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Solution of Two-dimensional Linear and Nonlinear2

Unsteady Schrödinger Equation using “Quantum3

Hydrodynamics” Formulation with a MLPG Collocation4

Method5

V. C. Loukopoulos1 and G. C. Bourantas2
6

Abstract: A numerical solution of the linear and nonlinear time-dependent Schrö-7

dinger equation is obtained, using the strong form MLPG Collocation method.8

Schrödinger equation is replaced by a system of coupled partial differential equa-9

tions in terms of particle density and velocity potential, by separating the real and10

imaginary parts of a general solution, called a quantum hydrodynamic (QHD) equa-11

tion, which is formally analogous to the equations of irrotational motion in a clas-12

sical fluid. The approximation of the field variables is obtained with the Moving13

Least Squares (MLS) approximation and the implicit Crank-Nicolson scheme is14

used for time discretization. For the two-dimensional nonlinear Schrödinger equa-15

tion, the lagging of coefficients method has been utilized to eliminate the non-16

linearity of the corresponding examined problem. A Type-I nodal distribution is17

used in order to provide convergence for the discrete Laplacian operator used at the18

governing equation. Numerical results are validated, comparing them with analyti-19

cal and numerical solutions.20

Keywords: MLPG Collocation Method, Moving Least Squares, Schrödinger Equa-21

tion, Quantum Hydrodynamics.22

1 Introduction23

The meshless (or meshfree) methods are being actively developed as a powerful24

numerical tool for various engineering and physical applications. The primary rea-25

son for the significant interest in meshless computational procedures is that most of26

the established numerical techniques, such as the Finite Element Method (FEM),27

the Finite Volume Method (FVM), the Finite Difference Method (FDM) and the28
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Spectral Method (SP) require a mesh. The automatic generation of a good quality29

mesh poses a significant problem in the analysis of practical engineering systems.30

Moreover, the simulation and the analysis of certain types of problems (like dy-31

namic crack propagation, pulsatile and transient flows) often require an expensive32

remeshing operation. Meshless techniques overcome these difficulties, associated33

with the meshing and re-meshing procedures, by eliminating the mesh altogether.34

Interpolation is performed in terms of nodal points scattered at the spatial domain35

using functions having compact support. A weighted residual technique is used to36

generate the discrete set of equations corresponding to the governing partial differ-37

ential equations [Liu (2003), Liu and Gu (2005)].38

Since the meshless methods emerged as a potential alternative for solutions in com-39

putational mechanics, a variety of such approaches have appeared. Over the last40

decades, several meshfree methods have been proposed since the prototype of the41

meshfree methods, the Smoothed Particle Hydrodynamics (SPH), was born [Gin-42

gold and Monaghan (1977)]. These methods include the Diffuse Approximation43

Method (DAM) [Nayroles, Touzot and Villon (1991)], that is closely related to44

the Moving Least Squares method; the Diffuse Element Method (DEM) [Nayroles,45

Touzot and Villon (1992)], developed by the Moving Least Squares approximation,46

and the Element Free Galerkin method (EFG) [Lu, Belytschko and Gu (1994)];47

the Reproducing Kernel Particle Method (RKPM) [Liu, Jun and Zhang (1995),48

Liu, Jun, Li, Adee and Belytschko (1995)], which is used to improve the SPH49

approximation; the Partition of Unity Finite Element Method (PUFEM) [Melenk50

and Babuska (1996)]; the hp-Clouds [Duarte and Oden (1996)]; the Moving Least-51

Square Reproducing Kernel Method (MLSRK) [Liu, Li and Belytschko (1996)];52

the meshless Local Boundary Integral Equation Method (LBIE) [Zhu, Zhang and53

Atluri (1998)]; the Meshless Local Petrov–Galerkin method (MLPG) [Atluri, Kim54

and Cho (1999), Atluri and Shen (2002)]; the Finite Point method (FPM) [Onate,55

Idelsohn, Zienkiewicz and Taylor (1995)]; the meshless point collocation methods56

(MPC) [Aluru (2000)], and more.57

The present paper is referred to the numerical computation of the two-dimensional
(2D) time-dependent Schrödinger equation. Linear Schrödinger equation is written
as

−i
∂ψ

∂ t
=

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 +V (x,y)ψ, (x,y) ∈Ω, 0≤ t ≤ T (1a)

in some continuous domain with suitable initial Dirichlet and Neumann boundary
conditions and an arbitrary potential function V (x,y). The corresponding initial
condition is given by

ψ (x,y,0) = h(x,y,0) , (x,y) ∈Ω (1b)
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and the boundary conditions by

ψ (x,y, t) = s(x,y, t) , (x,y) ∈ ∂Ω
D, 0≤ t ≤ T (1c)

∂ψ

∂nnn
(x,y, t) = g(x,y, t) , (x,y) ∈ ∂Ω

N , 0≤ t ≤ T (1d)

where i =
√
−1 is the unit imaginary number, T is the final time, h, s and g are58

known functions, and ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD and ∂ΩN are the Dirichlet59

and the Neumann parts of the boundary ∂Ω and nnn is the unit outward vector to ∂Ω.60

This type of partial equation models many physical problems and find applications
in quantum mechanics and various quantum dynamics calculations [Arnold (1998),
Hajj (1985), Ixaru (1997)], in electromagnetic wave propagation and the design
of certain optoelectronic devices [Levy, (2000), Huang, Xu, Chu and Chaudhuri
(1992)], and finally, in underwater acoustics [Tappert (1977)]. The time-dependent
Schrödinger equation can be represented in a hydrodynamical form, called a quan-
tum hydrodynamic (QHD) equation, a formulation which is analogous to the equa-
tions of irrotational motion in a classical fluid [Gasser, Lin and Markowich (2000),
Kalita, Chhabra and Kumar (2006)]. In this formulation, system (1) is replaced by
a system of partial differential equations in terms of particle density and velocity
potential, by separating the real and imaginary parts of a general solution

− ∂u
∂ t

= ∇
2
υ +V υ ,

∂υ

∂ t
= ∇

2u+Vu,
(2)

obtained by expressing ψ as ψ = u+ iυ , where u and υ are real-values functions.61

There have been numerous attempts to develop numerical schemes for equations (1)62

or the system (2). In [Simos (2008), Simos (2007)] trigonometrically-fitted meth-63

ods were utilized for the numerical solution of the Schrödinger equation. The au-64

thors of [Kalita, Chhabra and Kumar (2006), Subasi (2002)] studied models similar65

to the present problem using finite-difference techniques. Finite-difference meth-66

ods are well-known as the first technique for solving partial differential equations67

(PDEs). In [Dehghan (2002)] explicit finite difference methods were used for solv-68

ing the governing equations, while in [Dehghan (1999)] the need of using a large69

amount of CPU time in implicit finite-difference schemes limit the applicability of70

these methods. Furthermore, these methods provide the solution of the problem71

on mesh points only, and the accuracy of the techniques is reduced in non-smooth72

and non-regular domains. Thus, alternative computational methods, such as global73

Radial Basis Functions [Dehghan and Shokri (2007)], were used for the numerical74

solution of the Eq. (1).75
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In the present paper we investigate a different approach to find the solution of linear76

and nonlinear Schrödinger equation. We present a numerical scheme to solve the77

two-dimensional (2D) time-dependent Schrödinger equation using the Collocation78

method, while we approximate the solution directly using Moving Least Squares.79

Actually, the meshless point collocation (MPC) method is a case of MLPG when80

the collocation Dirac’s Delta function is used as the test function [Atluri and Shen81

(2002)]. To test the robustness, the accuracy and the efficiency of the proposed82

scheme, it is applied to four examples having analytical solutions, with our results83

exhibiting very good agreement with the analytical ones. Additionally, our results84

are compared with a meshless collocation and radial basis function method using85

multiquadrics (MQ) and the Thin Plate Splines (TPS). The layout of the paper is86

as follows. In Section 2 we present the methodology for the implementation of87

the Moving Least Squares approximation for the solution of QHD equations. In88

Section 3 we apply this technique on the two-dimensional (2D) time-dependent89

Schrödinger equation. The results of the numerical experiments are presented in90

Section 4, while Section 5 is dedicated to a brief conclusion.91

2 Moving Least Squares Approximation92

2.1 Methodology93

In the moving least-squares technique, the approximation uh (xxx) is expressed as
the inner product of a vector of the polynomial basis, ppp(xxx) and a vector of the
coefficients, aaa(xxx)

uh (xxx) = pppT (xxx)aaa(xxx) , (3)

where ppp(xxx) ∈ RRRm, aaa(xxx) ∈ RRRm and m is the number of monomials in the polynomial94

basis (in the present study m=6). The local character of the moving least-squares95

(MLS) approximation can be viewed as a generalization of the traditional least-96

squares approximation, in which the vector aaa is not a function of xxx.97

Equation (3) is commonly referred to as the global least-squares approximation. In
addition, there exists a unique local approximation associated with each point in the
domain. In order to determine the form of aaa(xxx), a weighted discrete error norm,

J (xxx) =
n

∑
I=1

wI (xxx)

[
m

∑
j=1

pT
j (xxxI)aaa(xxx)−ui

]2

(4)

is constructed and sequentially minimized. Here, wI (xxx) denotes the weight func-98

tion, wI (xxx)≡ w(xxx− xxxI), associated with node I, and the quantity in brackets is the99

difference between the local approximation at node I and the data at nodes I, that100
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is ui, and n is the number of nodes in the support of wI (xxx). The minimization of101

Eq.(4) with respect to aaa(xxx) determines aaa(xxx). The local approximation associated102

with point xxx is used only in the minimization process and is equivalent to the global103

approximation at the single point xxx. Compact support of the weight functions gives104

the moving least-squares method its local character.105

2.2 Shape functions and their derivatives106

The minimization of Eq. (4),

∂J (xxx)
∂aaa(xxx)

= 0 (5)

results in the linear system

AAA(xxx)aaa(xxx) = BBB(xxx)Us, (6)

where Us is a vector containing the nodal data, UT
s = [u1,u2, ...,un], and

A(xxx) =
n

∑
I=1

wI (xxx)p(xxxI) pT (xxxI) , (7)

B(xxx) =
[

w1 (xxx) p(xxx1) w2 (xxx) p(xxx2) ... wn (xxx) p(xxxn)
]
, (8)

where AAA ∈ RRRm×m and BBB ∈ RRRm×n. The matrix AAA must be inverted at every sam-
pling point. Substitution of the solution of (Eq.(6)) into the global approximation
(Eq.(3)), completes the least-squares approximation,

uh (xxx) = pT (xxx)A−1 (xxx)B(xxx)︸ ︷︷ ︸
ϕ(x)

Us. (9)

Here, the spatial dependence has been lumped into one row matrix, ϕ (xxx) and, there-
fore, the approximation takes the form of a product of a matrix of shape functions
with a vector of nodal data. Derivatives of the shape functions may be calculated
by applying the product rule to

ϕϕϕ = pppT AAA−1BBB. (10)

In order to obtain the spatial derivatives of the approximation function, uh (xxx), it is
necessary to obtain the derivatives of the MLS shape functions, ϕi (xxx),

∂

∂x j
uh (xxx) =

∂

∂x j

n

∑
i=1

ϕi (xxx)ui =
n

∑
i=1

{
∂

∂x j
ϕi (xxx)

}
ui, x j = x,y,z. (11)
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The derivative of the shape function is given as

∂φ (xxx)
∂x j

=
∂
(

pppT AAA−1BBBi
)

∂x j
=

∂ pppT

∂x j
AAA−1BBBi + pppT ∂

(
AAA−1)

∂x j
BBBi + pppT AAA−1 ∂BBBi

∂x j
, x j = x,y,z

(12)

where
∂(AAA−1)

∂x j
=−AAA−1 (xxx)AAA, j (xxx)AAA−1 (xxx). Regarding the second order derivative of

the unknown function we get

∂ 2ϕ (x)
∂x2

j
=

∂

∂x j

(
∂ϕ (x)

∂x j

)
=

∂

∂x j

(
∂ pppT

∂x j
AAA−1BBBi + pppT ∂

(
AAA−1)

∂x j
BBBi + pppT AAA−1 ∂BBBi

∂x j

)

=
∂ 2 pppT

∂x2
j

AAA−1BBBi +
∂ pppT

∂x j

∂
(
AAA−1)

∂x j
BBBi +

∂ pppT

∂x j
AAA−1 ∂BBBi

∂x j
+

+
∂ pppT

∂x j

∂
(
AAA−1)

∂x j
BBBi + pppT ∂ 2

(
AAA−1)

∂x2
j

BBBi + pppT ∂
(
AAA−1)

∂x j

∂BBBi

∂x j
+

+
∂ pppT

∂x j
AAA−1 ∂BBBi

∂x j
+ pppT ∂

(
AAA−1)

∂x j

∂BBBi

∂x j
+ pppT AAA−1 ∂ 2BBBi

∂x2
j
,

(13)

where x j = x,y,z and
∂ 2(AAA−1)

∂x2
j

=− ∂(AAA−1)
∂x j

AAAAAA−1−AAA−1 ∂AAA
∂x j

AAA−1−AAA−1AAA
∂(AAA−1)

∂x j
.107

2.3 Weight Function108

The weight function is non-zero over a small neighborhood of xxxi, called the support
domain of node i. The choice of the weight function W (xxx− xxxi) affects the resulting
approximation uh (xxxi) inherently. In the present paper a Gaussian weight function
is used [Liu (2003), Bourantas, Skouras and Nikiforidis (2009)], yet the support
domain does not have a standard point density value. Instead, a constant number of
nodes are used for the approximation of the field function.

W (xxx− xxxi)≡W (d) =

{
e−
(

dI
a

)2

0

}
, (14)

where I = 1,2,3, ...,q are the nodes that produce the support domain of node xi,109

and d = |xxx−xxxi|
a2

0
with a0 a prescribed constant (often a0 = 0.2).110
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3 Collocation formulation111

3.1 General description112

The Meshless Point Collocation method is a MFree “strong-form” description me-113

thod. The “strong-form” of the governing equations and the boundary conditions114

are used and discretized by collocation techniques. The aforementioned formula-115

tions possess the following attractive advantages. They are truly meshless and the116

implementing procedure is straightforward, while the algorithms and the imple-117

mentation can be kept simple, particularly when handling problems with Dirich-118

let boundary conditions solely. Under these conditions, these methods are highly119

efficient computationally, even with the application of polynomial approximation120

functions, and the solution can be systematically obtained with increased accu-121

racy, compared to FEM, FVM, FDM, or other computational methods. In general,122

MFree strong-form methods may still suffer from some local stability and accu-123

racy issues, depending on the problem [Liu and Gu (2005)]. However, these local124

restrictions are now systematically avoided with the utilization of specific nodal125

distributions (Type-I) and proper local point cloud refinement procedures, in ac-126

cordance with [Bourantas, Skouras and Nikiforidis (2009), Kim and Liu (2006)],127

even for natural or mixed type boundary conditions. The robustness of these meth-128

ods has, however, been an issue especially for scattered set of points. The stability129

and the convergence of the collocation methods are ensured by the resulting lin-130

ear or linearized algebraic system. If the latter possesses some attractive features131

then both the stability and the convergence are ensured. In fact, the robustness of132

the collocation methods can be improved by understanding the possible sources of133

errors. Specifically, the errors could arise because of the way the meshless approx-134

imation functions and their derivatives have been constructed for a scattered point135

of points or because of the way the discretization of the governing equations has136

been performed. When the meshless approximation functions and its derivatives do137

not satisfy certain conditions (referred to as the positivity conditions) for a given138

point distribution, it is possible to get large numerical errors when using colloca-139

tion methods. To satisfy the positivity conditions, the weighting function used in140

the construction of the approximation functions can play an important role. These141

studies suggest that positivity conditions can be important when using meshless142

collocation methods. Additionally, the convergence of the discrete Laplacian oper-143

ator for Dirichlet boundary conditions has been proved when a regular grid (named144

Type-I) is used. Thus, both the stability and the convergence of the meshless point145

collocation method, using MLS approximation and regular nodal distribution are146

ensured.147

Collocation method using MLS may be considered as a special case of the “weak–148
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form” methods [Atluri, (2004)]. Moreover, this collocation method may be consid-149

ered as a “weak-solution”, with a Dirac delta function as the test (weight) function150

[Atluri, Liu and Han (2006)]. The weighted residual method provides a flexible151

mathematical framework for the construction of a variety of numerical solution152

schemes for the differential equations arising in the field of both science and en-153

gineering. Its application, in conjunction with the Moving Least Square (MLS)154

approximation method, yields powerful solution algorithms for the governing equa-155

tions.156

3.2 Time-dependent Meshless Point Collocation method157

The collocation scheme using the Moving Least Squares approximation used in the158

present work and applied for the spatial discretization of the unsteady homogeneous159

diffusion equation will be discussed next, along with the explicit Euler, θ -weighted160

time-stepping scheme used for temporal discretization.161

Consider the governing equations of the unsteady problem

−∂u
∂ t

= ∇
2
υ +V υ , (15)

∂υ

∂ t
= ∇

2u+Vu, (16)

with the aforementioned boundary and initial conditions. By the MLS approxima-

tion one gets u(xxx, t) =
N
∑

i=1
Φi (xxx)ui (t)≡ΦΦΦUUU s for the unknown function, uq (xxx, t) =

N
∑

i=1

∂Φi(xxx)
∂q ui (t)≡ΦΦΦqUUU s for the partial x,y derivative and uqq (x, t)=

N
∑

i=1

∂ 2Φi(x)
∂q2 ui (t)≡

ΦqqUs the second x,y partial derivative. Additionally, we set nd as the number of
nodes in the interior, nb as the number of nodes on the boundary, and the final
number of nodes as N (N = nd +nb). The first equation, Eq. (15) can be written as

∂u
∂ t

+
(
∇

2
υ +V υ

)
= 0. (17)

From the notation described above and using the Euler’s θ -weighted time-stepping
scheme for temporal discretization, for the interior nodes one gets

Φd
un+1−un

δ t +θ
((

Φd,xx +Φd,yy
)

υn+1 +V υn+1
)
+

+(1−θ)
((

Φd,xx +Φd,yy
)

υn +V υn
)
= 0.

(18)

Multiplying both parts by δ t one gets

Φdun+1−Φdun +θδ t
((

Φd,xx +Φd,yy
)

υ
n+1)+θδ t

(
V υ

n+1)+
+(1−θ)δ t

((
Φd,xx +Φd,yy

)
υ

n)+(1−θ)δ t (V υ
n) = 0

(19)
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In matrix notation, for all points, incorporating the boundary conditions at nb bound-
ary nodes one has[

Φd θδ t
(
Φd,xx +Φd,yy +V

)
GV Φb 0

][
un+1

υn+1

]

=

[
Φd −(1−θ)δ t

(
Φd,xx +Φd,yy +V

)
0 0

][
un

υn

]
+

[
0

gn+1
1

]
, (20)

where GV is the operator defining the boundary conditions for velocity (Dirichlet162

type on ∂Ω).163

These equations can be written in a more compact manner by setting

HHH+
A =

[
Φd θδ t

(
Φd,xx +Φd,yy +V

)
GV Φb 0

]
,

HHH−A =

[
Φd −(1−θ)δ t

(
Φd,xx +Φd,yy +V

)
0 0

]
and FFFA =

[
0

gn+1
1

]
,164

where HHH+
A ∈ RRRN×N , HHH−A ∈ RRRN×N , FFFA ∈ RRRN×1 and 0 ∈ RRRnd×1.165

Regarding the second Eq. (16) and following the same procedure described for Eq.
(15) one can derive (in matrix notation)[

θδ t
(
−Φd,xx−Φd,yy−V

)
Φd

0 GBΦb

][
un+1

υn+1

]

=

[
−(1−θ)δ t

(
−Φd,xx−Φd,yy−V

)
Φd

0 0

][
un

υn

]
+

[
0

gn+1
2

]
, (21)

where GB is the operator defining the boundary conditions for the induced magnetic
field on ∂Ω. Once again, the above equations can be written in more compact form
by setting

HHH+
B =

[
θδ t

(
−Φd,xx−Φd,yy−V

)
Φd

0 GBΦb

]
,

HHH−B =

[
−(1−θ)δ t

(
−Φd,xx−Φd,yy−V

)
Φd

0 0

]
,

and FFFB =

[
0

gn+1
2

]
,166
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where HHH+
B ∈ RRRN×N , HHH−B ∈ RRRN×N and FFFB ∈ RRRN×1.167

The final system of the QHD coupled partial differential equations can be written
as[

HHH+
A

HHH+
B

][
un+1

υn+1

]
=

[
HHH−A
HHH−B

][
un

υn

]
+

[
FFFA

FFFB

]
. (22)

Finally, setting

uuun =

[
un

υn

]
, FFF =

[
FFFA

FFFB

]
, QQQ+ =

[
HHH+

A
HHH+

B

]
, QQQ− =

[
HHH−A
HHH−B

]
,

the discretized PDEs of QHD flow are summed as

uuun+1 =
(
QQQ+
)−1 (QQQ−uuun +FFF

)
, (23)

where QQQ+ ∈ RRR2N×2N , QQQ− ∈ RRRN×2N and FFF ∈ RRR2N×1.168

4 Numerical experiments169

In order to examine the validity and the effectiveness of the proposed scheme,170

four representative case studies were examined [Dehghan and Shokri (2007), De-171

hghan, and Mirzaei (2008), Dehghan, and Mirzaei (2008)]; thee cases for the linear172

Schrödinger equation with and without the potential function present, and a fourth173

one for nonlinear Schrödinger equation.174

Example 1175

Initially, we consider the case with potential V = 0 at the Schrödinger equation,
in the spatial domain (0,1)× (0,1) and initial conditions [Dehghan, and Mirzaei
(2008)]

ψ (x,y,0) = ei(x+y),

which generates the exact solution

ψ (x,y, t) = ei(x+y−2t).

The Dirichlet boundary conditions were extracted from the analytical solution.176

Table 1 presents the relative error of both real and imaginary parts, defined as177

ε =
‖unum−uexact‖2
‖uexact‖2

, for t = 5 and t = 20 sec. The meshless point method with MLS178

approximation depends on several parameters that have to be chosen properly in179

order to achieve convergence and accuracy. These parameters include the proper180
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nodal distribution, the number of nodes in the support domain, and the user-defined181

variables used in the weight function. For our investigation purposes we use a regu-182

lar nodal distribution of Type-I [Kim and Liu (2006)], which ensures the fulfillment183

of the so-called positivity conditions [Jin, Li and Aluru (2004)]. Additionally, we184

set the user-defined parameter α0 at the weight function to be α0 = 0.2, the number185

of nodes in the support domain 10, and time step dt = 0.05. As pointed out else-186

where [Bourantas, Skouras and Nikiforidis (2009)], when the number of nodes in187

the total domain is increased, the accuracy is improved. This also is depicted at the188

Table 1.189

The MLS approximation is obtained by a special least-squares method [Liu and190

Gu (2005)]. The function obtained by the MLS approximation is a smooth curve191

(or surface), which does not pass through the nodal values inherently. Therefore,192

the MLS shape functions do not, in general, satisfy the Kronecker delta condition.193

Thus, when the nodes in the support domain increase, the Gaussian weight func-194

tion loses its local character (delta function property), resulting in truncated errors195

which decrease the accuracy of the numerical results. Thus, in Table 2, we present196

the dependence of the accuracy from the number of nodes in the support domain.197

To do that, we used a constant grid of 31× 31 nodes and altered the number of198

nodes at the support domain. The results obtained show the very good accuracy of199

the proposed scheme when the number of the nodes in the support domain is kept200

small. Moreover, in Fig. 1, plots are presented for numerical and exact solutions201

for the real and imaginary part at t = 20, using a 21×21 regular grid and 10 nodes202

in the support domain.203

Table 1: Relative errors at t = 5 and t = 20for different grids, dt = 0.05 for support
domain 10.

t = 5 t = 20
Grid Real Imaginary Real Imaginary
11x11
16x16
21x21
26x26
31x31

7.6981E-05
2.2556E-05
8.7172E-06
5.8460E-06
5.4051E-06

1.2284E-04
6.7048E-05
4.8229E-05
3.9876E-05
3.5865E-05

1.6446E-05
1.5732E-04
1.1227E-04
7.9893E-05
5.9303E-05

2.9136E-04
9.3423E-05
3.6805E-05
1.7957E-05
1.4117E-05

Example 2204

As a second example, we consider the Schrödinger equation in the spatial domain
(0,1)× (0,1), and with potential function [Dehghan and Shokri (2007), Dehghan,
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Table 2: Relative errors at t = 5 and t = 20 for different number of nodes in the
support domain, dt = 0.05.

t = 5 t = 20
Sup. Domain Real Imaginary Real Imaginary
10
15
20
25
30
35

5.4051E-06
7.1039E-05
6.3606E-05
6.2948E-04
5.3568E-03
1.5133E-02

3.5865E-05
7.1072E-05
1.8795E-05
1.9208E-03
7.4155E-03
3.0736E-02

5.9303E-05
5.9706E-05
2.5153E-04
2.2634E-03
6.9545E-03
3.0478E-02

1.4117E-05
1.4208E-05
7.6710E-05
8.1771E-04
2.8022E-03
1.2842E-02

Figure 1: Plots of numerical and exact solutions for the real and imaginary part at
t = 20, using a 21×21 regular grid and 10 nodes in the support domain.

and Mirzaei (2008)]

V (x,y) = 3−2tanh2 x−2tanh2 y,

Initial and boundary conditions are defined as

ψ (x,y,0) =
i

cosh(x)cosh(y)
, 0≤ x,y≤ 1

and

ψ (0,y, t) =
ieit

cosh(y)
, ψ (1,y, t) =

ieit

cosh(1)cosh(y)
,

ψ (x,0, t) =
ieit

cosh(x)
, ψ (x,1, t) =

ieit

cosh(x)cosh(1)
.
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The analytical solution is given by

ψ (x,y, t) =
ieit

coshxcoshy
.

Table 3 presents the maximum absolute error for the real and the imaginary parts205

of the solution at different times up to t = 1, using meshless point collocation206

method with MLS approximation. For comparison purposes, numerical results are207

also presented using meshless collocation method with global Radial Basis Func-208

tions approximation using multiquadrics (MQ) and thin plate splines (TPS) respec-209

tively [Dehghan and Shokri (2007)]. These results were obtained for dx = dy =210

0.1, and dt = 0.001. The maximum relative error, ε , defined as ε = Max(x,y)∈Ω211 (
|uexact(x,y,t)−uapproximate(x,y,t)|

|uexact(x,y,t)|

)
, was also reported. The total number of nodes was212

121 (11‘×11), the number of nodes in the support domain was set to 10, ensuring213

the inversion of the moment matrix, A(xxx), and the parameter α0 was set to α0 = 0.2214

[Liu (2003)].215

At Table 4 the CPU time (in seconds) is presented, in order to demonstrate the216

efficiency of the meshless point collocation method. The shape functions are not217

pre-defined, and they must be constructed before the numerical solution of the re-218

sulting algebraic system. Thus, in our in-house code, the numerical procedure219

contains two parts; first comes the construction of the shape functions and, then,220

the solution of the resulting linear system.221

Figure 2: Plots of numerical and exact solutions for the real and imaginary part at
t = 1, using a 11×11 grid.

In Fig. 2 the graphs of the real part and the imaginary parts of the numerical and222

the analytical solutions using MLS are shown at time t = 1, with dx = dy = 0.1,223
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Table 3: Maximum absolute error of multiquadrics and thin plate spline based
scheme at different times with dx = dy = 0.1, dt = 0.001 and c = 0.7 for MQ.
For every value of t, the first and second rows of data correspond to the use of MQ,
TPS as the radial basis function respectively and the third for the MPC.

Maximum absolute error
t Real Imaginary
0.1
0.3
0.5
0.7
1.0

MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS

2.4407E-05
7.8895E-05
1.4644E-04
2.9466E-05
1.0368E-05
1.3317E-04
2.7468E-05
7.7545E-05
8.3716E-05
2.5495E-05
8.9137E-05
1.5182E-05
2.9444E-05
1.0626E-04
1.5138E-04

2.9974E-05
9.8635E-05
1.5220E-04
2.3861E-05
8.6876E-05
9.8297E-05
3.4044E-05
9.1676E-05
1.9683E-04
1.8694E-05
7.7454E-05
1.7088E-05
2.4222E-05
9.3425E-05
9.5315E-05

Table 4: CPU time in seconds for shape construction and solution of the resulting
transient, linear system.

nodes Shape Functions (sec) Linear system (sec)
121
441
961
1681

0.53125
1.90625
3.78125
6.9375

9.54687
35.98437
108.01562
282.06250
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dt = 0.001. Note that there is no essential divergence between the exact solution224

and the numerical solution in Fig. 2, for the given accuracy.225

One can notice that, for coarse grids, as in the case of 121 nodes, the numerical re-226

sults obtained by the meshless point collocation with MLS approximation are less227

accurate than those obtained by the global multiquadrics Radial Basis Function.228

Although full-domain RBF methods are highly flexible and can exhibit high-order229

convergence rates [Madych and Nelson (1990)], in their basic implementation the230

fully-populated matrix systems produced lead to poor numerical conditioning as231

the size of the dataset increases. This problem is described by Schaback [Schaback232

(1993)] as the “uncertainty relation”, in which better conditioning is associated233

with worse accuracy, and worse conditioning is associated with improved accuracy.234

With increasingly large datasets and increasingly flat basis functions, this problem235

becomes more pronounced. Thus, global RBF are not appropriate for real world236

applications, were the number of the degrees of freedom (nodes) are large. On237

the other hand, MLS approximation, being a localized-type approximation, uses a238

small number of neighboring nodes for interpolation. This makes the MLS approx-239

imation more suitable for many applications arising in science and engineering.240

Furthermore, the small number of nodes used makes the method computationally241

time and memory saving. This is evident at Table 5 where doubling the nodal dis-242

tribution density increases the accuracy of the numerical solution by an order of243

magnitude, while the computational efficiency of the scheme is retained.244

Table 5: Absolute and relative errors at different times for dx = dy = 0.05 and
0.025, and dt = 0.001.

Maximum absolute error Maximum relative error
t Real Imaginary Real Imaginary
0.1
0.3
0.5
0.7
1.0

dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025

3.6969E-05
8.6811E-06
3.9436E-05
9.4746E-06
2.3815E-05
7.6615E-06
4.2027E-05
9.9946E-06
2.5305E-05
6.1169E-06

3.6482E-05
9.0573E-06
2.9388E-05
7.6511E-06
4.1528E-05
1.0489E-05
1.8415E-05
4.7105E-06
3.4800E-05
9.7405E-06

1.6920E-04
4.3579E-05
6.2200E-05
1.6000E-05
2.8327E-05
7.3170E-06
3.4707E-05
9.0405E-06
1.7559E-05
3.6556E-06

1.9557E-05
4.9694E-06
0.4472E-05
3.8843E-06
2.6131E-05
6.4270E-06
1.2463E-05
3.8419E-06
3.8282E-05
9.9219E-06
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Example 3245

Following, we consider the Schrödinger equation in (0,1)× (0,1) spatial domain
and with potential function [Dehghan and Shokri (2007), Dehghan, and Mirzaei
(2008)]

V (x,y) = 1− 2
x2 −

2
y2

and initial and boundary conditions

ψ (x,y,0) = x2y2

and

ψ (0,y, t) = 0, ψ (1,y, t) = y2eit , ψ (x,0, t) = 0, ψ (x,1, t) = x2eit ,

The analytical solution is given as

ψ (x,y, t) = x2y2eit .

Table 6 presents the maximum absolute error for the real part and imaginary part246

at different times up to t = 1, using MLS approximation and time step dt = 0.05.247

The results obtained were compared with those obtained using the multiquadrics248

and the thin plate spline RBF with the same nodal distribution and time step, dt =249

0.0005[Dehghan and Shokri (2007)]. One can observe that, for MPC with MLS250

approximation of localized type, using a time step two orders lower than the time251

step used in global RBF, the absolute errors present two orders higher accuracy.252

Finally, in Fig. 3, the graphs of the real part and the imaginary parts of the nu-253

merical and the analytical solutions using MLS are shown at time t = 1, with254

dx = dy = 0.1, dt = 0.05. Note that there is no essential divergence between the255

exact solution and the numerical solution in Fig. 2, for the given accuracy.256

Example 4257

Finally, we consider the generalized nonlinear two-dimensional Schrödinger equa-
tion written as [Dehghan, and Mirzaei (2008)]:

−i
∂ψ

∂ t
+

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 = B(x,y, t)ψ +C (x,y, t) |ψ|p ψ,

with the initial and boundary conditions

ψ (x,y,0) = cos(x)cos(y) , (x,y) ∈Ω
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Table 6: Maximum absolute error of multiquadrics and thin plate spline-based
scheme at different times with dx = dy = 0.1, dt = 0.0005 and c = 0.45 for MQ.
For every value of t, the first and second rows of data correspond to the use of MQ
and TPS as the radial basis function, respectively and the third for the MPC when
dx = dy = 0.1, dt = 0.05.

Maximum absolute error
t Real Imaginary
0.1
0.3
0.5
0.7
1.0

MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS

4.0410E-04
8.6297E-04
2.7156E-06
5.1291E-04
8.0754E-04
3.1253E-06
4.6396E-04
5.0822E-04
1.7575E-06
3.8999E-04
7.5356E-04
2.2781E-06
3.7209E-04
6.5917E-04
1.4423E-06

3.5722E-04
8.3522E-04
1.1912E-06
3.0509E-04
7.1756e-04
1.5355E-06
3.9520E-04
7.7982E-04
2.2252E-06
4.1646E-04
9.2228E-04
3.7907E-06
4.1267E-04
8.9195E-04
1.0944E-06

Figure 3: Plots of the exact and the numerical solution at t = 1.0.
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and Neumann boundary conditions on all sides of the spatial domain

∂ψ

∂nnn
= 0.

The analytical solution is given as

ψ (x,y, t) = e−it cos(πx)cos(πy) .

The lagging of coefficients method has been utilized to eliminate the non-linearity
of the examined problem. The spatial domain of the problem is defined as 0≤x,y≤1.
The function used in the present problem are defined as C (x,y)= 1−2π2, B(x,y)=(
1−2π2

)(
1− cos2 (πx)cos2 (πy)

)
and p = 2. We have to notice that the accuracy

of the case under consideration agrees with the exact solution at about two signifi-
cant digits and, as the time increases it becomes worse. This is due to the imposition
of the Neumann boundary conditions. When using Dirichlet boundary conditions
the accuracy of the numerical results increases. Following the aforementioned pro-
cedure the final linearized system in matrix notation can be written as

HHH+
A =

[
Φd θδ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

GV Φb 0

]
,

HHH−A =

[
Φd −(1−θ)δ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

0 0

]
and FFFA =

[
0

gn+1
1

]
,

HHH+
B =

[
θδ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

Φd
0 GBΦb

]
,

HHH−B =

[
−(1−θ)δ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

Φd
0 0

]
,

and FFFB =

[
0

gn+1
2

]
.258

5 Conclusions259

In the present work we used the meshless numerical scheme to solve the two-260

dimensional time-dependent linear and nonlinear Schrödinger equation using the261

point collocation method with MLS approximation. For the Schrödinger equation262

we developed a fully coupled, transient, and strong-form solver for the real and263
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Figure 4: Analytical and numerical solutions at various time.

the imaginary parts of the general solution of the so-called quantum hydrodynamic264

(QHD) equation. The proposed scheme is applied to four benchmark cases hav-265

ing analytical solutions, with our results exhibiting excellent agreement with all the266

analytical ones. The numerical results were also compared with those provided by267

another collocation method, that is, the global Radial Basis Function method. The268

numerical results provided by the proposed scheme are highly accurate, compared269

with the ones provided by the multiquadrics and the thin plates splines RBF. Fur-270

thermore, in some cases they are also less CPU time and memory consuming. This271

makes the application of the MLS approximation very attractive for the numerical272

solution of this kind of physical problems.273
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