
SilentMeet - A Prototype Mobile Application for Real-Time Automated
Group-Based Collaboration

Remus-Alexandru Dobrican, Gilles I. F. Neyens and Denis Zampunieris
University of Luxembourg

Luxembourg, Grand-Duchy of Luxembourg
Email: remus.dobrican@uni.lu, gilles.neyens.001@student.uni.lu, denis.zampunieris@uni.lu

Abstract—Today’s growing world of mobile devices offers all the
necessary elements for developing collaborative mobile applica-
tions. However, this brings new challenges like how to handle
the high complexity of efficient collaborative mechanisms or
automatize part of the user’s interaction with the applications,
as too many actions are required from the users in order to
perform even the most basic operations. This paper describes
an experimental mobile application, i.e., SilentMeet, that uses a
rule-based middleware architecture for mobile devices and a new
technique for exchanging information, for coordinating and for
taking distributed decisions. More precisely, the application is
designed to detect, based on collaboration, possible meetings or
events with more than 2 participants and automatically switch
the smartphone into silent mode. The goal of SilentMeet can
be divided into 2 two main parts: 1) to develop a collaborative
application with the help of rule-based systems; and 2) implement
and evaluate Global Proactive Scenarios (GPaSs) in a real-case
example.

Keywords–mobile devices; collaborative applications; proactive
computing; distributed group collaboration.

I. INTRODUCTION

Communication and collaboration, more precisely inter-
active collaboration, are two key aspects in today’s mobile
world. Basic mobile applications that are able to perform only
local tasks do not address the increasing needs of the users
anymore. The demand for services and applications which
support communication and collaboration of mobile devices
has raised significantly in the past years [1]. The latest interest
in mobile collaboration can be explained by the large number
of mobile devices around the world, which is continuing
to grow from one year to another [2]. However, this mo-
bile environment capable of performing distributed operations
brings new challenges, such as intermittent connectivity, data
heterogeneity, limited computational capabilities and users’
mobility. Also important, is the fact that mobile networks, due
to the high mobility of their users [3], differ a lot from static
systems, where the users are always connected. This leads to
the issues like determining the context information needed to
trigger the collaboration process or like users being temporarily
unavailable while they are still engaged in the collaborative
operations.

Another important aspect to be addressed, when designing
collaborative applications, is to establish up to which level
will the users interact with the system. Because users may
have basic skills or only limited experience when interacting
with complex applications or because they do not want to
spend a lot of their time giving instructions to the system, the

applications can automatize a lot of their processes. One of the
solutions for doing this is Proactive Systems, which are able
to act on their own initiative and to take decisions on behalf
of their users [4]. Recently, the possibility of implementing
a Proactive Engine for mobile devices was investigated [5].
The added value is that, with the help of a mobile Proactive
System, which is essentially an advanced rule-based system,
developers can directly add the functionality they want to their
applications by using Proactive Rules. From the developer’s
point of view, a Proactive Rule represents a tool for writing
a set of instructions, while from the system’s point of view, a
Proactive Rule is a piece of code which has to be executed.
More about Proactive Rules and examples with the rules used
for this study will be shown in Section III.

In order to have a rule-based system capable of executing
Proactive Rules on mobile devices, a middleware model was
created for Android-based devices [6]. This represents an
important achievement as until now only lightweight basic
rule-based engines like [7] and [8] were developed for mo-
bile platforms. These engines would allow applications to
use simple conditional rules. The middleware model is also
providing an information sharing method between the devices
called Global Proactive Scenario (GPaS) [9]. This method
was implemented to give the possibility to the applications
to perform collaborative tasks.

Numerous studies [3][10][11] have been conducted that
provide middleware architectures as tools for developing col-
laborative applications. One important difference is that these
studies look at collaboration from a different angle. More pre-
cisely, they concentrate on user-centred collaboration, where
the focus is to get the users to interact more and more with
their applications on the mobile devices. The issue is that
these applications would depend too much on the actions of
their users and, if the users do not engage properly in each
step of their interaction with their devices, the applications
may remain at the same step. Opposite to this, Proactive
Computing, which was defined by Tennenhouse as a new way
of computing, for and on behalf of the user [12], tries to reduce
the users’ involvement by automatizing some processes. By
doing so, the users can concentrate more on the most important
parts of the collaboration.

Many mobile applications exist on the market, like
Silence[13], Go Silent [14] or Advanced Silent Mode [15],
which automatically switch off the sounds of mobile devices
based on the user’s preferences. These simple applications
perform only local tasks like checking the user’s predefined
preferences or detecting calendar events. They do not use



any kind of collaboration with other devices to make the
application smarter.

For example, SilentTime [16] searches for weekly events
in the local schedule and automatically silences the user’s
phone if a future event is detected. It offers the user the
possibility to add exceptions, in case he/she is waiting for an
important phone call. However, the application has a couple of
downsides. First, it is exclusively based on the users input, i.e.,
a calendar event or an exceptions of a special situations will
only be detected if the user creates them before, and second, it
does not use any kind of communication with other devices to
check if the events will take place or not. Another example is
AutoSilent [17] , which is slightly different from SilentTime
because it adds an extra step of verification before muting the
users phone, i.e., it will verify if the users location corresponds
with the events location at a certain time. This extra feature is
again just a simple check because it does not use any kind of
collaboration, like, for example, checking also the location of
the other participants.

In this study, we investigate how a mobile application,
i.e., SilentMeet, which uses a proactive rule-based middleware
system to communicate and collaborate, is automatically turn-
ing the devices into silent mode if a meeting is detected and
confirmed between a predefined group of users.

The rest of the paper is structured as follows. Section II
introduces the problem statement and a motivating scenario
that points out the need for automatizing certain tasks and
processes inside applications in order to reduce the user’s
involvement in unnecessary situations. Section III contains
explanations about SilentMeet’s architecture and about its way
of reaching a global decision based on distributed reasoning,
including how and which Proactive Rules were used in this
case. Tests on real devices are discussed in Section IV and
their results in Section IV-B. And finally, Section V contains
the main conclusions and future work.

II. MOTIVATING SCENARIO

There are quite a few mobile users who went through em-
barrassing situations when their phones rang during important
meetings, lectures, exams, presentations, concerts, interviews
or key talks offered at international conferences. Imagine, for
example, that during a viola recital of a famous musician, the
mobile phone of a person start ringing, like it did during a
recital in Slovakia [18]. The musician is not only interrupted
but he/she could also loose focus and find it difficult to
continue. The are many more other examples when muting the
phone is a mandatory requirement. The main problem is that
each user has to manually configure his/her phone to be silent
during important events. And often, they forget. A general
common strategy or approach which performs collaborative
actions is missing.

Let’s imagine the following scenario: an important event
is about to begin. The mobile devices of the participants,
located in their pockets, go automatically into silent mode.
The participants do not have to worry they forgot to silence
their mobile phones, they can focus more on their important
tasks. The meeting can continue without any interruptions or
embarrasing situations.

III. A RULE-BASED SOLUTION - SILENTMEET

SilentMeet is a collaborative application which is devel-
oped in order to minimize the risk of interruptions and their
distracting effects during an important event such as a meeting,
interview or public event. Moreover, for having an efficient
distributed algorithm, part of the user’s actions are automatized
with the help of Proactive Rules. We assume that groups of
people are predefined when an event is created by each user.
More precisely, when a calendar event is created, the user also
adds the participants. Users can perform collaborative actions
only if they are part of the same group of the same event.
So, users first have to build their own groups or agree to be
part of already created groups. For example, in a company, the
secretary of a department creates a group for the employees of
that department that have meetings regularly. By joining this
group, the members agree that their mobiles phones can be
silenced by the application of the other members, after multiple
rounds of negotiation. More about the negotiation process is
presented in Section III-D. Also, more conditions and checks
are taken into account like the location of the event and the
participants, the date and the hour of the event and the local
preferences of each user.

A. Middleware model - Proactive Engine for Mobile Devices

The Proactive Engine is a middleware architecture de-
veloped to support the execution of Proactive Rules. It was
designed to perform background operation and to interact with
the user only when necessary. Moreover, it comes equipped
with a Rules Engine to process rules, a data storage mechanism
to store different parameters and with a communication layer,
to be sure the Proactive Engine is able to share important
information.

Proactive Engines communicate with each other by sending
JavaScript Object Notation (JSON) messages. The messages
can contain questions, answers or commands, depending on
their purpose. For example, a Proactive Engine can send a
question to another engine to ask for various context infor-
mation. Based on the received answer, if some conditions are
fulfilled, the engine can then send a command to the other
engine to perform an action. Messages are forwarded to a
server and to the cloud. The server and the cloud are in charge
of assigning each device with a device ID and with forwarding
the JSON messages to the targeted devices. They also handle
special cases such as lost JSON messages or devices that are
not temporary available on the network.

B. Global Proactive Scenarios (GPaSs)

The idea of SilentMeet is that the devices participating
in a collaboration process can take global decision, not only
local ones. Each device is able to make use of the global
knowledge, which is created by all the devices. For example,
a basic application would only be able to detect an event
based on the local information provided by the calendar of
a device. SilentMeet is able to query all the devices to obtain
more precise information about that event with the help of
GPaSs. A GPaS is a data exchange mechanism, which allows
devices to dynamically acquire relevant context information
by merging data from multiple sources. It works between all
mobile devices with an integrated Proactive Engine. GPaSs,



from a technical point of view, are composed of sets of
Proactive Rules.

SilentMeet contains one GPaS, as it uses a distributed
reasoning algorithm to reach a decision and to execute specific
tasks. In this specif GPaS, each device needs additional infor-
mation from the other devices before taking a decision. The
idea is that if multiple devices, part of a collaboration group,
have an event in their local calendar, with the same date, time
and location, it is very probable that the event will take place.
We presume that the same information about an event coming
from 2 different devices part of the same group is enough for
the application to decide what to do next. In this case, it will
switch the corresponding devices into silent mode when the
event will take place. The minimum number of 2 devices is
motivated by the fact that a device should not be able to mute,
by itself, other devices without any kind of agreement. Also,
a decision can be taken without the confirmation of the event
from all the participants, as this is very difficult to achieve in
real-life situations, where each user is expected to manually
add the event into the calendar.

C. Proactive Rules

The Proactive Rules, as shown in Figures 1, 2, 3, 4 or 5,
contains a set of instructions, which are written by the devel-
oper. These rules are to be executed by the Proactive Engine
when different events are detected or when they are missing.
The initial structure of a Proactive Rule [19] was used for
creating the rules necessary for SilentMeet. It contains 5 main
parts such as data acquisition, activation guards, conditions,
actions and rules generation. These parts are important as
they decide when a rule is executed, if the rule performs its
actions, if the rule will generate other rules or will just simply
clone itself. Proactive Rules can have different execution times
because their activation depends on the local settings of each
device and on the user’s actions. For example, 2 users creating
a new calendar event at different hours on their phones, trigger,
at different time intervals, the rule which starts the negotiation
process of SilentMeet.

For achieving its goal, SilentMeet only needs 5 Proactive
Rules. SilentMeet will come together with the 5 Proactive
Rules, when installed on each device. Initially, only one
Proactive Rules, the first one, will be executed by the Proactive
Engine. Then, all the rules can be activated, if their execution
conditions are meet.

Illustrated in Figure 1, the first Proactive Rule, i.e., R001-
DetectMeeting, is used to detect new meetings added in the
calendar of each device. Adding the meeting in the calendar
was either manually added by the user or automatically added
by another application. If a new meeting is detected, all the
participants of that meeting will be retrieved and will be
contacted by a second rule. If the first rule is not activated,
it will continues to clone itself for being executed at the
next iteration of the Proactive Engine. When activated, rule
R002 - ContactAttendees, shown in Figure 2, is in charge of
sending a request to all the participants for more information
about the meeting. The request is then forwarded with specific
parameters like the sender ID, the destination ID and the full
details of the event itself.

R001 - DetectMeeting
Description: This Rule is the initial rule in the proactive engine.
It will check for new events in the calendar and then create a
ContactAttendees rule for each event.
parameters

None
data acquisition

Event[] events= getNewEvents();
activation guards

return !empty(events);
conditions

return true;
actions

None
rules generation

if (!activationGuard());
cloneRule(DetectMeeting);

else
foreach event in events:

createRuleContactAttendees(event);
end if

Figure 1. First Proactive Rule in pseudo-code

R002 - ContactAttendees
Description: This Rule sends an AskMeetingConfirmation Rule to
every attendee of an event.
parameters

Event event;
data acquisition

String[] attendees= event.getAttendees();
activation guards

return true
conditions

return true;
actions

foreach attendee in attendees:
sendAskMeetingConfirmationRule(attendee,event,deviceID);

rules generation
None

Figure 2. Second Proactive Rule in pseudo-code

The third rule, or rule R003 - AskMeetingConfirmation,
presented in Figure 3, sends back a response about the event
to the device which has previously sent the request for extra
information. The answer is positive if an event with the same
date, hour, location and participants is detected in the calendar
and a negative answer otherwise. The fourth rule, R004 -
ConfirmMeeting, checks for the answers of each participant
and, if there is at least one confirmation, it validates the
requirements of having at least 2 users that will attend the same
meeting. If the previous condition is meet, it activates the last
rule, which is in charge of muting the mobile phones during
a selected event. And the last rule, R005 - MuteCommand, is
the one that checks if the meeting is about to begin, and, if the
device’s location is close to the location of the event, it will
activate the silent mode that that particular device. The local
preferences of a the user are also checked because there are
situations where the user is expecting an important phone call.
For example, a man would like to be called if his pregnant
wife is giving birth at the hospital, even if, at the time of the
call, the man would be in a meeting.



R003 - AskMeetingConfirmation
Description: This Rule will check whether an event is present
in the calendar of this user. If this is the case it will send a
ConfirmMeeting Rule back to the device which started the
negotiation.
parameters

Event event;
String senderDeviceID;

data acquisition
boolean answer=meetingExists(event.startTime,event.endTime);

activation guards
return answer;

conditions
return true;

actions
sendConfirmMeetingRule(senderDeviceID,event);

rules generation
None

Figure 3. Third Proactive Rule in pseudo-code

R004 - ConfirmMeeting
Description: Upon receiving this Rule the application will
issue a MuteCommand Rule to the device that confirmed
the meeting.
parameters

Event event;
data acquisition

None
activation guards

return true;
conditions

return true;
actions

sendMuteCommandRule(senderDeviceID,event);
rules generation

None

Figure 4. Fourth Proactive Rule in pseudo-code

R005 - MuteCommand
Description: This Rule will silence the phone when the event
starts.
parameters

Event event;
data acquisition

None
activation guards

return eventStarted(event);
conditions

return atMeetingLocation(getCurrentLocation(),
event.getLocation()) and checkPreferences(event));

actions
mutePhone();

rules generation
if (!activationGuard()):

cloneRule(MuteCommand);
end if

Figure 5. Fifth Proactive Rule in pseudo-code

Figure 6. Sequence diagram with the rules activation and the communication
process of SilentMeet

D. Negotiation Process

For muting the mobile devices of the participants of a
group, after a calendar event is detected, SilentMeet passes
through a couple of rounds of negotiation. As shown in Figure
6, when a device detects an event in its calendar, with the help
of rule R001, it immediately checks for the participants of that
event. Then, it starts, with the help of rule R002, contacting
and asking each participants about the event. On the receiving
devices, rule R003 is activated and start looking for an event
in the calendar with the particular characteristics as the ones
received in the list of parameters. An answer is then forwarded
to the initiating device and rule R004 is activated. Rule R004
will check if the Initiator receives at least one positive answer,
i.e., event detected on another device, it will send a command
to the participants which confirmed the event to activate rule
R005. The last rule will then be activated and it will wait for
all the conditions to be satisfied in order to perform its actions,
i.e., to put the device on silent mode.

IV. TESTS

Tests were conducted locally at our university on 3 different
devices: a Samsung Galaxy Note 3, a Samsung Galaxy S3
and a Nexus 4, as shown in Figure 7. All 3 devices use
an Android operating system and have the Proactive Engine
middleware installed in order to be able to execute rules and
collaborate with each other in GPaSs. The devices were part
of a predefined group of 3 participants. During the tests, all 3
devices were connected via WiFi to the same network. Initially,
all the devices had their sound turned on and had an event in
their calendar with the same date, time and location. The first
rule, R001 - DeetectMeeting, was activated on each device
when the event started to take place. The Rule Engine was set
to execute the rules present in its queue every 30 seconds.

The participating devices used in the tests were part of the
same predifined group for the given event. For registering to
the group, the user of each device had to use a unique email
address, e.g., user1@uni.com, an email address provided by
the user of the Galaxy Note 3.



Figure 7. Devices used for testing SilentMeet, in the process of activating
the silent mode

A. Measurements

The main goal was to check if the application behaved as
expected and, based on the algorithm for distributed agreement,
if all three devices were muted, after checking if there is
at least one other person who is still attending the meeting.
Another point of interest of the tests was the time the devices
needed to reach a common agreement and to perform the
actions of the last rule R005 - MuteCommand, which muted
all the devices.

B. Results and discussions

The tests showed that the application behaves as expected
and that all three devices were muted after the negotiation
process. In the given settings, it took around 10 seconds
to reach a common agreement that the meeting will take
place and to mute all three devices. However, this time is
highly dependent on the frequency parameter of the Rule
Engine, meaning that setting a lower time interval between
two iterations will also lead to a faster execution of the GPaS.

V. CONCLUSION AND FUTURE WORK

In this paper, we show that it is possible to develop a
collaborative application on top of a rule-based middleware
engine and with the help of Proactive Computing, more
precisely by using Global Proactive Scenarios. The application
is able to detect and acquire relevant context-information, use
a distributed reasoning algorithm and take global decision. At
the same time, several parts of the collaboration process were
automatised and the user’s involvement reduced only to the
most important operations.

Future work includes developing more complex collabora-
tive applications and other Global Proactive Scenarios on top
of the Proactive middleware engine. One possible direction is
to develop another GPaS for turning off the sounds of each
smartphone, based on the location of the participants. If the
location of the participants would correspond to the location of
the event on the given date the Proactive Engines would start to
alert each other and mute each smartphone. This would show
how more than one GPaS can be used in the same application.

REFERENCES

[1] Forrester. Latest IT Trends For Secure Mobile Collaboration. Forrester
Consulting. [Online]. Available: http://www.connectedfuturesmag.com/
docs/byod forrester tap latest it trends wp en.pdf [retrieved: May,
2015]

[2] CISCO. VNI Mobile Forecast Highlights. CISCO Systems.
[Online]. Available: http://www.cisco.com/c/dam/assets/sol/sp/vni/
forecast highlights mobile/index.html [retrieved: May, 2015]

[3] V. Sacramento and et al., “MoCA: A Middleware for Developing
Collaborative Applications for Mobile Users,” Distributed Systems
Online, IEEE, vol. 5, no. 10, Oct 2004, pp. 2–2.

[4] A. Salovaara and A. Oulasvirta, “Six modes of proactive resource man-
agement: a user-centric typology for proactive behaviors,” in Proceed-
ings of the third Nordic conference on Human-computer interaction.
ACM, 2004, pp. 57–60.

[5] R.-A. Dobrican and D. Zampunieris, “Moving Towards Distributed
Networks of Proactive, Self-Adaptive and Context-Aware Systems: a
New Research Direction?” The International Journal on Advances in
Networks and Services, vol. 7, 2014, pp. 262–272, ISSN: 1942-2644.

[6] G. I. F. Neyens, R.-A. Dobrican, and D. Zampunieris, “Enhancing
Mobile Devices with Cooperative Proactive Computing,” COLLA - The
Fifth International Conference on Advanced Collaborative Networks,
Systems and Applications, 2015, to be published.

[7] M. Slazynski, S. Bobek, and G. J. Nalepa, “Migration of Rule
Inference Engine to Mobile Platform. Challenges and Case Study,”
in Proceedings of 10th Workshop on Knowledge Engineering and
Software Engineering (KESE10) co-located with 21st European
Conference on Artificial Intelligence (ECAI 2014), Prague, Czech
Republic, August 19 2014., 2014. [Online]. Available: http://ceur-
ws.org/Vol-1289/kese10-08 submission 4.pdf

[8] C. Choi, I. Park, S. J. Hyun, D. Lee, and D. H. Sim, “MiRE: A
minimal rule engine for context-aware mobile devices,” in Third IEEE
International Conference on Digital Information Management (ICDIM),
November 13-16, 2008, London, UK, Proceedings, 2008, pp. 172–177.

[9] R. Dobrican and D. Zampunieris, “A Proactive Approach for Infor-
mation Sharing Strategies in an Environment of Multiple Connected
Ubiquitous Devices,” in Proceedings of the International Symposium on
Ubiquitous Systems and Data Engineering (USDE 2014) in conjunction
with 11th IEEE International Conference on Ubiquitous Intelligence and
Computing (UIC 2014). IEEE, 2014, pp. 763–771.

[10] J. Gabler, R. Klauck, M. Pink, and H. Konig, “uBeeMe - A platform to
enable mobile collaborative applications,” in Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom), 2013 9th
International Conference Conference on, Oct 2013, pp. 188–196.

[11] P. Coutinho and T. Rodden, “The FUSE Platform: Supporting Ubiq-
uitous Collaboration Within Diverse Mobile Environments,” Autom.
Softw. Eng, vol. 9, 2002, pp. 167–186.

[12] D. Tennenhouse, “Proactive Computing,” Communications of the ACM,
vol. 43, no. 5, 2000, pp. 43–50.

[13] “Silence App,” 2015, URL: https://play.google.com/store/apps/details?
id=net.epsilonlabs.silence.ads [accessed: 2015-05-13].

[14] “Go Silent App,” 2015, URL: https://play.google.com/store/apps/
details?id=com.eventscheduler [accessed: 2015-05-13].

[15] “Advanced Silent Mode,” 2015, URL: https://play.google.com/store/
apps/details?id=com.joe.advancedsilentmode [accessed: 2015-05-13].

[16] “Silent Time,” 2015, URL: https://play.google.com/store/apps/details?
id=com.QuiteHypnotic.SilentTime&hl=en [accessed: 2015-05-13].

[17] “Auto Silent,” 2015, URL: https://itunes.apple.com/us/app/autosilent/
id474777148?mt=8 [accessed: 2015-05-13].

[18] Alastair Plumb. Slovakian Violist Lukas Kmit Interrupted By
Nokia Ringtone, Incorporates It Into Recital. Huffington Post. [On-
line]. Available: http://www.huffingtonpost.co.uk/2012/01/23/slovakian-
violinist-lukas-kmit-nokia-ringtone n 1223086.html [retrieved: May,
2015]

[19] D. Zampunieris, “Implementation of a proactive learning management
system,” in Proceedings of” E-Learn-World Conference on E-Learning
in Corporate, Government, Healthcare & Higher Education”, 2006, pp.
3145–3151.


