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Abstract—The paper deals with an important problem in the
Voice over IP (VoIP) domain, namely being able to understand
and predict the structure of traffic over some given period of time.
VoIP traffic has a time variant structure, e.g. due to sudden peaks,
daily or weekly moving patterns of activities, which in turn makes
prediction difficult. Obtaining insights about the structure and
trends of traffic has important implications when dealing with
the nowadays cloud-deployed VoIP services. Prediction techniques
are applied to anticipate the incoming traffic, for an efficient
distribution of the traffic in the system and allocation of resources.
The article looks in a critical manner at a series of machine
learning techniques. We namely compare and review (using real
VoIP data) the results obtained when using a Gaussian Mixture
Model (GMM), Gaussian Processes (GP), and an evolutionary-
like Interacting Particle Systems based (sampling) algorithm. The
experiments consider different setups as to verify the time variant
traffic assumption.

I. INTRODUCTION

Voice over IP (VoIP) is a technology for creating voice
communications and multimedia sessions over IP networks.
It is widely used as a solution instead of traditional Public
Switched Telephone Network (PSTN) systems due to cost
reduction, communication improvement, extended function-
ality, etc. VoIP furthermore allows using different modern
phone features, such as voicemails, conferencing, forwarding
or music on hold, etc. An important requirement of VoIP
providers is to ensure resource availability and to maintain
a voice quality level comparable to the one of a traditional
telephone system.

As a result of increased popularity of VoIP, voice traffic
is becoming complex. To cope with peaks of the requests,
overloading, load anomaly, resource availability etc. traffic
prediction is beginning to emerge. Understanding the call
model and predicting future events is highly important for
capacity planning, anomaly detection and intrusion attacks.
The arrival date of calls, their origin, destination, and duration
are examples of data that can be used to build a prediction
model, information usually stored in a Call Detail Records
(CDRs) database, which can be used as an input when building
such a model.

In this paper, we restrict our study to using an Interac-
tive Particle Systems (IPS) [10] based algorithm, a Gaussian
Mixture Model (GMM) [2] and a Gaussian Process (GP) [4].
They are able to provide a flexible modeling approach (IPS),
traffic shaping, determined by clients (GMM), and scalable so-
lutions with good prediction precision (GP). GPs approximate
distributions obtained by Artificial Neural Network when the
number of neurons tends to infinity for some specific cases
[1].

GMM is one of the most widely spread clustering and
density estimation methods. For the general case, a mixture
model is a parametric probability density function represented
as a weighted sum of component densities, which optimally fit
real unknown distribution of the data. A cluster, in this model,
can be mathematically represented by a Gaussian distribution
[3]. When it is used for prediction, GMM gives the probability
that a new value is generated from one of the Gaussian
components that naturally group some data.

GP is another powerfull tool in machine learning statistics
and one of the most important approaches for Bayesian learn-
ing. It relies on effective methods for placing a prior distri-
bution over a space of functions, generalizing the multivariate
Gaussian probability distribution. A GP is described by a mean
function and a positive semi-definite covariance function. The
use of Gaussian process models for prediction has become
very attractive in a wide range of areas and problems, e.g. in
geostatistics field.

In [9], the authors present the results of a predictive
analysis study on incoming traffic data, with results that allow
to outline different traffic patterns in a VoIP environment. With
respect to this specific study, we rely on the logs of a real-
life VoIP platform in order to test the proposed techniques. It
should be mentioned that the data used for the previous study
was generated during the delevopment phase of the MIXvoip
company. These captures traits describe a small number of
users, a limited service as well as only a marginal usage
of the hardware resources. Meanwhile, MIXvoip extended
its business and its coverage areas. Consequently, the traffic
profile is significantly different, from where the need of a more
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detailed study and more accurate algorithms, e.g. capable of
capturing moving trends or data structure changes.

We hereby propose to extend these results to new prediction
model that copes and adapts with the dynamic evolution of
requests, anticipates the computation requirements, and scales
resources as needed. One of the goals of this study is to
minimize the infrastructure costs, while considering cost and
energy-aware resource allocations.

The remainder of the paper is organized as follows. In
Section 2, related work on using GMM and GP for VoIP
is briefly introduced. In Section 3, information regarding the
preliminary work conducted within the scope of this research
is provided. In Section 4, new prediction model is described,
experiments and the obtained results are analyzed. Finally, in
Section 5, concluding remarks together with future directions
of the work are presented.

II. RELATED WORK

This section surveys a series of previous works in VoIP
traffic analysis, namely on the use of GMM classification
and GP for modeling and predicting characteristics of VoIP
calls. In [5], the authors present a GMM based text-dependent
system for speaker identification, with a minor impact on
the packet loss rate. Similar discussion of automatic speaker
recognition over VoIP can be found in [6]. The authors
study codec parameters and compressed packet streams over
VoIP considering Probabilistic Stochastic Histogram algorithm
with Vector Quantization Probabilistic Stochastic Histogram
(VQPSH), and Gaussian Mixture Model Probabilistic Stochas-
tic Histogram (GMMPSH).

The call traffic on VoIP networks under heavy network
conditions is modeled as a linear GP in [6]. The authors
provide an accurate (predictive) representation of different
traffic patterns. The performance of a VoIP system for speech
recognition at the receiver level, and a Gaussian algorithm
for vector quantization are presented in [7]. The authors use
matching Mel-Frequency Cepstral Coefficients features that
represent raw speech signal. In [8], a model for call holding
times that follow a Generalized Pareto Distribution along with
a fractional Gaussian Noise Model for aggregated VoIP traffic
are described.

In the previous studies, GMM and GP focus on a variety of
models and are used to shape VoIP calls characteristics. These
models consider speaker recognition for VoIP transmissions,
call duration and call holding times.

The goal of our paper is to present an approach to predict
the traffic during a time frame for shaping the future patterns
and use it for capacity planning. Different predictors such as,
Gaussian Mixture Models, Gaussian Processes including an
evolutionary algorithm, Interactive Particle System (IPS) are
presented and compared using real life data. We provide a
study how prediction models fit to the field and analyze their
deviations from real VoIP traffic behavior.

III. MOTIVATION AND PRELIMINARY STUDY

In this section, the motivation to conduct this study together
with the preliminary work for traffic shaping and a model
of the pattern prediction are presented. Anticipating the load

for a future time frame and proactively scaling the available
resources can be used to optimize the distribution of the load
and provider cost effectiveness. A VoIP system is composed by
different voice nodes that handle incoming and outgoing calls.
They communicate with a database, where the phone calls are
recorded, as shown in Fig. 1. The Call-Detail-Record database
stores information such as destination, prefix, duration, and
arrival date. We use it for statistical analysis in order to outline
the occurrence of peaks in the system along with a very low
usage of the voice nodes.

Fig. 1: Basic example of VoIP connectivity.

Due to the fact that, in our case, the VoIP customers are
small and medium size companies, the highest load appears
during weekdays and working hours. Fig. 2 (a), (b) show
two examples of call distribution during working hours and
weekdays. The ensuring availability of resources at the peak
during rush hours without overprovisioning them becomes
challenging.

(a) During working hours. (b) During working days

Fig. 2: Phone calls distribution examples.

In [9] is proposed an Interacting Particle System (IPS)
based algorithm which handles incoming traffic predictions in
a VoIP system. Past observations are used to predict the num-
ber of calls arriving in the system during a future time frame.
A single Gaussian model [11] is used to estimate parameters of
the algorithm. The initial population is composed by particles
that encode a mean vector and matrix sampled from a Wishart
distribution [12]. The particles evolve according to a transition
step. After they are perturbed, the likelihood of each particle is
calculated. This step can be seen as the equivalent of mutation
in an Evolutionary Algorithm (EA). The perturbed particle is
considered for the selection step if the likelihood is improved.

In the current study we extend the previously proposed
IPS by modifying the selection method by allowing only a
percentage of particles to survive for the future generation.
The perturbed particles are sorted by the likelihood values
(Algorithm1 - Step3) and those with a better likelihood than
Lthreshold will survive. Otherwise, they are replaced with a
particle chosen randomly from the set of the surviving particles
during that iteration. In this case, the old one is discarded on



the acceptance/rejection selection phase. This step is repeated
and values of the parameters that improve the likelihood are
recorded. The traffic for a new time frame is estimated by
considering either the particle with the best likelihood or by
calculating the weighted sum of the likelihoods of all particles
from the final population (Algorithm 1).

The intuitive genetic mutation-selection type mechanism
has been used in a diverse range of domains, e.g. rare event
simulations, and genetic algorithms. The proposed interactive
particle algorithm can be seen as a derived evolutionary
algorithm, where mutations and selections are applied without
considering crossover methods.

IV. MODELS, EXPERIMENTS AND RESULTS

All methods have been trained on three data sets, each
having two time intervals; the dimension of the space is d = 2.
The training set is a matrix with two columns that represent
data in two time intervals. The test set is the data shifted to the
time interval that is not used for training (Fig. 3). The output of
the algorithms is the predicted number of calls during a future
time frame. Different time frames (Table 1) and scenarios with
static and dynamic setups for the predictors are considered and
presented in the following.

Experimental Setup

Number of time frames Training sets Hours: 10 am/11 am
12 am/ 13 pm ; 20 pm/ 21 pm

Test set Hours: 10 am/11 am
12 am/ 13 pm ; 20 pm/ 21 pm

Number of days Training sets 594
Test set 249

Interactive Particle
System

Number of particles 1000
Dimension of space 2
Number of iterations
(perturbation step) 100

Gaussian Mixture
Model

Maximum number of
Gaussians for training 10

Number of iterations
for training 100

Gaussian Processes

Covariance function
(Matrn form) @covMaterniso

Likelihood function
(Gaussian) @likGauss

Mode exact
Number of evaluations

to perform 300

TABLE I: Input data set and parameters for IPS, GMM and
GP.

A. Static scenario

A number of N = 1000 particles are generated using
Interactive Particle System and each encodes a vector µ and
a matrix Σ. Using the input samples, the likelihood of each
particle is calculated (initial population). The perturbation step
is applied for a number of times and only a percentage (20%)
of particles will survive at each step(mutation - selection step).
The final population of the algorithm is used to calculate the
prediction by either considering it (weighted likelihood) or by
selecting the particle with the maximum likelihood.

Fig. 3: Data extraction - Training and validation set, values to
predict.

Algorithm 1 Interactive Particle System

Step 1 - Initial Population (size N ) of Particles
for i = 1→ N do

Generate Pi(µi,Σi),
Where µi mean vector of size d, from N (0, 1);
Wi(Σ, d, n), matrix sampled from Wishart distribution

with n degrees of freedom
Calculate likelihood Li = (2π)−N×d/2 × |Σ|−N/2 ×

exp
∑N
i=1

−(x−µ)T×Σ−1×(x−µ)
2

end for
return initial population

for k = 1→ steps do
Step 2 - Perturbation, mutation of the encoded parameters

for i = 1→ N do
Perturb the encoded vector Wi

Perturb µi and µnewi ← µ+val, val generated from N (0, 1)
Calculate new Sigma, Σnewi
Calculate Lnewi , likelihood with new Σnewi and µnewi

if Lnewi > Li then
Pi(µi,Σi)← Pi(µ

new
i ,Σnewi )

end if
end for

Step 3 - Selection of the particles for the next generation
Order particles based on likelihood. Select Lthreshold of the
particle at the position given by percentage of particles to
survive.

for i = 1→ N do
if Li ≥ Lthreshold then

add Pi to the list of surviving particles after
perturbation

else
Pi(µi,Σi) ← Pj(µj ,Σj), Pj chosen randomly

from the list of the particles that have survived the pertur-
bation.

end if
end for

end for
return final population

Step 4 - Prediction methods
Extract final population
if IPS −MaximumLikelihood then

Extract from final population Pj , where Lj = max(L)
Extract µj ,Σj that describe best the data
Calculate prediction : Zβ |Zα = z ∼ N (µc,Σc)

end if

if IPS −AverageLikelihood then
Use the weighted sum of the likelihood of each particle

from final population:

Zβ =

N∑
i=1

Zα×Li

Ltotal
end if
return prediction



In a second step, the Gaussian Mixture Model [14] is
trained with the same input samples. Formally, a GMM can
be described as a weighted sum of M component Gaussian
densities as given by the equation:
p(x) =

∑M
i=1 wi

1

2π
D
2 |Σi|

1
2
exp

{−1
2 (x− µi)′Σ−1

i (x− µi)
}

• µi, mean;
• covariance matrix Σi;
• mixture weight wi;
• where

∑M
i=1 wi = 1;

• x a D- dimensional continuous-valued data vector.
We use the Akaike Information Criterion (AIC) score to
measure the goodness and identify the best model out of a
series of models with an increasing number of analyzed time
intervals. The parameters given to the algorithm are the number
of components and the maximum number of iterations.

After the training step, the parameters of the GMM are
estimated using the maximum likelihood (ML) method. The
parameters expected to maximize the likelihood of the GMM,
are defined as p(X|λ) =

∏T
t=1 p(xt|λ), where T stands for

the sequence of training vectors with λ parameters of the best
GMM. At each iteration, the parameters are updated using an
expectation-maximization-approach (Algorithm 2).

Algorithm 2 Update for parameters of GMM - EM [15]

for i = 1→ iterations do
w̄i = 1

T

∑T
t=1 Pr(i|xt, λ), mixture weights;

µ̄i =
∑T
t=1 Pr(i|xt,λ)xt∑T
t=1 Pr(i|xt,λ)

, means;

σ̄i =
∑T
t=1 Pr(i|xt,λ)x2

t∑T
t=1 Pr(i|xt,λ)

− µ̄i, variances.
end for

We train and use the Gaussian Processes method to predict the
traffic over a future time frame. The Gaussian Processes are de-
fined by covariance function K with parameters that have to be
estimated. The covariance function of the Gaussian Process is a
function that shapes the similarity between two samples with,
k(x,x′) = E[f(x)f∗(x′)]. For the scope of our study, we
have opted for using a Matern kernel function, among others,
allowing to infere smoothness from the data. The Matern class
is defined by: kMatern(r) = 2`−ν

Γ(ν) (
√

2νr
` )νKν(

√
2νr
` ), with

r = |x−x′| and positive parameters ν, `, and a modified Bessel
function Kv [16]. The algorithm runs with the parameters:
training set, test set, number of iterations (300) and estimation
of the parameters (exact).

Often used in statistics to express accuracy and compare fitted
time series, the Mean Absolute Percentage Error (MAPE) is
calculated as: M = 1

N

∑N
i=1 |

A(i)−R(i)
A(i) |, with actual set A,

and the result R. MAPE has no restriction in terms of value
on the upper level and it is equal to zero when the fit is perfect.
The standard deviation of each classifier is shown in Table II.
We identify GP, as the best performing for the first data set
(10am - 11am) while GMM performs best on the second data
set (12am - 13 pm). For the last set of data considered (20pm
- 21pm) IPS-AL performs best.

The results obtained in the validation phase point out an
evolving trend inside the data. Thus, a dynamic predictor
capable of describing the time-changing structure of the data
is required. In addition, in order to (i) assess the validity of our

H10 am/ H11 am H12 am/ H13 pm H20 pm/ H21 pm

Classifiers MAPE
Value

Standard
Deviation

MAPE
Value

Standard
Deviation

MAPE
Value

Standard
Deviation

Interactive Particle
System Maximum

Likelihood
0.2283 0.1227 0.1623 0.0112 0.2441 0.0058

Interactive Particle
System Average

Likelihood
0.2335 0.1279 0.1644 0.0101 0.2432 0.0053

Gaussian Mixture
Model 0.0831 0.0030 0.1527 0.0142 0.3332 0.0274

Gaussian
Processes 0.0709 4.2345e-17 0.1544 8.4690e-17 0.2520 1.1292e-16

TABLE II: Mean Absolute Percentage Deviation and Standard
Deviation for each classifiers, in average, after 30 runs.

assumption and (ii) construct a rough lower bound predictor,
we consider a scenario where the full data set is shuffled
before being split into training and validation data. Such a
setup provides us an a priori knowledge on the number and
evolution of calls (at training phase). While such an approach
is not applicable in practice, it allows to construct a predictor
which better captures the overall structure of the data. We
will later use this predictor as a comparison basis for other
predictors, when discussing both the static and the dynamic
setups.

B. Static scenario with data shuffle

In this scenario the data is shuffled (Fig. 4) before spliting into
training and validation set (Fig. 3). The predictors presented in
the previous subsection are trained and validated in the same
manner (Table 1).

Fig. 4: Data shuffle before splitting into training and validation
set.

In Table III, MAPE and the Standard Deviation are presented
for this scenario. In this scenario, GMM performs best for two
different data sets (10am - 11am and 12pm - 13pm) while the
other three predictors (GP, IPS-AL and IPS-ML) give better
results on the 20pm - 21pm data set.

H10 am/ H11 am H12 am/ H13 pm H20 pm/ H21 pm

Classifiers MAPE
Value

Standard
Deviation

MAPE
Value

Standard
Deviation

MAPE
Value

Standard
Deviation

Interactive Particle
System Maximum

Likelihood
0.5815 0.3034 0.2183 0.0551 0.3641 0.0381

Interactive Particle
System Average

Likelihood
0.5979 0.3233 0.2227 0.0539 0.3630 0.0303

Gaussian Mixture
Model 0.1047 0.0016 0.1423 0.0108 0.4928 0.0219

Gaussian
Processes 0.1259 0 0.1921 5.6460e-17 0.3114 0

TABLE III: Mean Absolute Percentage Deviation and Standard
Deviation for each classifiers, in average, after 30 runs.



C. Dynamic setup scenario

In this section, a dynamic setup for the predictors is presented.
The training set is split and ordered into a collection of obser-
vations, each one being a record of the traffic that took place
during a time interval. For a number of observations Q and a
window size q, the predictors are trained for m = Q− q + 1
steps and m values are predicted(Fig. 5). At each iteration,
only one value is predicted along with the calculated error,
used for MAPE evaluation.

Fig. 5: Siliding window approach example.

IPS-ML and IPS-AL are trained and tested, as in the static
setup scenario (Subsection 4.1), for a number of iterations
m = 100. First, the N particles are generated and their likeli-
hoods are calculated. The perturbation and acceptance phases
are applied until the final population is resulted. Depending
on the chosen method (IPS - ML or IPS - AL), one value
is predicted. For a number of m − 1 times, these steps are
repeated. The results are stored and compared with the real
values.

GMM is trained with the first set of observations and the
parameters of the model with the best AIC score, are estimated.
In order to predict the first value, the parameters are updated
using an expectation-maximization-approach (Algorithm 2).
These steps are repeated for m− 1 times in order to complete
the prediction and calculate the errors.

The GP is trained 100 times with the first set of observations.
The first predicted value and the parameters of the GP are
calculated. After building the first GP, its parameters together
with the second set of observations are used to build the second
GP. For m − 1 steps, the GPs are trained only 10 times, and
the predicted values are calculated along with the errors given
by the prediction.

In Table IV, the errors of the predictors in the dynamic sce-
nario, MAPE and Standard deviation are presented. Compared
with the previous scenarios, two predictors (GMM and GP)
are improved.

H10 am/ H11 am H12 am/ H13 pm H20 pm/ H21 pm

Classifiers MAPE
Value

Standard
Deviation

MAPE
Value

Standard
Deviation

MAPE
Value

Standard
Deviation

Interactive Particle
System Maximum

Likelihood
0.5105 0.0250 0.2586 0.0193 0.2857 0.0122

Interactive Particle
System Average

Likelihood
0.5024 0.0242 0.2502 0.0193 0.2847 0.0106

Gaussian Mixture
Model 0.0857 0.0083 0.1487 0.0123 0.3389 0.0412

Gaussian
Processes 0.0684 2.8230e-17 0.1238 4.2345e-17 0.2448 5.6460e-17

TABLE IV: Mean Absolute Percentage Deviation and Standard
Deviation for each classifiers, in average, after 30 runs.

An ANOVA test [13] is used to validate the results by appling
unpaired multiple comparisons between the predictors. In
Table II, Table III and Table IV, the average of the errors

of the predictors, after 30 iterations, is presented. The errors
given by each predictor are the independent samples given
as input for the statistical test. In the static case, GMM and
GP performs better than IPS-AL and IPS-ML for the data sets:
10am - 11am and 12pm - 13pm (Fig. 6(a), (b)). In this scenario,
for the 20pm - 21pm (Fig.6 (c)) data set GMM gives the lowest
quality solution in terms of the prediction.

In the static scenario with shuffled data GMM and GP perform
better than IPS-AL and IPS-ML for the data set: 10am - 11am
(Fig. 7(a)). For the data set 12pm - 13pm (Fig. 7(b)) GMM
works better than all the other predictors along with GP, while
for the 20pm - 21pm data set GP gives the best solution
followed by IPS-ML and IPS-AL (that are not significantly
different), and GMM that performs worst (Fig. 7(c)).

For the dynamic scenario, the results of the test show that
GP works best followed by GMM for the data sets: 10am -
11am (Fig. 8(a)) and 12pm - 13pm (Fig. 8 (b)), and the results
given by IPS-AL are not signficantly different from IPS-ML.
For the last scenario and the 20pm -21pm (Fig. 8(c)) data set
the predictor that gives best solution in terms of quality is
GP followed by IPS-AL and IPS-ML that are not significantly
different and GMM that performs worst.

V. CONCLUSIONS

In this paper, we present and study different prediction models
built for a real Voice over IP environment. Predicting the
incoming voice traffic during a time frame is used for shaping
the future patterns and capacity planning, can be used for
the improvement of the VoIP qualtiy. Due to the dynamic
evolution of requests, decisions concerning the distribution of
the computational resources in a VoIP environment must be
taken dynamically as well. The system can adapt and scale in
order to ensure availabilty as the most important requirement
in providing quality of service. The predictors considered in
our study are Gaussian Mixture Models, Gaussian Processes
and Interactive Particle System (IPS), trained and tested under
different scenarios.

Our work includes traffic shaping and prediction. The be-
haviour of users that place VoIP calls is outlined. We pro-
vide insights on how particle algorithms can be used for
optimization in conjunction with implicit learning models,
strategies and scenarios. An overview the previous work where
Gaussian Mixture Models and Gaussian Processes are used
for VoIP calls characteritics shaping, such as call duration and
call holding times, is provided. None of the previous work
considers Gaussian Mixture Models or Gaussian Processes for
modelling the amount of incoming calls placed during a time
frame in a VoIP system.

For future work, we will extend the use of particle algorithms
that will not only provide load estimation information but
also act as actuators. The prediction models will be integrated
with highly efficient load-balancing algorithms, that take into
account the usage of resources and energy consumption.
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(a) Data set 10am - 12am. (b) Data set 12pm - 13pm. (c) Data set 20pm - 21pm.

Fig. 6: ANOVA test for the results given by the predictors in Static setup scenario.

(a) Data set 10am - 12am. (b) Data set 12pm - 13pm. (c) Data set 20pm - 21pm.

Fig. 7: ANOVA test for the results given by the predictors in Static setup scenario with shuffled data.

(a) Data set 10pm - 11pm. (b) Data set 12pm - 13pm. (c) Data set 20pm - 21pm.

Fig. 8: ANOVA test for the results given by the predictors in Dynamic setup scenario.
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