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Abstract: In this paper, we prove some central and non-central limit theorems for renormalized
weighted power variations of order ¢ > 2 of the fractional Brownian motion with Hurst parameter
H € (0,1), where ¢ is an integer. The central limit holds for % < H<L1- 2%, the limit being a
conditionally Gaussian distribution. If H < % we show the convergence in L? to a limit which only
depends on the fractional Brownian motion, and if H > 1 — % we show the convergence in L? to a
stochastic integral with respect to the Hermite process of order g.
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1 Introduction

The study of single path behavior of stochastic processes is often based on the study of their
power variations, and there exists a very extensive literature on the subject. Recall that, a real
g > 0 being given, the g-power variation of a stochastic process X, with respect to a subdivision
T =10 =tno <tp1 < ... <tpxm = 1} of [0,1], is defined to be the sum

K(n)
|th,k - th,k—l |q
k=1

For simplicity, consider from now on the case where ¢, = k27" for n € {1,2,3,...} and
k € {0,...,2"}. In the present paper we wish to point out some interesting phenomena when
X = B is a fractional Brownian motion of Hurst index H € (0,1), and when ¢ > 2 is an
integer. In fact, we will also drop the absolute value (when ¢ is odd) and we will introduce
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some weights. More precisely, we will consider
on
Zf(B(k—1)2*")(ABk2*")qa q¢€ {273’47"'}7 (1'1)
k=1
where the function f : R — R is assumed to be smooth enough and where ABj9-» denotes,
here and in all the paper, the increment Byy-n — B_1)2-n.

The analysis of the asymptotic behavior of quantities of type (LI is motivated, for
instance, by the study of the exact rates of convergence of some approximation schemes of
scalar stochastic differential equations driven by B (see [7], [12] and [13]) besides, of course,
the traditional applications of quadratic variations to parameter estimation problems.

Now, let us recall some known results concerning g-power variations (for ¢ = 2,3,4,...),
which are today more or less classical. First, assume that the Hurst index is H = %, that is B
is a standard Brownian motion. Let z, denote the gth moment of a standard Gaussian random
variable G ~ .4#7(0,1). By the scaling property of the Brownian motion and using the central
limit theorem, it is immediate that, as n — oo:

271

—-n n Law

272N (@2 ABy ) = pig| A (0,2 — ). (1.2)
k=1

When weights are introduced, an interesting phenomenon appears: instead of Gaussian random
variables, we rather obtain mixing random variables as limit in (L.2). Indeed, when ¢ is even
and f : R — R is continuous and has polynomial growth, it is a very particular case of a more
general result by Jacod [10] (see also Section 2 in Nourdin and Peccati [16] for related results)
that we have, as n — oo:

o 1
272N " F(Br—1)2-n) [(QH/QABszn)q - Mq} o \/ H2q — /‘3/0 f(Bs)dWs. (1.3)
k=1

Here, W denotes another standard Brownian motion, independent of B. When ¢ is odd, still
for f: R — R continuous with polynomial growth, we have, this time, as n — oo:

2n
2—n/zz F(Bonyz )22 AByy )7 228 Law / £(B fiog — NqﬂdW + pg+1dBs), (1.4)
k=1

see for instance [16].

Secondly, assume that H # %, that is the case where the fractional Brownian motion B
has not independent increments anymore. Then (L.2) has been extended by Breuer and Major
[1], Dobrushin and Major [5], Giraitis and Surgailis [6] or Taqqu [21]. Precisely, five cases are
considered, according to the evenness of ¢ and the value of H:

e if ¢ is even and if H € (0,3), as n — o0,

2n

-n n Law ~

272N [(2" AByy-n)? — ) =5 N (0,5%,). (1.5)
k=1



° ifqisevenandifH:%,aanoo,

2n
1 _n 3, Law ~
%2 /2 1;21 [(21"ABjg-n)? — pg] = L/V(o,aéq). (1.6)

e if gis even and if H € (2,1), as n — o0,

271
gn—2nil Z [(2"HABk27n)q — W] L% “Hermite r.v.". (1.7)
k=1
e if ¢ is odd andifHE(O,%], as n — 0o,
271/
2723 (@ ABy- )T B (0,5%,)- (1.8)
k=1
e if gis odd and if H € (%,1), as n — oo,
2n
2 N AR, )T Y (0,58,). (1.9)
k=1

Here, 054 > 0 denote some constant depending only on H and ¢. The term “Hermite
r.v.” denotes a random variable whose distribution is the same as that of Z®) at time one, for
7@ defined in Definition [0 below.

Now, let us proceed with the results concerning the weighted power variations in the
case where H # % Consider the following condition on a function f : R — R, where ¢ > 2 is
an integer:

(H,) f belongs to €27 and, for any p € (0,00) and 0 < i < 2g: Supyepo,1) £ {|fD(By)P} < oo.
Suppose that f satisfies (Hy). If ¢ is even and H € (%, %), then by Theorem 2 in Leon and
Ludena [1I] (see also Corcuera et al [4] for related results on the asymptotic behavior of the
p-variation of stochastic integrals with respect to B) we have, as n — oc:

2’)1
2723 F(B1ya-n) [T ABjg-n)? — ptg) % Grg i F(Bs)dWs, (1.10)
k=1

where, once again, W denotes a standard Brownian motion independent of B while o is the
constant appearing in (L5]). Thus, (LI0) shows for (II]) a similar behavior to that observed in
the standard Brownian case, compare with (L3]). In contradistinction, the asymptotic behavior
of (LI can be completely different of (I.3]) or (ILI0) for other values of H. The first result in



this direction has been observed by Gradinaru et al [9]. Namely, if ¢ > 3 is odd and H € (0, %),
we have, as n — oo:

AL 1

nH—n n L2

2 Y F (B ) (2 AR ) £ 2L [ s (1.11)
k=1

Also, when ¢ =2 and H € (0, %), Nourdin [14] proved that we have, as n — oo:

2n 1
1
221N f(Bgmryz-n) [ AByg-n)? — 1] £, 1 /0 f"(By)ds. (1.12)
k=1

In view of (L3)), (IL4), (LIO), (LII) and (TI2), we observe that the asymptotic be-

haviors of the power variations of fractional Brownian motion ([IJ) can be really different,
depending on the values of ¢ and H. The aim of the present paper is to investigate what hap-
pens in the whole generality with respect to ¢ and H. Our main tool is the Malliavin calculus
that appeared, in several recent papers, to be very useful in the study of the power variations
for stochastic processes. As we will see, the Hermite polynomials play a crucial role in this
analysis. In the sequel, for an integer ¢ > 2, we write H, for the Hermite polynomial with

degree g defined by
_1)4 L2 e 2
Hy(z) = ueT% <6_7> )
x

and we consider, when f : R — R is a deterministic function, the sequence of weighted Hermite
variation of order q defined by

2n
VO(f) = f (B—1y2-n) Hq(2"" ABpp-n). (1.13)
=1

The following is the main result of this paper.
Theorem 1 Fiz an integer ¢ > 2, and suppose that f satisfies (Hy).

1. Assume that 0 < H < %. Then, as n — o0, it holds

oy Lo GO T o s, (114

2. Assume that 2—1q <H<1- %. Then, as n — o0, it holds

1
(B2 VI(D) B (Bow, [ F(BIW.). (1.15)
0
where W is a standard Brownian motion independent of B and
1
OHg = 2q—(ﬂ§%(|r+1|2H+ [r — 1]2H — 2p|2H)1, (1.16)
re



3. Assume that H =1 — %. Then, as n — oo, it holds

1

1
(B,—=27"2 V@ (f)) 2 (B,al_l/@q),q/o f(Bs)dWs), (1.17)

where W is a standard Brownian motion independent of B and

2log2 N 1

o1 1- 1- )4 1.18
1-1/eaa = g (1= 5) (1) (1.18)
4. Assume that H > 1 — %. Then, as n — o0, it holds
1
pat=mnyo(p) L[ (5 )azl, (119)
0

where Z\9 denotes the Hermite process of order q introduced in Definition [ below.

Remark 1. When ¢ = 1, we have Vrfl)(f) = g—nH Zin:l (B(k_l)zfn) ABj9-n. For H =
z, 2”HV751)(f) converges in L? to the Ito stochastic integral fol f(Bs)dBs. For H > 1,
2”HV751)(f) converges in L? and almost surely to the Young integral fol f(Bs)dBs. For H < %,

23"H—”V,§1)(f) converges in L? to —% fol f'(Bs)ds.

Remark 2. In the critical case H = 2—1q (¢ > 2), we conjecture the following asymptotic
behavior: as n — oo,
(B,272 VD () 2% (B, 010294 / f(By)dW, Lo / F@ (1.20)

for W a standard Brownian motion independent of B and oy/(q), the constant defined by

(TI6). Actually, (L20) for ¢ = 2 and H = % has been proved in [2, 15, [I7] after that the first
draft of the current paper have been submitted. The reader is also referred to [16] for the study
of the weighted variations associated with iterated Brownian motion, which is a non-Gaussian
self-similar process of order i.

When H is between i and %, one can refine point 2 of Theorem [ as follows:

Proposition 2 Let ¢ > 2 be an integer, f : R — R be a function such that (Hy) holds and

assume that H € (1,3). Then

(3,2—"/2v,§2>(f) L., V(q)(f)) (1.21)

Law <B 0H2/ F(Bs)dwW . qu/ f(B dW(Q)>

where (W@ ... W) is a (¢ — 1)-dimensional standard Brownian motion independent of B
and the o ,’s, 2 < p < q, are given by (L10).



Theorem [I] together with Proposition [2 allow to complete the missing cases in the

understanding of the asymptotic behavior of weighted power variations of fractional Brownian
motion:

Corollary 3 Let ¢ > 2 be an integer, and f : R — R be a function such that (Hg) holds. Then,
as n — 00:

1. When H > % and q 1s odd,

2n 5 1 By
2™ F(Blo )@ AByy )t gy /0 F(B)AB, = qpig1 /0 f(x)dz.

k=1
(1.22)

2. When H < % and q s even,

on

2 (B ) [ B ] £ =1 (e / F(BYs. (123)

(We recover (1.12) by choosing q = 2).
3. When H = % and q is even,

(B 2- n/zzf (k—1)2— " ( n/4ABk2")q_Nq]> Law < ( >,uq 2/ f”

+F1 0 /0 f(Bs)dWs> , (1.24)

where W is a standard Brownian motion independent of B and 71,4 4 is the constant given

by (1.28) just below.

4. When % < H< % and q s even,

1
<32 n/zzf - <nHABk2n>q—uq]> L (B [ B0 )

(1.25)
for W a standard Brownian motion independent of B and
q 7\2
Gig = | P! <p> p2_p 2723 (Jr+ 1PH + [ — 12H — 2Jr[2H)P. (1.26)
p=2 rez



5. When H = % and q is even,

1 —n - n aw ~ !
(B,%2 /2;f(3(k_1)2n)[(2 HABy-n)1 —uq]> Law <B,ai7q/0 f(BS)dI/VS),

(1.27)
for W a standard Brownian motion independent of B and
q 7\2 1 1
= 2 q q
347~ 22log2p! <p> pa—p(1 - 2_q) (1- 5) :
—

6. When H > % and q 1s even,

2" 2 1
2n—2Hn Z f(B(k—1)2*”) [(QnHAB]an)q _ qu] L_> 2Nq—2 <g> /0 f(Bs)dZs@)’ (1.28)
k=1

for Z@ the Hermite process introduced in Definition [

Finally, we can also give a new proof of the following result, stated and proved by
Gradinaru et al. [§] and Cheridito and Nualart [3] in a continuous setting:

Theorem 4 Assume that H > %, and that f : R — R wverifies (Hg). Then the limit in

probability, as n — oo, of the symmetric Riemann sums

271
% Z (f'(Bra—n) + f'(B(—1)2-n)) AByo—n (1.29)
p}

exists and is given by f(B1) — f(0).

Remark 3 When H < %, quantity (L29) does not converge in probability in general. As
a counterexample, one can consider the case where f(z) = 23, see Gradinaru et al. [8] or
Cheridito and Nualart [3].

2 Preliminaries and notation

We briefly recall some basic facts about stochastic calculus with respect to a fractional Brownian
motion. One refers to [I9] for further details. Let B = (By)ic,1) be a fractional Brownian
motion with Hurst parameter H € (0,1). That is, B is a zero mean Gaussian process, defined
on a complete probability space (2, .4, P), with the covariance function

1
S(sH 42— 5P, st € ]0,1].

Ry(t,s) = E(ByBs) = 5



We suppose that A is the sigma-field generated by B. Let & be the set of step functions on
[0,77], and $ be the Hilbert space defined as the closure of & with respect to the inner product

(Lo: Lpo,s)) 0 = Ru(t, ).

The mapping 1(g 4 +— B: can be extended to an isometry between §) and the Gaussian space
H1 associated with B. We will denote this isometry by ¢ — B(¢p).
Let . be the set of all smooth cylindrical random variables, i.e. of the form

F =¢(By,,...,By,,)

where m > 1, ¢ : R™ — R € 6,° and 0 <1 <... <t, < 1. The derivative of I with respect
to B is the element of L?(€),$) defined by
DsF = a—(Btlv"'aBtm)l[Qti](s)? s € [0’ 1]
: €T
i=1
In particular DsB; = 1j94(s). For any integer k > 1, we denote by D*2 the closure of the set
of smooth random variables with respect to the norm

k
IFlIE, = E(F*) + ) E[|IDFll§e] .
j=1

The Malliavin derivative D satisfies the chain rule. If ¢ : R" — R is (gbl and if (F})i=1,.n is a
sequence of elements of D%2, then ¢(F1, ..., F,) € D'? and we have

n
0
D(')D(FlvaFn):Z (p(FbaFn)DF’z

We also have the following formula, which can easily be proved by induction on q. Let ¢, ¢ € ‘5,?
(g>1),and fix 0<u<v<1land 0<s<t<1. Then p(B; — Bs)¥(B, — By,) € D%? and

q
D9(p(B; — By)$(By — Bu)) = Y <Z> P (B, — Byl (B, — B)1EL &1, (2.30)

a=0

where ® means the symmetric tensor product.
The divergence operator I is the adjoint of the derivative operator D. If a random
variable u € L?(£2,9) belongs to the domain of the divergence operator, that is, if it satisfies

|E(DF,u)g| < ¢, /E(F?) forany F € .7,
then I(u) is defined by the duality relationship

E(FI(u)) = E((DF,u)g),

8



for every F € D2,

For every n > 1, let H,, be the nth Wiener chaos of B, that is, the closed linear
subspace of L? (2, A, P) generated by the random variables {H,, (B (h)),h € $,||h|s = 1},
where H,, is the nth Hermite polynomial. The mapping I,,(h®") = n!H, (B (h)) provides a
linear isometry between the symmetric tensor product " (equipped with the modified norm
|- lgon = \/—1n—'|| “|lgen) and H,. For H = &, I, coincides with the multiple Wiener-Ito integral
of order n. The following duality formula holds

E (FIy(h)) = E ((D"F,h)gen), (2.31)

for any element h € HO" and any random variable F' € D2,
Let {ex, k > 1} be a complete orthonormal system in §. Given f € §" and g € HO™,

for every r = 0,...,n A m, the contraction of f and ¢ of order r is the element of §®+m—2r)
defined by
[e.e]
f®r-g= Z (f, e, ... ® ekr>5§®r ® (g, e ®...0 ekr>5®r.
K1, kp=1

Notice that f ®, ¢ is not necessarily symmetric: we denote its symmetrization by f®,g €
§OM+m=2r) e have the following product formula: if f € H" and g € HO™ then

In(f)Im(g) = nﬁ?r! <n> (T) Inym-2r(f@r9). (2.32)

T
r=0

We recall the following simple formula for any s < ¢ and v < v:
1
(B~ BBy~ Bu) = 5 (1t = P s — P — e = o —|s —oPT). (233)
We will also need the following lemmas:

Lemma 5 1. Let s <t belong to [0,1]. Then, if H < 1/2, one has

|E(Bu(B; — By))| < (t—s)*" (2.34)
for all w € [0,1].
2. For all H € (0,1),
2’)7/
> |E (Biy2-n ABjp-n)| = O(2"). (2.35)
k=1
3. For anyr > 1, we have, if H <1 — 2—174,
2’)7/
> |E (ABjg—n ABjy—n)[" = 02" H™), (2.36)
k=1



4. For any r > 1, we have, if H =1 — &

o’
2n
> |E(ABjg-n ABjy-n)|" = O(n2>" ™). (2.37)
k=1

Proof: To prove inequality (2:34)), we just write

1 1
E(Bu(By = By)) = 5 (1 = ™) + o (Is —uf* = [t —u|?),

and observe that we have [b* — a?#| < |b—a|?# for any a,b € [0,1], because H < . To show

(235) using (233), we write

i |E (Bj—1)2-n ABjg-n)| = 2721771 i 0= 1 — P — ke + 17 4 |l — kP
k,l=1 k,l=1
< Cc2,

the last bound coming from a telescoping sum argument. Finally, to show ([2.36]) and (2.37),
we write

2n 2’)1
> |E(ABjg-n ABp-n)[" = 272HTN ke — 1+ 1PH 4 b — 1 — 1P — 2k —1PH)
k=1 k=1
(o]
< 2n—2nrH—r Z Hp_’_ 1‘2H + ’p - 1’2H - 2’p‘2H|T7
p=—00

1’2H 2H—-2 for

and observe that, since the function ||p + 1[*7 + |p — — 2|p|*# | behaves as Cyp
large p, the series in the right-hand side is convergent because H < 1 — % In the critical case
H=1- %, this series is divergent, and

2’)7/

>+ 1P = 1P 2p P

p==—2"

behaves as a constant time n. [ |

Lemma 6 Assume that H > %
1. Let s <t belong to [0,1]. Then
|E(Bu(By — By))| <2H(t — s) (2.38)

for all w € [0,1].

10



2. Assume that H > 1 — & for some 1 > 1. Let u < v and s < t belong to [0,1]. Then

2 a -1
- - < S ) . — — —s). :
|E(B, — B,)(B, — Bs)| < H(2H — 1) <2Hl o 2l> (u—wv) T (t—2s) (2.39)
3. Assume that H > 1 — % for some 1l > 1. Then

27L
> |E(ABjy-n ABjp-n)

1,7=1

= o2y, (2.40)

Proof: We have
B(Bu(Be— BJ) = 5 (7 — ) 4 o (Is — P — |t — uf?™).
But, when 0 <a < b < 1:
v o —2H /Ob_a(u +a) "ldu < 2H "1 (b —a) < 2H(b — a).
Thus, [b*H — a?| < 2H|b — a| and the first point follows.

Concerning the second point, using Holder inequality, we can write

v t
|E(B, — B,)(B; — B,)] = H(2H — 1)/ / ly — =21 2dydx

1
1 t l T
H(2H — 1)]u—v]l%1 </ (/ ]y—x!2H_2dy> dx)
0 s

-1 -1 1 t %
< HQR2H—-1Dju—v| T |t—s| T </ / \y—x\(QH_z)ldydx>
0 Js

Denote by H' =1+ (H — 1)l and observe that H' > 3 (because H > 1 — 3). Since 2H' —2 =
(2H — 2)l, we can write

IN

1 gt
H'(2H' — 1)/ / ly — z|CHDldyds = E ‘B{f’(BtH’ - Bf’)( < 2H'|t — s|
0 Js
by the first point of this lemma. This gives the desired bound.

We prove now the third point. We have

2n 2"
Z |E(AB2277L Ang—n) ! = 2_2Hnl_l Z |’1_j+1’2H+ ‘Z_j_ 1’2H_2’Z_j’2H|l
i,j=1 i,j=1
27 -1 .
< gn—2Hnlt1-l Z “k»_|_1|2H—|—|k;—1|2H —2|lc|2H|
k=—2n+1

11



and the function |k+ 1129 + |k — 127 —2|k|?>! behaves as |k|?7=2 for large k. As a consequence,
since H > 1 — %, the sum

2" —1
Sk 1P k- 1P 2k
k=—2n+1

behaves as 22H=2)n+n ynd the third point follows. |

Now, let us introduce the Hermite process of order ¢ > 2 appearing in ([LI9]). Fix

H > 1/2 and t € [0,1]. The sequence (gpn(t))n>1, defined as

[Q"t]
ng—n ®q
_2 q|21]12"]2”]’

is a Cauchy sequence in the space 9. Indeed, since H > 1/2, we have

b v
(Ljaps L))o = E((By — Bo)(By — By)) = H(2H — 1)/ / |s — ' [PH2dsds’,

so that, for any m > n

[2m¢] [2"t] jo—m ko—n q
<(70n(t)7(;0m(t)>y)®q _ H1 (2H 1) 27 7 )7 gng+mg—n-m Z (/ / _8/|2H—2d8d8/> ‘

j=1 k=1 \7(U-1)27™
Hence
. HY(2H —1)
mlrlzmoo <90n(t)790m(t)>5§®q = (T/ / |3 s |(2H 2)qd8d8 = ¢, Ht(2H 2)f1+2
s— q‘
where ¢, g = PRI Hqiqﬁiz_ I?qq_2q Ty Let us denote by ,u(Q) the limit in $H%? of the sequence of

functions ¢, (t). For any f € H%9, we have
[Z"t]
((pn( ) f>,§7)®q - 2nq nq' Z 1®j 1 2— n]2 n]7f>57)®q

[2”t]

1 S
= nan Hq 2H — 1)1 Z/ dsl/ ds’1|81—s'1|2H_2...

2 n
/ dsq/ ds;]sq—s;]2H_2f(31,...,sq)
(-

127L

1
— —Hq 2H — /ds/ 51...dsgls1 — 8272 sy — P2 f(s1,. ., 8,)
[0,1)4

= <1ut 7f>573®q'

12



Definition 7 Fiz ¢ > 2 and H > 1/2. The Hermite process Z@ = (Zt(q))te[m} of order q is
defined by Z\7 = I,(u\?) for t € [0,1].

Let Z\? be the process defined by z® (t) = I;(pn(t)) for t € [0,1]. By construction, it

is clear that Z.? (t) 2100 (t) as n — oo, for all fixed ¢ € [0,1]. On the other hand, it follows,
from Taqqu [2I] and Dobrushin and Major [5], that Z,(ﬂ) converges in law to the “standard”
and historical gth Hermite process, defined through its moving average representation as a
multiple integral with respect to a Wiener process with time horizon R. In particular, the
process introduced in Definition [ has the same finite dimensional distributions as the historical
Hermite process.

Let us finally mention that it can be easily seen that Z(9) is g(H —1) +1 self-similar, has
stationary increments and admits moments of all orders. Moreover, it has Holder continuous
paths of order strictly less than ¢(H — 1) + 1. For further results, we refer to Tudor [22].

3 Proof of the main results

In this section we will provide the proofs of the main results. For notational convenience, from
now on, we write €(,_1)-n (resp. dpp-n) instead of 1jg (,_1)2-n] (resp. Ljg_1)2-n» g2-n)). The

following proposition provides information on the asymptotic behavior of F <Vn(q)( f )2), as n

tends to infinity, for H <1 — %.

Proposition 8 Fiz an integer ¢ > 2. Suppose that f satisfies (Hy). Then, if H < %, then

E (V,@( f)2> — O(2n(-2Ha+2)), (3.41)
If 5, <H <14, then
E (Vn@( f)2) — 0(2"). (3.42)
Finally, o«f H =1 — %, then
E (vn@( f)2) = O(n2"). (3.43)

Proof. Using the relation between Hermite polynomials and multiple stochastic integrals, we

have H, (ZHHABkz—n) = %2‘1"qu <5®q ) In this way we obtain

k2—n
B (V9 (f)?)
27L
= Y E{f(Buiyo—n) f(By_nja—n) Hy (2" AByp-n) Hy (2"" ABjy-n) }

k=1

27L
i 2Hqgn ®q ®q
P 2 k,§z=:1 E {f(B(k—1)2*”) f(B-1y2-n) I <5k2—n ) 1y (%—n)} :

13



Now we apply the product formula ([2.32]) for multiple stochastic integrals and the duality rela-

tionship (2.31]) between the multiple stochastic integral I and the iterated derivative operator
DV obtaining

xE {f(B(k—1)2*") f(B(l—1)2*") Iog—o; <5§2q W ® 5}%"#‘)} (ko Oja—n)
27l q

- S

—7‘
hd=17—=0 " (g

E {<D2q_2T (f(Bimtyz—n) F(Ba_ya=n)) s Gpgt @057 nr>ﬁ®(2q72r)} (Oka—n, 012 ),

where @ denotes the symmetrization of the tensor product. By (2.30), the derivative of the
product D22 (f(B(k_l)zfn) f(B(l_l)an)) is equal to a sum of derivatives:

D> (f(Bg—1)2-n) f(B-1)2-n)) = > FBuoiyzn) FO(Bionya-n)
a+b=2q—2r
(2 —2r)! / &4 ~ @b
alb! <€(k—1)2’”®6(l—1)2*”>'
We make the decomposition
E (V{O(£)?) = Ay + Bu + Ca + Dy, (3.44)
where
22an 2"
n = 3 (k—1)2—n (I-1)2—n E(k—1)2—n),0k2-n)" \E(1—-1)2—n,012-n)",
J E{f9(B ) (B )i o Oa—n)? Gj2—n )
T kl=1

Bn = 22an Z Z {f(q B(k 1)2— ") f(q) (B(l—1)2*”)} a(c, d7 e, f)

ct+d+te+f=2q k|l=1
d+e>1

X <5(k—1)2w ) 5k2*7l>%<5(k—1)2*" ) 512*ﬂ>% <€(l—1)2*"7 5k2*”>% <€(l—1)2*"7 5127n>5];,

2’)7/
n a 2q)!
Cn = 22Ha E E E{f( )(B(k—1)2*")f(b)(B(l—1)2*")} (,2 ? |
q'%alb!
a+b=2q k=1
(a,b)#(q:9)

®a ®q ®q
(e 1)9-n ®E - 1)3-n Fpon D05t ) g2,

14



and

q 2n '
_ o2Hgn (a) ®) (2q — 2r)!
Dn = 2 Z Z Z E {f (B(k:—l)an) f (B(l—l)an)} T'(q — T)'za'b'
r=1a+b=2¢—2r k,|l=1
S ~®b Rq—T = cQq—
X <E((8;€a_1)27n ®€((gl)_1)2—n 5 5k2q—nr®5l2(znr>ﬁ®(2qf27") (51172*"7 5l2*">rf_) )
for some combinatorial constants a(c,d, e, f). That is, A, and B, contain all the terms with
r=0and (a,b) = (q,q); Cp, contains the terms with » = 0 and (a,b) # (¢, q); and D,, contains
the remaining terms.
For any integer » > 1, we set

an = sup  |{ep_1)2-m:02-n) 5|, (3.45)
ki=1,...2"
271/

/87‘,n == Z |<5k27n,5l27n>ﬁ|r, (346)
k=1
271/

o= Y [Eg—1ya—n, 02-n) s - (3.47)
k=1

Then, under assumption (Hg), we have the following estimates:

’An‘ < C22an—i—2n(an)2q7
Ba| +|Cr| < C22H0(q,)207 1y,
q
1Dl < C2PTN (0)*7 % B,

r=1

where C'is a constant depending only on ¢ and the function f. Notice that the second inequality
follows from the fact that when (a,b) # (q,q), or (a,b) = (q¢,q) and ¢+ d+ e + f = 2¢q with
d>1or e > 1, there will be at least a factor of the form (E(k_l)rn, dj9-n )¢ in the expression
of B,, or C),,.

In the case H < %, we have by (2.34) that oy, < 272" by ([236) that 3., < C2n-2rin
and by (2353) that v, < C2". As a consequence, we obtain

|A,| < C2n(=2Ha+2), (3.48)

|Bn| +|Cp| < Con(T2Hat2HHD), (3.49)
q

Dyl < C) on(2amnHED), (3.50)
r=1

which implies the estimates ([3.41]) and (B3.42).

15



In the case § < H < 1 — 2q’ we have by (2.38) that a,, < C27", by (2.36) that

Brn < C2=2rHN and by ([Z35) that v, < C2". As a consequence, we obtain

|An| + |Bn| + |Cn| é C2n(2q(H_1)+2)’

q
|Dn| < CZ 2”((2Q—27‘)(H_1)+1)’
r=1

which also implies (3.42)).
Finally, if H = 1 — —, we have by (238) that a,, < C27", by ([237) that 5, <
Cn22"=2" and by ([2.35) that ¥ < 02", As a consequence, we obtain

[An| +[Bal +[Cn| < C27,

q
ID,| < CY n2",
r=1

which implies (3.43). =

3.1 Proof of Theorem [I in the case 0 < H < i

In this subsection we are going to prove the first point of Theorem [Il The proof will be done
in three steps. Set V(q)(f) = 2"(‘1H_1)Vrgq)(f). We first study the asymptotic behavior of

1n

E (Vl(Q)(f)2>, using Proposition [

,n

Step 1. The decomposition ([3.44) leads to

E <V(q)(f)2) =22l =1) (A 4+ B, 4+ C,+D,).

1n

From the estimate ([§49) we obtain 22*(¢H=1) (|B,| + |C,|) < C2"2H=1) which converges to
zero as n goes to infinity since H < 2—1q < 3. On the other hand (B50) yields

q
22n(qH—1) |Dn| < Cz2n(2rH—1)’
r=1

which tends to zero as n goes to infinity since 2rH — 1 <2¢qH — 1 <O0forallr=1,...,q
In order to handle the term A,,, we make use of the following estimate, which follows

from (2.34]) and (233):
2—2Hn q
<E(k—1)2*"75k2*”>qyj - <— B >
9—2Hn a— 9—2Hn q—1-=s
= {Ew=1)2-7:0k2-n)6 + Z E(k—1)2-71 Ok2—n )5 <—T>
s=0
< C (K — (k —1)*) 27 2Han, (3.51)

16



Thus,

24I{qn on 2"
Z {f(q (Bk—1)2- ”)f(q)(B(l—1)2*")}<5(k—1)2*"’5k2*">q5 (eu—1)2-m>02-n)§

2—2n—2q 2" e
e Z E {f(q)(B(k—1)2*”) f(q)(B(l—l)r")} < ¢2*n—n
k=1
which implies, as n — oo:
(@ 2—2n—2q 2"
(V I (f) ) - q|2 Z {f(q ( (k—1)2— n) f(q) (B(l—1)2*n)} + 0(1) (352)
’ k=1

Step 2: We need the asymptotic behavior of the double product

on
Jn:=FE (V’l(fi)(f) X 2_an(q)(B(l—1)2n)> :

=1

Using the same arguments as in Step 1 we obtain

J, = 2fan—2n Z E{f (k—1)2- n)f(q)(B(z—mf")Hq(QHHABszn)}

i=1
L s2mgn—2n ®
= a2 Z B{f(Byryz) FO By 1o (555-0) }
k=1
= %22an—2n g:lE{<Dq(f(B(k‘l)2")f(q)(B(l—lﬂ")) 5};@; ”>H®q}
g
—  92Hqn— 2nk§l:1§% = { (a)(B(k—1)2*”)f(2q_a)(B(l—1)2*n)}

q—a

X (E(k=1)2-ms Ok2—n) G (E1=1)2-7> Op2—n )G

It turns out that only the term with a = ¢ will contribute to the limit as n tends to infinity.
For this reason we make the decomposition

n

n—zn 1
Ty = 22Han=2n N a7 {f(q)(B(k—l)Z*”) f(q)(B(l—l)rn)} (Ek—1)2-7, Ok2—n)G + Sn,

kJl=1 71
where
2m qg—1
—2n 1 —a
Sy, = 22Han=2 2(5(1—1)27m5k2w>52m {f( (B(s—1y2-n) f* )(3(1—1)2%)}
k=1 a=0 "

qg—a—1

X <€(k—1)2*"7 Opa—n )% (5(1—1)2% ) 5k2*">5§

17



By (234)) and (235, we have
‘Sn‘ < C22Hn—n7

which tends to zero as n goes to infinity. Moreover, by ([B.51]), we have

22an—2n

B {f(Q)(B(k—Ip*”) f(Q)(B(l_l)Tn)} (Eh—1)2-m Ok2—n) &

|
T k,l=1

—2n—q

2m
Z {f(q (Bk—1)2- n)f(q)(B(z—mfn)} < ctnn

which also tends to zero as n goes to infinity. Thus, finally, as n — oo:

.
> E{ID(Byryp-) [ O (B_ypn) | +o(1). (3.53)

k=1

Step 3: By combining (3.52]) and ([3.53)), we obtain that

Vl((iz)(f _2_‘1—q' _an B(—1)2-n)

k=1

as n — o00. Thus, the proof of the first point of Theorem [ is done using a Riemann sum
argument. [}

3.2 Proof of Theorem [1] in the case H > 1 — 2—1q: the weighted non-central

limit theorem

We prove here that the sequence V3, (f), given by
1 —
V() = 20D Vi () = 2t ST (Blagn) Ty (55 )

converges in L? as n — oo to the pathwise integral fol f(Bs)dZs(q) with respect to the Hermite
process of order ¢ introduced in Definition [7

Observe first that, by construction of Z(@ (precisely, see the discussion before Definition
[ in Section ), the desired result is in order when the function f is identically one. More
precisely:

152" t] ®
Lemma 9 For each fized t € [0,1], the sequence 277" 530 /', (5k2q n
)

the Hermite random variable Zt(q .

) converges in L? to

18



Now, consider the case of a general function f. We fix two integers m > n, and
decompose the sequence V(Q) m (f) as follows:

V() = A B,

where
jamon
Almn) m(q—1) Zf (12 n Z <5G§qm)
i=(j—1)2m—n+1
and

‘72771 n

g < LS TS s (s,

Jj=li=(3—-1)2m—n+1

with the notation A” f(B) = f(Bg—1)2-m) — f(B(j—1)2-»). We shall study A(mn) and B(mn)
separately.

Study of A™™)_ When n is fixed, Lemma [ yields that the random vector

Sy S g (5 ) =1
& i=(j—1)2m—n+1

converges in L2, as m — oo, to the vector
(@) () Ci
(ij w20 i =1 ,2") .

Then, as m — oo, A(™") LR A1) where
co,n) . AL (2)
Al E:fB(]lzn(ﬂn—Z(q) )

Finally, we claim that when n tends to infinity, A" converges in L? to fol I (Bs)ngq).

Indeed, observe that the stochastic integral fol f(Bs) dZ§Q) is a pathwise Young integral. So,
to get the convergence in L? it suffices to show that the sequence A" is bounded in L? for
some p > 2. The integral fol f(Bs) dZ\? has moments of all orders, because for all p > 2

‘Zt(q) _ Zs(q)‘ P
E sup

0<s<t<1 |t —s|7

By — B,|\?
E[ sup <%> } < 00,
o<s<t<1 \ [t — s

19
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if y<q(H—1)+1and 8 < H. On the other hand, Young’s inequality implies

o

where Var, denotes the variation of order p, and with p, > 1 such that % + % > 1. Choosing

< ¢, ,,Varp(f(B))VarV (Z(Q)),

p > % and v > ﬁ the result follows.

1
ThlS proves that, by letting m and then n go to infinity, Alm:n) converges in L? to

o £ (By)dz®.
Study of the term B(™™) : We prove that

2
lim sup F ‘B(m’”) = 0. (3.54)

n—oo

We have, using the product formula (2.32]) for multiple stochastic integrals,

(mn)|? 2m(g—1) e = ( >
E‘B 2 32311 (- 122;" n+1y’§—:1z’—(g’—1§;m n—‘rl;q'z
sz(m’n) (Big—m s Oirg—m ), (3.55)
where
b = B (AT f(B)AL (B) Iy (054, 00570) ) (3.56)

By (2.31) and (2.30), we obtain that bl(m’n) is equal to

i2—m

2(g—1) ( Amn m,n ®(q—1) 5 s®(q—1)
B (D) (A7 ()AL 1 (B)) G5 VBn )

2q—2I

2q — 21 ®
= > < ' a ) <E <<f(a)(B(i_1)2fm)E((%i1)2*m - f(a)(B(j—l)T”)E%a—l)?’”) ®

a=0
2¢—2l—a b 2¢—2l—a b ®(g—1) 5 «®(g—1)
(f( 7 )(B(i’—l)Q*m)‘g%/_l)gfm — f& )(B(j'—l)rn)e?}r_l)g—m)) Gipm ®0,0 >ﬁ®2(q4) :

The term in (3.55]) corresponding to [ = ¢ can be estimated by

1 _
_'22m(q D sup E |f(B:) — f(By)‘zﬂqu
q: |z—y|<27n

where (3, ,,, has been introduced in ([3.46)). So it converges to zero as n tends to infinity, uniformly
in m, because, by (240) and using that H > 1 — 2—1q, we have

sup 22m(q_1)ﬂqym < 0.
m
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In order to handle the terms with 0 <! < g — 1, we make the decomposition

2q—21 2 — 9] 4
(b}“”’ < < qa )ZBh, (3.57)
a=0 h=1

_ m,n m,n ®a 5 -®(2q—2l—a) ®(q—1) 5 ®(q—1)
B = E\A;; f(B)Ai/,j/f(B)‘ <5 D2 @€ 1yz-m O @y >ﬁ®2(q,l)=

(i—
®a ®a 5, -®(2q—2l—a) ®(q—1) 3 ®(q—1)
X <<E(z’—1)2*m - E(j—l)Q*") QE (i1 _1y2-m +0i9-m B0 m >5®2(q,l) ’

By = F A%’nf(B)f(zq_m_a)(B(j'—1)2f")

®a = 2®(2¢—2l—a) _ _®(2¢—2l—a) ®(q—1) 5 ®(q—1)
X <5(i—1)2*m® <€(i'—1)2*m €(jr—1)2-n ) O P, >ﬁ®2(q,l) )

By = FE f(a)(B(j—1)2fn)f(2q_2l_a)(B(j'—1)2f")

®a ) S -®2g—2l—a) _ _®(2¢—2l-a) ®(q—1) 3 +®(q—1)
X <<E(z’—1)2*m E(j—l)Q*") ® <E(z’/—1)2*m €(jr—1)2-n > +0i9-m  B0;5m >5®2(q,l) :

(3.58)

By using (2.38]) and the conditions imposed on the function f, one can bound the terms By,
By and Bj as follows:

|B1| < c(q, f, H) sup E ‘f(a)(Bx) — f(a)(By)‘2 9=2m(a—1)

lz—y|< 5k ,0<a<2q

[Bol +|Bs| S cla, f,H)  sup B[ fRHmo(B,) - pimdma) (g, gmamad),

lz—y|< 5r,0<a<2q

and, by using (2.39]), we obtain that

-1
|Ba| < clg, f, H)2 "0 —2mla=h),

By setting

1 _
R, = —~  sup E|f(By) — f(By)]2 sup 92m(q 1)ﬂq7m,
T Jo—y|<27m m
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we can finally write, by the estimate (2.40),

E (B(mm ’
< Ryt f2" 00 [ s [fEe s, - peeo0p,)| 20
|lz— y\<2n ,0<a<2q
J2m n /2771 n
XZ Z Z Z 22 2m(g—1) 227”5’2 m>
J=li=(j—1)2m—n41j5/'=1¢=(j'-1)2m"+1 I=0
< Rn + C(H, f7 q)22m(q—1) sup ‘f(2q—2l—a) (Bx) - f(2q—2l—a) (By)‘ + (2—n)q;1
|x— y\<2n ,0<a<2q
q—1 2m
X Z 2_2m(q_l) Z <5i27m7 52'/27m>l573
=0 1,7=0
< Ru+c(H, f,q) sup | fEEma(py) - pea (g4 20T
|lx— y\<2n ,0<a<2q
and this converges to zero due to the continuity of B and since ¢ > 1. |

3.3 Proof of Theorem [ in the case 2—1q < H<1- 2—1q: the weighted central
limit theorem

Suppose first that 2—1q < H < 1- 2—1q. We study the convergence in law of the sequence

V;fil) (f) = 273 Vrgq)( f). We fix two integers m > n, and decompose this sequence as follows:

Vi) = AU B,

where
on j2m7n
72 (B(j—1y2-n) > Hy (2™ ABy-m),
j=1 i=(j—1)2m—n41
and

]27n n

RBlmn) _ 2m(Hq—— Z Z A:?"f(B)[ <(5gqm)a

Jj=li=(3—1)2m—n41
and where as before we make use of the notation AJY" f(B) = f(B(i—1y2-m) — f(B(j—1)2-»)-

Let us first consider the term A" . From Theorem 1 in Breuer and Major [I], and
taking into account that H <1 — %, it follows that the random vector

B,2°% > H, 2" ABjy-m); j=1,...,2"
i:(j—l)z’”*"—l-l
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converges in law, as m — 0o, to
(B,oggAWjo—n; j=1,...,2")

where o 4 is the constant defined by (L.16]) and W is a standard Brownian motion independent
of B (the independence is a consequence of the central limit theorem for multiple stochastic
integrals proved in Peccati and Tudor [20]). Since

Zf (—1y2-n) AWy

converges in L? as n — oo to the Ito integral fol f(Bs)dW we conclude that, by letting m — oo
and then n — oo, we have

1
(B, Almm)) 2 (B,aHﬂ /0 f(BS)dI/Vs).

Then it suffices to show that

2
lim sup E‘B(m’”) — 0. (3.59)

n—®m—oo

We have, as in (3.53)),

2m n /2m n

LS YD DU DR DU v 1 (1}

J=li=(j—-1)2m—n41j5/'=1¢=(j'—1)2m—"+1 [=0

><bl(m,n) (8ig-m, 5i’2*m>.6’ (3.60)

B[’

where bl(m’n) has been defined in ([3.56]). The term in ([B.60]) corresponding to | = ¢ can be
estimated by

1 oo
—2 CH=D sup  E|f(By) — f(By)I Bym:
q: lz—y|<27n

which converges to zero as n tends to infinity, uniformly in m, because by (2.36]) and using that
H<1- 2 , we have

sup 2mCHI g < o,
m

In order to handle the terms with 0 < | < g — 1, we will distinguish two different cases,
depending on the value of H.

Case H < 1/2. Suppose 0 <1 < ¢—1. By (2.35), we can majorize bl(m’n) as follows:
’bl(mm)’ < 02—4Hm(q—l)'
As a consequence, applying again (2.36]), the corresponding term in (B.60]) is bounded by

CQm(2Hq—1)2—4Hm(q—l) Brm < C22mH(l—q)

9
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which converges to zero as m tends to infinity because | < q.

Case H > 1/2. Suppose 0 <[ < ¢—1. By (2.37), we get the estimate
|bl(m,”)| < 02—2m(q—l)‘

As a consequence, applying again (2.36]), the corresponding term in (B.60]) is bounded by
C2m(2Hq—1)2—2m(q—l)Bl -

If H<1- 21, applying (236)), this is bounded by ¢'2m(2H(a-)-2(a— l)) , which converges to zero
as m tends to infinity because H < 1 and [ < ¢. In the case H =1 — 21, applying (2.37)), we get
the estimate Cm2m2H (a=0)—=2(q—1)) Wthh converges to zero as m tends to infinity because H < 1
and | < ¢. In the case H > 1 — &, we apply ([2.38) and we get the estimate C2mM(2H2+1-2q)
which converges to zero as m tends to infinity because H < 1 — E

The proof in the case H = 1 — % is similar. The convergence of the term A" is

obtained by applying Theorem 1’ in Breuer and Major (1983), and the convergence to zero in
L? of the term B follows the same lines as before.

3.4 Proof of Proposition

We proceed as in Section B3l For p = 2,...,q, we set V;f’n)(f) =273 Vn(p)(f). We fix two
integers m > n, and decompose this sequence as follows:

V(P) (f) — A}()m,n) + B}()m,n)7

2m
where
on jom—n
A =275 N " f (Byopn) Y. Hpy (2™ ABjp-n),
j=1 i=(j—1)2m—n41
and
J2m n

By = ok DY Y e, (557..) -

Jj=li=(j—-1)2m—n41
and where as before we make use of the no‘gatlon Azmjnf(B) = f(B(i_l)zfm) — f(B(j_l)zfn).

Let us first consider the term Aém . We claim that the random vector

jszn
B,{2°% > H, (2™ ABjy-m); j=1,...,2"
1=(j—1)2m"+1 2<p<q

converges in law, as m — oo, to

(B AompAWE s =1, 2oy,
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where (W@ ... W) is a (¢ — 1)-dimensional standard Brownian motion independent of B
and the o ,’s are given by (LI6). Indeed, the convergence in law of each component follows
from Theorem 1 in Breuer and Major [1], taking into account that H < % <1- %. The joint

convergence and the fact that the processes W® for p = 2,...,q are independent (and also
independent of B) is a direct application of the central limit theorem for multiple stochastic
integrals proved in Peccati and Tudor [20].

Since, for any p = 2,...,q, the quantity

Zf (i-1)2-") AW](g)n

converges in L% as n — oo to the Ito integral fol f(Bs)dWs(p), we conclude that, by letting
m — oo and then n — oo, we have

On the other hand, and because H € (1, %) (implying that H € (ﬁ, 1-— i)), we have shown

2p
in Section [3.3] that )
lim sup E ‘Bz(,m M =0

n—00 m—oo

for all p=2,...,q. This finishes the proof of Proposition [2

3.5 Proof of Corollary [3l

For any integer g > 2, we have
/g q
q &
(ZnHAB]an) — Hg = Z <p> Hq— p2anI 5k2p n Zp < >/Lq —p ( nHABkgfn) .
p=1 p=1

Indeed, the pth kernel in the chaos representation of (2”HABk27n)q is
H 49\ onH ®
HE(DP (2" AByy-n)") = <p>2" Plig—pOpa-.-

Suppose first that ¢ is odd and H > % In this case, we have

q
q _
2- "HZf (h-1)2-) (2" ABpp-n)? = p! <p> ta-p2 VP (F).
p=1
The term with p = 1 converges in L? to qu,—1 fo s)dB;. For p > 2, the limit in L? is zero.
Indeed, if H <1 — 2—p, then E < n(p)(f)2) is bounded by a constant times n2"™ by Proposition
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R IfH>1- le, then F <Vn(p)(f)2) is bounded by a constant times 2-"2(1=H)p+2n Ly (9],
with —2(1 — H)p+2 — 2H = (1 — H)(2 — 2p) < 0.
Suppose now that ¢ is even. Then

q
nH—n on nH—n q
220 = Zf (h-12-n) [ AByg—n)T — pg) = 227N " pl (p),uq_pV,Ep)(f) :
p=2
If H< %, by (LI4), one has that 2277 =" x 2(2) V2 )(f) converges in L2, as n — 00,
( ),uq 9 fo f’ s)ds. On the other hand, for p > 4, 227~ "V( )(f) converges to zero in L2
Indeed, if H < 4, then E ( n(”)(f)2) = O(27(=2Hp+2)) by FAT) with —2Hp+2+4H —2 < 0.

If H> L, then E ( n(p)(f)2> = O(2") by @A) with 4H — 1 < 0. Therefore ([23) holds.
In the case 4 < H< %, Proposition 2l implies that the vector

(B.2772V (), ... 272V )

(B JHg/f B)dw® . qu/f AL >>

where (W@, ... W@) is a (¢ — 1)-dimensional standard Brownian motion independent of B
and the oy ,’s, 2 < p < g, are given by ([.I6). This implies the convergence (L.25). The proof
of (L.27)) is analogous (with an adequate version of Proposition [2)).

The convergence ([.24]) is obtained by similar arguments using the limit result (T.20)
in the critical case H = %, p=2.

Finally, consider the case H > %. For p = 2, 2”_2H”Vn(2)(f) converges in L? to

fo alZ(2 by (LI9). If p > 4, then 2"~ 2H”V(p)(f) converges in L? to zero because, again
by (CI9)), one has E( n(p)(f)Q) — O(2n(2-2(1-H)p)),

converges in law to

3.6 Proof of Theorem 4

We can assume H < %, the case where H > % being straightforward. By a Taylor’s formula,
we have
on
f(B1) = f(0)+ 5 Z (f'(Bra—n) + f'(B(r—1)2—n)) AByo-n

2
k=1

—_

n

Zf( (B(—1)2-n) (AByg—n)" — —Zf Br—1)2- ”)(ABk2*”)4

k 1

2”
1
% > fO(By_1y3-n) (ABjan)” + Ru, (3.61)
k=1
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with R,, converging towards 0 in probability as n — oo, because H > 1/6. We can expand the
monomials 2", m = 2,3,4,5, in terms of the Hermite polynomials:

2 = 2Hy(z)+1

3 = 6Hs(z)+3H(v)

= 24Hy(z) + 12 Hy(z) +3

> = 120 Hs(z) + 60 H3(z) + 15 Hy(z).

In this way we obtain

Zf Bli—1)2-n) (ABya—n)® = 6 x 2733 (fO)) 43 5 272Hny (D (£3)),(3.62)

Zf Bj_1y2-n) (AByg-n)* = 24 x 274y (0 (1)

+12 x 274y @) (fW)) 4 3 x g~ 4Hn Z FOBg_1y2-n), (3.63)
k=1
27L
D O (Bgiorya-n) (AByg—n) = 120 x 27 °Hry0) (£6))
k=1
+60 x 275HPY B (F0O)) 4 15 x 274y (D (£0)), (3.64)

By (B42) and using that H > £, we have E <V753)(f(3))2) < C2"and F (V}Eg)(f@)z) < C2".
As a consequence, the first summand in (3.62)) and the second one in (3.64]) converge to zero in
L? as n tends to infinity. Also, by (.42), E <Vn(4)(f(4))2) < C2" and E ( ,1(5)(]“(5))2) <Co2m,
Hence, the first summand in (3.63) and the first summand in (3.64) converge to zero in L?
as n tends to infinity. If % < H< i, (341) implies E <V7~52)(f(4))2> < O2M(=4H+2)) 5o that
2_4H"Vn(2)(f(4)) converges to zero in L? as n tends to infinity. If + < H < 3, (342) implies
E ( ,1(2)(f)2) < C2" so that 2_4H”Vn(2)(f(4)) converges to zero in L? as n tends to infinity.
Moreover, using the following identity, valid for regular functions h : R — R:

2m 2m

> W (Bgi1)ja—n) AByg—n = h(By) — h(0) — % > h'(By,, ) (ABja-n)’

k=1 k=1

for some 65— lying between (k — 1)27™ and k27", we deduce that 9—4tny; (1) (f®)) tends to
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zero, because H > %. In the same way, we have

on
1

22y M (£B)) = ~3 g 2Hn ; FO(Bp—1)2-n) (ABja-n)?

1 2

% g~ 2Hn Z f(5)(B(k—1)2*") (ABjy-n)® + o(1).

k=1
We have obtained
1 > ! !
fB1) = fO)+3 > (f'(Bia-n) + f'(Bgeiya—n) ) ABjgn

k=1

271
1w n
+7 %2 N O (Bg_1y2-n ) Ha (2" ABjgn)
k=1

271/
1 —2Hn
—g5q %2 2N FO(Bo1ya-n) (ABgg—n) + o(1).
k=1

As before 2_4H"V752)(f(4)) converges to zero in L2. Finally, by (1),

omn

272105 FO (B ya) (ABjg-n)?
k=1

also converges to zero. This completes the proof. |
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