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Central and non-entral limit theorems for weighted power variations of

frational Brownian motion
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∗
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Abstrat: In this paper, we prove some entral and non-entral limit theorems for renormalized

weighted power variations of order q ≥ 2 of the frational Brownian motion with Hurst parameter

H ∈ (0, 1), where q is an integer. The entral limit holds for

1

2q
< H ≤ 1 − 1

2q
, the limit being a

onditionally Gaussian distribution. If H < 1

2q
we show the onvergene in L2

to a limit whih only

depends on the frational Brownian motion, and if H > 1 − 1

2q
we show the onvergene in L2

to a

stohasti integral with respet to the Hermite proess of order q.

Key words: frational Brownian motion, entral limit theorem, non-entral limit theorem, Hermite

proess.
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1 Introdution

The study of single path behavior of stohasti proesses is often based on the study of their

power variations, and there exists a very extensive literature on the subjet. Reall that, a real

q > 0 being given, the q-power variation of a stohasti proess X, with respet to a subdivision

πn = {0 = tn,0 < tn,1 < . . . < tn,κ(n) = 1} of [0, 1], is de�ned to be the sum

κ(n)∑

k=1

|Xtn,k
−Xtn,k−1

|q.

For simpliity, onsider from now on the ase where tn,k = k2−n
for n ∈ {1, 2, 3, . . .} and

k ∈ {0, . . . , 2n}. In the present paper we wish to point out some interesting phenomena when

X = B is a frational Brownian motion of Hurst index H ∈ (0, 1), and when q ≥ 2 is an

integer. In fat, we will also drop the absolute value (when q is odd) and we will introdue
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some weights. More preisely, we will onsider

2n∑

k=1

f(B(k−1)2−n)(∆Bk2−n)q, q ∈ {2, 3, 4, . . .}, (1.1)

where the funtion f : R → R is assumed to be smooth enough and where ∆Bk2−n denotes,

here and in all the paper, the inrement Bk2−n −B(k−1)2−n .

The analysis of the asymptoti behavior of quantities of type (1.1) is motivated, for

instane, by the study of the exat rates of onvergene of some approximation shemes of

salar stohasti di�erential equations driven by B (see [7℄, [12℄ and [13℄) besides, of ourse,

the traditional appliations of quadrati variations to parameter estimation problems.

Now, let us reall some known results onerning q-power variations (for q = 2, 3, 4, . . .),
whih are today more or less lassial. First, assume that the Hurst index is H = 1

2 , that is B
is a standard Brownian motion. Let µq denote the qth moment of a standard Gaussian random

variable G ∼ N (0, 1). By the saling property of the Brownian motion and using the entral

limit theorem, it is immediate that, as n→ ∞:

2−n/2
2n∑

k=1

[
(2n/2∆Bk2−n)q − µq

]
Law−→ N (0, µ2q − µ2

q). (1.2)

When weights are introdued, an interesting phenomenon appears: instead of Gaussian random

variables, we rather obtain mixing random variables as limit in (1.2). Indeed, when q is even

and f : R → R is ontinuous and has polynomial growth, it is a very partiular ase of a more

general result by Jaod [10℄ (see also Setion 2 in Nourdin and Peati [16℄ for related results)

that we have, as n→ ∞:

2−n/2
2n∑

k=1

f(B(k−1)2−n)
[
(2n/2∆Bk2−n)q − µq

]
Law−→

√
µ2q − µ2

q

∫ 1

0
f(Bs)dWs. (1.3)

Here, W denotes another standard Brownian motion, independent of B. When q is odd, still

for f : R → R ontinuous with polynomial growth, we have, this time, as n→ ∞:

2−n/2
2n∑

k=1

f(B(k−1)2−n)(2n/2∆Bk2−n)q
Law−→

∫ 1

0
f(Bs)

(√
µ2q − µ2

q+1 dWs + µq+1 dBs

)
, (1.4)

see for instane [16℄.

Seondly, assume that H 6= 1
2 , that is the ase where the frational Brownian motion B

has not independent inrements anymore. Then (1.2) has been extended by Breuer and Major

[1℄, Dobrushin and Major [5℄, Giraitis and Surgailis [6℄ or Taqqu [21℄. Preisely, �ve ases are

onsidered, aording to the evenness of q and the value of H:

• if q is even and if H ∈ (0, 3
4), as n→ ∞,

2−n/2
2n∑

k=1

[
(2nH∆Bk2−n)q − µq

] Law−→ N (0, σ̃2
H,q). (1.5)
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• if q is even and if H = 3
4 , as n→ ∞,

1√
n

2−n/2
2n∑

k=1

[
(2

3
4
n∆Bk2−n)q − µq

] Law−→ N (0, σ̃2
3
4
,q
). (1.6)

• if q is even and if H ∈ (3
4 , 1), as n→ ∞,

2n−2nH
2n∑

k=1

[
(2nH∆Bk2−n)q − µq

] Law−→ �Hermite r.v.�. (1.7)

• if q is odd and if H ∈ (0, 1
2 ], as n→ ∞,

2−n/2
2n∑

k=1

(2nH∆Bk2−n)q
Law−→ N (0, σ̃2

H,q). (1.8)

• if q is odd and if H ∈ (1
2 , 1), as n→ ∞,

2−nH
2n∑

k=1

(2nH∆Bk2−n)q
Law−→ N (0, σ̃2

H,q). (1.9)

Here, σ̃H,q > 0 denote some onstant depending only on H and q. The term �Hermite

r.v.� denotes a random variable whose distribution is the same as that of Z(2)
at time one, for

Z(2)
de�ned in De�nition 7 below.

Now, let us proeed with the results onerning the weighted power variations in the

ase where H 6= 1
2 . Consider the following ondition on a funtion f : R → R, where q ≥ 2 is

an integer:

(Hq) f belongs to C 2q
and, for any p ∈ (0,∞) and 0 ≤ i ≤ 2q: supt∈[0,1]E

{
|f (i)(Bt)|p

}
<∞.

Suppose that f satis�es (Hq). If q is even and H ∈ (1
2 ,

3
4 ), then by Theorem 2 in León and

Ludeña [11℄ (see also Coruera et al [4℄ for related results on the asymptoti behavior of the

p-variation of stohasti integrals with respet to B) we have, as n→ ∞:

2−n/2
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] Law−→ σ̃H,q

∫ 1

0
f(Bs)dWs, (1.10)

where, one again, W denotes a standard Brownian motion independent of B while σ̃H,q is the

onstant appearing in (1.5). Thus, (1.10) shows for (1.1) a similar behavior to that observed in

the standard Brownian ase, ompare with (1.3). In ontradistintion, the asymptoti behavior

of (1.1) an be ompletely di�erent of (1.3) or (1.10) for other values of H. The �rst result in
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this diretion has been observed by Gradinaru et al [9℄. Namely, if q ≥ 3 is odd and H ∈ (0, 1
2),

we have, as n→ ∞:

2nH−n
2n∑

k=1

f(B(k−1)2−n)(2nH∆Bk2−n)q
L2

−→ − µq+1

2

∫ 1

0
f ′(Bs)ds. (1.11)

Also, when q = 2 and H ∈ (0, 1
4 ), Nourdin [14℄ proved that we have, as n→ ∞:

22Hn−n
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)2 − 1

] L2

−→ 1

4

∫ 1

0
f ′′(Bs)ds. (1.12)

In view of (1.3), (1.4), (1.10), (1.11) and (1.12), we observe that the asymptoti be-

haviors of the power variations of frational Brownian motion (1.1) an be really di�erent,

depending on the values of q and H. The aim of the present paper is to investigate what hap-

pens in the whole generality with respet to q and H. Our main tool is the Malliavin alulus

that appeared, in several reent papers, to be very useful in the study of the power variations

for stohasti proesses. As we will see, the Hermite polynomials play a ruial role in this

analysis. In the sequel, for an integer q ≥ 2, we write Hq for the Hermite polynomial with

degree q de�ned by

Hq(x) =
(−1)q

q!
e

x2

2
dq

dxq

(
e−

x2

2

)
,

and we onsider, when f : R → R is a deterministi funtion, the sequene of weighted Hermite

variation of order q de�ned by

V (q)
n (f) :=

2n∑

k=1

f
(
B(k−1)2−n

)
Hq

(
2nH∆Bk2−n

)
. (1.13)

The following is the main result of this paper.

Theorem 1 Fix an integer q ≥ 2, and suppose that f satis�es (Hq).

1. Assume that 0 < H < 1
2q . Then, as n→ ∞, it holds

2nqH−n V (q)
n (f)

L2

−→ (−1)q

2qq!

∫ 1

0
f (q)(Bs)ds. (1.14)

2. Assume that

1
2q < H < 1 − 1

2q . Then, as n→ ∞, it holds

(
B, 2−n/2 V (q)

n (f)
) Law−→

(
B,σH,q

∫ 1

0
f(Bs)dWs

)
, (1.15)

where W is a standard Brownian motion independent of B and

σH,q =

√
1

2qq!

∑

r∈Z

(
|r + 1|2H + |r − 1|2H − 2|r|2H

)q
. (1.16)
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3. Assume that H = 1 − 1
2q . Then, as n→ ∞, it holds

(
B,

1√
n

2−n/2 V (q)
n (f)

) Law−→
(
B,σ1−1/(2q),q

∫ 1

0
f(Bs)dWs

)
, (1.17)

where W is a standard Brownian motion independent of B and

σ1−1/(2q),q =
2 log 2

q!

(
1 − 1

2q

)q(
1 − 1

q

)q
. (1.18)

4. Assume that H > 1 − 1
2q . Then, as n→ ∞, it holds

2nq(1−H)−n V (q)
n (f)

L2

−→
∫ 1

0
f(Bs)dZ

(q)
s , (1.19)

where Z(q)
denotes the Hermite proess of order q introdued in De�nition 7 below.

Remark 1. When q = 1, we have V
(1)
n (f) = 2−nH

∑2n

k=1 f
(
B(k−1)2−n

)
∆Bk2−n . For H =

1
2 , 2nHV

(1)
n (f) onverges in L2

to the It� stohasti integral

∫ 1
0 f(Bs)dBs. For H > 1

2 ,

2nHV
(1)
n (f) onverges in L2

and almost surely to the Young integral

∫ 1
0 f(Bs)dBs. For H < 1

2 ,

23nH−nV
(1)
n (f) onverges in L2

to −1
2

∫ 1
0 f

′(Bs)ds.

Remark 2. In the ritial ase H = 1
2q (q ≥ 2), we onjeture the following asymptoti

behavior: as n→ ∞,

(
B, 2−n/2 V (q)

n (f)
) Law−→

(
B,σ1/(2q),q

∫ 1

0
f(Bs)dWs +

(−1)q

2qq!

∫ 1

0
f (q)(Bs)ds

)
, (1.20)

for W a standard Brownian motion independent of B and σ1/(2q),q the onstant de�ned by

(1.16). Atually, (1.20) for q = 2 and H = 1
4 has been proved in [2, 15, 17℄ after that the �rst

draft of the urrent paper have been submitted. The reader is also referred to [16℄ for the study

of the weighted variations assoiated with iterated Brownian motion, whih is a non-Gaussian

self-similar proess of order

1
4 .

When H is between

1
4 and

3
4 , one an re�ne point 2 of Theorem 1 as follows:

Proposition 2 Let q ≥ 2 be an integer, f : R → R be a funtion suh that (Hq) holds and

assume that H ∈ (1
4 ,

3
4). Then

(
B, 2−n/2V (2)

n (f), . . . , 2−n/2 V (q)
n (f)

)
(1.21)

Law−→
(
B,σH,2

∫ 1

0
f(Bs)dW

(2)
s , . . . , σH,q

∫ 1

0
f(Bs)dW

(q)
s

)
,

where (W (2), . . . ,W (q)) is a (q − 1)-dimensional standard Brownian motion independent of B
and the σH,p's, 2 ≤ p ≤ q, are given by (1.16).
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Theorem 1 together with Proposition 2 allow to omplete the missing ases in the

understanding of the asymptoti behavior of weighted power variations of frational Brownian

motion:

Corollary 3 Let q ≥ 2 be an integer, and f : R → R be a funtion suh that (Hq) holds. Then,
as n→ ∞:

1. When H > 1
2 and q is odd,

2−nH
2n∑

k=1

f(B(k−1)2−n)(2nH∆Bk2−n)q
L2

−→ qµq−1

∫ 1

0
f(Bs)dBs = qµq−1

∫ B1

0
f(x)dx.

(1.22)

2. When H < 1
4 and q is even,

22nH−n
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] L2

−→ 1

4

(
q

2

)
µq−2

∫ 1

0
f ′′(Bs)ds. (1.23)

(We reover (1.12) by hoosing q = 2).

3. When H = 1
4 and q is even,

(
B, 2−n/2

2n∑

k=1

f(B(k−1)2−n)
[
(2n/4∆Bk2−n)q − µq

]
)

Law−→
(
B,

1

4

(
q

2

)
µq−2

∫ 1

0
f ′′(Bs)ds

+σ̃1/4,q

∫ 1

0
f(Bs)dWs

)
, (1.24)

where W is a standard Brownian motion independent of B and σ̃1/4,q is the onstant given

by (1.26) just below.

4. When

1
4 < H < 3

4 and q is even,

(
B, 2−n/2

2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

]
)

Law−→
(
B, σ̃H,q

∫ 1

0
f(Bs)dWs

)
,

(1.25)

for W a standard Brownian motion independent of B and

σ̃H,q =

√√√√
q∑

p=2

p!

(
q

p

)2

µ2
q−p 2−p

∑

r∈Z

(
|r + 1|2H + |r − 1|2H − 2|r|2H

)p
. (1.26)
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5. When H = 3
4 and q is even,

(
B,

1√
n

2−n/2
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

]
)

Law−→
(
B, σ̃ 3

4
,q

∫ 1

0
f(Bs)dWs

)
,

(1.27)

for W a standard Brownian motion independent of B and

σ̃ 3
4
,q =

√√√√
q∑

p=2

2 log 2 p!

(
q

p

)2

µ2
q−p

(
1 − 1

2q

)q(
1 − 1

q

)q
.

6. When H > 3
4 and q is even,

2n−2Hn
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

] L2

−→ 2µq−2

(
q

2

)∫ 1

0
f(Bs)dZ

(2)
s , (1.28)

for Z(2)
the Hermite proess introdued in De�nition 7.

Finally, we an also give a new proof of the following result, stated and proved by

Gradinaru et al. [8℄ and Cheridito and Nualart [3℄ in a ontinuous setting:

Theorem 4 Assume that H > 1
6 , and that f : R → R veri�es (H6). Then the limit in

probability, as n→ ∞, of the symmetri Riemann sums

1

2

2n∑

k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
∆Bk2−n (1.29)

exists and is given by f(B1) − f(0).

Remark 3 When H ≤ 1
6 , quantity (1.29) does not onverge in probability in general. As

a ounterexample, one an onsider the ase where f(x) = x3
, see Gradinaru et al. [8℄ or

Cheridito and Nualart [3℄.

2 Preliminaries and notation

We brie�y reall some basi fats about stohasti alulus with respet to a frational Brownian

motion. One refers to [19℄ for further details. Let B = (Bt)t∈[0,1] be a frational Brownian

motion with Hurst parameter H ∈ (0, 1). That is, B is a zero mean Gaussian proess, de�ned

on a omplete probability spae (Ω,A, P ), with the ovariane funtion

RH(t, s) = E(BtBs) =
1

2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0, 1].

7



We suppose that A is the sigma-�eld generated by B. Let E be the set of step funtions on

[0, T ], and H be the Hilbert spae de�ned as the losure of E with respet to the inner produt

〈1[0,t],1[0,s]〉H = RH(t, s).

The mapping 1[0,t] 7→ Bt an be extended to an isometry between H and the Gaussian spae

H1 assoiated with B. We will denote this isometry by ϕ 7→ B(ϕ).
Let S be the set of all smooth ylindrial random variables, i.e. of the form

F = φ(Bt1 , . . . , Btm)

where m ≥ 1, φ : R
m → R ∈ C∞

b and 0 ≤ t1 < . . . < tm ≤ 1. The derivative of F with respet

to B is the element of L2(Ω,H) de�ned by

DsF =

m∑

i=1

∂φ

∂xi
(Bt1 , . . . , Btm)1[0,ti](s), s ∈ [0, 1].

In partiular DsBt = 1[0,t](s). For any integer k ≥ 1, we denote by D
k,2

the losure of the set

of smooth random variables with respet to the norm

‖F‖2
k,2 = E(F 2) +

k∑

j=1

E
[
‖DjF‖2

H⊗j

]
.

The Malliavin derivative D satis�es the hain rule. If ϕ : R
n → R is C 1

b and if (Fi)i=1,...,n is a

sequene of elements of D
1,2
, then ϕ(F1, . . . , Fn) ∈ D

1,2
and we have

Dϕ(F1, . . . , Fn) =

n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.

We also have the following formula, whih an easily be proved by indution on q. Let ϕ,ψ ∈ C
q
b

(q ≥ 1), and �x 0 ≤ u < v ≤ 1 and 0 ≤ s < t ≤ 1. Then ϕ(Bt −Bs)ψ(Bv −Bu) ∈ D
q,2

and

Dq
(
ϕ(Bt −Bs)ψ(Bv −Bu)

)
=

q∑

a=0

(
q

a

)
ϕ(a)(Bt −Bs)ψ

(q−a)(Bv −Bu)1⊗a
[s,t]

⊗̃1
⊗(q−a)
[u,v]

, (2.30)

where ⊗̃ means the symmetri tensor produt.

The divergene operator I is the adjoint of the derivative operator D. If a random

variable u ∈ L2(Ω,H) belongs to the domain of the divergene operator, that is, if it satis�es

|E〈DF, u〉H| ≤ cu
√
E(F 2) for any F ∈ S ,

then I(u) is de�ned by the duality relationship

E
(
FI(u)

)
= E

(
〈DF, u〉H

)
,

8



for every F ∈ D
1,2
.

For every n ≥ 1, let Hn be the nth Wiener haos of B, that is, the losed linear

subspae of L2 (Ω,A, P ) generated by the random variables {Hn (B (h)) , h ∈ H, ‖h‖H = 1},
where Hn is the nth Hermite polynomial. The mapping In(h⊗n) = n!Hn (B (h)) provides a

linear isometry between the symmetri tensor produt H⊙n
(equipped with the modi�ed norm

‖ · ‖H⊙n = 1√
n!
‖ · ‖H⊗n) and Hn. For H = 1

2 , In oinides with the multiple Wiener-It� integral

of order n. The following duality formula holds

E (FIn(h)) = E
(
〈DnF, h〉

H⊗n

)
, (2.31)

for any element h ∈ H⊙n
and any random variable F ∈ D

n,2
.

Let {ek, k ≥ 1} be a omplete orthonormal system in H. Given f ∈ H⊙n
and g ∈ H⊙m

,

for every r = 0, . . . , n ∧m, the ontration of f and g of order r is the element of H⊗(n+m−2r)

de�ned by

f ⊗r g =
∞∑

k1,...,kr=1

〈f, ek1 ⊗ . . .⊗ ekr
〉H⊗r ⊗ 〈g, ek1 ⊗ . . . ⊗ ekr

〉H⊗r .

Notie that f ⊗r g is not neessarily symmetri: we denote its symmetrization by f⊗̃rg ∈
H⊙(n+m−2r)

. We have the following produt formula: if f ∈ H⊙n
and g ∈ H⊙m

then

In(f)Im(g) =

n∧m∑

r=0

r!

(
n

r

)(
m

r

)
In+m−2r(f⊗̃rg). (2.32)

We reall the following simple formula for any s < t and u < v:

E ((Bt −Bs)(Bv −Bu)) =
1

2

(
|t− v|2H + |s − u|2H − |t− u|2H − |s− v|2H

)
. (2.33)

We will also need the following lemmas:

Lemma 5 1. Let s < t belong to [0, 1]. Then, if H < 1/2, one has

∣∣E
(
Bu(Bt −Bs)

)∣∣ ≤ (t− s)2H
(2.34)

for all u ∈ [0, 1].

2. For all H ∈ (0, 1),
2n∑

k,l=1

∣∣E
(
B(k−1)2−n ∆Bl2−n

)∣∣ = O(2n). (2.35)

3. For any r ≥ 1, we have, if H < 1 − 1
2r ,

2n∑

k,l=1

|E (∆Bk2−n ∆Bl2−n)|r = O(2n−2rHn). (2.36)

9



4. For any r ≥ 1, we have, if H = 1 − 1
2r ,

2n∑

k,l=1

|E (∆Bk2−n ∆Bl2−n)|r = O(n22n−2rn). (2.37)

Proof : To prove inequality (2.34), we just write

E(Bu(Bt −Bs)) =
1

2
(t2H − s2H) +

1

2

(
|s− u|2H − |t− u|2H

)
,

and observe that we have |b2H − a2H | ≤ |b− a|2H
for any a, b ∈ [0, 1], beause H < 1

2 . To show

(2.35) using (2.33), we write

2n∑

k,l=1

∣∣E
(
B(k−1)2−n ∆Bl2−n

)∣∣ = 2−2Hn−1
2n∑

k,l=1

∣∣|l − 1|2H − l2H − |l − k + 1|2H + |l − k|2H
∣∣

≤ C2n,

the last bound oming from a telesoping sum argument. Finally, to show (2.36) and (2.37),

we write

2n∑

k,l=1

|E (∆Bk2−n ∆Bl2−n)|r = 2−2nrH−r
2n∑

k,l=1

∣∣|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H
∣∣r

≤ 2n−2nrH−r
∞∑

p=−∞

∣∣|p+ 1|2H + |p − 1|2H − 2|p|2H
∣∣r,

and observe that, sine the funtion

∣∣|p + 1|2H + |p − 1|2H − 2|p|2H
∣∣
behaves as CHp

2H−2
for

large p, the series in the right-hand side is onvergent beause H < 1− 1
2r . In the ritial ase

H = 1 − 1
2r , this series is divergent, and

2n∑

p=−2n

∣∣|p+ 1|2H + |p− 1|2H − 2|p|2H
∣∣r

behaves as a onstant time n.

Lemma 6 Assume that H > 1
2 .

1. Let s < t belong to [0, 1]. Then

∣∣E
(
Bu(Bt −Bs)

)∣∣ ≤ 2H(t− s) (2.38)

for all u ∈ [0, 1].
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2. Assume that H > 1 − 1
2l for some l ≥ 1. Let u < v and s < t belong to [0, 1]. Then

|E(Bu −Bv)(Bt −Bs)| ≤ H(2H − 1)

(
2

2Hl + 1 − 2l

) 1
l

(u− v)
l−1

l (t− s). (2.39)

3. Assume that H > 1 − 1
2l for some l ≥ 1. Then

2n∑

i,j=1

∣∣E
(
∆Bi2−n ∆Bj2−n

)∣∣l = O(22n−2ln). (2.40)

Proof: We have

E
(
Bu(Bt −Bs)

)
=

1

2

(
t2H − s2H

)
+

1

2

(
|s− u|2H − |t− u|2H

)
.

But, when 0 ≤ a < b ≤ 1:

b2H − a2H = 2H

∫ b−a

0
(u+ a)2H−1du ≤ 2H b2H−1 (b− a) ≤ 2H(b− a).

Thus, |b2H − a2H | ≤ 2H|b− a| and the �rst point follows.

Conerning the seond point, using Hölder inequality, we an write

|E(Bu −Bv)(Bt −Bs)| = H(2H − 1)

∫ v

u

∫ t

s
|y − x|2H−2dydx

≤ H(2H − 1)|u − v| l−1
l

(∫ 1

0

(∫ t

s
|y − x|2H−2dy

)l

dx

) 1
l

≤ H(2H − 1)|u − v| l−1
l |t− s| l−1

l

(∫ 1

0

∫ t

s
|y − x|(2H−2)ldydx

) 1
l

.

Denote by H ′ = 1 + (H − 1)l and observe that H ′ > 1
2 (beause H > 1− 1

2l ). Sine 2H ′ − 2 =
(2H − 2)l, we an write

H ′(2H ′ − 1)

∫ 1

0

∫ t

s
|y − x|(2H−2)ldydx = E

∣∣∣BH′

1 (BH′

t −BH′

s )
∣∣∣ ≤ 2H ′|t− s|

by the �rst point of this lemma. This gives the desired bound.

We prove now the third point. We have

2n∑

i,j=1

∣∣E
(
∆Bi2−n ∆Bj2−n

)∣∣l = 2−2Hnl−l
2n∑

i,j=1

∣∣|i− j + 1|2H + |i− j − 1|2H − 2|i− j|2H
∣∣l

≤ 2n−2Hnl+1−l
2n−1∑

k=−2n+1

∣∣|k + 1|2H + |k − 1|2H − 2|k|2H
∣∣l

11



and the funtion |k+1|2H + |k−1|2H −2|k|2H
behaves as |k|2H−2

for large k. As a onsequene,
sine H > 1 − 1

2l , the sum

2n−1∑

k=−2n+1

∣∣|k + 1|2H + |k − 1|2H − 2|k|2H
∣∣l

behaves as 2(2H−2)ln+n
and the third point follows.

Now, let us introdue the Hermite proess of order q ≥ 2 appearing in (1.19). Fix

H > 1/2 and t ∈ [0, 1]. The sequene
(
ϕn(t)

)
n≥1

, de�ned as

ϕn(t) = 2nq−n 1

q!

[2nt]∑

j=1

1
⊗q
[(j−1)2−n,j2−n]

,

is a Cauhy sequene in the spae H⊗q
. Indeed, sine H > 1/2, we have

〈1[a,b],1[u,v]〉H = E
(
(Bb −Ba)(Bv −Bu)

)
= H(2H − 1)

∫ b

a

∫ v

u
|s− s′|2H−2dsds′,

so that, for any m ≥ n

〈ϕn(t), ϕm(t)〉
H⊗q =

Hq(2H − 1)q

q!2
2nq+mq−n−m

[2mt]∑

j=1

[2nt]∑

k=1

(∫ j2−m

(j−1)2−m

∫ k2−n

(k−1)2−n

|s− s′|2H−2dsds′
)q

.

Hene

lim
m,n→∞

〈ϕn(t), ϕm(t)〉
H⊗q =

Hq(2H − 1)q

q!2

∫ t

0

∫ t

0
|s− s′|(2H−2)qdsds′ = cq,Ht

(2H−2)q+2,

where cq,H = Hq(2H−1)q

q!2(Hq−q+1)(2Hq−2q+1)
. Let us denote by µ

(q)
t the limit in H⊗q

of the sequene of

funtions ϕn(t). For any f ∈ H⊗q
, we have

〈ϕn(t), f〉H⊗q = 2nq−n 1

q!

[2nt]∑

j=1

〈1⊗q
[(j−1)2−n,j2−n]

, f〉H⊗q

= 2nq−n 1

q!
Hq(2H − 1)q

[2nt]∑

j=1

∫ 1

0
ds1

∫ j2−n

(j−1)2−n

ds′1|s1 − s′1|2H−2 . . .

×
∫ 1

0
dsq

∫ j2−n

(j−1)2−n

ds′q|sq − s′q|2H−2f(s1, . . . , sq)

−→
n→∞

1

q!
Hq(2H − 1)q

∫ t

0
ds′
∫

[0,1]q
ds1 . . . dsq|s1 − s′|2H−2 . . . |sq − s′|2H−2f(s1, . . . , sq)

= 〈µ(q)
t , f〉H⊗q .
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De�nition 7 Fix q ≥ 2 and H > 1/2. The Hermite proess Z(q) = (Z
(q)
t )t∈[0,1] of order q is

de�ned by Z
(q)
t = Iq(µ

(q)
t ) for t ∈ [0, 1].

Let Z
(q)
n be the proess de�ned by Z

(q)
n (t) = Iq(ϕn(t)) for t ∈ [0, 1]. By onstrution, it

is lear that Z
(q)
n (t)

L2

−→ Z(q)(t) as n→ ∞, for all �xed t ∈ [0, 1]. On the other hand, it follows,

from Taqqu [21℄ and Dobrushin and Major [5℄, that Z
(q)
n onverges in law to the �standard�

and historial qth Hermite proess, de�ned through its moving average representation as a

multiple integral with respet to a Wiener proess with time horizon R. In partiular, the

proess introdued in De�nition 7 has the same �nite dimensional distributions as the historial

Hermite proess.

Let us �nally mention that it an be easily seen that Z(q)
is q(H−1)+1 self-similar, has

stationary inrements and admits moments of all orders. Moreover, it has Hölder ontinuous

paths of order stritly less than q(H − 1) + 1. For further results, we refer to Tudor [22℄.

3 Proof of the main results

In this setion we will provide the proofs of the main results. For notational onveniene, from

now on, we write ε(k−1)2−n (resp. δk2−n) instead of 1[0,(k−1)2−n] (resp. 1[(k−1)2−n,k2−n]). The

following proposition provides information on the asymptoti behavior of E
(
V

(q)
n (f)2

)
, as n

tends to in�nity, for H ≤ 1 − 1
2q .

Proposition 8 Fix an integer q ≥ 2. Suppose that f satis�es (Hq). Then, if H ≤ 1
2q , then

E
(
V (q)

n (f)2
)

= O(2n(−2Hq+2)). (3.41)

If

1
2q ≤ H < 1 − 1

2q , then

E
(
V (q)

n (f)2
)

= O(2n). (3.42)

Finally, if H = 1 − 1
2q , then

E
(
V (q)

n (f)2
)

= O(n2n). (3.43)

Proof. Using the relation between Hermite polynomials and multiple stohasti integrals, we

have Hq

(
2nH∆Bk2−n

)
= 1

q!2
qnHIq

(
δ⊗q
k2−n

)
. In this way we obtain

E
(
V (q)

n (f)2
)

=
2n∑

k,l=1

E
{
f(B(k−1)2−n) f(B(l−1)2−n)Hq

(
2nH∆Bk2−n

)
Hq

(
2nH∆Bl2−n

)}

=
1

q!2
22Hqn

2n∑

k,l=1

E
{
f(B(k−1)2−n) f(B(l−1)2−n) Iq

(
δ⊗q
k2−n

)
Iq

(
δ⊗q
l2−n

)}
.
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Now we apply the produt formula (2.32) for multiple stohasti integrals and the duality rela-

tionship (2.31) between the multiple stohasti integral IN and the iterated derivative operator

DN
, obtaining

E
(
V (q)

n (f)2
)

=
22Hqn

q!2

2n∑

k,l=1

q∑

r=0

r!

(
q

r

)2

×E
{
f(B(k−1)2−n) f(B(l−1)2−n) I2q−2r

(
δ⊗q−r
k2−n ⊗̃δ⊗q−r

l2−n

)}
〈δk2−n , δl2−n〉rH

= 22Hqn
2n∑

k,l=1

q∑

r=0

1

r!(q − r)!2

×E
{〈
D2q−2r

(
f(B(k−1)2−n) f(B(l−1)2−n)

)
, δ⊗q−r

k2−n ⊗̃δ⊗q−r
l2−n

〉
H⊗(2q−2r)

}
〈δk2−n , δl2−n〉rH,

where ⊗̃ denotes the symmetrization of the tensor produt. By (2.30), the derivative of the

produt D2q−2r
(
f(B(k−1)2−n) f(B(l−1)2−n)

)
is equal to a sum of derivatives:

D2q−2r
(
f(B(k−1)2−n) f(B(l−1)2−n)

)
=

∑

a+b=2q−2r

f (a)(B(k−1)2−n) f (b)(B(l−1)2−n)

×(2q − 2r)!

a!b!

(
ε⊗a
(k−1)2−n⊗̃ε⊗b

(l−1)2−n

)
.

We make the deomposition

E
(
V (q)

n (f)2
)

= An +Bn + Cn +Dn, (3.44)

where

An =
22Hqn

q!2

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q 〈ε(l−1)2−n , δl2−n〉q,

Bn = 22Hqn
∑

c+d+e+f=2q
d+e≥1

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n)

}
α(c, d, e, f)

×〈ε(k−1)2−n , δk2−n〉cH〈ε(k−1)2−n , δl2−n〉dH 〈ε(l−1)2−n , δk2−n〉eH 〈ε(l−1)2−n , δl2−n〉f
H
,

Cn = 22Hqn
∑

a+b=2q
(a,b)6=(q,q)

2n∑

k,l=1

E
{
f (a)(B(k−1)2−n) f (b)(B(l−1)2−n)

} (2q)!

q!2a!b!

×〈ε⊗a
(k−1)2−n⊗̃ε⊗b

(l−1)2−n , δ
⊗q
k2−n⊗̃δ⊗q

l2−n〉H⊗(2q) ,
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and

Dn = 22Hqn
q∑

r=1

∑

a+b=2q−2r

2n∑

k,l=1

E
{
f (a)(B(k−1)2−n) f (b)(B(l−1)2−n)

} (2q − 2r)!

r!(q − r)!2a!b!

×〈ε⊗a
(k−1)2−n⊗̃ε⊗b

(l−1)2−n , δ
⊗q−r
k2−n ⊗̃δ⊗q−r

l2−n 〉H⊗(2q−2r) 〈δk2−n , δl2−n〉r
H
,

for some ombinatorial onstants α(c, d, e, f). That is, An and Bn ontain all the terms with

r = 0 and (a, b) = (q, q); Cn ontains the terms with r = 0 and (a, b) 6= (q, q); and Dn ontains

the remaining terms.

For any integer r ≥ 1, we set

αn = sup
k,l=1,...,2n

∣∣〈ε(k−1)2−n , δl2−n〉H
∣∣ , (3.45)

βr,n =

2n∑

k,l=1

∣∣〈δk2−n , δl2−n〉
H

∣∣r , (3.46)

γn =

2n∑

k,l=1

∣∣〈ε(k−1)2−n , δl2−n〉H
∣∣ . (3.47)

Then, under assumption (Hq), we have the following estimates:

|An| ≤ C22Hqn+2n(αn)2q,

|Bn| + |Cn| ≤ C22Hqn(αn)2q−1γn,

|Dn| ≤ C22Hqn
q∑

r=1

(αn)2q−2rβr,n,

where C is a onstant depending only on q and the funtion f . Notie that the seond inequality
follows from the fat that when (a, b) 6= (q, q), or (a, b) = (q, q) and c + d + e + f = 2q with

d ≥ 1 or e ≥ 1, there will be at least a fator of the form 〈ε(k−1)2−n , δl2−n〉H in the expression

of Bn or Cn.

In the ase H < 1
2 , we have by (2.34) that αn ≤ 2−2nH

, by (2.36) that βr,n ≤ C2n−2rHn
,

and by (2.35) that γn ≤ C2n
. As a onsequene, we obtain

|An| ≤ C2n(−2Hq+2), (3.48)

|Bn| + |Cn| ≤ C2n(−2Hq+2H+1), (3.49)

|Dn| ≤ C

q∑

r=1

2n(−2(q−r)H+1), (3.50)

whih implies the estimates (3.41) and (3.42).
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In the ase

1
2 ≤ H < 1 − 1

2q , we have by (2.38) that αn ≤ C2−n
, by (2.36) that

βr,n ≤ C2n−2rHn
, and by (2.35) that γn ≤ C2n

. As a onsequene, we obtain

|An| + |Bn| + |Cn| ≤ C2n(2q(H−1)+2),

|Dn| ≤ C

q∑

r=1

2n((2q−2r)(H−1)+1),

whih also implies (3.42).

Finally, if H = 1 − 1
2q , we have by (2.38) that αn ≤ C2−n

, by (2.37) that βr,n ≤
Cn22n−2rn

, and by (2.35) that γn ≤ C2n
. As a onsequene, we obtain

|An| + |Bn| + |Cn| ≤ C2n,

|Dn| ≤ C

q∑

r=1

n2
n r

q ,

whih implies (3.43).

3.1 Proof of Theorem 1 in the ase 0 < H <
1
2q

In this subsetion we are going to prove the �rst point of Theorem 1. The proof will be done

in three steps. Set V
(q)
1,n (f) = 2n(qH−1)V

(q)
n (f). We �rst study the asymptoti behavior of

E
(
V

(q)
1,n (f)2

)
, using Proposition 8.

Step 1. The deomposition (3.44) leads to

E
(
V

(q)
1,n (f)2

)
= 22n(qH−1) (An +Bn + Cn +Dn) .

From the estimate (3.49) we obtain 22n(qH−1) (|Bn| + |Cn|) ≤ C2n(2H−1), whih onverges to

zero as n goes to in�nity sine H < 1
2q <

1
2 . On the other hand (3.50) yields

22n(qH−1) |Dn| ≤ C

q∑

r=1

2n(2rH−1),

whih tends to zero as n goes to in�nity sine 2rH − 1 ≤ 2qH − 1 < 0 for all r = 1, . . . , q.
In order to handle the term An, we make use of the following estimate, whih follows

from (2.34) and (2.33):

∣∣∣∣〈ε(k−1)2−n , δk2−n〉q
H
−
(
−2−2Hn

2

)q∣∣∣∣

=

∣∣∣∣〈ε(k−1)2−n , δk2−n〉H +
2−2Hn

2

∣∣∣∣

∣∣∣∣∣

q−1∑

s=0

〈ε(k−1)2−n , δk2−n〉sH
(
−2−2Hn

2

)q−1−s
∣∣∣∣∣

≤ C
(
k2H − (k − 1)2H

)
2−2Hqn. (3.51)
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Thus,

∣∣∣∣∣∣
24Hqn−2n

q!2

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q

H
〈ε(l−1)2−n , δl2−n〉q

H

− 2−2n−2q

q!2

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n)

}
∣∣∣∣∣∣
≤ C22Hn−n,

whih implies, as n→ ∞:

E
(
V

(q)
1,n (f)2

)
=

2−2n−2q

q!2

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n)

}
+ o(1). (3.52)

Step 2: We need the asymptoti behavior of the double produt

Jn := E

(
V

(q)
1,n (f) × 2−n

2n∑

l=1

f (q)(B(l−1)2−n)

)
.

Using the same arguments as in Step 1 we obtain

Jn = 2Hqn−2n
2n∑

k,l=1

E
{
f(B(k−1)2−n) f (q)(B(l−1)2−n)Hq

(
2nH∆Bk2−n

)}

=
1

q!
22Hqn−2n

2n∑

k,l=1

E
{
f(B(k−1)2−n) f (q)(B(l−1)2−n) Iq

(
δ⊗q
k2−n

)}

=
1

q!
22Hqn−2n

2n∑

k,l=1

E
{〈
Dq
(
f(B(k−1)2−n) f (q)(B(l−1)2−n)

)
, δ⊗q

k2−n

〉
H⊗q

}

= 22Hqn−2n
2n∑

k,l=1

q∑

a=0

1

a!(q − a)!
E
{
f (a)(B(k−1)2−n) f (2q−a)(B(l−1)2−n)

}

×〈ε(k−1)2−n , δk2−n〉aH 〈ε(l−1)2−n , δk2−n〉q−a
H

.

It turns out that only the term with a = q will ontribute to the limit as n tends to in�nity.

For this reason we make the deomposition

Jn = 22Hqn−2n
2n∑

k,l=1

1

q!
E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q

H
+ Sn,

where

Sn = 22Hqn−2n
2n∑

k,l=1

〈ε(l−1)2−n , δk2−n〉H
q−1∑

a=0

1

a!(q − a)!
E
{
f (a)(B(k−1)2−n) f (2q−a)(B(l−1)2−n )

}

×〈ε(k−1)2−n , δk2−n〉aH 〈ε(l−1)2−n , δk2−n〉q−a−1
H

.
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By (2.34) and (2.35), we have

|Sn| ≤ C22Hn−n,

whih tends to zero as n goes to in�nity. Moreover, by (3.51), we have

∣∣∣∣∣∣
22Hqn−2n

q!

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n)

}
〈ε(k−1)2−n , δk2−n〉q

H

−(−1)q
2−2n−q

q!

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n )

}
∣∣∣∣∣∣
≤ C 22Hn−n,

whih also tends to zero as n goes to in�nity. Thus, �nally, as n→ ∞:

Jn = (−1)q
2−2n−q

q!

2n∑

k,l=1

E
{
f (q)(B(k−1)2−n) f (q)(B(l−1)2−n )

}
+ o(1). (3.53)

Step 3: By ombining (3.52) and (3.53), we obtain that

E

∣∣∣∣∣V
(q)
1,n (f) − (−1)q

2qq!
2−n

2n∑

k=1

f (q)(B(k−1)2−n)

∣∣∣∣∣

2

= o(1),

as n → ∞. Thus, the proof of the �rst point of Theorem 1 is done using a Riemann sum

argument.

3.2 Proof of Theorem 1 in the ase H > 1 − 1
2q
: the weighted non-entral

limit theorem

We prove here that the sequene V3,n(f), given by

V
(q)
3,n (f) = 2n(1−H)q−n V (q)

n (f) = 2qn−n 1

q!

2n∑

k=1

f
(
B(k−1)2−n

)
Iq

(
δ⊗q
k2−n

)
,

onverges in L2
as n→ ∞ to the pathwise integral

∫ 1
0 f(Bs)dZ

(q)
s with respet to the Hermite

proess of order q introdued in De�nition 7.

Observe �rst that, by onstrution of Z(q)
(preisely, see the disussion before De�nition

7 in Setion 2), the desired result is in order when the funtion f is identially one. More

preisely:

Lemma 9 For eah �xed t ∈ [0, 1], the sequene 2qn−n 1
q!

∑[2nt]
k=1 Iq

(
δ⊗q
k2−n

)
onverges in L2

to

the Hermite random variable Z
(q)
t .
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Now, onsider the ase of a general funtion f . We �x two integers m ≥ n, and

deompose the sequene V
(q)
3,m(f) as follows:

V
(q)
3,m(f) = A(m,n) +B(m,n),

where

A(m,n) =
1

q!
2m(q−1)

2n∑

j=1

f
(
B(j−1)2−n

) j2m−n∑

i=(j−1)2m−n+1

Iq

(
δ⊗q
i2−m

)
,

and

B(m,n) =
1

q!
2m(q−1)

2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

∆m,n
i,j f(B) Iq

(
δ⊗q
i2−m

)
,

with the notation ∆m,n
i,j f(B) = f(B(i−1)2−m)−f(B(j−1)2−n). We shall study A(m,n)

and B(m,n)

separately.

Study of A(m,n)
. When n is �xed, Lemma 9 yields that the random vetor


 1

q!
2m(q−1)

j2m−n∑

i=(j−1)2m−n+1

Iq

(
δ⊗q
i2−m

)
; j = 1, . . . , 2n




onverges in L2
, as m→ ∞, to the vetor

(
Z

(q)
j2−n − Z

(q)
(j−1)2−n ; j = 1, . . . , 2n

)
.

Then, as m→ ∞, A(m,n) L2

→ A(∞,n)
, where

A(∞,n) :=
2n∑

j=1

f(B(j−1)2−n)
(
Z

(q)
j2−n − Z

(q)
(j−1)2−n

)
.

Finally, we laim that when n tends to in�nity, A(∞,n)
onverges in L2

to

∫ 1
0 f (Bs) dZ

(q)
s .

Indeed, observe that the stohasti integral

∫ 1
0 f (Bs) dZ

(q)
s is a pathwise Young integral. So,

to get the onvergene in L2
it su�es to show that the sequene A(∞,n)

is bounded in Lp
for

some p ≥ 2. The integral
∫ 1
0 f (Bs) dZ

(q)
s has moments of all orders, beause for all p ≥ 2

E


 sup

0≤s<t≤1




∣∣∣Z(q)
t − Z

(q)
s

∣∣∣
|t− s|γ




p
 <∞

and

E

[
sup

0≤s<t≤1

( |Bt −Bs|
|t− s|β

)p]
<∞,
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if γ < q(H − 1) + 1 and β < H. On the other hand, Young's inequality implies

∣∣∣∣A
(∞,n) −

∫ 1

0
f (Bs) dZ

(q)
s

∣∣∣∣ ≤ cρ,νVarρ

(
f(B)

)
Varν

(
Z(q)

)
,

where Varρ denotes the variation of order ρ, and with ρ, ν > 1 suh that

1
ρ + 1

ν > 1. Choosing

ρ > 1
H and ν > 1

q(H−1)+1 , the result follows.

This proves that, by letting m and then n go to in�nity, A(m,n)
onverges in L2

to∫ 1
0 f (Bs) dZ

(q)
s .

Study of the term B(m,n)
: We prove that

lim
n→∞

sup
m
E
∣∣∣B(m,n)

∣∣∣
2

= 0. (3.54)

We have, using the produt formula (2.32) for multiple stohasti integrals,

E
∣∣∣B(m,n)

∣∣∣
2

= 22m(q−1)
2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

2n∑

j′=1

j′2m−n∑

i′=(j′−1)2m−n+1

q∑

l=0

l!

q!2

(
q

l

)2

×b(m,n)
l 〈δi2−m , δi′2−m〉lH, (3.55)

where

b
(m,n)
l = E

(
∆m,n

i,j f(B)∆m,n
i′,j′f(B)I2(q−l)

(
δ
⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

))
. (3.56)

By (2.31) and (2.30), we obtain that b
(m,n)
l is equal to

E
〈
D2(q−l)

(
∆m,n

i,j f(B)∆m,n
i′,j′f(B)

)
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

=

2q−2l∑

a=0

(
2q − 2l

a

)〈
E
((
f (a)(B(i−1)2−m)ε⊗a

(i−1)2−m − f (a)(B(j−1)2−n)ε⊗a
(j−1)2−n

)
⊗̃

(
f (2q−2l−a)(B(i′−1)2−m)ε⊗b

(i′−1)2−m − f (2q−2l−a)(B(j′−1)2−n)ε⊗b
(j′−1)2−m

))
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

.

The term in (3.55) orresponding to l = q an be estimated by

1

q!
22m(q−1) sup

|x−y|≤2−n

E |f(Bx) − f(By)|2 βq,m,

where βq,m has been introdued in (3.46). So it onverges to zero as n tends to in�nity, uniformly

in m, beause, by (2.40) and using that H > 1 − 1
2q , we have

sup
m

22m(q−1)βq,m <∞.
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In order to handle the terms with 0 ≤ l ≤ q − 1, we make the deomposition

∣∣∣b(m,n)
l

∣∣∣ ≤
2q−2l∑

a=0

(
2q − 2l

a

) 4∑

h=1

Bh, (3.57)

where

B1 = E
∣∣∣∆m,n

i,j f(B)∆m,n
i′,j′f(B)

∣∣∣
〈
ε⊗a
(i−1)2−m ⊗̃ε⊗(2q−2l−a)

(i′−1)2−m , δ
⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

,

B2 = E
∣∣∣f (a)(B(j−1)2−n)∆m,n

i′,j′f(B)
∣∣∣

×
〈(
ε⊗a
(i−1)2−m − ε⊗a

(j−1)2−n

)
⊗̃ε⊗(2q−2l−a)

(i′−1)2−m , δ
⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

,

B3 = E
∣∣∣∆m,n

i,j f(B)f (2q−2l−a)(B(j′−1)2−n)
∣∣∣

×
〈
ε⊗a
(i−1)2−m⊗̃

(
ε
⊗(2q−2l−a)
(i′−1)2−m − ε

⊗(2q−2l−a)
(j′−1)2−n

)
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

,

B4 = E
∣∣∣f (a)(B(j−1)2−n)f (2q−2l−a)(B(j′−1)2−n)

∣∣∣

×
〈(
ε⊗a
(i−1)2−m − ε⊗a

(j−1)2−n

)
⊗̃
(
ε
⊗(2q−2l−a)
(i′−1)2−m − ε

⊗(2q−2l−a)
(j′−1)2−n

)
, δ

⊗(q−l)
i2−m ⊗̃δ⊗(q−l)

i′2−m

〉
H⊗2(q−l)

.

(3.58)

By using (2.38) and the onditions imposed on the funtion f , one an bound the terms B1,

B2 and B3 as follows:

|B1| ≤ c(q, f,H) sup
|x−y|≤ 1

2n ,0≤a≤2q

E
∣∣∣f (a)(Bx) − f (a)(By)

∣∣∣
2
2−2m(q−l),

|B2| + |B3| ≤ c(q, f,H) sup
|x−y|≤ 1

2n ,0≤a≤2q

E
∣∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)

∣∣∣ 2−2m(q−l),

and, by using (2.39), we obtain that

|B4| ≤ c(q, f,H)2−n q−1
q

−2m(q−l).

By setting

Rn =
1

q!
sup

|x−y|≤2−n

E |f(Bx) − f(By)|2 sup
m

22m(q−1)βq,m,
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we an �nally write, by the estimate (2.40),

E
∣∣∣B(m,n)

∣∣∣
2

≤ Rn + c(H, f, q)22m(q−1)

(
sup

|x−y|≤ 1
2n ,0≤a≤2q

∣∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)
∣∣∣+ (2−n)

q−1
q

)

×
2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

2n∑

j′=1

j′2m−n∑

i′=(j′−1)2m−n+1

q−1∑

l=0

2−2m(q−l)〈δi2−m , δi′2−m〉lH

≤ Rn + c(H, f, q)22m(q−1)

(
sup

|x−y|≤ 1
2n ,0≤a≤2q

∣∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)
∣∣∣+ (2−n)

q−1
q

)

×
q−1∑

l=0

2−2m(q−l)
2m∑

i,j=0

〈δi2−m , δi′2−m〉lH

≤ Rn + c(H, f, q)

(
sup

|x−y|≤ 1
2n ,0≤a≤2q

∣∣∣f (2q−2l−a)(Bx) − f (2q−2l−a)(By)
∣∣∣+ (2−n)

q−1
q

)

and this onverges to zero due to the ontinuity of B and sine q > 1.

3.3 Proof of Theorem 1 in the ase

1
2q

< H ≤ 1 − 1
2q
: the weighted entral

limit theorem

Suppose �rst that

1
2q < H < 1 − 1

2q . We study the onvergene in law of the sequene

V
(q)
2,n (f) = 2−

n
2 V

(q)
n (f). We �x two integers m ≥ n, and deompose this sequene as follows:

V
(q)
2,m(f) = A(m,n) +B(m,n),

where

A(m,n) = 2−
m
2

2n∑

j=1

f
(
B(j−1)2−n

) j2m−n∑

i=(j−1)2m−n+1

Hq

(
2mH∆Bi2−m

)
,

and

B(m,n) =
1

q!
2m(Hq− 1

2
)

2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

∆m,n
i,j f(B)Iq

(
δ⊗q
i2−m

)
,

and where as before we make use of the notation ∆m,n
i,j f(B) = f(B(i−1)2−m) − f(B(j−1)2−n).

Let us �rst onsider the term A(m,n)
. From Theorem 1 in Breuer and Major [1℄, and

taking into aount that H < 1 − 1
2q , it follows that the random vetor


B, 2−m

2

j2m−n∑

i=(j−1)2m−n+1

Hq(2
mH∆Bi2−m); j = 1, . . . , 2n
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onverges in law, as m→ ∞, to

(
B,σH,q∆Wj2−n ; j = 1, . . . , 2n

)

where σH,q is the onstant de�ned by (1.16) andW is a standard Brownian motion independent

of B (the independene is a onsequene of the entral limit theorem for multiple stohasti

integrals proved in Peati and Tudor [20℄). Sine

2n∑

j=1

f
(
B(j−1)2−n

)
∆Wj2−n

onverges in L2
as n→ ∞ to the It� integral

∫ 1
0 f(Bs)dWs we onlude that, by letting m→ ∞

and then n→ ∞, we have

(
B,A(m,n)

) Law−→
(
B,σH,q

∫ 1

0
f(Bs)dWs

)
.

Then it su�es to show that

lim
n→∞

sup
m→∞

E
∣∣∣B(m,n)

∣∣∣
2

= 0. (3.59)

We have, as in (3.55),

E
∣∣∣B(m,n)

∣∣∣
2

= 2m(2Hq−1)
2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

2n∑

j′=1

j′2m−n∑

i′=(j′−1)2m−n+1

q∑

l=0

l!

q!2

(
q

l

)2

×b(m,n)
l 〈δi2−m , δi′2−m〉lH, (3.60)

where b
(m,n)
l has been de�ned in (3.56). The term in (3.60) orresponding to l = q an be

estimated by

1

q!
2m(2Hq−1) sup

|x−y|≤2−n

E |f(Bx) − f(By)|2 βq,m,

whih onverges to zero as n tends to in�nity, uniformly in m, beause by (2.36) and using that

H < 1 − 1
2q , we have

sup
m

2m(2Hq−1)βq,m <∞.

In order to handle the terms with 0 ≤ l ≤ q − 1, we will distinguish two di�erent ases,

depending on the value of H.

Case H < 1/2. Suppose 0 ≤ l ≤ q − 1. By (2.35), we an majorize b
(m,n)
l as follows:

|b(m,n)
l | ≤ C2−4Hm(q−l).

As a onsequene, applying again (2.36), the orresponding term in (3.60) is bounded by

C2m(2Hq−1)2−4Hm(q−l)βl,m ≤ C22mH(l−q),

23



whih onverges to zero as m tends to in�nity beause l < q.

Case H > 1/2. Suppose 0 ≤ l ≤ q − 1. By (2.38), we get the estimate

|b(m,n)
l | ≤ C2−2m(q−l).

As a onsequene, applying again (2.36), the orresponding term in (3.60) is bounded by

C2m(2Hq−1)2−2m(q−l)βl,m.

If H < 1− 1
2l , applying (2.36), this is bounded by C2m(2H(q−l)−2(q−l))

, whih onverges to zero

as m tends to in�nity beause H < 1 and l < q. In the ase H = 1− 1
2l , applying (2.37), we get

the estimate Cm2m(2H(q−l)−2(q−l))
, whih onverges to zero asm tends to in�nity beauseH < 1

and l < q. In the ase H > 1 − 1
2l , we apply (2.38) and we get the estimate C2m(2H2+1−2q)

,

whih onverges to zero as m tends to in�nity beause H < 1 − 1
2q .

The proof in the ase H = 1 − 1
2q is similar. The onvergene of the term A(m,n)

is

obtained by applying Theorem 1' in Breuer and Major (1983), and the onvergene to zero in

L2
of the term B(m,n)

follows the same lines as before.

3.4 Proof of Proposition 2

We proeed as in Setion 3.3. For p = 2, . . . , q, we set V
(p)
2,n (f) = 2−

n
2 V

(p)
n (f). We �x two

integers m ≥ n, and deompose this sequene as follows:

V
(p)
2,m(f) = A(m,n)

p +B(m,n)
p ,

where

A(m,n)
p = 2−

m
2

2n∑

j=1

f
(
B(j−1)2−n

) j2m−n∑

i=(j−1)2m−n+1

Hp

(
2mH∆Bi2−m

)
,

and

B(m,n)
p =

1

p!
2m(Hp− 1

2
)

2n∑

j=1

j2m−n∑

i=(j−1)2m−n+1

∆m,n
i,j f(B)Ip

(
δ⊗p
i2−m

)
,

and where as before we make use of the notation ∆m,n
i,j f(B) = f(B(i−1)2−m) − f(B(j−1)2−n).

Let us �rst onsider the term A
(m,n)
p . We laim that the random vetor


B,



2−

m
2

j2m−n∑

i=(j−1)2m−n+1

Hp

(
2mH∆Bi2−m

)
; j = 1, . . . , 2n





2≤p≤q




onverges in law, as m→ ∞, to

(
B, {σH,p∆W

(p)
j2−n ; j = 1, . . . , 2n}2≤p≤q

)
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where (W (2), . . . ,W (q)) is a (q − 1)-dimensional standard Brownian motion independent of B
and the σH,p's are given by (1.16). Indeed, the onvergene in law of eah omponent follows

from Theorem 1 in Breuer and Major [1℄, taking into aount that H < 3
4 ≤ 1 − 1

2q . The joint

onvergene and the fat that the proesses W (p)
for p = 2, . . . , q are independent (and also

independent of B) is a diret appliation of the entral limit theorem for multiple stohasti

integrals proved in Peati and Tudor [20℄.

Sine, for any p = 2, . . . , q, the quantity

2n∑

j=1

f
(
B(j−1)2−n

)
∆W

(p)
j2−n

onverges in L2
as n → ∞ to the It� integral

∫ 1
0 f(Bs)dW

(p)
s , we onlude that, by letting

m→ ∞ and then n→ ∞, we have

(
B,A

(m,n)
2 , . . . , A(m,n)

q

)
Law−→

(
B,σH,2

∫ 1

0
f(Bs)dW

(2)
s , . . . , σH,q

∫ 1

0
f(Bs)dW

(q)
s

)
.

On the other hand, and beause H ∈ (1
4 ,

3
4) (implying that H ∈ ( 1

2p , 1 − 1
2p)), we have shown

in Setion 3.3 that

lim
n→∞

sup
m→∞

E
∣∣∣B(m,n)

p

∣∣∣
2

= 0

for all p = 2, . . . , q. This �nishes the proof of Proposition 2.

3.5 Proof of Corollary 3

For any integer q ≥ 2, we have

(
2nH∆Bk2−n

)q − µq =

q∑

p=1

(
q

p

)
µq−p2

HnpIp(δ
⊗p
k2−n) =

q∑

p=1

p!

(
q

p

)
µq−pHp

(
2nH∆Bk2−n

)
.

Indeed, the pth kernel in the haos representation of

(
2nH∆Bk2−n

)q
is

1

p!
E(Dp

(
2nH∆Bk2−n

)q
) =

(
q

p

)
2nHpµq−pδ

⊗p
k2−n .

Suppose �rst that q is odd and H > 1
2 . In this ase, we have

2−nH
2n∑

k=1

f(B(k−1)2−n)(2nH∆Bk2−n)q =

q∑

p=1

p!

(
q

p

)
µq−p2

−nHV (p)
n (f).

The term with p = 1 onverges in L2
to qµq−1

∫ 1
0 f(Bs)dBs. For p ≥ 2, the limit in L2

is zero.

Indeed, if H ≤ 1 − 1
2p , then E

(
V

(p)
n (f)2

)
is bounded by a onstant times n2n

by Proposition
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8. If H > 1 − 1
2p , then E

(
V

(p)
n (f)2

)
is bounded by a onstant times 2−n2(1−H)p+2n

by (1.19),

with −2(1 −H)p+ 2 − 2H = (1 −H)(2 − 2p) < 0.
Suppose now that q is even. Then

22nH−n
2n∑

k=1

f(B(k−1)2−n)
[
(2nH∆Bk2−n)q − µq

]
= 22nH−n

q∑

p=2

p!

(
q

p

)
µq−pV

(p)
n (f) .

If H < 1
4 , by (1.14), one has that 22nH−n×2

(
q
2

)
µq−2V

(2)
n (f) onverges in L2

, as n→ ∞,

to

1
4

(
q
2

)
µq−2

∫ 1
0 f

′′(Bs)ds. On the other hand, for p ≥ 4, 22nH−nV
(p)
n (f) onverges to zero in L2

.

Indeed, if H < 1
2p , then E

(
V

(p)
n (f)2

)
= O(2n(−2Hp+2)) by (3.41) with −2Hp+2+4H −2 < 0.

If H ≥ 1
2p , then E

(
V

(p)
n (f)2

)
= O(2n) by (3.42) with 4H − 1 < 0. Therefore (1.23) holds.

In the ase

1
4 < H < 3

4 , Proposition 2 implies that the vetor

(
B, 2−n/2V (2)

n (f), . . . , 2−n/2V (q)
n (f)

)

onverges in law to

(
B,σH,2

∫ 1

0
f(Bs)dW

(2)
s , . . . , σH,q

∫ 1

0
f(Bs)dW

(q)
s

)
,

where (W (2), . . . ,W (q)) is a (q − 1)-dimensional standard Brownian motion independent of B
and the σH,p's, 2 ≤ p ≤ q, are given by (1.16). This implies the onvergene (1.25). The proof

of (1.27) is analogous (with an adequate version of Proposition 2).

The onvergene (1.24) is obtained by similar arguments using the limit result (1.20)

in the ritial ase H = 1
4 , p = 2.

Finally, onsider the ase H > 3
4 . For p = 2, 2n−2HnV

(2)
n (f) onverges in L2

to∫ 1
0 f(Bs)dZ

(2)
s by (1.19). If p ≥ 4, then 2n−2HnV

(p)
n (f) onverges in L2

to zero beause, again

by (1.19), one has E
(
V

(p)
n (f)2

)
= O(2n(2−2(1−H)p)).

3.6 Proof of Theorem 4

We an assume H < 1
2 , the ase where H ≥ 1

2 being straightforward. By a Taylor's formula,

we have

f(B1) = f(0) +
1

2

2n∑

k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
∆Bk2−n

− 1

12

2n∑

k=1

f (3)(B(k−1)2−n)
(
∆Bk2−n

)3 − 1

24

2n∑

k=1

f (4)(B(k−1)2−n)
(
∆Bk2−n

)4

− 1

80

2n∑

k=1

f (5)(B(k−1)2−n)
(
∆Bk2−n

)5
+Rn, (3.61)
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with Rn onverging towards 0 in probability as n→ ∞, beause H > 1/6. We an expand the

monomials xm
, m = 2, 3, 4, 5, in terms of the Hermite polynomials:

x2 = 2H2(x) + 1

x3 = 6H3(x) + 3H1(x)

x4 = 24H4(x) + 12H2(x) + 3

x5 = 120H5(x) + 60H3(x) + 15H1(x).

In this way we obtain

2n∑

k=1

f (3)(B(k−1)2−n) (∆Bk2−n)3 = 6 × 2−3HnV (3)
n (f (3)) + 3 × 2−2HnV (1)

n (f (3)), (3.62)

2n∑

k=1

f (4)(B(k−1)2−n) (∆Bk2−n)4 = 24 × 2−4HnV (4)
n (f (4))

+12 × 2−4HnV (2)
n (f (4)) + 3 × 2−4Hn

2n∑

k=1

f (4)(B(k−1)2−n), (3.63)

2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)5 = 120 × 2−5HnV (5)
n (f (5))

+60 × 2−5HnV (3)
n (f (5)) + 15 × 2−4HnV (1)

n (f (5)). (3.64)

By (3.42) and using that H > 1
6 , we have E

(
V

(3)
n (f (3))2

)
≤ C2n

and E
(
V

(3)
n (f (5))2

)
≤ C2n

.

As a onsequene, the �rst summand in (3.62) and the seond one in (3.64) onverge to zero in

L2
as n tends to in�nity. Also, by (3.42), E

(
V

(4)
n (f (4))2

)
≤ C2n

and E
(
V

(5)
n (f (5))2

)
≤ C2n

.

Hene, the �rst summand in (3.63) and the �rst summand in (3.64) onverge to zero in L2

as n tends to in�nity. If

1
6 < H < 1

4 , (3.41) implies E
(
V

(2)
n (f (4))2

)
≤ C2n(−4H+2)), so that

2−4HnV
(2)
n (f (4)) onverges to zero in L2

as n tends to in�nity. If

1
4 ≤ H < 1

2 , (3.42) implies

E
(
V

(2)
n (f)2

)
≤ C2n

so that 2−4HnV
(2)
n (f (4)) onverges to zero in L2

as n tends to in�nity.

Moreover, using the following identity, valid for regular funtions h : R → R:

2n∑

k=1

h′(B(k−1)2−n)∆Bk2−n = h(B1) − h(0) − 1

2

2n∑

k=1

h′′(Bθ
k2−n

) (∆Bk2−n)2

for some θk2−n lying between (k − 1)2−n
and k2−n

, we dedue that 2−4HnV
(1)
n (f (5)) tends to
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zero, beause H > 1
6 . In the same way, we have

2−2HnV (1)
n (f (3)) = −1

2
2−2Hn

2n∑

k=1

f (4)(B(k−1)2−n) (∆Bk2−n)2

−1

6
2−2Hn

2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)3 + o(1).

We have obtained

f(B1) = f(0) +
1

2

2n∑

k=1

(
f ′(Bk2−n) + f ′(B(k−1)2−n)

)
∆Bk2−n

+
1

4
× 2−4Hn

2n∑

k=1

f (4)(B(k−1)2−n)H2

(
2nH∆Bk2−n

)

− 1

24
× 2−2Hn

2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)3 + o(1).

As before 2−4HnV
(2)
n (f (4)) onverges to zero in L2

. Finally, by (1.11),

2−2Hn
2n∑

k=1

f (5)(B(k−1)2−n) (∆Bk2−n)3

also onverges to zero. This ompletes the proof.
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