
paraVerifier: An Automatic Framework for Proving
Parameterized Cache Coherence Protocols

Yongjian Li1,3, Jun Pang2, Yi Lv1, Dongrui Fan4,
Shen Cao1, and Kaiqiang Duan1

1 Institute of Software, Chinese Academy of Sciences, China
2 Computer Science and Communications, University of Luxembourg, Luxembourg

3 College of Information Engineering, Capital Normal University, Beijing, China
4 Institute of Computing Technology, Chinese Academy of Sciences, China

Abstract. Parameterized verification of cache coherence protocols is an impor-
tant but challenging research problem. We present in this paper our automatic
framework paraVerifier to handle this problem: (1) it first discovers auxiliary in-
variants and the corresponding causal relations between invariants and protocol
rules from a small reference instance of the verified protocol; (2) the discovered
invariants and causal relations can then be generalized into their parameterized
form to automatically construct a formal proof to establish the correctness of the
protocol. paraVerifier has been successfully applied to a number of benchmarks.

1 Introduction

Verification of parameterized systems (e.g., see [1,2,3,4,5,6,7,8,9,10,11]) is interesting
in the area of formal methods, mainly due to the practical importance of such systems.
Parameterized systems exist in many application domains, including cache coherence
protocols, security systems, and network communication protocols. In this work, we
focus on cache coherence protocols, which play a key role in modern computer ar-
chitecture. They require complex algorithms that deal with asynchrony, unpredictable
message delays, and multiple communication paths between many nodes. Therefore,
the highest possible assurance for the correctness of these systems should be guaran-
teed by formal reasoning techniques.

The challenge posed by parameterized verification of cache coherence protocols is
that the desired safety properties, in terms of invariants, should hold for any instance of
the studied protocol, not just for a single protocol instance. Model checking is automatic
but is only able to verify an instance of the protocol. The correctness of the reference
instance does not formally suffice to conclude the correctness for all instances. Due to
the extreme importance of cache coherence protocols, it is preferable to have a proof
for any instance of such protocols.

Advanced verification techniques such as compositional [12] and abstraction model
checking [6] have been proposed to handle this challenge. However, auxiliary invariants
of a cache coherence protocol, which is usually provided by a human, based on his in-
sights of the protocol, are needed to make these techniques work. How to find sufficient
and necessary invariants is the main difficulty in the field of parameterized verification.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31222128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Many works have focused on the construction of a set of auxiliary invariants, for exam-
ple, see [4,6,8,10,11]. However, the theoretical foundation of these techniques and their
soundness proofs are often only discussed in the respective papers. These theories them-
selves are not easy to understand, and are subjects to be mechanically checked, mainly
due to the fact that their soundness needs to be guaranteed without any conditions.

The aim of our framework paraVerifier is to solve the parameterized verification
of cache coherence protocols in a unified, rigorous and automated way. paraVerifier
consists of two parts: an invariant finder invFinder and a proof generator proofGen. In
order to verify that an invariant inv holds for any instance of a parameterized protocol, a
reference model of the protocol with a fixed parameter is constructed first and success-
fully model checked, and invFinder tries to search for interesting auxiliary invariants
and causal relations which are capable of proving inv. Next, proofGen explores the out-
puts of invFinder to construct a complete and parameterized formal proof in a theorem
prover (e.g., Isabelle). Such a proof can eventually be checked automatically.

The originality of our work lies in the following aspects. First, paraVerifier is built
on a simple but elegant theory. Three types of causal relations between protocol rules
and invariants are identified, which are essentially the special cases of the general in-
duction rule. The correctness of the three causal relations is captured by the so-called
consistency lemma. It is heuristics-inspired by trying to construct the consistency re-
lation that guides the tool invFinder to find auxiliary invariants. On the other hand,
the consistency lemma provides a general guiding principle to prove invariants in the
parameterized model of a cache coherence protocol. The lemma itself is verified as a
formal theory in Isabelle [13].5 Second, paraVerifier produces a list of invariants and a
readable proof script for a given parameterized cache coherence protocol. The invariants
are visible, in the sense that they can characterize the semantical features of the proto-
col and help users to precisely understand the design of the protocol. The formal proof
script models the protocol rigorously and specifies its properties without any ambigu-
ity, and more importantly it is mechanically checked. Third, paraVerifier is automatic,
i.e., requiring little human intervention, and scalable. After the protocol is modeled in
paraVerifier, auxiliary invariants are searched automatically via invFinder. The formal
proof script in Isabelle is also automatically generated by proofGen, and checked by
Isabelle. paraVerifier is successfully applied to industrial case studies such as the Flash
protocol [14,12].6

2 Consistency Lemma

In this section, we introduce the theoretical foundation underlining paraVerifier. Con-
sider a set of state variables V , we use e, f and S to denote an expression, a formula, and
a statement over the set of state variables V . Variables are divided into two classes: ar-
ray variables or non-array (global) variables. A state s of a protocol is an instantaneous
snapshot of its behavior given by a mapping from all variables in V to natural numbers.

5 We directly use parts of our Isabelles theories to introduce definitions and lemmas in the paper.
6 Flash is considered as a standard and difficult benchmark for any proposed method for param-

eterized verification, as Chou et al. [6] state “if the method works on Flash, then there is a good
chance that it will also work on many real-world cache coherence protocols”.

We write expEval e s (and formEval f s) to denote the evaluation of the expression e
(and formula f) at the state s. With a parallel assignment S = {xi := ei|i > 0}, we define
preCond S f = f [xi := ei], which substitutes each occurrence of xi by ei.
Protocols. A cache coherence protocol is formalized as a pair (ini,rules), where (1) ini
is an initialization formula; and (2) rules is a set of transition rules. Each rule r ∈ rules
is defined as g B S, where g is a predicate, and S is a parallel assignment to distinct
variables vi with expressions ei. We write pre r = g, and act r = S if r = g B S.

We identify three kinds of causal relations that are essentially the special cases of
the general induction rule. Consider a transition rule r, a formula f , and a formula set
F , the three causal relations are defined as follows:

Definition 1. We define the following relations

1. invHoldForRule1 f r ≡ pre r −→ preCond f (act r);
2. invHoldForRule2 f r ≡ f = preCond f (act r);
3. invHoldForRule3 f r F ≡ ∃ f ′ ∈ F s.t. (f ′∧ (pre r))−→ preCond f (act r);
4. invHoldForRule f r F represents a disjunction of invHoldForRule1, invHoldForRule2

and invHoldForRule3.

The first relation (invHoldForRule1 f r) means that after rule r is executed, f should
hold. The second relation (invHoldForRule2 f r) intuitively means that none of the state
variables in f is changed and the execution of rule r does not affect the evaluation of
f . The third relation (invHoldForRule3 f r F) states that there exists another formula
(invariant) f ′ ∈ F such that the conjunction of the guard of r and f ′ implies that f holds
after the election of rule r. Essentially, the causal relations capture whether and how the
execution of a particular protocol rule changes the protocol state variables appearing
in an invariant. More importantly, the relations can be considered as induction proof
tactics designed for automatic proof generation (for example, used by proofGen).

Intuitively, the disjunction of the above relations (invHoldForRule f r F) defines
a causal relation, which can guarantee that if each formula f in F holds before the
execution of the rule r, then f also holds after the execution of the rule. Secondly, it can
be considered as a special inductive proof rule, which can be applied to prove that each
formula in F holds for each protocol rule.

Definition 2. A consistency relation, i.e., consistent invs ini rules, that holds between
a protocol (ini,rules) and a set of invariants invs = {inv1, . . . , invn}, is defined as:

– For any invariant inv ∈ invs and state s, if ini is evaluated as true at state s (i.e.,
formEval ini s = true), then inv is also evaluated as true at the state s.

– For any inv ∈ invs and r ∈ rules, invHoldForRule inv r invs.

Now we proceed with formally stating the consistency lemma below. Namely, if the
consistency relation consistent invs ini rules holds, then for any inv ∈ invs inv holds for
any reachable state s of a protocol (ini,rules).

Lemma 1. For a protocol (ini,rules), we use reachableSet ini rules to denote the set
of reachable states of the protocol. Given a set of invariants invs, we have

[[consistent invs ini rules;s ∈ reachableSet ini rules]]=⇒∀inv ∈ invs.formEval inv s

We have built a general theory cache.thy in Isabelle to model cache coherence proto-
cols [15], and the consistency lemma is also formally proved.

invFinder proofGen Isabelle

protocol.fl protocol.tbl protocol.thy

Fig. 1. The workflow of paraVerifier.

Table 1. An example fragment of protocol.tbl generated by invFinder.

protocol rule ruleParas invariant causal relation formula (f ′)
crit [1] inv1 1 2 invHoldForRule3 inv2 2
crit [2] inv1 1 2 invHoldForRule3 inv2 1
crit [3] inv1 1 2 invHoldForRule2

3 Overview of Our Approach

The steps of our framework paraVerifier to parameterized verification of cache co-
herence protocol is illustrated in Fig. 1. A small cache coherence protocol instance
protoocl.fl, is fed into the tool invFinder, which will search for all necessary ground
auxiliary invariants from the reference protocol instance. A table protoocl.tbl is
used to store the set of ground invariants and causal relations, which will then be used
by proofGen to create an Isabelle proof script which models and verifies the protocol
in a parameterized form. In this step, ground invariants will be generalized into a pa-
rameterized form, and accordingly ground causal relations will be adopted to create
parameterized proof commands which essentially prove the existence of the parame-
terized causal relations. At last, the Isabelle proof script protoocl.thy is given to
Isabelle to check the protocol correctness automatically.

The consistency lemma plays a crucial role in paraVerifier. It behaves as a heuris-
tics to construct a consistency relation that guides the tool invFinder to find auxiliary
invariants. On the other hand, it gives a general guiding principle to prove invariants
of a cache coherence protocol. The consistency lemma eliminates the need of directly
using the induction proof method. It allows us to focus on the causal relationship be-
tween transition rules of the protocol and its invariants. It also enables us to divide the
proof of the invariants to a series of subproofs to verify whether one of the relations
invHoldForRule1−3 hold for a rule and an invariant. The strategy of ‘divide and con-
quer’ is the key step to make the series of sub-proofs to be automated because the proof
patterns for the subproofs are similar and modular. The tool proofGen will then auto-
matically generate a proof that applies the the consistency lemma to prove correctness.

Starting from a given set of initial invariants, invFinder repeatedly tries to find new
invariants, in the form of ground formulas, by constructing the causal relation between
the invariants and the protocol rules. It uses an oracle7 that checks whether a ground
formula is an invariant in the small reference model of the protocol. invFinder stops until
no new invariants can be found. The output of invFinder is stored in file protocol.tbl.
Each line of the table records the index of an invariant, the name of a parameterized rule,
the rule parameters to instantiate the rule, a causal relation between the invariant and a
causal relation The table also records the proper formulas f ′ which is used to construct
the third causal relation invHoldForRule3. An example of such table is shown in Tab. 1.

The formal Isabelle proof script protoocl.thy generated by proofGen includes
the definitions of control signals, rules, invariants, initializing formula, lemmas and

7 Implemented with SMV and the SMT solver Z3.

Table 2. Verification results on benchmarks.
Protocols #rules #invariants time (seconds) Memory (MB)

MESI 4 3 0.68 11.5
MOESI 5 3 0.65 23.2

Germanish [11] 6 3 0.68 23.0
German [6] 13 24 4.09 26.7

German with data [6] 15 50 12.05 29.4
Flash [14,12] 73 112 1457.42 169.4

their proofs. Here, we briefly explain the generalization principle involved in proofGen.
For a ground invariant invwith parameters, proofGen analyzes the number of ground
parameters in it and defines a parameterized invariant pInv by replacing the ground
parameters with their corresponding symbolic parameters accordingly. Then proofGen
explores symmetry relations and uses the following three relations ex1P or ex2p or
ex3P to define all the actually parameterized invariants, where ex1P N P ≡ ∃i.(i ≤
N ∧P i), ex2P N P ≡ ∃i j.(i ≤ N ∧ j ≤ N ∧ i 6= j∧P i j), and ex3P N P ≡ ∃i j k.(i ≤
N ∧ j ≤ N ∧ k ≤ N ∧ i 6= j ∧ i 6= k ∧ j 6= k ∧ P i j k). For instance, for the formula
¬(n[1] = C ∧ n[2] = C), two ground parameters 1 and 2 are extracted, and a formal
invariant formula inv1 i1 i2 = ¬(n[i1] = C∧ n[i2] = C) is defined by replacing 1 and
2 with symbolic parameters i1 and i2, and { f .ex2P N λ i1i2. f = inv1 i1 i2} defines
the set of all the formulas, each of which is symmetric to inv1 1 2. The generalization
of statements, rules, and causal relations can be defined accordingly. Each line in the
ground causal relation table (Tab. 1), is generalized into a parameterized relation, which
is the key to generate a proof command to select a proper causal relation to prove.

4 Validation and Conclusion

We implemented paraVerifier in Forte [16] and tested it on a number of cache coherence
protocols. The detailed source codes and data can be found in [15]. Each experimental
data includes the protocol model, the invariant sets, and the Isabelle proof script. Tab. 4
summarizes our verification results, recording the resources needed to compute the in-
variants and generate the proof scripts. Note that our proof of Flash is different from the
one of Park et al. [14], where they need to manually construct an abstract transaction
model of Flash. Our proof does not require this step and has less human interaction.

Within paraVerifier, our automatic framework for parameterized verification of cache
coherence protocol, (1) instead of directly proving the invariants of a protocol by induc-
tion, we propose a general proof method based on the consistency lemma to decompose
the proof goal into a number of small ones; (2) instead of proving the decomposed
subgoals by hand, we automatically generate proofs for them based on the information
computed in a small protocol instance.8

As we demonstrate in this work, combining theorem proving with automatic proof
generation is promising in the field of formal verification of industrial protocols. Theo-
rem proving can guarantee the rigorousness of the verification results, while automatic
proof generation can release the burden of human interaction.

8 Technical details of paraVerifier will be made available in a technical report.

Acknowledgments Yongjian Li, was supported by grants 61170073 and 61170304 and
2011DFG13000 from the National Natural Science Foundation of China.

References
1. Pnueli, A., Shahar, E.: A platform for combining deductive with algorithmic verification. In

Porc. 16th Conference on Computer Aided Verification (CAV). LNCS 1102. Springer (1996)
184–195

2. Björner, N., Browne, A., Manna, Z.: Automatic generation of invariants and intermediate
assertions. Theoretical Computer Science 173(1) (1997) 49 – 87

3. Arons, T., Pnueli, A., Ruah, S., Xu, Y., Zuck, L.: Parameterized verification with auto-
matically computed inductive assertions? In: Proc. 13th Conference on Computer Aided
Verification (CAV). LNCS 2102. Springer (2001) 221–234

4. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In:
Proc. 7th Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS 2031. Springer (2001) 82–97

5. Tiwari, A., Rueß, H., Saı̈di, H., Shankar, N.: A technique for invariant generation. In:
Proc. 7th Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS 2031. Springer (2001) 113–127

6. Chou, C.T., Mannava, P., Park, S.: A simple method for parameterized verification of cache
coherence protocols. In: Proc. 5th Conference on Formal Methods in Computer-Aided De-
sign (FMCAD). LNCS 3312. Springer (2004) 382–398

7. Pang, J., Fokkink, W., Hofman, R., Veldema, R.: Model checking a cache coherence protocol
of a Java DSM implementation. Journal of Logic and Algebraic Programming 71(1) (2007)
1 – 43

8. Pandav, S., Slind, K., Gopalakrishnan, G.: Counterexample guided invariant discovery for
parameterized cache coherence verification. In: Proc. 13th IFIP Advanced Research Work-
ing Conference on Correct Hardware Design and Verification Methods (CHARME). LNCS
3725. Springer (2005) 317–331

9. Lv, Y., Lin, H., Pan, H.: Computing invariants for parameter abstraction. In: Proc. 5th
IEEE/ACM Conference on Formal Methods and Models for Codesign (MEMOCODE).
IEEE CS (2007) 29–38

10. Bingham B.: Automatic non-interference lemmas for parameterized model checking. In
Proc. 8th Conference on Formal Methods in Computer-Aided Design (FMCAD). IEEE CS
(2008) 1–8

11. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaı̈di, F.: Cubicle: A parallel SMT-based
model checker for parameterized systems. In Proc. 24th Conference on Computer Aided
Verification (CAV). LNCS 7385. Springer (2012) 718–724

12. McMillan, K.L., Labs, C.B.: Parameterized verification of the Flash cache coherence proto-
col by compositional model checking. In: Proc. 9th IFIP Advanced Research Working Con-
ference on Correct Hardware Design and Verification Methods (CHARME). LNCS 2144.
Springer (2001) 179–195

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order
Logic. Volume 2283 of LNCS. Springer (2002)

14. Park, S., Dill, D.L.: Verification of Flash cache coherence protocol by aggregation of dis-
tributed transactions. In: Proc. 8th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA). ACM (1996) 288–296

15. Li, Y.: invFinder: An invariant finder (2014) http://lcs.ios.ac.cn/~lyj238/

invFinder.html.
16. Technical Publications and Training, Intel Corporation: Forte/FL User Guide. 2003.

http://lcs.ios.ac.cn/~lyj238/invFinder.html
http://lcs.ios.ac.cn/~lyj238/invFinder.html

	 paraVerifier: An Automatic Framework for Proving Parameterized Cache Coherence Protocols

