an application that schedules a meeting between a group of
users.

8

3 Properties of GPaS

Contents
3.1 Basic properties of PaS 9

3.1.1 Proactive . 9

3.1.2 Anticipating . 10

3.2 General properties of GPaSs 10
3.2.1 Collaborative . 10

3.2.1.1 Active collaboration 10

3.2.1.2 Reactive collaboration 11

3.2.2 Fault-tolerant . 11

3.2.2.1 Active collaboration 11

3.2.2.2 Reactive collaboration 12

3.3 Architecture specific properties 12
3.3.1 System-System . 12

3.3.1.1 Continuous 12

3.3.2 System - User . 12

3.3.2.1 Continuous 13

3.3.2.2 Ambient 13

3.3.3 User-User . 13

3.3.3.1 Initiated 13

3.3.3.2 Monitored 14

In this chapter we are going to define the different properties that a
Global Proactive Scenario has to fulfill in order to be considered as such.
GPaSs need to fulfill the same properties as simple PaS. Additionally they
need to satisfy a set of properties, which can be split into two subcate-
gories: general properties and architecture specific properties. The general
properties are those that every GPaS needs to fulfill while the architecture
specific properties are those properties that depend on the architecture of
the proactive systems.

3.1 Basic properties of PaS

3.1.1 Proactive

The proactive property of a PaS defines their ability to act on-behalf of the
user and on their own initiative without the users explicit command.

9

3.1.2 Anticipating

Another important property of a PaS is its capability to correctly infer fu-
ture events based on the current context and to delegate the task to an
appropriate target scenario, which is capable of handling the situation.

3.2 General properties of GPaSs

In this section we will discuss the properties that a global proactive sce-
nario will need to fulfill in addition to those required by a normal PAS and
that are true for any global proactive scenario regardless of the architecture
of the system. For GPaSa we will always differentiate between the proactive
engine that started the scenario by activating the initial rule of the scenario
(initiator) and the rest of the engines that participate in the GPaS.

3.2.1 Collaborative

The collaborative property is the most important property that separates
a GPaS from a normal PaS as it ensures that different engines are working
together to achieve a common goal. This property can be split into two
types: active collaboration and reactive collaboration. A GPaS designed
for active collaboration actively asks remote engines for information or to
process data while a GPaS designed for reactive collaboration regularly re-
ceives information updates from remote engines.

3.2.1.1 Active collaboration

Active collaboration can be divided into 4 four steps: Communication, Pro-
cessing (Non-Initiator), Coordination, Processing (Initiator). To satisfy ac-
tive collaboration a GPaS has to consist of actions that perform the four
steps mentioned. We will now take a closer look at the different steps and
what exactly a GPaS would need to do in order to satisfy the necessary
requirements.

• Communication
This step simply requires the communication of different proactive
engines during the execution of the GPaS. It is not important which
technology is used to perform the communication (Bluetooth, WiFi,
etc. ...).

• Processing (Non-Initiator)
This step needs to be performed on the non- initiator engines. By
processing we mean that the non-inititor engines have to produce
some added value to the data/information sent by the initator before
sending it back or before sending a response that was determined by
the data received.

10

• Coordination
The coordination step is specific to the initiator of the GPaS. The ini-
tiator needs to wait for the responses of the processing done by the
other engines and also decides whether it is still useful to continue
the execution of the main algorithm.

• Processing (Initiator)
This step is also solely for the Initiator of the GPaS. This step is imme-
diately situated after the coordination step. In this step the Initiator
has to process the responses received by the the other engines and
perform actions based on this processing.

3.2.1.2 Reactive collaboration

An Initiator does not exist in a GPaS with reactive collaboration as many
engines regularly send updated information to the information gathering
engine. Reactive collaboration for a GPaS can be defined in two steps:

• Receive regular information updates from remote engines

• Take appropriate actions based on this information

Active and reactive collaboration mainly differentiate on the trigger for the
main actions taken by a GPaS. In active collaboration the GPaS decides
based on local information that it needs additional information from re-
mote engines in order to perform its actions while for reactive collaboration
the GPaS decides to take actions based on information from other proactive
engines.

3.2.2 Fault-tolerant

As GPaSs need to perform some sort of collaborative actions they need a
communication between different proactive engines over certain types of
networks. However, as devices are not always reachable due to network
failure or simply because devices are not turned on, which is often the case
for mobile devices, a GPaS needs to define a failure Scenario for these cases
for every communication step that is performed where an answer is ex-
pected. This failure Scenario needs to take care of a few questions, varying
based on the type of collaboration.

3.2.2.1 Active collaboration

• How long does the GPaS wait until every answer arrived?

• What actions does the GPaS take if not every answer arrived in time?
Does it continue with its normal execution or does it end in an error
state?

11

3.2.2.2 Reactive collaboration

• When not receiving information updates from a specific engine any-
more, what is the time limit for error handling actions to be taken?

• What happens to the data previously received by the failing engine?
Is it considered obsolete or may it still be used for future calculations
and processing?

The answers to these questions vary greatly between different GPaS, but it
is possible to have at least a rule template, which covers the core problem
of timeout to error handling as we will discover in the next section.

3.3 Architecture specific properties

In this section we present different properties for specific architectures of
proactive systems in the context of a GPaS, meaning that only actors in-
volved in the GPaS are considered when classifying GPaSs in the different
kinds of architectures and not all the actors connected to an engine. These
properties are not mandatory for a GPaS to be considered global but in
some cases they are mandatory in the sense that given the nature of a spe-
cific architecture of proactive engines the GPaS could not function properly
if it does not meet these properties. Also these properties will allow us to
define templates in the model section in order to simplify and standardize
the design and creation of future GPaSs.

3.3.1 System-System

A System - System architecture for a GPaS is an architecture that only in-
volves the proactive systems themselves during the execution of the GPaS.
There is no need for user input and the GPaS is able to completely execute
without any interaction with the user.

3.3.1.1 Continuous

The continuous property is a pretty straight-forward property. As in an ar-
chitecture with only proactive engines without direct user input, the GPaS
cannot be initiated by the user itself, the GPaS has to have an initial rule
running at all times, which will then decide when to execute the rest of the
GPaS.

3.3.2 System - User

A System - User architecture involves a proactive engine that execute rules
that don’t need to interact with the user and other PEs, which contain rules

12

that interact with the user, may it be by directly asking for input or by
reading data that can be changed at any time trough a user interface. In
this type of architecture we made the design choice that the system without
user interaction will always be the initiator of the GPaS.

3.3.2.1 Continuous

Similarly to the Continuous property of the System-System architecture
the GPaS has to have an initial rule running at all times on the engine with-
out user interaction in order for the GPaS to function properly.

3.3.2.2 Ambient

This is an optional but useful property for GPaSs that involve one (or maybe
more) PE(s) and many proactive engines connected with a human user. As
described previously, an ambient system is an electronic environment that
is sensitive and responsive to the presence of people. In order to satisfy
this property, a GPaS thus has to react and carry out actions based on the
presence of people. A few technologies can help satisfying this property,
the most relevant one for GPaSs would be Bluetooth. There are many sce-
narios where the proactive engine needs to react to the proximity of users.
One could imagine proactive systems in schools that will turn off the sound
of the mobile phones of the students or, like the example given in one of
the upcoming sections, negotiate an acceptable temperature for the house
between the house owner and its guests.

3.3.3 User-User

In a User - User architecture every PE involved in the GPaS will have to, at
some point, interact with the user, may it be by directly asking for input or
by reading data that can be changed at any time trough a user interface. It
is not possible for a PE to execute all the rules involved in the GPaS on their
side without using input from the user. This architecture comes closest to
traditional applications.

3.3.3.1 Initiated

In this type of architecture the user has to take action in order to start the
GPaS by entering data in a user interface and thus ’initiating’ the GPaS.
While it would also be possible in some cases to have the GPaS constantly
running and being triggered by changes to stored data on the device by the
user, this type of architecture involves in most cases devices that run on
battery (smartphones, smart watches, etc.) and thus we opted for the more
battery saving option where the user himself has to start the GPaS.

13

3.3.3.2 Monitored

The execution of a GPaS under the user-user architecture is monitored by
the user, meaning that it needs input from the user in critical and impor-
tant situations in order to realize its task. Input from the user also can
include preferences previously set by the user and fetched by the GPaS
when needed.

14

4 Model

Contents
4.1 General properties of GPaS 15

4.1.1 Active collaboration 15

4.1.1.1 One by one 16

4.1.1.2 All at once 19

4.1.2 Reactive Collaboration 21

4.1.3 Fault-tolerant . 22

4.1.3.1 Fault-tolerance for active collaboration . 23

4.1.3.2 Fault-tolerance for reactive collaboration 25

4.2 Architecture specific properties 27
4.2.1 System-System . 27

4.2.1.1 Continuous 27

4.2.2 System-User . 28

4.2.2.1 Continuous 28

4.2.2.2 Ambient 28

4.2.3 User-User . 29

4.2.3.1 Initiated 29

4.2.3.2 Monitored 29

In this chapter we are going to present different templates for GPaS,
which will facilitate and standardize the design of future GPaSs and in the
same time make sure that the necessary properties are satisfied. Before we
continue with the presentation of the different templates it is important
to note that they are ’only’ templates, meaning that they can be extended
and modified at will (as long as this would not jeopardize the fulfillment
of the mandatory properties) and even that different rules from different
templates can be merged together as the templates are designed to provide
a clearer picture of as how these templates satisfy different properties.

4.1 General properties of GPaS

4.1.1 Active collaboration

As described in the previous section, the GPaS has to perform 4 steps in
order to satisfy the (active) collaborative property:

1. Communication

2. Processing (Non-Initiator)

15

3. Coordination

4. Processing (Initiator)

In order to achieve this property in a GPaS we will propose two different
approaches, which both have their advantages and disadvantages and are
best suited for different kinds of algorithms. The first approach consists of
performing the collaboration with one engine at a time while the second
approach will collaborate with all proactive engines involved simultane-
ously. We will now first give a schema for both approaches along with
template rules written in pseudo-code and at the end we will discuss the
advantages and disadvantages of these approaches in different situations.
To note here is that these templates are meant to be used once per collabo-
ration, meaning that if a GPaS needs to collaborate several times with other
engines during its executions, these templates need to be applied at every
collaboration step.

4.1.1.1 One by one

Figure 4.1: Schema for One by One collaboration

16

General description This approach will contact every participating en-
gine one-by-one, wait for the result and then decide whether to continue
the collaboration with the remaining engines or to continue or stop the
algorithm (Figure 4.1).

OBOColl001 Start/Continue collaboration
Parameters: receiverList List of engines that will participate

in the collaboration
param 1 .. param N List of parameters needed for the

algorithm
result Result or partial result of the

algorithm
Description:
The job of this rule is to start or continue the collaboration by taking the
first receiver in the receiverList, removing it and sending the needed infor-
mation along with the rest of the receiverList to this first receiver.

OBOColl002 Processing (Non-Initiator)
Parameters: initiatorId ID of the engine that wants to have

a reply
receiverList List of remaining engines that will

participate in the collaboration
param 1 .. param N List of parameters needed for the

algorithm
result Result or partial result of the

algorithm
Description:
The job of this rule is to receive the information needed for the algorithm,
perform a form of processing based on this information and previous re-
sults and pass on the results to OBOColl003.

OBOColl003 Processing (Non-Initiator) ctd.
Parameters: initiatorId ID of the engine that wants to have

a reply
receiverList List of remaining engines that will

participate in the collaboration
param 1 .. param N List of parameters needed for the

algorithm
result Result or partial result of the

algorithm
Description:
The job of this rule is to send the new result back to the Initiator engine.
(It is possible to merge OBOColl002 and OBOColl003 into one rule)

17

OBOColl004 Coordination
Parameters: receiverList List of remaining engines that will

participate in the collaboration
param 1 .. param N List of parameters needed for the

algorithm
result Result or partial result of the

algorithm
Description:
The job of this rule is to perform the coordination step, meaning that it
receives the partial results and decides about the future continuation of the
algorithm. The continuation of the algorithm is influenced by the partial
results and by the number of collaborating engines still in the list.

OBOColl005 Processing (Initiator)
Parameters: result Result or partial result of the algorithm
Description:
The job of this rule is to use the obtained result to either yield an error or
to activate other target scenarios to perform appropriate actions.

Advantages

• Efficient
If it becomes clear after the reception of a partial result that it is use-
less or not needed to continue the algorithm and contact the remain-
ing engines, it is easy to stop the algorithm, which avoids unnecessary
communication between engines, which in turn can increase the bat-
tery life of smaller devices.

Disadvantages

• Low time efficiency
This approach needs to contact the collaborating engines one-by-one,
which increases the time needed to complete the algorithm especially
if there are two or more engines that are temporarily unavailable at
the moment they are being contacted.

18

4.1.1.2 All at once

Figure 4.2: Schema for All at once collaboration

General description This approach contacts all the participating engines
at once right at the beginning (Figure 4.2). A dedicated rule will then wait
until all the answers arrived before continuing with the rest of the algo-
rithm.

AaOColl001 Start collaboration
Parameters: ScenarioID ID of this Scenario instance

receiverList List of engines that will participate
in the collaboration

param 1 .. param N List of parameters needed for the
algorithm

Description:
The job of this rule is to send the needed information to every engine in
the list by creating a AaOColl002 rule on these engines. It will also create
a AaOColl005 rule on the local engine.

19

AaOColl002 Processing (Non-Initiator)
Parameters: ScenarioID ID of this Scenario instance

InitiatorId Id of the engine that initiated the
GPaS

param 1 .. param N List of parameters needed for the
algorithm

Description:
The job of this rule is to receive information, process it and pass on the
result to rule AaOColl003.

AaOColl003 Processing (Non-Initiator) ctd.
Parameters: ScenarioID ID of this Scenario instance

InitiatorId Id of the engine that initiated the GPaS
result Result of the processing

Description:
The job of this rule is to send the result back to the initiator engine.

AaOColl004 Reception and Storage
Parameters: ScenarioID ID of this Scenario instance

SenderID Id of the engine that sent this answer
result Result of the processing

Description:
The job of this rule is to receive and store the result along with the ID of
the sender and the Scenario ID in an appropriate Database table.

AaOColl005 Coordination

Parameters: ScenarioID ID of this Scenario instance
expectedAnswers Number of expected answers

Description:
The job of this rule is to check whether all answers for a particular sce-
nario instance arrived. If this is the case this rule will combine the received
results together and pass them on to rule AaOColl006.

AaOColl006 Processing (Initiator)
Parameters: result The result from the collaboration
Description:
The job of this rule is to perform further processing on the results from the
collaboration.

20

Advantages

• Fast
The fact that every engine is contacted right at the beginning of the
algorithm makes this approach faster in average than the One-By-
One approach, which needs to wait for the reply of the first engine
before it can contact the second engine.

Disadvantages

• Extra Memory
This approach needs to store the results in a Database table until all
the results are received. This will consume more memory and the ad-
ditional Database operations can have an impact on the performance
of the proactive engines of less performant devices like smart phones.

4.1.2 Reactive Collaboration

Figure 4.3: Schema for reactive collaboration

General description For reactive collaboration there is one engine that
will receive information (right side of Figure 4.3) regularly from other en-
gines (left side of Figure 4.3). Upon reception the data is treated and put
into a Database for further use.

21

ReaColl001 Sending information

Parameters: None
Description:
This rule will send a ReaColl002 rule along with relevant data for the algo-
rithm to the gathering engine at every execution. Then it will clone itself.

ReaColl002 Receive information

Parameters: SenderID Id of the device that sent this
information

param 1 .. param N List of parameters needed for the
algorithm

Description:
This rule will receive information from other engines, save them in the
database and create a ReaColl003 with the freshly received information.

ReaColl003 Treat information

Parameters: SenderID Id of the device that sent this
information

param 1 .. param N List of freshly received information
Description:
This rule will treat the freshly information received and take appropriate
actions. The SenderID will be needed when comparing the new informa-
tion to old stored information.

4.1.3 Fault-tolerant

While this section talks about how GPaSs can satisfy the fault-tolerant
property, parts of it can also be used to solve a remaining problem of PAS,
which is the fact that it was not possible to stop a specific scenario that
was currently running. The following templates show how to satisfy the
fault-tolerant property and are meant to be used in conjunction with the
collaboration templates in order to handle possible failure scenarios.

22

4.1.3.1 Fault-tolerance for active collaboration

Figure 4.4: Fault-tolerance for active collaboration

General description The template for fault-tolerance for active collabo-
ration is best wrapped around the collaboration templates, meaning that
the rules of the collaborative templates should be included in the main al-
gorithm (FTMA* rules in Figure 4.4). First the scenario is registered in the
engine and the obtained ID is then used to interrupt the rules of this sce-
nario in the case of a timeout. In this situation Rule FT003 then decides
what actions should be taken, by continuing by executing the rest of the
GPaS (case when enough data was received, or the GPaS does not expect
answers from every single engine) or by launching a failure scenario to
handle the situation. The database table for the registration can be seen in
Figure 4.5, where the ID is the ID of a scenario instance, the scenario type

23

is the type of a scenario, which can be used to terminate all instances of the
same type of scenario and creation time, which represents the time and
date a scenario was registered. The type of a scenario is a string for the
name of the scenario. Let us take as an example an application that ne-
gotiates a price for an object in an auction. The scenario type could then
be called ’PriceNegotiationScenario’. There could be several negotiations
going on at the same time. If one of the negotiation succeeded, it would be
possible that the user ran out of money (or surpassed a limit he set himself),
but the other negotiations would be still be running. However, as they are
all running under the same scenario type, it is possible to just remove all of
them from the database table, which will cause the checks of the different
rules to fail and thus to stop every instance of this scenario type.

Figure 4.5: Database table for running instances of scenarios

FT001 Registration

Parameters: None
Description:
Upon activation, this rule registers a new instance of this scenario with the
engine. It gets back an ID, which it will pass to FT002 and to the first rule
of the main algorithm of the GPaS FTMA001. Additionally FT002 will be
instantiated with the time limit for this instance of the scenario.

FT002 Check Timeout

Parameters: ScenarioInstanceID Id of this instance of the GPaS
n The frequency in seconds this rule

will be executed
last executed The time this rule was last executed
timelimit Number of seconds this scenario is

allowed to run
Description:
This rule checks whether the instance of the scenario specified by the Sce-
narioInstanceID is still registered. If it not registered anymore (end of main
algorithm) it will not clone itself. If it is still registered it will check if the
time limit was exceeded for this instance of the scenario. If this is the case,
this rule will create a FT003 rule with the ScenarioInstanceID. If not it will
clone itself.

24

FT003 Unregister

Parameters: ScenarioInstanceID Id of this instance of the GPaS
Description:
This rule will unregister this particular instance of a scenario from the en-
gine. This rule needs also to take care of the decision what happens to the
data left by this instance of a scenario, if it needs to be cleaned up or if it is
can still be used by future instances.

FTMA* Reception

Parameters: ScenarioInstanceID Id of this instance of the GPaS
Description:
The rules from the main algorithm of the GPaS all need to pass the Scenar-
ioInstanceID as parameter to the next rules of the scenario. Every rule of
the main algorithm on the intiator engine needs to check at every execution
if the scenario is still registered. If the scenario instance is not registered
anymore these rules will no longer perform any actions, not even clone
themselves. The last rule of the main algorithm for this collaboration step
needs to unregister the scenario instance.

4.1.3.2 Fault-tolerance for reactive collaboration

Figure 4.6: Fault-tolerance for reactive collaboration

General description Upon the reception of a message the GPaS needs to
check whether the sending device is already registered on this engine or not
(Figure 4.6). If it is not the case the device ID will be added to the database

25

column depicted in Figure 4.7, where last received represents the time
a message from a specific device was received and disabled is a boolean
value, which tells the GPaS if data from this engine should be ignored for
the moment. A time-out rule then periodically checks the last received
time for every device and in the case of a time-out it leaves the decision on
the action that will be taken to the ’take actions’ rule.

Figure 4.7: Database table for reactive fault tolerance

ReaFT001 Reception

Parameters: SenderID Id of the device that sent this rule
Description:
This rule checks whether the device that sent this rule already sent some-
thing in the past. If this is the case, this rule will update the last received
column of this device’s ID in the database to the current time. If not, it will
create a ReaFT002 rule. Note that this rule will be integrated in the receive
information rule of the collaboration template.

ReaFT002 Register new sender

Parameters: SenderID Id of the new device
Description:
This rule will save the new device’s ID in a database table, which contains
all device IDs and sets disabled to false and last received to the current
time.

26

ReaFT003 Time-out

Parameters: n The frequency in seconds this rule will
be executed

last executed The time this rule was last executed
timeout limit The time after which a device is

considered to be timed-out
Description:
This rule will be executed every n seconds. At every execution it
will check for every device whether the device timed-out by calculating
last received-current time>timeout where last received is the value stored
in the database for the specific device. If a device is timed out this rule will
create a ReaFT004 rule.

ReaFT004 Take actions

Parameters: SenderID Id of the device that timed out
Description:
This rule defines the actions that will be taken for the device that timed out.
The standard action would be to set the device to disabled and ignore the
old data received by this device. Another possible action could be trying to
calculate new data based on the old data.

4.2 Architecture specific properties

4.2.1 System-System

4.2.1.1 Continuous

Figure 4.8: Continuous rule

27

Like shown in Figure 4.8, this property can be satisfied by having a rule
initially in the Database that will clone itself forever. This rule will decide
when the main part of the GPaS needs to be executed.

4.2.2 System-User

4.2.2.1 Continuous

The same approach as for System-System setup can also be used for the
System-user setup in order to keep the algorithm running.

4.2.2.2 Ambient

Figure 4.9: Ambient intelligence in a proactive engine

Ambient intelligence can be achieved in a GPaS by having one rule that
requests the list of near users (or proactive engines) through the Proximity
Manager (Figure ??). The Proximity Manager is a module of the proactive
engine, which can use different technologies in order to detect near users
and proactive engines. Note that the RFID technology is only suited for
GPaS in the context of two NFC devices and not for simple passive RFID
tags as the communicating devices all need a proactive engine running on
them. The choice of technology depends on the situation.

28

4.2.3 User-User

4.2.3.1 Initiated

Figure 4.10: User initiating the GPaS

In a User-User setup the GPaS is started by the action of a user. This is done
trough a user interface where the user can enter the data required by the
initial rule of the GPaS and create this rule by submitting the data entered
(Figure 4.10). The execution of the GPaS will then proceed normally in the
background.

4.2.3.2 Monitored

For the monitored property of a GPaS, we propose two different approaches
of interacting with the user.

Figure 4.11: Monitoring through user interface

The first approach, depicted in Figure 4.11, sends a notification to the
user through the notification manager. The notification provides the nec-
essary user interface to the user to enter the data needed by the GPaS. After
the data was entered the GPaS continues its normal execution with the in-
formation received.

29

Figure 4.12: Monitoring through preferences

In the second approach (Figure 4.12) the user is not directly asked for
input. The user can edit his preferences through a user interface at any
time. When needed, the GPaS can then fetch the required information from
the preferences and continue its execution without interruption.

In the context of proactivity the second approach is the most appropriate
one as the user can edit his preferences whenever he wants and the GPaS
can carry out its task in the background without having to wait for user
input. However, in some situations there is no way around the first ap-
proach, like when the user needs to make a precise choice. Of course the
preferences can allow the GPaS to greatly reduce the set of possible choices
but the final choice between the remaining options still needs to be done
by the user.

30

5 Examples of model applications

Contents
5.1 Airplane collision avoidance (System-System) 33

5.1.1 General description and assumptions 33

5.1.2 Template usage . 33

5.1.3 Static diagram . 34

5.1.4 Sequence diagrams 34

5.1.5 Airplane rules . 37

5.1.5.1 Update Data 37

5.1.5.2 Change Direction 38

5.1.6 Airport rules . 39

5.1.6.1 Get Data 39

5.1.6.2 Register new plane 40

5.1.6.3 Check Collision 40

5.1.6.4 Unregister Plane 41

5.1.6.5 Calculate Collision Free Route 41

5.1.6.6 Check Timeout 42

5.1.6.7 Correct Data 43

5.1.6.8 Check Collision Single Plane 44

5.2 House temperature negotiation (System-User) 44
5.2.1 General description and assumptions 44

5.2.2 Template usage . 45

5.2.3 Static diagram . 46

5.2.4 Sequence diagrams 46

5.2.5 House rules . 48

5.2.5.1 Check near devices 48

5.2.5.2 Ask preferences 48

5.2.5.3 Save preferences 49

5.2.5.4 Wait for preferences 50

5.2.5.5 Find Compromise 50

5.2.5.6 Adapt House Temperature 51

5.2.5.7 Check timeout 51

5.2.6 Guest rules . 52

5.2.6.1 AnswerPreferences 52

5.3 FAME (User-User) . 53
5.3.1 General description and assumptions 53

5.3.2 Template usage . 53

5.3.3 Static diagram . 54

31

5.3.4 Sequence diagrams 54

5.3.5 Initiator rules . 56

5.3.5.1 Start negotiation 56

5.3.5.2 Negotiate time slots 57

5.3.5.3 Receive available time slots 58

5.3.5.4 Display available time slots 59

5.3.5.5 Send meeting date 60

5.3.5.6 Check timeout 61

5.3.5.7 Display error message 62

5.3.6 Friends rules . 62

5.3.6.1 Receive meeting date 62

5.3.6.2 Receive request 63

5.3.6.3 Check available time slots 64

In this chapter we will present three example applications to show how
the previously presented templates can be used to easily create GPaS for
specific applications. Each application is described in four parts: General
description, static diagram, dynamic diagram and a detailed description
of each rule in the GPaSs. The static diagram shows the parameters of the
different rules along with their types. It also represents the creation of rules
by arrows. Solid arrows mean that the rule at which the arrow is pointing
is created on the same engine where the rule creating it, is located. Dashed
arrows mean that the rule at which the arrow is pointing is created on a
remote engine (Figure 5.1). The numbers on the arrows indicate how many
rules are created by one single rule of a given type.

The dynamic diagrams represent single executions of the GPaS where
an arrow simply indicates the creation of a rule. Moreover the dynamic
diagrams contain color codes in order to show to which template a rule
belongs. White rules are rules that do not belong to any template. Most of
the time these rules continue the execution of the GPaS after a successful
collaboration. The three examples are chosen to match the three different
types of architectures a GPaS can have, namely System-System, System-
User and User-User. In this chapter we will concentrate on the first two
applications by presenting the rules needed for the GPaSs. In the next
chapter we will then present the third application as a proof of concept
with the rules, database and user interface needed to ensure the correct
functioning of the application.

32

Figure 5.1: Static diagram arrows

5.1 Airplane collision avoidance (System-System)

5.1.1 General description and assumptions

The idea of this application is to have a system for airplanes to avoid colli-
sions for other airplanes. Every airplane will be equipped with a proactive
engine, have an ID and plane model and will regularly send its position as
well as relevant data of its movement like speed, flight angles and fuel level
to the nearest airport, which also has a proactive engine running. In order
to simplify the application for this thesis we will assume that there exists
only one airport and that every plane will send the data to this airport. We
also assume that the auto-pilot of the airplanes can take a command of the
form (duration,angles,speed), meaning that the auto-pilot will adapt the
heading angles and speed of the airplane to those of the command for the
duration given and then go back to its normal route.

5.1.2 Template usage

In this section we describe which templates were used in order to design
the GPaS of this application and give a reason why they were used.
First of all, the application for which we want to create a GPaS is an appli-
cation between systems, as there is no human user involved in the execu-
tion of this application. Therefore we are using the ’continuous’ template,
which will allow the GPaS to keep running forever.
As we are designing a GPaS for the application, the collaborative and fault-
tolerant properties also need to be satisfied. In regards to the collaboration,
the best template to use was the reactive collaboration one. The reasoning
behind this is that the PEs running on the airplanes know that they need
to send updates regularly to the closest airport. It is not the case that the
airports first need to analyze local data and then decide that they need data
from the airplanes and then ask them for it. This means that using the reac-
tive collaboration template will allow us to cut the communication needed
by half (only updates are sent as opposed to asking for data and then re-
ceiving an answer). As we are using the reactive collaboration template,
we thus also need to use the reactive fault-tolerant template as it is specif-

33

ically designed to be used together with the reactive collaboration one and
handle possible problems.

5.1.3 Static diagram

Figure 5.2: Airplane collision avoidance static diagram

5.1.4 Sequence diagrams

The three sequence diagrams represent the following story line. A brand
new airplane takes off for its first flight. The airport will receive the first
data, recognize that it is a new plane and register it (Figure 5.3). After a

34

Figure 5.3: Registration of new air plane and collision check

while and several information updates by the plane, the proactive engine
of the airport recognizes that the plane will collide with another plane in
the next minutes if it continues with its current route and thus the airport
will send commands to the plane to correct the course of the plane in order
to avoid the collision (Figure 5.4).

A few hours later, the plane does not send any more data to the airport.
The engine on the airport recognizes this thanks to the timeout rule and
proceeds to calculate the new position of the plane based on the old data.
After some time, during which the plane still did not send any data, the
engine on the airport calculated (estimation) that the plane is out of fuel
and considers it as lost and thus removes the data of that plane from the
database so that it will not be used for any future collision checks for other
planes (Figure 5.5).

35

Figure 5.4: Collision check with subsequent route correction

Figure 5.5: Error correction and plane removal
36

5.1.5 Airplane rules

5.1.5.1 Update Data

Parameters:
nextExecution Time when the data should be sent again
interval Number of seconds between executions

Description:
This rule gathers important information from the airplane’s system such as
current speed, position, flight angles, acceleration and fuel level (in l) ev-
ery interval seconds and sends a GetData rule with this information to the
nearest airport. It will then clone itself with nextExecution=currentime+interval.

Pseudo code:

dataAcquis i t ion :
long planeID=getPlaneID () ;
S t r i n g planeModel=getPlaneModel () ;
f l o a t longitude=getCurrentLat i tude () ;
f l o a t l a t i t u d e=getCurrentLongitude () ;
f l o a t a l t i t u d e=getCurrentAlt i tude () ;
f l o a t speed=getCurrentSpeed () ;
f l o a t a c c e l e r a t i o n=getCurrentAccelerat ion () ;
f l o a t r o l l = getCurrentRollAngle () ;
f l o a t pitch= getCurrentPitchAngle () ;
f l o a t yaw= getCurrentYawAngle () ;
f l o a t f u e l= getCurrentFuelLevel () ;

act ivat ionGuards :
i f (getCurrenttime ()>=nextExecution) {

return true ;
} e l s e {

return f a l s e ;
}

condi t ions :
return true ;

a c t i o n s :
sendGetDataRuleToAirport (planeID , planeModel , longitude , l a t i t u d e

, a l t i t u d e , speed , a c c e l e r a t i o n , r o l l , pitch , yaw , f u e l) ;
ru le generat ion :

i f (act ivat ionGuards ()) {
createUpdateDataRule (nextExecution+i n t e r v a l , i n t e r v a l) ;

} e l s e {
createUpdateDataRule (nextExecution , i n t e r v a l) ;

}

37

5.1.5.2 Change Direction

Parameters:
duration How long the auto-pilot will follow this new

route before going back to its original one
roll Future roll angle of the plane (0ı̈¿½ if wings both

have the same altitude)
pitch Future pitch angle of the plane (positive when

gaining altitude)
yaw Future yaw angle of the plane (0ı̈¿½ when heading

north)
speed Future speed of the plane

Description:
This rule receives route correction data from the airport and passes them
as a command to the auto-pilot of the plane.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
commandAutoPilot (duration , r o l l , pitch , yaw , speed) ;

ru le generat ion :
None

38

5.1.6 Airport rules

5.1.6.1 Get Data

Parameters:
planeID Id of the plane that sent this information
planeModel Model of the plane that sent this information
longitude Latest longitude position of the plane
latitude Latest latitude position of the plane
altitude Latest altitude of the plane
speed Speed of the plane
acceleration Acceleration of the plane
roll Roll angle of the plane (0ı̈¿½ if wings both

have the same altitude)
pitch Pitch angle of the plane (positive when

gaining altitude)
yaw Yaw angle of the plane (0ı̈¿½ when heading

north)
fuelLevel Fuel level of the plane (in l)

Description:
If the plane is already registered, this rule will save the data into the database
and update the time a message was last received for the plane with the id
planeID. Then it will create a CheckCollision rule for this plane. If the
plane is not registered, this rule will first create a RegisterNewPlane rule
with all the data and the create a CheckCollision rule for this plane.
Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (planeID) ;

act ivat ionGuards :
return r e g i s t e r e d ;

condi t ions :
return true ;

a c t i o n s :
saveToDatabase (planeID , longitude , l a t i t u d e , a l t i t u d e , speed ,

a c c e l e r a t i o n , r o l l , pitch , yaw , fue lLeve l) ;
updateLastReceivedMessageTime (planeID , currentTime) ;

ru le generat ion :
i f (! act ivat ionGuards ()) {

createRegisterNewPlaneRule (planeID , planeModel , longitude ,
l a t i t u d e , a l t i t u d e , speed , a c c e l e r a t i o n , r o l l , pitch , yaw ,
fue lLeve l) ;

}
createCheckCol l i s ionRule (planeID) ;

39

5.1.6.2 Register new plane

Parameters:
planeID Id of the new plane
planeModel Model of the new plane
longitude Longitude position of the plane
latitude Latitude position of the plane
altitude Altitude of the plane
speed Speed of the plane
acceleration Acceleration of the plane
roll Roll angle of the plane (0ı̈¿½ if wings both

have the same altitude)
pitch Pitch angle of the plane (positive when

gaining altitude)
yaw Yaw angle of the plane (0ı̈¿½ when heading

north)
fuelLevel Fuel level of the plane (in l)

Description:
This rule will add the new plane to the list of registered planes along with
the current time, which represents the time a message was last received
from this plane. It will also save the initial data received by this plane.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
r e g i s t e r P l a n e (planeID , planeModel , getCurrentTime ()) ;
saveToDatabase (planeID , longitude , l a t i t u d e , a l t i t u d e , speed ,

a c c e l e r a t i o n , r o l l , pitch , yaw , fue lLeve l) ;
ru le generat ion :

None

5.1.6.3 Check Collision

Parameters:
planeID Id of the airplane for which collisions should be

checked

Description:
This rule creates a CheckCollisionSinglePlane for every airplane that is in
a radius of 500 km of the airplane for which possible collisions should be
checked.

40

Pseudo code:

dataAcquis i t ion :
f l o a t longitude=getLatestLongitude (planeID) ;
f l o a t l a t i t u d e=g e t L a t e s t L a t i t u d e (planeID) ;
f l o a t a l t i t u d e=g e t L a t e s t A l t i t u d e (planeID) ;

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
L is t <long> nearAirplaneIDs=calculateNearAirplanes (longitude ,

l a t i t u d e , a l t i t u d e , 5 0 0) ;
ru le generat ion :

foreach (id in nearAirplaneIDs) {
createCheckCol l i s ionSinglePlaneRule (planeID , id) ;

}

5.1.6.4 Unregister Plane

Parameters:
planeID Id of the airplane which should be unregistered

Description:
This rule removes all received data from a plane and unregisters the plane
so that calculations for other planes will not be falsified by the data of a
lost plane.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
removeAllData (planeID) ;
unreg i s terPlane (planeID) ;

ru le generat ion :
None

5.1.6.5 Calculate Collision Free Route

Parameters:
planeID Id of the airplane for which collisions should be

checked
Description:
This rule calculates new angles for the given airplane based on all airplanes

41

in a radius of 500km and sends a ChangeDirection rule with the calculated
data to the airplane with the id planeID.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
Route newRoute=calculateNewRoute (planeID , 5 0 0) ;
long duration=newRoute . getDuration () ;
long r o l l =newRoute . ge tRol l () ;
long pitch=newRoute . ge tP i t c h () ;
long yaw=newRoute . getYaw () ;
long speed=newRoute . getSpeed () ;

ru le generat ion :
sendChangeDirectionRuleToPlane (planeID , duration , r o l l , pitch , yaw

, speed) ;

5.1.6.6 Check Timeout

Parameters:
nextExecution Time this rule will be executed for the

next time
interval Time between two executions of this rule
timeout Time after which a plane is considered as

timed out
Description:
This rule periodically checks for all unflagged planes (planes that are not
considered yet as timed out) if they are timed out, meaning if the last mes-
sage received from a plane was too long ago. For every timed out plane this
rule then creates a CorrectDataRule.
Pseudo code:

dataAcquis i t ion :
L is t <Long> reg i s teredPlaneIDs=

getRegisteredAndUnFlaggedPlaneIDs () ;
act ivat ionGuards :

i f (getCurrenttime ()>=nextExecution) {
return true ;

} e l s e {
return f a l s e ;

}
condi t ions :

return true ;
a c t i o n s :

42

foreach (planeID in reg i s teredPlaneIDs) {
long l a s tRece ived=getTimeOfLastReceivedMessage () ;
i f (las tRece ived −getCurrentTime ()>timeout) {

createCorrectDataRule (getCurrentTime () , i n t e r v a l , planeID) ;
f l a g (planeID) ;

}
}

rule generat ion :
i f (act ivat ionGuards ()) {

createCheckTimeoutRule (nextExecution+i n t e r v a l , i n t e r v a l ,
timeout) ;

} e l s e {
createCheckTimeoutRule (nextExecution , i n t e r v a l , timeout) ;

}

5.1.6.7 Correct Data

Parameters:
nextExecution Time this rule will be executed for the

next time
interval Time between two executions of this rule
planeID ID of the plane whose data needs to be

corrected
lastExecution The time this rule was last executed

Description:
This rule periodically calculates the new position,speed and fuel Level of
a given plane based on the last position, speed, acceleration and angles. If
the altitude or the fuel Level of the calculated data reaches 0, the plane is
considered as lost and a UnregisterPlane rule is created. If the time of the
last received message from the plane is more recent then this rule, this rule
stops cloning itself and unflags the plane.
Pseudo code:

dataAcquis i t ion :
long l a s tRece ived=getTimeOfLastReceivedMessage () ;
boolean endExecution =(las tRece ived > l a s t E x e c u t i o n) ;

act ivat ionGuards :
i f (getCurrenttime ()>=nextExecution) {

return true ;
} e l s e {

return f a l s e ;
}

condi t ions :
return ! endExecution ;

a c t i o n s :
calculateAndSaveNewData (planeID) ;

ru le generat ion :
i f (! endExecution) {

i f (act ivat ionGuards ()) {

43

createCorrectDataRule (nextExecution+i n t e r v a l , i n t e r v a l ,
planeID , getCurrentTime ()) ;

} e l s e {
createCorrectDataRule (nextExecution , i n t e r v a l , planeID ,

l a s t E x e c u t i o n) ;
}

} e l s e {
createUnregis terPlaneRule (planeID) ;
unFlag (planeID) ;

}

5.1.6.8 Check Collision Single Plane

Parameters:
planeID Id of the airplane for which collisions should be

checked
planeID2 Id of an airplane that is in a radius of 500km of

the first airplane
Description:
This rule checks whether two airplanes will collide in the next 15 minutes
if they both continue to fly in the same way like they did when the data was
updated last. If there will be a collision a CalculateCollisionFreeRoute rule
is created.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
boolean c o l l i s i o n =checkCol l i s ion (planeID , planeID2 , 1 5) ;

ru le generat ion :
i f (c o l l i s i o n) {

crea teCalcula teCol l i s ionFreeRouteRule (planeID) ;
}

5.2 House temperature negotiation (System-User)

5.2.1 General description and assumptions

In this application a house possesses a proactive engine that is connected
to the heating system. It will check which smartphones are currently in
the house and ask for a preference for the temperature set by the user of
the smartphone. It will then try to find a common agreement on the ideal

44

temperature for the house with respect to the preferences and the priorities
of each user (devices that visit the house more often get a higher priority)
and adapt the temperature through the heating system. For this applica-
tion we suppose that every user visiting the house possesses a smartphone
with Bluetooth enabled and has a minimum and maximum preferred tem-
perature set in the preferences.

5.2.2 Template usage

In this application we are creating a GPaS that involves a system that has
no direct interaction with a user (PE of the house) and systems that are
running on the smartphones of the users and receive indirect input from
the user by reading the preferences set by the user. As the application to
regulate the temperature should react to the presence of users in the house
it needs to satisfy the ambient property as well as the continuous property
as there needs to be a rule that keeps the GPaS running. This is achieved
by one rule which clones itself at every execution (continuous) and at every
activation calls the proximity manager of the PE, which uses Bluetooth in
this case to determine which users are currently in the house (ambient).
For the mandatory collaborative and fault-tolerant properties we chose to
use one of the active collaboration templates in this case, more precisely
the all-at-once one. In fact, in this application, the PEs on the smartphones
do not know when they need to send data. Thus using the reactive collabo-
ration template makes no sense. Furthermore, for this case, the all-at-once
collaboration template has a slight advantage over the one-by-one template
in combination with the fault-tolerance pattern. If a user shuts down its
phone after the detection of his device and before his device could com-
municate the preferences of the user to the system of the house, using the
all-at-once collaboration template will allow the fault-tolerant template to
still take into account the preferences of all the other available users while
using the one-by-one template could possibly lead to every user being ig-
nored (if the first device disconnected), at least until the next execution of
the GPaS.

45

5.2.3 Static diagram

Figure 5.6: Normal execution for the temperature negotiation

5.2.4 Sequence diagrams

For this application we consider 2 different executions. In the first one
(Figure 5.7) everything is happening like expected. The proactive engine
of the house detects the devices of the guests that are currently in the house.
It then proceeds to ask all of them for their preferences and waits for their
answers. After that every answer arrived it then tries to find a compromise
between the present guests and adapts the house temperature accordingly.

In the second execution (Figure 5.8) the proactive engine of the house
again detects all the guests of the house and asks them for their prefer-
ences. But this time something went wrong and at least one of the devices
did not respond by sending back its preferences. After the some time the
check timeout rule detects this and unregisters the scenario so that future
answers (if they would arrive) will be ignored. The engine then just bases
its decision for the optimal temperature on the preferences it received and
adapts the house temperature accordingly.

46

Figure 5.7: Normal execution for the temperature negotiation

Figure 5.8: Execution for temperature negotiation with timed out guests

47

5.2.5 House rules

5.2.5.1 Check near devices

Parameters:
nextExecution Time this rule should be executed for the

next time
interval Time interval between two executions of

this rule
Description:
This rule checks which devices are currently in the house (through Blue-
tooth) and updates the priority level of each device. It then registers the
current instance of the scenario in the engine and gets a ScenarioID, which
it uses to create an AskPreferences rule with the list of near devices and a
CheckTimeout rule with the number of devices. Finally this rule will clone
itself.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
i f (getCurrentTime ()>nextExecution) {

return true ;
} e l s e {

return f a l s e ;
}

condi t ions :
return true ;

a c t i o n s :
L is t <Str ing > nearDevicesLis t= ProximityManager . getNearDevices

() ;
u p d a t e P r i o r i t i e s (nearDevicesLis t) ;
long scenarioID=registerNewScenario (” TemperatureNegotiation ”) ;

ru le generat ion :
i f (act ivat ionGuards ()) {

createAskPreferencesRule (scenarioID , nearDevicesLis t) ;
createCheckTimeoutRule (scenarioID , nearDevicesLis t . s i z e ()

,300) ;
createCheckNearDevicesRule (nextExecution+i n t e r v a l , i n t e r v a l) ;

} e l s e {
createCheckNearDevicesRule (nextExecution , i n t e r v a l) ;

}

5.2.5.2 Ask preferences

Parameters:
scenarioID ID of this scenario instance
nearDevices List of devices that are currently in the house

48

Description:
This rule sends an AnswerPreferences rule to every device in the near de-
vices list and then creates a WaitForPreferences rule with the ScenarioID
and the number of near devices.
Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (scenarioID) ;

act ivat ionGuards :
return r e g i s t e r e d ;

condi t ions :
return true ;

a c t i o n s :
foreach (device in nearDevices) {

sendAnswerPreferencesRuleTo (device , scenarioID ,
getLocalDeviceID ()) ;

}
rule generat ion :

i f (act ivat ionGuards ()) {
createWaitForPreferencesRule (scenarioID , nearDevices . s i z e ()) ;

}

5.2.5.3 Save preferences

Parameters:
scenarioID ID of this scenario instance
deviceID ID of the device that sent this preference
minTemperature Minimum preferred temperature
maxTemperature Maximum preferred temperature

Description:
This rule saves the received preferences into the database, but only if the
scenario is still registered.
Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (scenarioID) ;

act ivat ionGuards :
return r e g i s t e r e d ;

condi t ions :
return true ;

a c t i o n s :
saveIntoDatabase (scenarioID , deviceID , minTemperature ,

maxTemperature) ;
ru le generat ion :

None

49

5.2.5.4 Wait for preferences

Parameters:
scenarioID ID of this scenario instance
expectedAnswers The number of devices that are

supposed to send back their preferences
Description:
This rule waits until all answers for the preferences arrived and then cre-
ates a FindCompromise rule. If the scenario was unregistered due to a
timeout this rule stops.
Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (scenarioID) ;
int numberOfReceivedAnswers= getNumberOfReceivedAnswers (

scenarioID) ;
act ivat ionGuards :

return r e g i s t e r e d ;
condi t ions :

return true ;
a c t i o n s :

None
rule generat ion :

i f (act ivat ionGuards ()) {
createWaitForPreferencesRule (scenarioID , expectedAnswers) ;
i f (numberOfReceivedAnswers==expectedAnswers) {

createFindCompromiseRule (scenarioID) ;
}

}

5.2.5.5 Find Compromise

Parameters:
scenarioID ID of this scenario instance

Description:
This rule retrieves the saved preferences by using the scenarioID and tries
to find the best temperature based on the preferred temperature levels and
the priorities of the different guests. It then unregisters the Scenario and
creates an AdaptHouseTemperature rule with the calculated optimal tem-
perature.
Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (scenarioID) ;

act ivat ionGuards :
return r e g i s t e r e d ;

condi t ions :

50

return true ;
a c t i o n s :

f l o a t optimalTemperature=calculateOptimalTemperature (
scenarioID) ;

u n r e g i s t e r (scenarioID) ;
ru le generat ion :

i f (act ivat ionGuards ()) {
createAdaptHouseTemperatureRule (optimalTemperature) ;

}

5.2.5.6 Adapt House Temperature

Parameters:
optimalTemperature The optimal temperature calculated

based on the preferences of the guests
Description:
This rule will notify the heating system about the new temperature that
should be reached in the house.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
HeatingSystem . setTemperature (optimalTemperature) ;

ru le generat ion :
None

5.2.5.7 Check timeout

Parameters:
scenarioID ID of this scenario instance
expectedAnswers Number of expected answers
timeout time after which the scenario will be

unregistered
Description:
This rule checks whether the time limit for the collaboration was exceeded.
If it was it checks if any devices answered and if this is the case it creates
a FindCompromise rule. Otherwise it will just unregister the scenario and
stop. If all answers arrived this rule will stop.
Pseudo code:

dataAcquis i t ion :

51

int numberOfReceivedAnswers=getNumberOfReceivedAnswers (
scenarioID) ;

long scenarioCreationTime=getScenarioCreationTime (scenarioID) ;
act ivat ionGuards :

return (numberOfReceivedAnswers != expectedAnswers) ;
condi t ions :

return true ;
a c t i o n s :

None
rule generat ion :

i f (act ivat ionGuards ()) {
i f (scenarioCreationTime −getCurrentTime ()>timeout) {

i f (numberOfReceivedAnswers >0) {
createFindCompromiseRule (scenarioID) ;

} e l s e {
u n r e g i s t e r (scenarioID) ;

}
} e l s e {

createCheckTimeoutRule (optimalTemperature ,
expectedAnswers , timeout) ;

}
}

5.2.6 Guest rules

5.2.6.1 AnswerPreferences

Parameters:
scenarioID ID of this scenario instance
sender Id of the engine that asked for the preferences

of this device
Description:
This rule simply sends the preferences of this device to the engine that
asked for it.
Pseudo code:

dataAcquis i t ion :
f l o a t minTemperature=getMinTempFromPreferences () ;
f l o a t maxTemperature=getMaxTempFromPreferences () ;

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
sendSavePreferencesRuleTo (sender , scenarioID , getLocalDeviceID ()

, minTemperature , maxTemperature) ;
ru le generat ion :

None

52

5.3 FAME (User-User)

5.3.1 General description and assumptions

In short, this application helps the user find meeting dates and times for a
group of people. The user has to indicate a time span for when the meet-
ing should take place (for example next week), set a duration and choose
the participants from a list of friends. The application will then calculate
free time slots based on the calendars on the smartphones. The user then
will receive a list of possible meeting dates from which he can choose one.
Finally his choice is communicated to the other participants and added to
everyones calendar.

For this application we assume that the user already has a few people
in his friends list (with the ID of their devices needed for the communi-
cation). We also assume that everyone participating in the negotiation has
synchronized his calendar on his smartphone.

5.3.2 Template usage

In this application the GPaS initially needs specific information of a user
before it can be started. It thus needs to satisfy the ’initiated’ property
for which the user has to enter data through a user interface, and only
after that the first rule of the GPaS is created with the information entered.
The GPaS also needs input from the user at certain points of the scenario.
Here we can differentiate between two different cases. The first case is
the part of the scenario for which the data needed for taking a decision
can be foreseen. For this application this would be the situation when the
GPaS is fetching data from the calendar of the users (Monitored template
with user preferences 4.12). The second case is when the GPaS is unable
to make a clear decision with the preferences of the user at his disposal.
In this case the GPaS proposes all possible solutions (here meeting dates)
to the user (Monitored template with user interface 4.12), by sending him
a notification. After the user made a decision the next rule of the GPaS is
created and the execution can continue.

Concerning the mandatory collaborative and fault-tolerant properties,
we chose to use the one-by-one collaborative template, which has slight ad-
vantages for this application in comparison of the all-at-once collaboration
template. For this application it makes no sense to ask every participant of
the meeting for their preferences if it is already sure that no meeting can
be found after contacting the first one. Also if a device does not respond
because it is offline, it is not useful to continue the rest of the execution
as the user wants everyone in the participants list to attend the meeting.

53

Therefore the fault-tolerant template should make sure that the user is no-
tified about potential problems so that he can decide whether he wants to
restart the GPaS with different parameters or maybe try again.

5.3.3 Static diagram

Figure 5.9: FAME GPaS : Static diagram

5.3.4 Sequence diagrams

For this application we present two sequence diagrams. In the first one
(Figure 5.10), the GPaS does not encounter any issues. The user initiates

54

the GPaS by entering the required data in the user interface. Then the
local calendar is fetched and unavailable time slots are eliminated from the
remaining result set. Then this result set is send to the first participant of
the meeting. Again, unavailable time slots are removed from the remaining
result set and the data is send back to the initiator of the GPaS, which will
then relay the data to the next participant. This continues without errors
until every participant removed his unavailable time slots from the final
result set. The result set is then presented to the user that initiated the GPaS
and he chooses one of the possible dates. The final choice is communicated
to the participants of the meeting.

Figure 5.10: Normal execution of FAME GPaS

In the second diagram (Figure 5.11) things do not go as well. The GPaS
executes normally until the time limit for the negotiation process is ex-
ceeded. An error message is displayed to the user.

55

Figure 5.11: Failed execution of FAME GPaS

5.3.5 Initiator rules

5.3.5.1 Start negotiation

Parameters:
receiverList List of participants
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
Description:
This rule is created after the user entered the necessary data. It will first
register this instance of the scenario and get back a scenarioID. It will then
calculate the available time slots based on the startDate, endDate, duration
and on the meetings in the calendar of the user. Finally it will create a Ne-

56

gotiateTimeSlots rule with the calculated data as well as a CheckTimeout
rule.
Pseudo code:

dataAcquis i t ion :
L is t <TimeSlot> meetingDates=

getUnavailableTimeslotsFromCalendar (s tar tDate , endDate) ;
act ivat ionGuards :

return true ;
condi t ions :

return true ;
a c t i o n s :

long scenarioID=registerNewScenario (ı̈¿½FAMEı̈¿½) ;
L is t <TimeSlot> ava i lab leT imeSlo t s=c a l c u l a t e A v a i l a b l e T i m e s l o t s (

s tar tDate , endDate , duration , meetingDates) ;
ru le generat ion :

createNegot iateTimeSlotsRule (scenarioID , r e c e i v e r L i s t , 0 , t i t l e
, descr ipt ion , loca t ion , duration , s tar tDate , endDate ,
ava i lab leT imeSlo t s) ;

createCheckTimeoutRule (scenarioID , t i t l e , descr ipt ion , loca t ion ,
duration , s tar tDate , endDate ,1800) ;

5.3.5.2 Negotiate time slots

Parameters:
scenarioId Id of the scenario in the initiators database
receiverList List of participants
receiverIndex Index of the next person in the list which

will take part in the negotiation
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
timeSlots List of available time slots for the meeting

Description:
This rule sends the data in form of a ReceiveRequest rule to the person in
the receiverList at the index receiverIndex.
Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (scenar io Id) ;

act ivat ionGuards :
return r e g i s t e r e d ;

57

condi t ions :
return true ;

a c t i o n s :
S t r i n g r e c e i v e r=r e c e i v e r L i s t . get (rece iver Index) ;
rece iver Index ++;
sendReceiveRequestRuleTo (rec e iver , scenar ioId ,

getLocalDeviceId () , r e c e i v e r L i s t , rece iverIndex , t i t l e ,
descr ipt ion , loca t ion , duration , s tar tDate , endDate ,
t imeSlo t s) ;

ru le generat ion :
None

5.3.5.3 Receive available time slots

Parameters:
scenarioId Id of the scenario in the initiators database
receiverList List of participants
receiverIndex Index of the next person in the list which

will take part in the negotiation
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
timeSlots List of available time slots for the meeting

Description:
If the scenario was unregistered, this rule will not perform any actions.
If the timeSlots list is empty, meaning that there is no available date for
a meeting, this rule will unregister the scenario and create a DisplayEr-
rorMessage rule. If the end of the receiverList was reached, the algorithm
has finished and this rule will also unregister the scenario and create a Dis-
playAvailableTimeSlots rule with the list of available time slots. Otherwise
it will create a NegotiateTimeSlots rule in order to continue the negotiation.

Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (scenar io Id) ;

act ivat ionGuards :
return r e g i s t e r e d ;

condi t ions :
return empty (t imeSlo t s) | | (rece iverIndex >= r e c e i v e r L i s t . s i z e ()

) ;

58

a c t i o n s :
u n r e g i s t e r (scenar io Id) ;

ru le generat ion :
i f (act ivat ionGuards ()) {

i f (! empty (t imeSlo t s)) {
i f (rece iverIndex < r e c e i v e r L i s t . s i z e ()) {

createNegot iateTimeSlotsRule (scenar ioId , r e c e i v e r L i s t ,
rece iverIndex , t i t l e , descr ipt ion , loca t ion , duration ,
s tar tDate , endDate , t imeSlo t s) ;

} e l s e {
createDisplayAvai lableTimeSlotsRule (r e c e i v e r L i s t , t i t l e ,

descr ipt ion , loca t ion , duration , s tar tDate , endDate ,
t imeSlo t s) ;

}
} e l s e {

createDisplayErrorMessageRule (t i t l e , descr ipt ion , loca t ion ,
duration , s tar tDate , endDate , ”No p o s s i b l e meetings ”) ;

}
}

5.3.5.4 Display available time slots

Parameters:
receiverList List of participants
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
timeSlots List of available time slots for the meeting

Description:
This rule sends a notification to the user with the list of possible meeting
dates and times from which the user can choose one.

Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
Notif icat ionManager . displayChooseMeetingDateNotif icat ion (

r e c e i v e r L i s t , t i t l e , descr ipt ion , loca t ion , duration , s tar tDate

59

, endDate , t imeSlo t s) ;
ru le generat ion :

return true ;

5.3.5.5 Send meeting date

Parameters:
receiverList List of participants
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
meetingDate Final date for the meeting

Description:
This rule will add the chosen date for the meeting into the calendar of the
user along with the participants (this way the participants will receive an
email where they can choose to accept or decline the meeting) and notify
all participants about it by sending a ReceiveMeetingDate rule to them.

Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
addToCalendar (t i t l e , descr ipt ion , loca t ion , duration , meetingDate ,

r e c e i v e r L i s t) ;
foreach (r e c e i v e r in r e c e i v e r L i s t) {

sendReceiveMeetingDateTo (r ece iv er , getLocalusername () , t i t l e ,
descr ipt ion , loca t ion , duration , meetingDate) ;

}
rule generat ion :

None

60

5.3.5.6 Check timeout

Parameters:
scenarioId Id of the scenario in the initiators database
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
timeout Time limit after which the scenario will be

stopped
Description:
If the duration of the scenario exceeds the time limit, this rule will create a
DisplayErrorMessage rule with the appropriate message.
Pseudo code:

dataAcquis i t ion :
boolean r e g i s t e r e d=i s R e g i s t e r e d (scenar io Id) ;
long scenarioCreationTime=getScenarioCreationTime (scenar io Id)

;
act ivat ionGuards :

return r e g i s t e r e d ;
condi t ions :

return true ;
a c t i o n s :

ru le generat ion :
i f (act ivat ionGuards ()) {

i f (scenarioCreationTime −getCurrentTime ()>timeout) {
createDisplayErrorMessageRule (t i t l e , descr ipt ion , loca t ion ,

duration , s tar tDate , endDate , ” Negot iat ion timed out ”) ;
} e l s e {

createCheckTimeouRule (scenar ioId , t i t l e , descr ipt ion ,
loca t ion , duration , s tar tDate , endDate , timeout) ;

}
}

61

5.3.5.7 Display error message

Parameters:
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
message Error message to be displayed

Description:
This rule displays an error message to the user with the reason why no
meeting dates where found.
Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
Notif icat ionManager . d i sp layErrorMessageNot i f i ca t ion (t i t l e ,

descr ipt ion , loca t ion , duration , s tar tDate , endDate , message) ;
ru le generat ion :

None

5.3.6 Friends rules

5.3.6.1 Receive meeting date

Parameters:
creator Creator of the meeting
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
meetingDate Date of the meeting

Description:
This rule displays the chosen meeting date to the participants.
Pseudo code:

dataAcquis i t ion :
None

62

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
Notif icat ionManager . displayNewMeetingNotif ication (creator ,

t i t l e , descr ipt ion , loca t ion , duration , meetingDate) ;
ru le generat ion :

None

5.3.6.2 Receive request

Parameters:

scenarioId Id of the scenario in the initiators database
sender Id of the phone from which the request

was sent
receiverList List of participants
receiverIndex Index of the next person in the list which

will take part in the negotiation
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
timeSlots List of available time slots for the meeting

Description:
This rule creates a CheckAvailableTimeSlots rule with the data it received.

Pseudo code:

dataAcquis i t ion :
None

act ivat ionGuards :
return true ;

condi t ions :
return true ;

a c t i o n s :
None

rule generat ion :
createCheckAvailableTimeSlotsRule (scenar ioId , sender ,

r e c e i v e r L i s t , rece iverIndex , t i t l e , descr ipt ion , loca t ion ,
duration , s tar tDate , endDate , t imeSlo t s) ;

63

5.3.6.3 Check available time slots

Parameters:
scenarioId Id of the scenario in the initiators database
sender Id of the phone from which the request

was sent
receiverList List of participants
receiverIndex Index of the next person in the list which

will take part in the negotiation
title Title of the meeting
description Description of the meeting
location Location where the meeting will take place
duration Duration of the meeting
startDate Beginning of time period for which a

meeting should be found
endDate End of time period for which a meeting

should be found
timeSlots List of available time slots for the meeting

Description:
This rule calculates a new list of available time slots based on the old list
and the calendar of the current phone. When finished it sends the updated
list back to the initiator of the meeting request.
Pseudo code:

dataAcquis i t ion :
L is t <TimeSlot> meetingDates=

getUnavailableTimeslotsFromCalendar (s tar tDate , endDate) ;
act ivat ionGuards :

return true ;
condi t ions :

return true ;
a c t i o n s :

L is t <TimeSlot> ava i lab leT imeSlo t s=c a l c u l a t e A v a i l a b l e T i m e s l o t s (
t imeSlo t s , duration , meetingDates) ;

sendReceiveAvailableTimeSlotsRuleTo (sender , scenar ioId ,
r e c e i v e r L i s t , rece iverIndex , t i t l e , descr ipt ion , loca t ion ,
duration , s tar tDate , endDate , ava i lab leT imeSlo t s) ;

ru le generat ion :
None

64

6 Proof of concept:FAME

Contents
6.1 Database . 65
6.2 User interface . 66

6.2.1 Start Negotiation screen 66

6.2.2 Meeting Suggestion Notification 67

6.3 Algorithm . 68
6.4 Future features . 70

In these section we are going to present the implemented FAME appli-
cation. This includes database tables (outside of the ones from the rules),
User interface and the most important part, the algorithm to calculate the
time slots where the user is available based on the meetings in the calendar
and the free time slots that were calculated previously.

6.1 Database

Outside of the database tables that are used to store the different rules,
the FAME application only needs two additional tables (Figure 6.1), one to
register Scenarios for the error handling and one to save the friend list of
the user. The confirmed column of the FAME User is used to not display a
friend if the friend did not accept the friend request yet.

Figure 6.1: Extra database table

65

6.2 User interface

6.2.1 Start Negotiation screen

The Start Negotiation Screen, is the screen from which the GPaS is started
(Figure 6.2). The user can enter the title of the meeting, a description of
the meeting, select a period of time during which the meeting should be
scheduled, choose a duration for the meeting, enter the location for the
meeting and finally the User can add participants to the meeting from a
list of friends (Figure 6.3).

Figure 6.2: Start negotiation screen

66

Figure 6.3: Choose participants screen

6.2.2 Meeting Suggestion Notification

The meeting suggestion notification (Figure 6.4) is the notification that dis-
plays the dates and times for which every participant of the meeting is
available to the user who initiated the negotiation. The user can choose the
date by checking the box in front of it and choose the available times for
each date from a drop down menu. By pressing choose the user agrees on
the date and time and the meeting is added to his and to the participants
calendars. If none of the proposed dates is satisfactory, the user can cancel
the negotiation.

67

Figure 6.4: Meeting suggestion notification

6.3 Algorithm

The following algorithm calculates free time slots based on a list of time
slots for which a user is not available, a list of time slots for which the
previous users in the negotiation are available (Only one time slot with
the start and end date chosen by the user if we are at the beginning of
the negotiation) and the duration of the meeting we want to schedule. For
every time slot where the user is not available, it is checked whether it
intersects with any free time slot. If it is the case the list of free time slots
is updated. At the end of every iteration the free time slots that are shorter
than the duration of the meeting we want to schedule are removed.

private s t a t i c ArrayList <TimeSlot> ca lcu la teFreeTimeSlo t s (
ArrayList <TimeSlot> free , ArrayList <TimeSlot> occupied , long
duration) {
for (int j =0; j <occupied . s i z e () ; j ++) {

ArrayList <Integer > l istToremove=new ArrayList <Integer > () ;
ArrayList <TimeSlot> l istToAdd=new ArrayList <TimeSlot > () ;
for (int i =0; i < f r e e . s i z e () ; i ++) {

// i f the meeting i n t e r s e c t s with the f r e e s l o t
i f ((occupied . get (j) . getEnd ()> f r e e . get (i) . g e t S t a r t ()) &&

68

(occupied . get (j) . g e t S t a r t ()< f r e e . get (i) . getEnd ())) {
i f (occupied . get (j) . g e t S t a r t ()<=f r e e . get (i) . g e t S t a r t ())

{
i f (occupied . get (j) . getEnd ()>=f r e e . get (i) . getEnd ()) {

// Meeting f u l l y over laps with the f r e e time s l o t
//remove the time s l o t
l istToremove . add (i) ;

} e l s e i f (occupied . get (j) . getEnd ()< f r e e . get (i) . getEnd
()) { // Meeting only p a r t i a l l y over laps with the
f r e e time s l o t

//remove time s l o t
l istToremove . add (i) ;
//add a new time s l o t s t a r t i n g at the end of the

meeting
listToAdd . add (new TimeSlot (occupied . get (j) . getEnd

() , f r e e . get (i) . getEnd ())) ;
}

} e l s e i f (occupied . get (j) . g e t S t a r t ()> f r e e . get (i) .
g e t S t a r t ()) {

i f (occupied . get (j) . getEnd ()>=f r e e . get (i) . getEnd ()) {
// Meeting p a r t i a l l y over laps with the f r e e time
s l o t

//remove time s l o t
l istToremove . add (i) ;
//add a new time s l o t ending at the beginning of

the meeting
listToAdd . add (new TimeSlot (f r e e . get (i) . g e t S t a r t () ,

occupied . get (j) . g e t S t a r t ())) ;
} e l s e i f (occupied . get (j) . getEnd ()< f r e e . get (i) . getEnd

()) { // Meeting i s haapening in the middle of a
f r e e time s l o t

//remove time s l o t
l istToremove . add (i) ;
//add a new time s l o t ending at the beginning of

the meeting
listToAdd . add (new TimeSlot (f r e e . get (i) . g e t S t a r t () ,

occupied . get (j) . g e t S t a r t ())) ;
//add a new time s l o t s t a r t i n g at the end of the

meeting
listToAdd . add (new TimeSlot (occupied . get (j) . getEnd

() , f r e e . get (i) . getEnd ())) ;
}

}
}

}
for (int i=listToremove . s i z e () −1; i >=0; i −−) {

f r e e . remove (l istToremove . get (i) . intValue ()) ;
}
for (int i =0; i <l istToAdd . s i z e () ; i ++) {

f r e e . add (listToAdd . get (i)) ;
}
//remove time s l o t s that are s h o r t e r than the duration fo r

the meeting we want to schedule
for (int i=f r e e . s i z e () −1; i >=0; i −−) {

69

i f (f r e e . get (i) . duration ()<duration) {
f r e e . remove (i) ;

}
}

}
return f r e e ;

}

6.4 Future features

User preferences To further enhance the users experience, it is possible
to add several features to this application in the future. The most impor-
tant one would be to allow the user to set preferences for when he wants
and does not want to have meetings and which time of the day he prefers
having a meeting when several options are available. Allowing the differ-
ent users to further restrict the periods of time they are available will allow
the algorithm to considerably reduce and refine the set of possible meeting
dates and times, which will make the choice easier for the user initiating
the meeting request. By having the user’s preferences for some time of the
day, the GPaS can rank the remaining possibilities for a meeting and help
the initiator even more in making a choice.

Groups Especially in work environments meetings happen between the
same group or core group of persons. Therefore it would be interesting to
add an option for the users to create groups with people from their friend
list, which will reduce the time needed to initiate the meeting request and
make sure that one does not forget to invite all the most important persons
for a meeting anymore.

Participants hierarchy Speaking of important persons for a meeting, it
arrives quite often that not every person that is invited to a meeting ab-
solutely needs to be there. It would therefore be interesting to have the
possibility to choose importance levels for different participants and also
have a minimum participants number. For the importance levels one could
imagine different types of participants. There could be mandatory partic-
ipants, which need to be available for the meeting, otherwise the meeting
request fails. Optional participants would be nice to have for the meeting
but they do not cause the meeting request to fail if not available. However,
they can still influence the ranking of the meetings, which will then also
take into account how many participants are available for a given period.
One could also imagine a third type of participants called group partici-
pants (not necessary related to previously user defined groups). This type
is useful if for example two work teams like the programming team and

70

the graphic design team need to find a meeting together. It is not manda-
tory for a specific person to attend the meeting, but there should be at least
one person from each team (or at least two, etc.) that attends the meeting.
The initiator of the request would then set the type for these participants
to ’group participants’ and assign them a group name and for each group a
minimum number of participants. The algorithm will then fail if there are
not enough available participants for each group.
When implementing this change it will probably be best to change the col-
laboration template from one-by-one to all-at-once and update the rules
accordingly, as not every participant in the list absolutely needs to attend
the meeting anymore.

Geolocation of meetings A current limitation of the FAME application
is that it does not take into account the location of the different meetings
in order to calculate available time slots for a meeting. This means that is
possible to have a meeting that ends at 10 a.m. in Kirchberg, a meeting
that starts at 10:05 a.m. and ends at 11 a.m. in Belval and a meeting again
that starts at 11.05 a.m. in Kirchberg. To prevent this issue, the applica-
tion needs to interpret the locations in the calendar as a GPS location and
then for example use the Google Direction API in order to calculate the
estimated time needed to get from one location to another and take this
estimation into account when calculating available time slots.

Scalability and performance It is currently unknown how this applica-
tion will perform when confronted with a large number of users. Therefore
tests need to be made which check how the application handles meeting
requests for a large group of people. These tests should include the time
needed for finding meeting propositions as well as the impact of the nego-
tiation on the performance of the phone, the battery usage and the amount
of data transmitted. If the application performs poorly in these tests, pos-
sible solutions would be to limit the number of participants for a meeting
and to limit the duration of the period in which the application will try to
find a meeting.

71

7 Conclusion

This chapter summarizes the most important points of this thesis and
presents several possible future research directions related to the work of
this thesis.

Contents
7.1 Summary . 72
7.2 Future work . 72

7.1 Summary

The goal of this thesis was to find and define properties for GPaS and use
these properties in order to create rule templates and design principles,
which will allow us to create future GPaSs more easily. The main proper-
ties that we introduced were the collaborative and fault-tolerant properties,
which both are important fro GPaS in the context of networks of proactive
engines. Both of these properties lead to the creation of several rule tem-
plates, which have different advantages and disadvantages depending on
the type of application one needs to create. However, what they all have in
common is that they standardize and facilitate the future creation of GPaS
and thus also the creation of applications based on the currently existing
PE. We then defined a few properties depending on the actors involved in
a GPaS.

The templates and design principles were then used to create the GPaSs
for three example applications: Airplane collision avoidance, Temperature
negotiation and FAME. It was made clear how the templates can be applied
and used in different situations as well as how the different templates can
interact and merge into each other in order to form a GPaS. Finally, we
implemented the FAME application for Android-based smartphones, pre-
sented the user interface and algorithm needed for the realization of this
application and gave a few suggestions for future improvements and addi-
tional features for this application at the end.

7.2 Future work

The work we presented in this thesis may still be enhanced in the future or
even lead the project of proactive engines to other research directions. In
this section we are going to present different possibilities for future work
related to this thesis.

72

Extension and adaption of properties and templates The properties and
templates presented in this thesis are not necessarily the only existing ones.
It is possible that, while creating new applications, we discover and iden-
tify new properties of GPaS, which will then lead to the refinement or even
the creation of new rule templates for GPaS. Each newly created rule tem-
plate will then reduce the time needed for the creation of future GPaS and
therefore also reduce the time for the creation of new applications using
our PE.

Performance tests While we already performed some performance tests
for mobile devices [5] it would be interesting to extend these tests for mo-
bile devices and to benchmark the performance of the different rule tem-
plates presented in this thesis. These tests should include CPU and battery
usage measurements as well as the total amount of data communicated
during an execution of the same GPaS using different rule templates. The
results will then allow us to optimize and refine the different templates for
different situations.

Move in the direction of autonomous systems Proactive systems always
have a human supervisor who makes sure that the system is running cor-
rectly and is responsible for the maintenance of the system. However, there
are a many cases in which it is not optimal or even downright impossible
to have a human taking care of these tasks. For example it is really danger-
ous for astronauts to do repairs in open space. Therefore the International
Space Station has a robotic arm called Dextre, which does these repairs
for them. However, one of the cameras on Dextre broke. If Dextre was a
proactive system, this would require an astronaut to go and change it out,
which would kind of defeat the purpose why Dextre was initially built. For
such cases, autonomous systems were developed. Autonomous systems
are systems that have different properties to help them to avoid as much
as possible the intervention of a human administrator. Dextre is such an
autonomous system and therefore he was able to exchange its broken cam-
era with a working one. It would be interesting to see if, in the future, we
could use our existing proactive system to create autonomous systems for
different applications and how this solution compares to already existing
autonomous systems in terms of performance, reliability and flexibility.

73

Bibliography

[1] R. Dobrican and D. Zampunieris, “A Proactive Approach for Infor-
mation Sharing Strategies in an Environment of Multiple Connected
Ubiquitous Devices,” in Proceedings of the 11th IEEE International Con-
ference on Ubiquitous Intelligence and Computing (UIC 2014). IEEE,
2014, pp. 763–771.

[2] A. Lella and A. Lipsman, “The US Mobile App report,” http:
//www.comscore.com/Insights/Presentations-and-Whitepapers/
2014/The-US-Mobile-App-Report, 2014, [Online; published 21-
August-2014].

[3] M. Müller, “Connection of proactive engines,” University of Luxem-
bourg, 2013.

[4] G. Neyens, “Communication of proactive engines,” University of Lux-
embourg, 2013.

[5] G. Neyens, R. A. Dobrican, and D. Zampunieris, “Enhancing Mobile
Devices with Cooperative Proactive Computing,” in COLLA 2015, The
Fifth International Conference on Advanced Collaborative Networks, Sys-
tems and Applications, 2015.

[6] D. L. Tennenhouse, “Proactive Computing,” in Communications of the
ACM, 2000, pp. 43–50.

[7] R. Want, T. Pering, and D. L. Tennenhouse, “Comparing auto-
nomic and proactive computing,” in IBM Systems Journal, 2003, pp.
42(1):129–135.

[8] D. Shirnin, S. Reis, and D. Zampunieris, “Experimentation of proac-
tive computing in context aware systems: Case study of human-
computer interactions in e-learning environment,” Cognitive Methods
in Situation Awareness and Decision Support (CogSIMA), 2013 IEEE
International Multi-Disciplinary Conference on, pp. 272–279, 26-28
February 2013.

[9] S. M. Dias, S. Reis, and D. Zampunieris, “Personalized, Adaptive
and Intelligent Support for Online Assignments Based on Proactive
Computing,” in 2012 IEEE 12th International Conference on Advanced
Learning Technologies. Rome, Italy: IEEE, Jul. 2012, pp. 668–669.

[10] R. A. Dobrican, S. Reis, and D. Zampunieris, “Empirical Investiga-
tions on Community Building and Collaborative Work inside a LMS

74

http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report
http://www.comscore.com/Insights/Presentations-and-Whitepapers/2014/The-US-Mobile-App-Report

using Proactive Computing,” in Proceedings of E-Learn - World Confer-
ence on E-Learning 2013 Conference. Theo Bastiaens and Gary Marks,
2013.

[11] D. Shirnin, “Formalising the twofold structure of a proactive sys-
tem:proof of concept on deterministic and probabilistic levels,” Uni-
versity of Luxembourg, 2014.

[12] S. Reis, D. Shirnin, and D. Zampunieris, “Design of proactive scenar-
ios and rules for enhanced e-learning,” in CSEDU 2012 - Proceedings
of the 4th International Conference on Computer Supported Education.
Porto, Portugal: SciTePress, 2012, pp. 253–258.

[13] D. Zampunieris, “Implementation of a Proactive Learning Manage-
ment System,” in E-Learn World Conference on E-Learning in Corpo-
rate, Government, Healthcare and Higher Education, Hawaii, 2006, pp.
3145–3151.

[14] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient intelligence:
Technologies, applications, and opportunities,” Pervasive and Mobile
Computing, vol. 5, no. 4, pp. 277–298, 2009.

[15] R. Boden, “Project Jacquard: Google and Leviâ€™s collaborate on in-
teractive clothing,” http://www.nfcworld.com/2015/06/01/335628/
project-jacquard-google-and-levis-collaborate-on-interactive-clothing/,
2015, [Online; published 1-June-2015].

[16] S. Helal, W. Mann, J. King, Y. Kaddoura, E. Jansen et al., “The
gator tech smart house: A programmable pervasive space,” Computer,
vol. 38, no. 3, pp. 50–60, 2005.

[17] G. M. Youngblood, D. J. Cook, and L. B. Holder, “A learning archi-
tecture for automating the intelligent environment,” in PROCEED-
INGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLI-
GENCE, vol. 20, no. 3. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2005, p. 1576.

[18] K. Martinez, J. K. Hart, and R. Ong, “Environmental sensor net-
works,” Computer, vol. 37, no. 8, pp. 50–56, 2004.

[19] A. Pentland, “Perceptual environments,” Smart Environments: Tech-
nologies, Protocols, and Applications, pp. 345–359, 2005.

[20] D. Franklin, “Cooperating with people: The intelligent classroom,” in
AAAI/IAAI. Citeseer, 1998, pp. 555–560.

[21] M. Stottinger, “Context-awareness in industrial environments,” Soft-
ware Engineering. Hagenberg, FH Hagenber, vol. 68, 2004.

75

http://www.nfcworld.com/2015/06/01/335628/project-jacquard-google-and-levis-collaborate-on-interactive-clothing/
http://www.nfcworld.com/2015/06/01/335628/project-jacquard-google-and-levis-collaborate-on-interactive-clothing/

[22] J. C. Tang and S. L. Minneman, “Videodraw: A video interface
for collaborative drawing,” ACM Trans. Inf. Syst., vol. 9, no. 2,
pp. 170–184, Apr. 1991. [Online]. Available: http://doi.acm.org/10.
1145/123078.128729

[23] M. Handley and J. Crowcroft, “Network text editor (nte): A scalable
shared text editor for the mbone,” in Proceedings of the ACM
SIGCOMM ’97 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, ser. SIGCOMM ’97.
New York, NY, USA: ACM, 1997, pp. 197–208. [Online]. Available:
http://doi.acm.org/10.1145/263105.263167

[24] M. Roseman and S. Greenberg, ACM Transactions on Computer-Human
Interaction (TOCHI), pp. 66–106.

76

http://doi.acm.org/10.1145/123078.128729
http://doi.acm.org/10.1145/123078.128729
http://doi.acm.org/10.1145/263105.263167

Acronyms

FIFO First in First out. 3

GCM Google Cloud Messaging. 5, 6

GPaS Global Proactive Scenario. i, 1, 7, 9, 66, 72

PaS Proactive Scenario. i, 7, 9

PE Proactive Engine. 1, 3, 5, 7, 13, 33, 45, 72, 73

PEMD Proactive Engine for Mobile Devices. 2

PEMDs Proactive Engines for Mobile Devices. 5

PS Proactive System. 3

RRS Rule-running system. 3–5

77

	Declaration of Honesty
	Abstract
	Acknowledgements
	Introduction
	Purpose of the thesis
	Structure of the thesis

	State of the art
	Proactive systems
	Proactive engine
	Meta-Scenarios, Scenarios and Rules
	Algorithm and rule structure

	Network of proactive engines (smartphone version)
	Global Proactive Scenarios
	Ambient intelligence
	Collaborative applications

	Properties of GPaS
	Basic properties of PaS
	Proactive
	Anticipating

	General properties of GPaSs
	Collaborative
	Active collaboration
	Reactive collaboration

	Fault-tolerant
	Active collaboration
	Reactive collaboration

	Architecture specific properties
	System-System
	Continuous

	System - User
	Continuous
	Ambient

	User-User
	Initiated
	Monitored

	Model
	General properties of GPaS
	Active collaboration
	One by one
	All at once

	Reactive Collaboration
	Fault-tolerant
	Fault-tolerance for active collaboration
	Fault-tolerance for reactive collaboration

	Architecture specific properties
	System-System
	Continuous

	System-User
	Continuous
	Ambient

	User-User
	Initiated
	Monitored

	Examples of model applications
	Airplane collision avoidance (System-System)
	General description and assumptions
	Template usage
	Static diagram
	Sequence diagrams
	Airplane rules
	Update Data
	Change Direction

	Airport rules
	Get Data
	Register new plane
	Check Collision
	Unregister Plane
	Calculate Collision Free Route
	Check Timeout
	Correct Data
	Check Collision Single Plane

	House temperature negotiation (System-User)
	General description and assumptions
	Template usage
	Static diagram
	Sequence diagrams
	House rules
	Check near devices
	Ask preferences
	Save preferences
	Wait for preferences
	Find Compromise
	Adapt House Temperature
	Check timeout

	Guest rules
	AnswerPreferences

	FAME (User-User)
	General description and assumptions
	Template usage
	Static diagram
	Sequence diagrams
	Initiator rules
	Start negotiation
	Negotiate time slots
	Receive available time slots
	Display available time slots
	Send meeting date
	Check timeout
	Display error message

	Friends rules
	Receive meeting date
	Receive request
	Check available time slots

	Proof of concept:FAME
	Database
	User interface
	Start Negotiation screen
	Meeting Suggestion Notification

	Algorithm
	Future features

	Conclusion
	Summary
	Future work

	Acronyms

