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1 Introduction
Let {Xn}n>1 be a sequence of real-valued independent identically distributed random
variables with E[Xn] = 0 and E[X2

n] = 1, and denote

Sn =
1√
n

n∑

k=1

Xk.

The celebrated almost sure central limit theorem (ASCLT) states that the sequence of
random empirical measures, given by

1

log n

n∑

k=1

1

k
δSk

converges almost surely to the N (0, 1) distribution as n →∞. In other words, if N is a
N (0, 1) random variable, then, almost surely, for all x ∈ R,

1

log n

n∑

k=1

1

k
1{Sk6x} −→ P (N 6 x), as n →∞,
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or, equivalently, almost surely, for any bounded and continuous function ϕ : R→ R,

1

log n

n∑

k=1

1

k
ϕ(Sk) −→ E[ϕ(N)], as n →∞. (1.1)

The ASCLT was stated �rst by Lévy [15] without proof. It was then forgotten for
half century. It was rediscovered by Brosamler [7] and Schatte [21] and proven, in its
present form, by Lacey and Philipp [14]. We refer the reader to Berkes and Csáki [1] for
a universal ASCLT covering a large class of limit theorems for partial sums, extremes,
empirical distribution functions and local times associated with independent random vari-
ables {Xn}, as well as to the work of Gonchigdanzan [10], where extensions of the ASCLT
to weakly dependent random variables are studied, for example in the context of strong
mixing or ρ-mixing. Ibragimov and Lifshits [12, 11] have provided a criterion for (1.1)
which does not require the sequence {Xn} of random variables to be necessarily indepen-
dent nor the sequence {Sn} to take the speci�c form of partial sums. This criterion is
stated in Theorem 3.1 below.

Our goal in the present paper is to investigate the ASCLT for a sequence of functionals
of general Gaussian �elds. Conditions ensuring the convergence in law of this sequence
to the standard N (0, 1) distribution may be found in [16, 17] by Nourdin, Peccati and
Reinert. Here, we shall propose a suitable criterion for this sequence of functionals to
satisfy also the ASCLT. As an application, we shall consider some non-linear functions of
strongly dependent Gaussian random variables.

The paper is organized as follows. In Section 2, we present the basic elements of Gaus-
sian analysis and Malliavin calculus used in this paper. An abstract version of our ASCLT
is stated and proven in Section 3, as well as an application to partial sums of non-linear
functions of a strongly dependent Gaussian sequence. In Section 4, we apply our ASCLT
to discrete-time fractional Brownian motion. In Section 5, we consider applications to
partial sums of Hermite polynomials of strongly dependent Gaussian sequences, when the
limit in distribution is Gaussian. Finally, in Section 6, we discuss the case where the limit
in distribution is non-Gaussian.

2 Elements of Malliavin calculus
We shall now present the basic elements of Gaussian analysis and Malliavin calculus that
are used in this paper. The reader is referred to the monograph by Nualart [18] for any
unexplained de�nition or result.

Let H be a real separable Hilbert space. For any q > 1, let H⊗q be the qth tensor
product of H and denote by H¯q the associated qth symmetric tensor product. We write
X = {X(h), h ∈ H} to indicate an isonormal Gaussian process over H, de�ned on some
probability space (Ω,F , P ). This means that X is a centered Gaussian family, whose
covariance is given in terms of the scalar product of H by E [X(h)X(g)] = 〈h, g〉H.

For every q > 1, letHq be the qth Wiener chaos of X, that is, the closed linear subspace
of L2(Ω,F , P ) generated by the family of random variables {Hq(X(h)), h ∈ H, ‖h‖H = 1},
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where Hq is the qth Hermite polynomial de�ned as

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e−

x2

2

)
. (2.2)

The �rst few Hermite polynomials are H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x.
We write by convention H0 = R and I0(x) = x, x ∈ R. For any q > 1, the mapping
Iq(h

⊗q) = Hq(X(h)) can be extended to a linear isometry between the symmetric tensor
product H¯q equipped with the modi�ed norm ‖·‖H¯q =

√
q! ‖·‖H⊗q and the qth Wiener

chaos Hq. Then

E[Ip(f)Iq(g)] = δp,q × p!〈f, g〉H⊗p (2.3)

where δp,q stands for the usual Kronecker symbol, for f ∈ H¯p, g ∈ H¯q and p, q > 1.
Moreover, if f ∈ H⊗q, we have

Iq(f) = Iq(f̃), (2.4)

where f̃ ∈ H¯q is the symmetrization of f .
It is well known that L2(Ω,F , P ) can be decomposed into the in�nite orthogonal sum

of the spaces Hq. Therefore, any square integrable random variable G ∈ L2(Ω,F , P )
admits the following Wiener chaotic expansion

G = E[G] +
∞∑

q=1

Iq(fq), (2.5)

where the fq ∈ H¯q, q > 1, are uniquely determined by G.
Let {ek, k > 1} be a complete orthonormal system in H. Given f ∈ H¯p and g ∈ H¯q,

for every r = 0, . . . , p∧q, the contraction of f and g of order r is the element of H⊗(p+q−2r)

de�ned by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ . . .⊗ eir〉H⊗r . (2.6)

Since f ⊗r g is not necessarily symmetric, we denote its symmetrization by f⊗̃rg ∈
H¯(p+q−2r). Observe that f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for
p = q, f ⊗q g = 〈f, g〉H⊗q , namely the scalar product of f and g. In the particular case
H = L2(A,A, µ), where (A,A) is a measurable space and µ is a σ-�nite and non-atomic
measure, one has that H¯q = L2

s(A
q,A⊗q, µ⊗q) is the space of symmetric and square

integrable functions on Aq. In this case, (2.6) can be rewritten as

(f ⊗r g)(t1, . . . , tp+q−2r) =

∫

Ar

f(t1, . . . , tp−r, s1, . . . , sr)

× g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr)dµ(s1) . . . dµ(sr),

that is, we identify r variables in f and g and integrate them out. We shall make use
of the following lemma whose proof is a straighforward application of the de�nition of
contractions and Fubini theorem.
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Lemma 2.1 Let f, g ∈ H¯2. Then ‖f ⊗1 g‖2
H⊗2 = 〈f ⊗1 f, g ⊗1 g〉H⊗2 .

Let us now introduce some basic elements of the Malliavin calculus with respect to
the isonormal Gaussian process X. Let S be the set of all cylindrical random variables of
the form

G = ϕ (X(h1), . . . , X(hn)) , (2.7)

where n > 1, ϕ : Rn → R is an in�nitely di�erentiable function with compact support
and hi ∈ H. The Malliavin derivative of G with respect to X is the element of L2(Ω,H)
de�ned as

DG =
n∑

i=1

∂ϕ

∂xi

(X(h1), . . . , X(hn)) hi. (2.8)

By iteration, one can de�ne the mth derivative DmG, which is an element of L2(Ω,H¯m),
for every m > 2. For instance, for G as in (2.7), we have

D2G =
n∑

i,j=1

∂2ϕ

∂xi∂xj

(X(h1), . . . , X(hn))hi ⊗ hj.

For m > 1 and p > 1, Dm,p denotes the closure of S with respect to the norm ‖ · ‖m,p,
de�ned by the relation

‖G‖p
m,p = E [|G|p] +

m∑
i=1

E
(‖DiG‖p

H⊗i

)
. (2.9)

In particular, DX(h) = h for every h ∈ H. The Malliavin derivative D veri�es moreover
the following chain rule. If ϕ : Rn → R is continuously di�erentiable with bounded partial
derivatives and if G = (G1, . . . , Gn) is a vector of elements of D1,2, then ϕ(G) ∈ D1,2 and

Dϕ(G) =
n∑

i=1

∂ϕ

∂xi

(G)DGi.

Let now H = L2(A,A, µ) with µ non-atomic. Then an element u ∈ H can be expressed
as u = {ut, t ∈ A} and the Malliavin derivative of a multiple integral G of the form Iq(f)
(with f ∈ H¯q) is the element DG = {DtG, t ∈ A} of L2(A× Ω) given by

DtG = Dt

[
Iq(f)

]
= qIq−1 (f(·, t)) . (2.10)

Thus the derivative of the random variable Iq(f) is the stochastic process qIq−1

(
f(·, t)),

t ∈ A. Moreover,

‖D[
Iq(f)

]‖2
H = q2

∫

A

Iq−1 (f(·, t))2 µ(dt).
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For any G ∈ L2(Ω,F , P ) as in (2.5), we de�ne

L−1G = −
∞∑

q=1

1

q
Iq(fq). (2.11)

It is proven in [16] that for every centered G ∈ L2(Ω,F , P ) and every C1 and Lipschitz
function h : R→ C,

E[Gh(G)] = E[h′(G)〈DG,−DL−1G〉H]. (2.12)

In the particular case h(x) = x, we obtain from (2.12) that

Var[G] = E[G2] = E[〈DG,−DL−1G〉H], (2.13)

where `Var' denotes the variance. Moreover, if G ∈ D2,4 is centered, then it is shown in
[17] that

Var[〈DG,−DL−1G〉] 6 5

2
E[‖DG‖4

H]
1
2 E[‖D2G⊗1 D2G‖2

H⊗2 ]
1
2 . (2.14)

Finally, we shall also use the following bound, established in a slightly di�erent way in
[17, Corollary 4.2], for the di�erence between the characteristic functions of a centered
random variable in D2,4 and of a standard Gaussian random variable.

Lemma 2.2 Let G ∈ D2,4 be centered. Then, for any t ∈ R, we have
∣∣E[eitG]−e−t2/2

∣∣6 |t|
∣∣1−E[G2]

∣∣+ |t|
2

√
10 E[‖D2G⊗1 D2G‖2

H⊗2 ]
1
4 E[‖DG‖4

H]
1
4 . (2.15)

Proof. For all t ∈ R, let ϕ(t) = et2/2E[eitG]. It follows from (2.12) that

ϕ′(t) = tet2/2E[eitG] + iet2/2E[GeitG] = tet2/2E[eitG(1− 〈DG,−DL−1G〉H)].

Hence, we obtain that
∣∣ϕ(t)− ϕ(0)

∣∣ 6 sup
u∈[0, t]

|ϕ′(u)| 6 |t|et2/2E
[|1− 〈DG,−DL−1G〉H|

]
,

which leads to
∣∣E[eitG]− e−t2/2

∣∣ 6 |t|E[|1− 〈DG,−DL−1G〉H|
]
.

Consequently, we deduce from (2.13) together with Cauchy-Schwarz inequality that
∣∣E[eitG]− e−t2/2

∣∣ 6 |t|
∣∣1− E[G2]

∣∣ + |t|E[|E[G2]− 〈DG,−DL−1G〉H|
]
,

6 |t|
∣∣1− E[G2]

∣∣ + |t|
√

Var
(〈DG,−DL−1G〉H

)
.

We conclude the proof of Lemma 2.2 by using (2.14).
2
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3 A criterion for ASCLT on the Wiener space
The following result, due to Ibragimov and Lifshits [12], gives a su�cient condition for
extending convergence in law to ASCLT. It will play a crucial role in all the sequel.

Theorem 3.1 Let {Gn} be a sequence of random variables converging in distribution
towards a random variable G∞, and set

∆n(t) =
1

log n

n∑

k=1

1

k

(
eitGk − E(eitG∞)

)
. (3.16)

If, for all r > 0,

sup
|t|6r

∑
n

E|∆n(t)|2
n log n

< ∞, (3.17)

then, almost surely, for all continuous and bounded function ϕ : R→ R, we have

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(G∞)], as n →∞.

The following theorem is the main abstract result of this section. It provides a suitable
criterion for an ASCLT for normalized sequences in D2,4.

Theorem 3.2 Let the notation of Section 2 prevail. Let {Gn} be a sequence in D2,4

satisfying, for all n > 1, E[Gn] = 0 and E[G2
n] = 1. Assume that

(A0) sup
n>1

E
[‖DGn‖4

H] < ∞,

and

E[‖D2Gn ⊗1 D2Gn‖2
H⊗2 ] → 0, as n →∞.

Then, Gn
law−→ N ∼ N (0, 1) as n → ∞. Moreover, assume that the two following

conditions also hold

(A1)
∑
n>2

1

n log2 n

n∑

k=1

1

k
E[‖D2Gk ⊗1 D2Gk‖2

H⊗2 ]
1
4 < ∞,

(A2)
∑
n>2

1

n log3 n

n∑

k,l=1

∣∣E(GkGl)
∣∣

kl
< ∞.

Then, {Gn} satis�es an ASCLT. In other words, almost surely, for all continuous and
bounded function ϕ : R→ R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)], as n →∞.
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Remark 3.3 If there exists α > 0 such that E[‖D2Gk⊗1D
2Gk‖2

H⊗2 ] = O(k−α) as k →∞,
then (A1) is clearly satis�ed. On the other hand, if there exists C, α > 0 such that∣∣E[GkGl]

∣∣ 6 C
(

k
l

)α for all k 6 l, then, for some positive constants a, b independent of n,
we have

∑
n>2

1

n log3 n

n∑

l=1

1

l

l∑

k=1

∣∣E[GkGl]
∣∣

k
6 C

∑
n>2

1

n log3 n

n∑

l=1

1

l1+α

l∑

k=1

kα−1,

6 a
∑
n>2

1

n log3 n

n∑

l=1

1

l
6 b

∑
n>2

1

n log2 n
< ∞,

which means that (A2) is also satis�ed.

Proof of Theorem 3.2. The fact that Gn
law−→ N ∼ N (0, 1) follows from [17, Corollary

4.2]. In order to prove that the ASCLT holds, we shall verify the su�cient condition
(3.17), that is the Ibragimov-Lifshits criterion. For simplicity, let g(t) = E(eitN) = e−t2/2.
Then, we have

E|∆n(t)|2 (3.18)

=
1

log2 n

n∑

k,l=1

1

kl
E

[(
eitGk − g(t)

)(
e−itGl − g(t)

)]
,

=
1

log2 n

n∑

k,l=1

1

kl

[
E

(
eit(Gk−Gl)

)− g(t)
(
E

(
eitGk

)
+ E

(
e−itGl

))
+ g2(t)

]
,

=
1

log2 n

n∑

k,l=1

1

kl

[(
E

(
eit(Gk−Gl)

)− g2(t)
)− g(t)

(
E

(
eitGk

)− g(t)
)− g(t)

(
E

(
e−itGl

)− g(t)
)]

.

Let t ∈ R and r > 0 be such that |t| 6 r. It follows from inequality (2.15) together with
assumption (A0) that

∣∣E(
eitGk

)− g(t)
∣∣ 6 rξ

2

√
10 E[‖D2Gk ⊗1 D2Gk‖2

H⊗2 ]
1
4 (3.19)

where ξ = supn>1 E
[‖DGn‖4

H]
1
4 . Similarly,

∣∣E(
e−itGl

)− g(t)
∣∣ 6 rξ

2

√
10 E[‖D2Gl ⊗1 D2Gl‖2

H⊗2 ]
1
4 . (3.20)

On the other hand, we also have via (2.15) that
∣∣E(

eit(Gk−Gl)
)− g2(t)

∣∣ =
∣∣∣E

(
e

it
√

2
Gk−Gl√

2

)− g(
√

2 t)
∣∣∣ ,

6
√

2r
∣∣∣1− 1

2
E[(Gk −Gl)

2]
∣∣∣ + rξ

√
5 E[‖D2(Gk −Gl)⊗1 D2(Gk −Gl)‖2

H⊗2 ]
1
4 ,

6
√

2r|E[GkGl]|+ rξ
√

5 E[‖D2(Gk −Gl)⊗1 D2(Gk −Gl)‖2
H⊗2 ]

1
4 .
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Moreover
‖D2(Gk −Gl)⊗1 D2(Gk −Gl)‖2

H⊗2 6 2‖D2Gk ⊗1 D2Gk‖2
H⊗2 + 2‖D2Gl ⊗1 D2Gl‖2

H⊗2

+4‖D2Gk ⊗1 D2Gl‖2
H⊗2 .

In addition, we infer from Lemma 2.1 that
E

[‖D2Gk ⊗1 D2Gl‖2
H⊗2

]
= E

[〈D2Gk ⊗1 D2Gk, D
2Gl ⊗1 D2Gl〉H⊗2

]
,

6
(
E

[‖D2Gk ⊗1 D2Gk‖2
H⊗2

]) 1
2
(
E

[‖D2Gl ⊗1 D2Gl‖2
H⊗2

]) 1
2
,

6 1

2
E

[‖D2Gk ⊗1 D2Gk‖2
H⊗2

]
+

1

2
E

[‖D2Gl ⊗1 D2Gl‖2
H⊗2

]
.

Consequently, we deduce from the elementary inequality (a + b)
1
4 6 a

1
4 + b

1
4 that

∣∣E(
eit(Gk−Gl)

)− g2(t)
∣∣ (3.21)

6
√

2r|E[GkGl]|+ rξ
√

10
(
E

[‖D2Gk ⊗1 D2Gk‖2
H⊗2

] 1
4 + E

[‖D2Gl ⊗1 D2Gl‖2
H⊗2

] 1
4

)
.

Finally, (3.17) follows from the conjunction of (A1) and (A2) together with (3.18), (3.19),
(3.20) and (3.21), which completes the proof of Theorem 3.2. 2

We now provide an explicit application of Theorem 3.2.
Theorem 3.4 Let X = {Xn}n∈Z denote a centered stationary Gaussian sequence with
unit variance, such that

∑
r∈Z |ρ(r)| < ∞, where ρ(r) = E[X0Xr]. Let f : R → R be a

symmetric real function of class C2, and let N ∼ N (0, 1). Assume moreover that f is
not constant and that E[f ′′(N)4] < ∞. For any n > 1, let

Gn =
1

σn

√
n

n∑

k=1

(
f(Xk)− E[f(Xk)]

)

where σn is the positive normalizing constant which ensures that E[G2
n] = 1. Then, as

n → ∞, Gn
law−→ N and {Gn} satis�es an ASCLT. In other words, almost surely, for all

continuous and bounded function ϕ : R→ R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)], as n →∞.

Remark 3.5 We can replace the assumption `f is symmetric and non-constant' by
∞∑

q=1

1

q!

(
E[f(N)Hq(N)]

)2
∑

r∈Z
|ρ(r)|q < ∞ and

∞∑
q=1

1

q!

(
E[f(N)Hq(N)]

)2
∑

r∈Z
ρ(r)q > 0.

Indeed, it su�ces to replace the monotone convergence argument used to prove (3.22)
below by a bounded convergence argument. However, this new assumption seems rather
di�cult to check in general, except of course when the sum with respect to q is �nite,
that is when f is a polynomial.
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Proof of Theorem 3.4. First, note that a consequence of [17, inequality (3.19)] is that
we automatically have E[f ′(N)4] < ∞ and E[f(N)4] < ∞. Let us now expand f in terms
of Hermite polynomials. Since f is symmetric, we can write

f = E[f(N)] +
∞∑

q=1

c2qH2q,

where the real numbers c2q are given by (2q)!c2q = E[f(N)H2q(N)]. Consequently,

σ2
n =

1

n

n∑

k,l=1

Cov[f(Xk), f(Xl)] =
∞∑

q=1

c2
2q(2q)!

1

n

n∑

k,l=1

ρ(k − l)2q,

=
∞∑

q=1

c2
2q(2q)!

∑

r∈Z
ρ(r)2q

(
1− |r|

n

)
1{|r|6n}.

Hence, it follows from the monotone convergence theorem that

σ2
n −→ σ2

∞ =
∞∑

q=1

c2
2q(2q)!

∑

r∈Z
ρ(r)2q, as n →∞. (3.22)

Since f is not constant, one can �nd some q > 1 such that c2q 6= 0. Moreover, we also have∑
r∈Z ρ(r)2q > ρ(0)2q = 1. Hence, σ∞ > 0, which implies in particular that the in�mum

of the sequence {σn}n>1 is positive.
The Gaussian space generated by X = {Xk}k∈Z can be identi�ed with an isonormal

Gaussian process of the type X = {X(h) : h ∈ H}, for H de�ned as follows: (i) denote
by E the set of all sequences indexed by Z with �nite support; (ii) de�ne H as the Hilbert
space obtained by closing E with respect to the scalar product

〈u, v〉H =
∑

k,l∈Z
ukvlρ(k − l). (3.23)

In this setting, we have X(εk) = Xk where εk = {δkl}l∈Z, δkl standing for the Kronecker
symbol. In view of (2.8), we have

DGn =
1

σn

√
n

n∑

k=1

f ′(Xk)εk.

Hence

‖DGn‖2
H =

1

σ2
n n

n∑

k,l=1

f ′(Xk)f
′(Xl)〈εk, εl〉H =

1

σ2
n n

n∑

k,l=1

f ′(Xk)f
′(Xl)ρ(k − l),

so that

‖DGn‖4
H =

1

σ4
n n2

n∑

i,j,k,l=1

f ′(Xi)f
′(Xj)f

′(Xk)f
′(Xl)ρ(i− j)ρ(k − l).
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We deduce from Cauchy-Schwarz inequality that
∣∣E[f ′(Xi)f

′(Xj)f
′(Xk)f

′(Xl)]
∣∣ 6 (E[f ′(N)4])

1
4 ,

which leads to

E[‖DGn‖4
H] 6 1

σ4
n

(
E[f ′(N)4]

) 1
4

(∑

r∈Z
|ρ(r)|

)2

. (3.24)

On the other hand, we also have

D2Gn =
1

σn

√
n

n∑

k=1

f ′′(Xk)εk ⊗ εk,

and therefore

D2Gn ⊗1 D2Gn =
1

σ2
n n

n∑

k,l=1

f ′′(Xk)f
′′(Xl)ρ(k − l)εk ⊗ εl.

Hence
E

[‖D2Gn ⊗1 D2Gn‖2
H⊗2

]
,

=
1

σ4
n n2

n∑

i,jk,l=1

E
[
f ′′(Xi)f

′′(Xj)f
′′(Xk)f

′′(Xl)
]
ρ(k − l)ρ(i− j)ρ(k − i)ρ(l − j),

6
(E

[
f ′′(N)4

]
)

1
4

σ4
n n

∑

u,v,w∈Z
|ρ(u)||ρ(v)||ρ(w)||ρ(−u + v + w)|,

6
(E

[
f ′′(N)4

]
)

1
4‖ρ‖∞

σ4
n n

(∑

r∈Z
|ρ(r)|

)3

< ∞. (3.25)

By virtue of Theorem 3.2 together with the fact that infn>1 σn > 0, the inequalities (3.24)
and (3.25) imply that Gn

law−→ N . Now, in order to show that the ASCLT holds, we shall
also check that conditions (A1) and (A2) in Theorem 3.2 are ful�lled. First, still because
infn>1 σn > 0, (A1) holds since we have E

[‖D2Gn ⊗1 D2Gn‖2
H⊗2

]
= O(n−1) by (3.25), see

also Remark 3.3. Therefore, it only remains to prove (A2). Gebelein's inequality (see e.g.
identity (1.7) in [3]) states that

∣∣Cov[f(Xi), f(Xj)]
∣∣ 6 E[XiXj]

√
Var[f(Xi)]

√
Var[f(Xj)] = ρ(i− j)Var[f(N)].

Consequently,
∣∣E[GkGl]

∣∣ =
1

σkσl

√
kl

∣∣∣∣∣
k∑

i=1

l∑
j=1

Cov[f(Xi), f(Xj)]

∣∣∣∣∣ 6 Var[f(N)]

σkσl

√
kl

k∑
i=1

l∑
j=1

|ρ(i− j)|,

=
Var[f(N)]

σkσl

√
kl

k∑
i=1

i−1∑

r=i−l

|ρ(r)| 6 Var[f(N)]

σkσl

√
k

l

∑

r∈Z
|ρ(r)|.

Finally, via the same arguments as in Remark 3.3, (A2) is satis�ed, which completes the
proof of Theorem 3.4.
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2

The following result specializes Theorem 3.2, by providing a criterion for an ASCLT
for multiple stochastic integrals of �xed order q > 2. It is expressed in terms of the kernels
of these integrals.

Corollary 3.6 Let the notation of Section 2 prevail. Fix q > 2, and let {Gn} be a
sequence of the form Gn = Iq(fn), with fn ∈ H¯q. Assume that E[G2

n] = q!‖fn‖2
H⊗q = 1

for all n, and that

‖fn ⊗r fn‖H⊗2(q−r) → 0 as n →∞, for every r = 1, . . . , q − 1. (3.26)

Then, Gn
law−→ N ∼ N (0, 1) as n → ∞. Moreover, if the two following conditions are

also satis�ed

(A′
1)

∑
n>2

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖H⊗2(q−r) < ∞ for every r = 1, . . . , q − 1,

(A′
2)

∑
n>2

1

n log3 n

n∑

k,l=1

∣∣〈fk, fl〉H⊗q

∣∣
kl

< ∞.

then {Gn} satis�es an ASCLT. In other words, almost surely, for all continuous and
bounded function ϕ : R→ R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)], as n →∞.

Proof of Corollary 3.6. The fact that Gn
law−→ N ∼ N (0, 1) follows directly from

(3.26), which is the Nualart-Peccati [19] criterion of normality. In order to prove that the
ASCLT holds, we shall apply once again Theorem 3.2. This is possible because a multiple
integral is always an element of D2,4. We have, by (2.13),

1 = E[G2
k] = E[〈DGk,−DL−1Gk〉H] =

1

q
E[‖DGk‖2

H],

where the last inequality follows from −L−1Gk = 1
q
Gk, using the de�nition (2.11) of L−1.

In addition, as the random variables ‖DGk‖2
H live inside the �nite sum of the �rst 2q

Wiener chaoses (where all the Lp norm are equivalent), we deduce that condition (A0) of
Theorem 3.2 is satis�ed. On the other hand, it is proven in [17, page 604] that

E
[‖D2Gk⊗1D

2Gk‖2
H⊗2

]
6 q4(q−1)4

q−1∑
r=1

(r−1)!2
(

q − 2

r − 1

)4

(2q−2−2r)!‖fk⊗r fk‖2
H⊗2(q−r) .

Consequently, condition (A′
1) implies condition (A1) of Theorem 3.2. Furthermore, by

(2.3), E[GkGl] = E
[
Iq(fk)Iq(fl)

]
= q!〈fk, fl〉H⊗q . Thus, condition (A′

2) is equivalent to
condition (A2) of Theorem 3.2, and the proof of the corollary is done.

11



2

In Corollary 3.6, we supposed q > 2, which implies that Gn = Iq(fn) is a multiple
integral of order at least 2 and hence is not Gaussian. We now consider the Gaussian case
q = 1.

Corollary 3.7 Let {Gn} be a centered Gaussian sequence with unit variance. If the
condition (A2) in Theorem 3.2 is satis�ed, then {Gn} satis�es an ASCLT. In other words,
almost surely, for all continuous and bounded function ϕ : R→ R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)], as n →∞.

Proof of Corollary 3.7. Let t ∈ R and r > 0 be such that |t| 6 r, and let ∆n(t) be
de�ned as in (3.16). We have

E|∆n(t)|2 =
1

log2 n

n∑

k,l=1

1

kl
E

[(
eitGk − e−t2/2

)(
e−itGl − e−t2/2

)]
,

=
1

log2 n

n∑

k,l=1

1

kl

[
E

(
eit(Gk−Gl)

)− e−t2
]
,

=
1

log2 n

n∑

k,l=1

e−t2

kl

(
eE(GkGl)t

2 − 1
)
,

6 r2er2

log2 n

n∑

k,l=1

∣∣E(GkGl)
∣∣

kl
,

since |ex−1| 6 e|x||x| and |E(GkGl)| 6 1. Therefore, assumption (A2) implies (3.17), and
the proof of the corollary is done.

2

4 Application to discrete-time fractional Brownian mo-
tion

Let us apply Corollary 3.7 to the particular case Gn = BH
n /nH , where BH is a fractional

Brownian motion with Hurst index H ∈ (0, 1). We recall that BH = (BH
t )t>0 is a centered

Gaussian process with continuous paths such that

E[BH
t BH

s ] =
1

2

(
t2H + s2H − |t− s|2H

)
, s, t > 0.

The process BH is self-similar with stationary increments and we refer the reader to
Nualart [18] and Samorodnitsky and Taqqu [20] for its main properties. The increments

Yk = BH
k+1 −BH

k , k > 0,

12



called `fractional Gaussian noise', are centered stationary Gaussian random variables with
covariance

ρ(r) = E[YkYk+r] =
1

2

(|r + 1|2H + |r − 1|2H − 2|r|2H
)
, r ∈ Z. (4.27)

This covariance behaves asymptotically as

ρ(r) ∼ H(2H − 1)|r|2H−2 as |r| → ∞. (4.28)

Observe that ρ(0) = 1 and

1) For 0 < H < 1/2, ρ(r) < 0 for r 6= 0,
∑

r∈Z
|ρ(r)| < ∞ and

∑

r∈Z
ρ(r) = 0.

2) For H = 1/2, ρ(r) = 0 if r 6= 0.

3) For 1/2 < H < 1, ∑

r∈Z
|ρ(r)| = ∞.

The Hurst index measures the strenght of the dependence when H > 1/2: the larger H
is, the stronger is the dependence.

A continuous time version of the following result was obtained by Berkes and Horváth
[2] via a di�erent approach.

Theorem 4.1 For all H ∈ (0, 1), we have, almost surely, for all continuous and bounded
function ϕ : R→ R,

1

log n

n∑

k=1

1

k
ϕ(BH

k /kH) −→ E[ϕ(N)], as n →∞.

Proof of Theorem 4.1. We shall make use of Corollary 3.7. The cases H < 1/2 and
H > 1/2 are treated separately. From now on, the value of a constant C > 0 may change
from line to line, and we set ρ(r) = 1

2

(|r + 1|2H + |r − 1|2H − 2|r|2H
)
, r ∈ Z.

Case H < 1/2. For any b > a > 0, we have

b2H − a2H = 2H

∫ b−a

0

dx

(x + a)1−2H
6 2H

∫ b−a

0

dx

x1−2H
= (b− a)2H .

Hence, for l > k > 1, we have l2H − (l − k)2H 6 k2H so that

|E[BH
k BH

l ]| = 1

2

(
k2H + l2H − (l − k)2H

)
6 k2H .

13



Thus
∑
n>2

1

n log3 n

n∑

l=1

1

l

l∑

k=1

|E[GkGl]|
k

=
∑
n>2

1

n log3 n

n∑

l=1

1

l1+H

l∑

k=1

|E[BH
k BH

l ]|
k1+H

,

6
∑
n>2

1

n log3 n

n∑

l=1

1

l1+H

l∑

k=1

1

k1−H
,

6 C
∑
n>2

1

n log3 n

n∑

l=1

1

l
6 C

∑
n>2

1

n log2 n
< ∞.

Consequently, condition (A2) in Theorem 3.2 is satis�ed.

Case H > 1/2. For l > k > 1, it follows from (4.27)-(4.28) that

|E[BH
k BH

l ]| =

∣∣∣∣∣
k−1∑
i=0

l−1∑
j=0

E[(BH
i+1 −BH

i )(BH
j+1 −BH

j )]

∣∣∣∣∣ 6
k−1∑
i=0

l−1∑
j=0

|ρ(i− j)|,

6 k

l−1∑

r=−l+1

|ρ(r)| 6 Ckl2H−1.

The last inequality comes from the fact that ρ(0) = 1, ρ(1) = ρ(−1) = (22H − 1)/2 and,
if r > 2,

|ρ(−r)| = |ρ(r)| =
∣∣E[(BH

r+1 −BH
r )BH

1 ] = H(2H − 1)

∫ 1

0

du

∫ r+1

r

dv(v − u)2H−2

6 H(2H − 1)

∫ 1

0

(r − u)2H−2du 6 H(2H − 1)(r − 1)2H−2.

Consequently,

∑
n>2

1

n log3 n

n∑

l=1

1

l

l∑

k=1

|E[GkGl]|
k

=
∑
n>2

1

n log3 n

n∑

l=1

1

l1+H

l∑

k=1

|E[BH
k BH

l ]|
k1+H

,

6 C
∑
n>2

1

n log3 n

n∑

l=1

1

l2−H

l∑

k=1

1

kH
,

6 C
∑
n>2

1

n log3 n

n∑

l=1

1

l
6 C

∑
n>2

1

n log2 n
< ∞.

Finally, condition (A2) in Theorem 3.2 is satis�ed, which completes the proof of Theorem
4.1.

2
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5 Partial sums of Hermite polynomials: the Gaussian
limit case

Let X = {Xk}k∈Z be a centered stationary Gaussian process and for all r ∈ Z, set
ρ(r) = E[X0Xr]. Fix an integer q > 2, and let Hq stands for the Hermite polynomial of
degree q, see (2.2). We are interested in an ASCLT for the q-Hermite power variations of
X, de�ned as

Vn =
n∑

k=1

Hq(Xk), n > 1, (5.29)

in cases where Vn, adequably normalized, converges to a normal distribution. Our result
is as follows.

Theorem 5.1 Assume that
∑

r∈Z |ρ(r)|q < ∞, that
∑

r∈Z ρ(r)q > 0 and that there exists
α > 0 such that

∑
|r|>n |ρ(r)|q = O(n−α), as n →∞. For any n > 1, de�ne

Gn =
Vn

σn

√
n

,

where Vn is given by (5.29) and σn denotes the positive normalizing constant which ensures
that E[G2

n] = 1. Then Gn
law−→ N ∼ N (0, 1) as n → ∞, and {Gn} satis�es an ASCLT.

In other words, almost surely, for all continuous and bounded function ϕ : R→ R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)], as n →∞.

Proof. We shall make use of Corollary 3.6. Let C be a positive constant, depending only
on q and ρ, whose value may change from line to line. We consider the real and separable
Hilbert space H as de�ned in the proof of Theorem 3.4, with the scalar product (3.23).
Following the same line of reasoning as in the proof of (3.22), it is possible to show that
σ2

n → q!
∑

r∈Z ρ(r)q > 0. In particular, the in�mum of the sequence {σn}n>1 is positive.
On the other hand, we have Gn = Iq(fn), where the kernel fn is given by

fn =
1

σn

√
n

n∑

k=1

ε⊗q
k ,

with εk = {δkl}l∈Z, δkl standing for the Kronecker symbol. For all n > 1 and r =
1, . . . , q − 1, we have

fn ⊗r fn =
1

σ2
n n

n∑

k,l=1

ρ(k − l)rε
⊗(q−r)
k ⊗ ε

⊗(q−r)
l .
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We deduce that

‖fn ⊗r fn‖2
H⊗(2q−2r) =

1

σ4
nn

2

n∑

i,j,k,l=1

ρ(k − l)rρ(i− j)rρ(k − i)q−rρ(l − j)q−r.

Consequently, as in the proof of (3.25), we obtain that ‖fn ⊗r fn‖2
H⊗(2q−2r) 6 An where

An =
1

σ4
nn

∑
u,v,w∈Dn

|ρ(u)|r|ρ(v)|r|ρ(w)|q−r|ρ(−u + v + w)|q−r

with Dn = {−n, . . . , n}. Fix an integer m > 1 such that n > m. We can split An into
two terms An = Bn,m + Cn,m where

Bn,m =
1

σ4
nn

∑
u,v,w∈Dm

|ρ(u)|r|ρ(v)|r|ρ(w)|q−r|ρ(−u + v + w)|q−r,

Cn,m =
1

σ4
nn

∑
u,v,w∈Dn

|u|∨|v|∨|w|>m

|ρ(u)|r|ρ(v)|r|ρ(w)|q−r|ρ(−u + v + w)|q−r.

We clearly have

Bn,m 6 1

σ4
nn
‖ρ‖2q

∞(2m + 1)3 6 Cm3

n
.

On the other hand, Dn ∩ {|u| ∨ |v| ∨ |w| > m} ⊂ Dn,m,u ∪ Dn,m,v ∪ Dn,m,w where the
set Dn,m,u = {|u| > m, |v| 6 n, |w| 6 n} and a similar de�nition for Dn,m,v and Dn,m,w.
Denote

Cn,m,u =
1

σ4
nn

∑
u,v,w∈Dn,m,u

|ρ(u)|r|ρ(v)|r|ρ(w)|q−r|ρ(−u + v + w)|q−r

and a similar expression for Cn,m,v and Cn,m,w. It follows from Hölder inequality that

Cn,m,u 6 1

σ4
nn


 ∑

u,v,w∈Dn,m,u

|ρ(u)|q|ρ(v)|q



r
q

 ∑

u,v,w∈Dn,m,u

|ρ(w)|q|ρ(−u + v + w)|q



1− r
q

. (5.30)

However,
∑

u,v,w∈Dn,m,u

|ρ(u)|q|ρ(v)|q 6 (2n + 1)
∑

|u|>m

|ρ(u)|q
∑

v∈Z
|ρ(v)|q 6 Cn

∑

|u|>m

|ρ(u)|q.

Similarly,
∑

u,v,w∈Dn,m,u

|ρ(w)|q|ρ(−u + v + w)|q 6 (2n + 1)
∑

v∈Z
|ρ(v)|q

∑

w∈Z
|ρ(w)|q 6 Cn.
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Therefore, (5.30) and the last assumption of Theorem 5.1 imply that for m large enough

Cn,m,u 6 C


 ∑

|u|>m

|ρ(u)|q



r
q

6 Cm−αr
q .

We obtain exactly the same bound for Cn,m,v and Cn,m,w. Combining all these estimates,
we �nally �nd that

‖fn ⊗r fn‖2
H⊗(2q−2r) 6 C × inf

m6n

{
m3

n
+ m−αr

q

}
6 Cn−

αr
3q+αr

by taking the value m = n
q

3q+αr . It ensures that condition (A′
1) in Corollary 3.6 is met.

Let us now prove (A′
2). We have

〈fk, fl〉H⊗q =
1

σkσl

√
kl

∣∣∣∣∣
k∑

i=1

l∑
j=1

ρ(i− j)q

∣∣∣∣∣ 6 1

σkσl

√
kl

k∑
i=1

l∑
j=1

|ρ(i− j)|q,

6 1

σkσl

√
k

l

∑

r∈Z
|ρ(r)|q,

so (A′
2) is also satis�ed, see Remark 3.3, which completes the proof of Theorem 5.1.

2

The following result contains an explicit situation where the assumptions in Theorem 5.1
are in order.

Proposition 5.2 Assume that ρ(r) ∼ |r|−βL(r), as |r| → ∞, for some β > 1/q and
some slowly varying function L. Then

∑
r∈Z |ρ(r)|q < ∞ and there exists α > 0 such that∑

|r|>n |ρ(r)|q = O(n−α), as n →∞.

Proof. By a Riemann sum argument, it is immediate that
∑

r∈Z |ρ(r)|q < ∞. Moreover,
by [4, Prop. 1.5.10], we have

∑
|r|>n |ρ(r)|q ∼ 2

βq−1
n1−βqLq(n) so that we can choose

α = 1
2
(βq − 1) > 0 (for instance).

2

6 Partial sums of Hermite polynomials of increments
of fractional Brownian motion

We focus here on increments of the fractional Brownian motion BH (see Section 4 for
details about BH). More precisely, for every q > 1, we are interested in an ASCLT for
the q-Hermite power variation of BH , de�ned as

Vn =
n−1∑

k=0

Hq(B
H
k+1 −BH

k ), n > 1, (6.31)
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where Hq stands for the Hermite polynomial of degree q given by (2.2). Observe that
Theorem 4.1 corresponds to the particular case q = 1. That is why, from now on, we
assume that q > 2. When H 6= 1/2, the increments of BH are not independent, so the
asymptotic behavior of (6.31) is di�cult to investigate because Vn is not linear. In fact,
thanks to the seminal works of Breuer and Major [6], Dobrushin and Major [8], Giraitis
and Surgailis [9] and Taqqu [22], it is known (recall that q > 2) that, as n →∞

• If 0 < H < 1− 1
2q
, then

Gn :=
Vn

σn

√
n

law−→ N (0, 1). (6.32)

• If H = 1− 1
2q
, then

Gn :=
Vn

σn

√
n log n

law−→ N (0, 1). (6.33)

• If H > 1− 1
2q
, then

Gn := nq(1−H)−1Vn
law−→ G∞ (6.34)

where G∞ has an `Hermite distribution'. Here, σn denotes the positive normalizing con-
stant which ensures that E[G2

n] = 1. The proofs of (6.32) and (6.33), together with rates
of convergence, can be found in [16] and [5], respectively. A short proof of (6.34) is given
in Proposition 6.1 below. Notice that rates of convergence can be found in [5]. Our proof
of (6.34) is based on the fact that, for �xed n, Zn de�ned in (6.35) below and Gn share
the same law, because of the self-similarity property of fractional Brownian motion.

Proposition 6.1 Assume H > 1− 1
2q
, and de�ne Zn by

Zn = nq(1−H)−1

n−1∑

k=0

Hq

(
nH(BH

(k+1)/n −BH
k/n)

)
, n > 1. (6.35)

Then, as n → ∞, {Zn} converges almost surely and in L2(Ω) to a limit denoted by Z∞,
which belongs to the qth chaos of BH .

Proof. Let us �rst prove the convergence in L2(Ω). For n,m > 1, we have

E[ZnZm] = q!(nm)q−1

n−1∑

k=0

m−1∑

l=0

(
E

[(
BH

(k+1)/n −BH
k/n

)(
BH

(l+1)/m −BH
l/m

)])q
.

Furthermore, since H > 1/2, we have for all s, t > 0,

E[BH
s BH

t ] = H(2H − 1)

∫ t

0

du

∫ s

0

dv|u− v|2H−2.
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Hence

E[ZnZm] = q!Hq(2H − 1)q× 1

nm

n−1∑

k=0

m−1∑

l=0

(
nm

∫ (k+1)/n

k/n

du

∫ (l+1)/m

l/m

dv|v − u|2H−2

)q

.

Therefore, as n,m →∞, we have,

E[ZnZm] → q!Hq(2H − 1)q

∫

[0,1]2
|u− v|(2H−2)qdudv,

and the limit is �nite since H > 1− 1
2q
. In other words, the sequence {Zn} is Cauchy in

L2(Ω), and hence converges in L2(Ω) to some Z∞.
Let us now prove that {Zn} converges also almost surely. Observe �rst that, since Zn

belongs to the qth chaos of BH for all n, since {Zn} converges in L2(Ω) to Z∞ and since
the qth chaos of BH is closed in L2(Ω) by de�nition, we have that Z∞ also belongs to the
qth chaos of BH . In [5, Proposition 3.1], it is shown that E[|Zn − Z∞|2] 6 Cn2q−1−2qH ,
for some positive constant C not depending on n. Inside a �xed chaos, all the Lp-norms
are equivalent. Hence, for any p > 2, we have E[|Zn − Z∞|p] 6 Cnp(q−1/2−qH). Since
H > 1− 1

2q
, there exists p > 2 large enough such that (q−1/2−qH)p < −1. Consequently

∑
n>1

E[|Zn − Z∞|p] < ∞,

leading, for all ε > 0, to
∑
n>1

P [|Zn − Z∞| > ε] < ∞.

Therefore, we deduce from the Borel-Cantelli lemma that {Zn} converges almost surely
to Z∞.

2

We now want to see if one can associate almost sure central limit theorems to the
convergences in law (6.32), (6.33) and (6.34). We �rst consider the case H < 1− 1

2q
.

Proposition 6.2 Assume that q > 2 and that H < 1− 1
2q
, and consider

Gn =
Vn

σn

√
n

as in (6.32). Then, {Gn} satis�es an ASCLT.

Proof. Since 2H − 2 > 1/q, it su�ces to combine (4.28), Proposition 5.2 and Theorem
5.1.

2

Next, let us consider the critical case H = 1 − 1
2q
. In this case,

∑
r∈Z |ρ(r)|q = ∞.

Consequently, as it is impossible to apply Theorem 5.1, we propose another strategy which
relies on the following lemma established in [5].
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Lemma 6.3 Set H = 1 − 1
2q
. Let H be the real and separable Hilbert space de�ned as

follows: (i) denote by E the set of all R-valued step functions on [0,∞), (ii) de�ne H as
the Hilbert space obtained by closing E with respect to the scalar product

〈
1[0,t],1[0,s]

〉
H

= E[BH
t BH

s ].

For any n > 2, let fn be the element of H¯q de�ned by

fn =
1

σn

√
n log n

n−1∑

k=0

1⊗q
[k,k+1], (6.36)

where σn is the positive normalizing constant which ensures that q!‖fn‖2
H⊗q = 1. Then,

there exists a constant C > 0, depending only on q and H such that, for all n > 1 and
r = 1, . . . , q − 1

‖fn ⊗r fn‖H⊗(2q−2r) 6 C(log n)−1/2.

We can now state and prove the following result.

Proposition 6.4 Assume that q > 2 and H = 1− 1
2q
, and consider

Gn =
Vn

σn

√
n log n

as in (6.33). Then, {Gn} satis�es an ASCLT.

Proof of Proposition 6.4. We shall make use of Corollary 3.6. Let C be a positive
constant, depending only on q and H, whose value may change from line to line. We
consider the real and separable Hilbert space H as de�ned in Lemma 6.3. We have
Gn = Iq(fn) with fn given by (6.36). According to Lemma 6.3, we have for all k > 1 and
r = 1, . . . , q − 1, that ‖fk ⊗r fk‖H⊗(2q−2r) 6 C(log k)−1/2. Hence

∑
n>2

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖H⊗(2q−2r) 6 C

∑
n>2

1

n log2 n

n∑

k=1

1

k
√

log k
,

6 C
∑
n>2

1

n log3/2 n
< ∞.

Consequently, assumption (A′
1) is satis�ed. Concerning (A′

2), note that

〈fk, fl〉H⊗q =
1

σkσl

√
k log k

√
l log l

k−1∑
i=0

l−1∑
j=0

ρ(j − i)q.
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We deduce from Lemma 6.5 below that σ2
n → σ2

∞ > 0. Hence, for all l > k > 1

∣∣〈fk, fl〉H⊗q

∣∣ 6 C√
k log k

√
l log l

k−1∑
i=0

l−1∑
j=0

∣∣ρ(j − i)
∣∣q,

=
C√

k log k
√

l log l

k−1∑
i=0

l−1−i∑
r=−i

∣∣ρ(r)
∣∣q,

6 C

√
k√

log k
√

l log l

l∑

r=−l

∣∣ρ(r)
∣∣q 6 C

√
k log l

l log k
.

The last inequality follows from the fact that
∑l

r=−l

∣∣ρ(r)
∣∣q 6 C log l since, by (4.28), as

|r| → ∞,

ρ(r) ∼
(

1− 1

q

)(
1− 1

2q

)
|r|−1/q.

Finally, assumption (A′
2) is also satis�ed as

∑
n>2

1

n log3 n

n∑

k,l=2

∣∣〈fk, fl〉H⊗q

∣∣
kl

6 2
∑
n>2

1

n log3 n

n∑

l=2

l∑

k=2

∣∣〈fk, fl〉H⊗q

∣∣
kl

,

6 C
∑
n>2

1

n log3 n

n∑

l=2

√
log l

l3/2

l∑

k=2

1√
k log k

,

6 C
∑
n>2

1

n log3 n

n∑

l=2

1

l
6 C

∑
n>2

1

n log2 n
< ∞.

2

In the previous proof, we used the following lemma.
Lemma 6.5 Assume that q > 2 and H = 1− 1

2q
. Then,

σ2
n → 2q!

(
1− 1

q

)q (
1− 1

2q

)q

> 0, as n →∞.

Proof. We have E[(BH
k+1−BH

k )(BH
l+1−BH

l )] = ρ(k− l) where ρ is given in (4.27). Hence,

E[V 2
n ] =

n−1∑

k,l=0

E
(
Hq(B

H
k+1 −BH

k )Hq(B
H
l+1 −BH

l )
)

= q!
n−1∑

k,l=0

ρ(k − l)q,

= q!
n−1∑

l=0

n−1−l∑

r=−l

ρ(r)q = q!
∑

|r|<n

(
n− 1− |r|)ρ(r)q,

= q!


n

∑

|r|<n

ρ(r)q −
∑

|r|<n

(|r|+ 1
)
ρ(r)q


 .
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On the other hand, as |r| → ∞,

ρ(r)q ∼
(

1− 1

q

)q (
1− 1

2q

)q
1

|r| .

Therefore, as n →∞,
∑

|r|<n

ρ(r)q ∼
(

1− 1

2q

)q (
1− 1

q

)q ∑

0<|r|<n

1

|r| ∼ 2

(
1− 1

2q

)q (
1− 1

q

)q

log n

and
∑

|r|<n

(|r|+ 1
)
ρ(r)q ∼

(
1− 1

2q

)q (
1− 1

q

)q ∑

|r|<n

1 ∼ 2n

(
1− 1

2q

)q (
1− 1

q

)q

.

Consequently, as n →∞,

σ2
n =

E[V 2
n ]

n log n
→ 2q!

(
1− 1

q

)q (
1− 1

2q

)q

.

2

Finally, we consider
Gn = nq(1−H)−1Vn (6.37)

with H > 1− 1
2q
. We face in this case some di�culties. First, since the limit of {Gn} in

(6.34) is not Gaussian, we cannot apply our general criterion Corollary 3.6 to obtain an
ASCLT. To modify adequably the criterion, we would need a version of Lemma 2.2 for
random variables with an Hermite distribution, a result which is not presently available.
Thus, an ASCLT associated to the convergence in law (6.34) falls outside the scope of this
paper. We can nevertheless make a number of observations. First, changing the nature
of the random variables without changing their law has no impact on CLTs as in (6.34),
but may have a great impact on an ASCLT. To see this, observe that for each �xed n,
the ASCLT involves not only the distribution of the single variable Gn, but also the joint
distribution of the vector (G1, . . . , Gn).

Consider, moreover, the following example. Let {Gn} be a sequence of random vari-
ables converging in law to a limit G∞. According to a theorem of Skorohod, there is a
sequence {G∗

n} such that for any �xed n, G∗
n

law
= Gn and such that {G∗

n} converges almost
surely, as n → ∞, to a random variable G∗

∞ with G∗
∞

law
= G∞. Then, for any bounded

continuous function ϕ : R→ R, we have ϕ(G∗
n) −→ ϕ(G∗

∞) a.s. which clearly implies the
almost sure convergence

1

log n

n∑

k=1

1

k
ϕ(G∗

k) −→ ϕ(G∗
∞).

This limit is, in general, di�erent from E[ϕ(G∗
∞)] or equivalently E[ϕ(G∞)], that is,

di�erent from the limit if one had an ASCLT.
Consider now the sequence {Gn} de�ned by (6.37).
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Proposition 6.6 The Skorohod version of

Gn = nq(1−H)−1

n−1∑

k=0

Hq(B
H
k+1 −BH

k ) (6.38)

is

G∗
n = Zn = nq(1−H)−1

n−1∑

k=0

Hq

(
nH(BH

(k+1)/n −BH
k/n)

)
, (6.39)

Proof. Just observe that G∗
n

law
= Gn and G∗

n converges almost surely by Proposition 6.1.
2

Hence, in the case of Hermite distributions, by suitably modifying the argument of
the Hermite polynomial Hq in a way which does not change the limit in law, namely by
considering Zn in (6.39) instead of Gn in (6.38), we obtain the almost sure convergence

1

log n

n∑

k=1

1

k
ϕ(Zk) −→ ϕ(Z∞).

The limit ϕ(Z∞) is, in general, di�erent from the limit expected under an ASCLT, namely
E[ϕ(Z∞)], because Z∞ is a non-constant random variable with an Hermite distribution
(Dobrushin and Major [8], Taqqu [22]). Thus, knowing the law of Gn in (6.38), for a �xed
n, does not allow to determine whether an ASCLT holds or not.
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