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Abstract: By combining the �ndings of two recent, seminal papers by Nualart, Peccati and

Tudor, we get that the convergence in law of any sequence of vector-valued multiple integrals Fn
towards a centered Gaussian random vector N , with given covariance matrix C, is reduced to just

the convergence of: (i) the fourth cumulant of each component of Fn to zero; (ii) the covariance
matrix of Fn to C. The aim of this paper is to understand more deeply this somewhat surprising

phenomenom. To reach this goal, we o�er two results of di�erent nature. The �rst one is an

explicit bound for d(F,N) in terms of the fourth cumulants of the components of F , when F is a

Rd-valued random vector whose components are multiple integrals of possibly di�erent orders, N
is the Gaussian counterpart of F (that is, a Gaussian centered vector sharing the same covariance

with F ) and d stands for the Wasserstein distance. The second one is a new expression for the

cumulants of F as above, from which it is easy to derive yet another proof of the previously quoted

result by Nualart, Peccati and Tudor.
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1 Introduction

Let B = (Bt)t∈[0,T ] be a standard Brownian motion. The following result, proved in [8, 9],
yields a very surprising condition under which a sequence of vector-valued multiple integrals
converges in law to a Gaussian random vector. (If needed, we refer the reader to Section
2 for the exact meaning of

∫
[0,T ]q

f(t1, . . . , tq)dBt1 . . . dBtq .)

Theorem 1.1 (Nualart-Peccati-Tudor) Let q1, . . . , qd > 1 be some �xed integers. Con-
sider a Rd-valued random sequence of the form

Fn = (F1,n, . . . , Fd,n)

=

(∫
[0,T ]q1

f1,n(t1, . . . , tq1)dBt1 . . . dBtq1
, . . . ,

∫
[0,T ]qd

fd,n(t1, . . . , tqd)dBt1 . . . dBtqd

)
,
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where each fi,n ∈ L2([0, T ]qi), 1 6 i 6 d and n > 1, is supposed to be symmetric. Let
N ∼ Nd(0, C) be a centered Gaussian random vector on Rd with covariance matrix C.
Assume furthermore that

lim
n→∞

E[Fi,nFj,n] = Cij for all i, j = 1, . . . , d. (1.1)

Then, as n→∞, the following two assertions are equivalent:

(i) Fn
Law−→ N ;

(ii) ∀i = 1, . . . , d: E[F 4
i,n]− 3E[F 2

i,n]2 → 0.

This theorem represents a drastic simpli�cation with respect to the method of mo-
ments. The original proofs performed in [8, 9] are both based on tools coming from Brow-
nian stochastic analysis, such as the Dambis, Dubins and Schwarz theorem and multiple
stochastic integrals. In [7], Nualart and Ortiz-Latorre gave an alternative proof exclusively
using the basic operators δ, D and L of Malliavin calculus. Later on, combining Malliavin
calculus with Stein's method in the spirit of [2], Nourdin, Peccati and Réveillac were able
to associate an explicit bound to convergence (i) in Theorem 1.1:

Theorem 1.2 (see [5]) Consider a Rd-valued random vector of the form

F = (F1, . . . , Fd)

=

(∫
[0,T ]q1

f1(t1, . . . , tq1)dBt1 . . . dBtq1
, . . . ,

∫
[0,T ]qd

fd(t1, . . . , tqd)dBt1 . . . dBtqd

)
,

where q1, . . . , qd > 1 are some given integers and each fi ∈ L2([0, T ]qi), i = 1, . . . , d,
is symmetric. Let C = (Cij)16i,j6d be the covariance matrix of F , i.e. Cij = E[FiFj].
Consider a centered Gaussian random vector N ∼ Nd(0, C) with same covariance matrix
C. Then:

d1(F,N) := sup
h∈Lip(1)

∣∣E[h(F )]− E[h(N)]
∣∣ 6 ‖C−1‖op ‖C‖1/2

op ∆C(F ), (1.2)

with the convention ‖C−1‖op = +∞ whenever C is not invertible. Here:

- Lip(1) is the set of Lipschitz functions with constant 1 (that is, the set of functions
h : Rd → R so that |h(x)− h(y)| 6 ‖x− y‖Rd for all x, y ∈ Rd);

- ‖C‖op = supx∈Rd\{0} ‖Cx‖Rd/‖x‖Rd denotes the operator norm on Md(R), the set of
d× d real matrices;

- the quantity ∆C(F ) is de�ned as

∆C(F ) :=

√√√√ d∑
i,j=1

E

[(
Cij −

1

qj
〈DFi, DFj〉L2([0,T ])

)2
]
, (1.3)
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where D indicates the Malliavin derivative operator (see Section 2) and 〈·, ·〉L2([0,T ]) is the
usual inner product on L2([0, T ]).

When the covariance matrix C of F is not invertible (or when one is not able to check
whether it is or not), one is forced to work with functions h that are smoother than the one
involved in the de�nition (1.2) of d1(F,N). To this end, we adopt the following simpli�ed
notation for functions h : Rd → R belonging to C2:

‖h′′‖∞ = max
i,j=1,...,d

sup
x∈Rd

∣∣∣∣ ∂2h

∂xi∂xj
(x)

∣∣∣∣ . (1.4)

Theorem 1.3 (see [3]) Let the notation and assumptions of Theorem 1.2 prevail. Then:

d2(F,N) := sup
‖h′′‖∞61

∣∣E[h(F )]− E[h(N)]
∣∣ 6 1

2
∆C(F ), (1.5)

with ∆C(F ) still given by (1.3).

Are the upper bounds (1.2)-(1.5) in Theorems 1.2 and 1.3 relevant? The following
proposition answers positively to this question.

Proposition 1.4 (see [7]) Let the notation and assumptions of Theorem 1.1 prevail. Re-
call the de�nition (1.3) of ∆C(Fn). Then, as n → ∞, ∆C(Fn) → 0 if and only if
E[F 4

i,n]− 3E[F 2
i,n]2 → 0 for all i = 1, . . . , d.

In the present paper, as a �rst result we o�er the following quantitative version of Propo-
sition 1.4.

Theorem 1.5 Let the notation and assumptions of Theorem 1.2 prevail, and recall the
de�nition (1.3) of ∆C(F ). Then:

∆C(F ) 6 ψ
(
E[F 4

1 ]− 3E[F 2
1 ]2, E[F 2

1 ], . . . , E[F 4
d ]− 3E[F 2

d ]2, E[F 2
d ]
)
, (1.6)

with ψ : (R× R+)d → R the function de�ned as

ψ
(
x1, y1, . . . , xd, yd

)
=

d∑
i,j=1

1{qi=qj}

√√√√2

qi−1∑
r=1

(
2r

r

)
|xi|1/2 +

d∑
i,j=1

1{qi 6=qj}

{√
2
√
yj|xi|1/4

+

qi∧qj−1∑
r=1

√
2(qi + qj − 2r)!

(
qj
r

)
|xi|1/2

}
. (1.7)

Since for each compact B ⊂ (0,∞)d it is readily checked that there exists a constant
cB,q1,...,qd > 0 so that

sup
(y1,...,yd)∈B

ψ(x1, y1, . . . , xs, yd) 6 cB,q1,...,qd

d∑
i=1

(
|xi|1/4 + |xi|1/2

)
,
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we immediately see that the upper bound (1.6), together with Theorem 1.3, now shows in
a clear manner why (ii) implies (i) in Theorem 1.1.

In a second part of this paper, we are interested in `calculating', by means of the basic
operators D and L of Malliavin calculus, the cumulants of any vector-valued functional
F of the Brownian motion B. (Actually, we will even do so for functionals of any given
isonormal Gaussian process X). In fact, this part is nothing but the multivariate extension
of the results obtained by Nourdin and Peccati in [4].

Then, in the particular case where the components of F have the form of a multiple
Wiener-Itô integral (as in Theorem 1.2), our formula leads to a new compact representation
for the cumulants of F (Theorem 4.4), implying in turn yet another proof of Theorem 1.1
(see Section 4.3).

The rest of the paper is organized as follows. Section 2 gives (concise) background
and notation for Malliavin calculus. The proof of Theorem 1.5 is performed in Section 3.
Finally, Section 4 is devoted to the aforementioned results about cumulants.

2 Preliminaries on Malliavin calculus

In this section, we present the basic elements of Gaussian analysis and Malliavin calculus
that are used throughout this paper. The reader is referred to [6] for any unexplained
de�nition or result.

Let H be a real separable Hilbert space. For any q > 1, let H⊗q be the qth tensor
power of H, and denote by H�q the associated qth symmetric tensor power. We write
X = {X(h), h ∈ H} to indicate an isonormal Gaussian process over H (�xed once for all),
de�ned on some probability space (Ω,F , P ). This means that X is a centered Gaussian
family, whose covariance is given by the relation E [X(h)X(g)] = 〈h, g〉H. We also assume
that F = σ(X), that is, F is generated by X.

For every q > 1, let Hq be the qth Wiener chaos of X, de�ned as the closed linear
subspace of L2(Ω,F , P ) generated by the family {Hq(X(h)), h ∈ H, ‖h‖H = 1}, where Hq

is the qth Hermite polynomial given by

Hq(x) = (−1)qe
x2

2
dq

dxq
(
e−

x2

2

)
.

We write by convention H0 = R. For any q > 1, the mapping Iq(h
⊗q) = Hq(X(h)) can be

extended to a linear isometry between the symmetric tensor product H�q (equipped with
the modi�ed norm

√
q! ‖·‖H⊗q) and the qth Wiener chaos Hq. For q = 0, we write I0(c) = c,

c ∈ R. For q = 1, we have I1(h) = X(h), h ∈ H. Moreover, a random variable of the type
Iq(h), h ∈ H�q, has �nite moments of all orders.

In the particular case where H = L2([0, T ]), one has that (Bt)t∈[0,T ] =
(
X(1[0,t])

)
t∈[0,T ]

is a standard Brownian motion. Moreover, H�q = L2
s([0, T ]q) is the space of symmetric
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and square integrable functions on [0, T ]q, and

Iq(f) =:

∫
[0,T ]q

f(t1, . . . , tq)dBt1 . . . dBtq , f ∈ H�q,

coincides with the multiple Wiener-Itô integral of order q of f with respect to B, see [6]
for further details about this point.

It is well-known that L2(Ω) := L2(Ω,F , P ) can be decomposed into the in�nite or-
thogonal sum of the spaces Hq. It follows that any square integrable random variable
F ∈ L2(Ω) admits the following so-called chaotic expansion:

F =
∞∑
q=0

Iq(fq), (2.8)

where f0 = E[F ], and the fq ∈ H�q, q > 1, are uniquely determined by F . For every
q > 0, we denote by Jq the orthogonal projection operator on the qth Wiener chaos. In
particular, if F ∈ L2(Ω) is as in (2.8), then JqF = Iq(fq) for every q > 0.

Let {ak}k>1 be a complete orthonormal system in H. Given f ∈ H�p and g ∈ H�q, for
every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the element of H⊗(p+q−2r)

de�ned by

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ai1 ⊗ . . .⊗ air〉H⊗r ⊗ 〈g, ai1 ⊗ . . .⊗ air〉H⊗r . (2.9)

Note that the de�nition of f ⊗r g does not depend on the particular choice of {ak}k>1,
and that f ⊗r g is not necessarily symmetric; we denote its symmetrization by f⊗̃rg ∈
H�(p+q−2r). Moreover, f ⊗0 g = f ⊗ g equals the tensor product of f and g, whereas
f ⊗q g = 〈f, g〉H⊗q whenever p = q.

It can be shown that the following product formula holds: if f ∈ H�p and g ∈ H�q,
then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (2.10)

We now introduce some basic elements of the Malliavin calculus with respect to the
isonormal Gaussian process X. Let S be the set of all cylindrical random variables of the
form

F = g (X(φ1), . . . , X(φn)) , (2.11)

where n > 1, g : Rn → R is an in�nitely di�erentiable function such that its partial
derivatives have polynomial growth, and each φi belongs to H. The Malliavin derivative of
F with respect to X is the element of L2(Ω,H) de�ned as

DF =
n∑
i=1

∂g

∂xi
(X(φ1), . . . , X(φn))φi.
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In particular, DX(h) = h for every h ∈ H. By iteration, one can de�ne the mth derivative
DmF , which is an element of L2(Ω,H�m), for every m > 2. For m > 1 and p > 1, Dm,p

denotes the closure of S with respect to the norm ‖ · ‖m,p, de�ned by the relation

‖F‖pm,p = E [|F |p] +
m∑
i=1

E
[
‖DiF‖p

H⊗i

]
.

One also writes D∞ =
⋂
m>1

⋂
p>1 Dm,p. The Malliavin derivative D obeys the following

chain rule. If ϕ : Rn → R is continuously di�erentiable with bounded partial derivatives
and if F = (F1, . . . , Fn) is a vector of elements of D1,2, then ϕ(F ) ∈ D1,2 and

Dϕ(F ) =
n∑
i=1

∂ϕ

∂xi
(F )DFi. (2.12)

The conditions imposed on ϕ for (2.12) to hold (that is, the partial derivatives of ϕ must be
bounded) are by no means optimal. For instance, the chain rule combined with a classical
approximation argument leads to D(X(h)m) = mX(h)m−1h for m > 1 and h ∈ H.

We denote by δ the adjoint of the operator D, also called the divergence operator. A
random element u ∈ L2(Ω,H) belongs to the domain of δ, noted Domδ, if and only if it
veri�es |E〈DF, u〉H| 6 cu ‖F‖L2(Ω) for any F ∈ D1,2, where cu is a constant depending only
on u. If u ∈ Domδ, then the random variable δ(u) is de�ned by the duality relationship

E[Fδ(u)] = E〈DF, u〉H, (2.13)

which holds for every F ∈ D1,2.
The operator L is de�ned as L =

∑∞
q=0−qJq. The domain of L is

DomL = {F ∈ L2(Ω) :
∞∑
q=1

q2E[(JqF )2] <∞} = D2,2.

There is an important relation between the operators D, δ and L. A random variable F
belongs to D2,2 if and only if F ∈ Dom (δD) (i.e. F ∈ D1,2 and DF ∈ Domδ) and, in this
case,

δDF = −LF. (2.14)

For any F ∈ L2(Ω), we de�ne L−1F =
∑∞

q=1−
1
q
Jq(F ). The operator L−1 is called the

pseudo-inverse of L. Indeed, for any F ∈ L2(Ω), we have that L−1F ∈ DomL = D2,2, and

LL−1F = F − E[F ]. (2.15)

We end up these preliminaries on Malliavin calculus by stating a useful lemma, that is
going to be intensively used in the forthcoming Section 4.
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Lemma 2.1 Suppose that F ∈ D1,2 and G ∈ L2(Ω). Then, L−1G ∈ D2,2 and we have:

E[FG] = E[F ]E[G] + E[〈DF,−DL−1G〉H]. (2.16)

Proof. By (2.14) and (2.15),

E[FG]− E[F ]E[G] = E[F (G− E[G])] = E[F × LL−1G] = E[Fδ(−DL−1G)],

and the result is obtained by using the integration by parts formula (2.13).

3 Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. We restate it here for convenience, by
reformulating it in the more general context of isonormal Gaussian process rather than
Brownian motion.

Theorem 1.5 Let X = {X(h), h ∈ H} be an isonormal Gaussian process, and q1, . . . , qd >
1 be some �xed integers. Consider a Rd-valued random vector of the form

F = (F1, . . . , Fd) =
(
Iq1(f1), . . . , Iqd(fd)

)
,

where each fi belongs to H�qi, i = 1, . . . , d. Let C = (Cij)16i,j6d ∈Md(R) be the covariance
matrix of F , i.e. Cij = E[FiFj], and consider a centered Gaussian random vector N ∼
Nd(0, C) with same covariance matrix C. Then

∆C(F ) 6 ψ
(
E[F 4

1 ]− 3E[F 2
1 ]2, E[F 2

1 ], . . . , E[F 4
d ]− 3E[F 2

d ]2, E[F 2
d ]
)
, (3.17)

with ∆C(F ) given by (1.3), and where ψ : (R× R+)d → R is the function given by (1.7).

In order to prove Theorem 1.5, we �rst need to gather several results from the existing
literature. We collect them in the following lemma. We freely use the de�nitions and
notation introduced in Sections 1 and 2.

Lemma 3.1 Let F = Ip(f) and G = Iq(g), with f ∈ H�p and g ∈ H�q (p, q > 1).
1. If p = q, one has the estimate:

E

[(
E[FG]− 1

p
〈DF,DG〉H

)2
]

(3.18)

6
p2

2

p−1∑
r=1

(r − 1)!2
(
p− 1

r − 1

)4

(2p− 2r)!
(
‖f ⊗p−r f‖2

H⊗2r + ‖g ⊗p−r g‖2
H⊗2r

)
,

whereas, if p < q, one has that

E

[(
1

q
〈DF,DG〉H

)2
]
6 p!2

(
q − 1

p− 1

)2

(q − p)!‖f‖2
H⊗p‖g ⊗q−p g‖H⊗2p (3.19)

+
p2

2

p−1∑
r=1

(r − 1)!2
(
p− 1

r − 1

)2(
q − 1

r − 1

)2

(p+ q − 2r)!
(
‖f ⊗p−r f‖2

H⊗2r + ‖g ⊗q−r g‖2
H⊗2r

)
.
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2. If 1 6 r < p 6 q then

‖f⊗̃rg‖2
H⊗(p+q−2r) 6

1

2

(
‖f ⊗p−r f‖2

H⊗2r + ‖g ⊗q−r g‖2
H⊗2r

)
, (3.20)

whereas, if r = p < q, then

‖f⊗̃p g‖2
H⊗(q−p) 6 ‖f‖2

H⊗p‖g ⊗q−p g‖H⊗2p . (3.21)

3. One has the identity:

E[F 4]− 3E[F 2]2 =

p−1∑
r=1

p!2
(
p

r

)2{
‖f ⊗r f‖2

H⊗2p−2r +

(
2p− 2r

p− r

)
‖f⊗̃rf‖2

H⊗2p−2r

}
.

(3.22)

Proof. The inequalities (3.18), (3.19), (3.20) and (3.21) are shown in [5, Proof of Lemma
3.7] (see also [7, Proof of Lemma 6]). The identity (3.22) is shown in [8, page 182]. 2

We are now in position to prove Theorem 1.5. When Z ∈ L4(Ω), as usual we write
κ4(Z) = E[Z4] − 3E[Z2]2 for the fourth cumulant of Z. We deduce from (3.22) that, for
all p > 1, all f ∈ H�p and all r ∈ {1, . . . , p− 1}, one has κ4(Ip(f)) > 0 and

‖f ⊗r f‖2
H⊗2p−2r 6

r!2(p− r)!2

p!4
κ4(Ip(f)).

Therefore, if f, g ∈ H�p, inequality (3.18) leads to

E

[(
E[Ip(f)Ip(g)]− 1

p
〈DIp(f), DIp(g)〉H

)2
]

6
[
κ4(Ip(f)) + κ4(Ip(g))

] p−1∑
r=1

r2(2p− 2r)!

2p2(p− r)!2

6
1

2

[
κ4(Ip(f)) + κ4(Ip(g))

] p−1∑
r=1

(
2r

r

)
.

(3.23)

On the other hand, if p < q, f ∈ H�p and g ∈ H�q, inequality (3.19) leads to

E

[(
1

p
〈DIp(f), DIq(g)〉H

)2
]

=
q2

p2
E

[(
1

q
〈DIp(f), DIq(g)〉H

)2
]

6 E[Ip(f)2]
√
κ4(Iq(g)) +

1

2p2

p−1∑
r=1

r2(p+ q − 2r)!

×
[

q!2

(q − r)!2p!2
κ4(Ip(f)) +

p!2

(p− r)!2q!2
κ4(Iq(g))

]
6 E[Ip(f)2]

√
κ4(Iq(g)) +

1

2

p−1∑
r=1

(p+ q − 2r)!

×

[(
q

r

)2

κ4(Ip(f)) +

(
p

r

)2

κ4(Iq(g))

]
,
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so that, if p 6= q, f ∈ H�p and g ∈ H�q, one has that both E

[(
1
p
〈DIp(f), DIq(g)〉H

)2
]

and E

[(
1
q
〈DIp(f), DIq(g)〉H

)2
]
are less or equal than

E[Ip(f)2]
√
κ4(Iq(g)) + E[Iq(g)2]

√
κ4(Ip(f)) (3.24)

+
1

2

p∧q−1∑
r=1

(p+ q − 2r)!

[(
q

r

)2

κ4(Ip(f)) +

(
p

r

)2

κ4(Iq(g))

]
.

Since two multiple integrals of di�erent orders are orthogonal, on has that

Cij = E[FiFj] = E[Iqi(fi)Iqj(fj)] = 0 whenever qi 6= qj.

Thus, by using (3.23)-(3.24) together with
√
x1 + . . .+ xn 6

√
x1+. . .+

√
xn, we eventually

get the desired conclusion (3.17).
2

4 Cumulants for random vectors on the Wiener space

In all this part of the paper, we let the notation of Section 2 prevail. In particular,
X = {X(h), h ∈ H} denotes a given isonormal Gaussian process.

4.1 Abstract statement

In this section, by means of the basic operators D and L, we calculate the cumulants of
any vector-valued functional F of a given isonormal Gaussian process X.

First, let us recall the standard multi-index notation. A multi-index is a vector m =
(m1, . . . ,md) of Nd. We write

|m| =
d∑
i=1

mi, ∂i =
∂

∂ti
, ∂m = ∂m1

1 . . . ∂mdd , xm =
d∏
i=1

xmii .

By convention, we have 00 = 1. Also, note that |xm| = ym, where yi = |xi| for all i. If
s ∈ Nd, we say that s 6 m if and only if si 6 mi for all i. For any i = 1, . . . , d, we let
ei ∈ Nd be the multi-index de�ned by (ei)j = δij, with δij the Kronecker symbol.

De�nition 4.1 Let F = (F1, . . . , Fd) be a Rd-valued random vector such that E|F |m <∞
for some m ∈ Nd \ {0}, and let φF (t) = E[ei〈t,F 〉Rd ], t ∈ Rd, stand for the characteristic
function of F . The cumulant of order m of F is (well) de�ned by

κm(F ) = (−i)|m|∂m log φF (t)|t=0.

For instance, if Fi, Fj ∈ L2(Ω), then κei(F ) = E[Fi] and κei+ej(F ) = Cov[Fi, Fj].
Now, we need to (recursively) introduce some further notation:
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De�nition 4.2 Let F = (F1, . . . , Fd) be a Rd-valued random vector with Fi ∈ D1,2 for each
i. Let l1, l2, . . . be a sequence taking values in {e1, . . . , ed}. We set Γl1(F ) = F l1. If the
random variable Γl1,...,lk(F ) is a well-de�ned element of L2(Ω) for some k > 1, we set

Γl1,...,lk+1
(F ) = 〈DF lk+1 ,−DL−1Γl1,...,lk(F )〉H.

Since the square-integrability of Γl1,...,lk(F ) implies that L−1Γl1,...,lk(F ) ∈ DomL ⊂ D1,2,
the de�nition of Γl1,...,lk+1

(F ) makes sense.
The next lemma, whose proof is left to the reader because it is an immediate extension

of Lemma 4.2 in [4] to the multivariate case, gives su�cient conditions on F ensuring that
the random variable Γl1,...,lk(F ) is a well-de�ned element of L2(Ω).

Lemma 4.3 1. Fix an integer j > 1, and assume that F = (F1, . . . , Fd) is such that
Fi ∈ Dj,2j for all i. Let l1, l2, . . . , lj be a sequence taking values in {e1, . . . , ed}. Then,

for all k = 1, . . . , j, we have that Γl1,...,lk(F ) is a well-de�ned element of Dj−k+1,2j−k+1
; in

particular, one has that Γl1,...,lj(F ) ∈ D1,2 ⊂ L2(Ω) and that the quantity E[Γl1,...,lj(F )] is
well-de�ned and �nite.

2. Assume that F = (F1, . . . , Fd) is such that Fi ∈ D∞ for all i. Let l1, l2, . . . be a
sequence taking values in {e1, . . . , ed}. Then, for all k > 1, the random variable Γl1,...,lk(F )
is a well-de�ned element of D∞.

We are now ready to state and prove the main result of this section, which is nothing
but the multivariate extension of Theorem 4.3 in [4].

Theorem 4.4 Let m ∈ Nd \ {0}. Write m = l1 + . . . + l|m| where li ∈ {e1, . . . , ed}
for each i. (Up to possible permutations of factors, we have existence and uniqueness of
this decomposition of m.) Suppose that the random vector F = (F1, . . . , Fd) is such that

Fi ∈ D|m|,2|m| for all i. Then, we have

κm(F ) = (|m| − 1)!E
[
Γl1,...,l|m|(F )

]
. (4.25)

Remark 4.5 A careful inspection of the forthcoming proof of Theorem 4.4 shows that the
quantity E

[
Γl1,...,l|m|(F )

]
in (4.25) is actually symmetric with respect to l1, . . . , l|m|, that is,

∀σ ∈ S|m|, E
[
Γl1,...,l|m|(F )

]
= E

[
Γlσ(1),...,lσ(|m|)(F )

]
.

Proof of Theorem 4.4. The proof is by induction on |m|. The case |m| = 1 is clear because
κej(F ) = E[Fj] = E[Γej(F )] for all j. Now, assume that (4.25) holds for all multi-indices
m ∈ Nd such that |m| 6 N , for some N > 1 �xed, and let us prove that it continues to
hold for all the multi-indices m verifying |m| = N + 1. Let m ∈ Nd be such that |m| 6 N ,
and �x j = 1, . . . , d. By applying repeatidely (2.16) and then the chain rule (2.12), we can
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write

E[Fm+ej ] = E[Fm × Γej(F )]

= E[Fm]E[Γej(F )] + E[〈DFm,−DL−1Γej(F )〉H]

= E[Fm]E[Γej(F )] +
∑

16i16|m|

E[Fm−li1 〈DF li1 ,−DL−1Γej(F )〉H]

= E[Fm]E[Γej(F )] +
∑

16i16|m|

E[Fm−li1Γej ,li1 (F )]

= E[Fm]E[Γej(F )] +
∑

16i16|m|

E[Fm−li1 ]E[Γej ,li1 (F )] +
∑

16i1,i26|m|
i1,i2 di�erent

E[Fm−li1−li2Γej ,li1 ,li2 (F )]

= . . .

= E[Fm]E[Γej(F )] +
∑

16i16|m|

E[Fm−li1 ]E[Γej ,li1 (F )]

+
∑

16i1,i26|m|
i1,i2 di�erent

E[Fm−li1−li2 ]E[Γej ,li1 ,li2 (F )]

+ . . .+
∑

16i1,...,i|m|−16|m|
i1,...,i|m|−1 pairwise di�erent

E[F
m−li1−...−li|m|−1 ]E[Γej ,li1 ,...,li|m|−1

(F )]

+|m|!E[Γej ,li1 ,...,li|m| (F )]

so that, using the induction property,

E[Fm+ej ] = E[Fm]
1

0!
κej(F ) +

∑
16i16|m|

E[Fm−li1 ]
1

1!
κej+li1 (F )

+
∑

16i1,i26|m|
i1,i2 di�erent

E[Fm−li1−li2 ]
1

2!
κej+li1+li2

(F )

+ . . .+
∑

16i1,...,i|m|−16|m|
i1,...,i|m|−1 pairwise di�erent

E[F
m−li1−...−li|m|−1 ]

1

(m− 1)!
κej+li1+...+li|m|−1

(F )

+|m|!E[Γej ,li1 ,...,li|m| (F )]

=
∑
s6m

|s|6m−1

E[Fm−s]
1

|s|!
κej+s(F ) #Bs + |m|!E[Γej ,li1 ,...,li|m| (F )].

Here, Bs stands for the set of pairwise di�erent indices i1, . . . , i|s| ∈ {1, . . . , |m|} such that
li1 + . . . + li|s| = s, whereas #Bs denotes the cardinality of Bs. Also, let Dj = {i =
1, . . . , |m| : li = ej} and observe that m = (m1, . . . ,md) with mj = #Dj. For any
s 6 m, it is readily checked that #Bs =

(
m1

s1

)
. . .
(
md
sd

)
|s|!. (Indeed, to build a multi-index

s = (s1, . . . , sd) so that s 6 m, one must choose s1 indices among the m1 indices of D1
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up to sd indices among the md indices of Dd, and then the order of the factors in the sum
li1 + . . .+ li|s| .) Therefore,

E[Fm+ej ] =
∑
s6m

|s|6m−1

(
m1

s1

)
. . .

(
md

sd

)
E[Fm−s]κej+s(F ) + |m|!E[Γej ,li1 ,...,li|m| (F )]

=
∑
s6m

(
m1

s1

)
. . .

(
md

sd

)
E[Fm−s]κej+s(F ) + |m|!E[Γej ,li1 ,...,li|m| (F )]− κej+m(F )

=
∑
s6m

(
m1

s1

)
. . .

(
md

sd

)
(−i)|m|−|s|∂m−sφF (0)× (−i)|s|+1∂ej+s log φF (0)

+|m|!E[Γej ,li1 ,...,li|m| (F )]− κej+m(F )

= (−i)|m|+1∂m
(
φF

d

dtj
log φF

)
(0) + |m|!E[Γej ,li1 ,...,li|m| (F )]− κej+m(F )

= (−i)|m|+1∂m+ejφF (0) + |m|!E[Γej ,li1 ,...,li|m| (F )]− κej+m(F )

= E[Fm+ej ] + |m|!E[Γej ,li1 ,...,li|m| (F )]− κej+m(F ),

leading to

|m|!E[Γej ,li1 ,...,li|m| (F )] = κej+m,

implying in turn that (4.25) holds with m replaced by m + ej. The proof by induction is
concluded.

2

4.2 The case of vector-valued multiple integrals

We now focus on the calculation of cumulants associated to random vectors whose com-
ponent are in a given chaos. In (4.26) (and in its proof as well), we use the following
convention. For simplicity, we drop the brackets in the writing of fλ1⊗̃r2 . . . ⊗̃r|m|−1

fλ|m|−1
,

by implicitely assuming that this quantity is de�ned iteratively from the left to the right.
For instance, f⊗̃αg⊗̃βh⊗̃γk actually means ((f⊗̃αg)⊗̃βh)⊗̃γk.

The main result of this section is the following theorem.

Theorem 4.6 Let m ∈ Nd \ {0} with |m| > 3. Write m = l1 + . . . + l|m|, where li ∈
{e1, . . . , ed} for each i. (Up to possible permutations of factors, we have existence and
uniqueness of this decomposition of m.) Consider a Rd-valued random vector of the form

F = (F1, . . . , Fd) =
(
Iq1(f1), . . . , Iqd(fd)

)
,

where each fi belongs to H�qi. When lk = ej, we set λk = j, so that F lk = Fλk for all
k = 1, . . . , |m|. Then:

κm(F ) = (qλ|m|)!(|m|−1)!
∑

cq,l(r2, . . . , r|m|−1)〈fλ1⊗̃r2fλ2 . . . ⊗̃r|m|−1
fλ|m|−1

, fλ|m|〉H⊗qλ|m| ,
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(4.26)

where the sum
∑

runs over all collections of integers r2, . . . , r|m|−1 such that:

(i) 1 6 ri 6 qλi for all i = 2, . . . , |m| − 1;

(ii) r2 + . . .+ r|m|−1 =
qλ1+...+qλ|m|−1

−qλ|m|
2

;

(iii) r2 <
qλ1+qλ2

2
, . . ., r2 + . . .+ r|m|−2 <

qλ1+...+qλ|m|−2

2
;

(iv) r3 6 qλ1 + qλ2 − 2r2, . . ., r|m|−1 6 qλ1 + . . .+ qλ|m|−2
− 2r2 − . . .− 2r|m|−2;

and where the combinatorial constants cq,l(r2, . . . , rs) are recursively de�ned by the relations

cq,l(r2) = qλ2(r2 − 1)!

(
qλ1 − 1

r2 − 1

)(
qλ2 − 1

r2 − 1

)
,

and, for s > 3,

cq,l(r2, . . . , rs) = qλs(rs − 1)!

(
qλ1 + . . .+ qλs − 2r2 − . . .− 2rs−1 − 1

rs − 1

)
×
(
qλs − 1

rs − 1

)
cq,l(r2, . . . , rs−1).

Remark 4.7 1. When |m| = 1, say m = ei with i = 1, . . . , d, then κm(F ) = E[Fi] = 0.
When |m| = 2, say m = ei + ej with i, j = 1, . . . , d, then

κm(F ) = E[FiFj] =

{
0 if qi 6= qj

qi!〈fi, fj〉H⊗qi if qi = qj
.

Thus, only the case |m| > 3 needs to be considered in Theorem 4.6.

2. Since Theorem 4.6 is nothing but an extension of [4, Theorem 5.1] to the multidi-
mensional case, it is possible to recover the latter as a special case of the former by
choosing d = 1; in this case, one has indeed qλk = q and fλk = f for all k > 1, so that
(4.26) reduces to [4, Formula (5.22)]. (Notice, however, a slight notational di�erence
with respect to the statement in [4]: here, we have found more natural to index the
sequence r by r2, . . . , r|m|−1 rather than by r1, . . . , r|m|−2.)

3. If q1, . . . , qd = 2 then the only possible integers r2, . . . , r|m|−1 satisfying (i)-(iv) in
Theorem 4.6 are r2 = . . . = r|m|−2 = 1. Moreover, we immediately compute that
cq,l(1) = 2, cq,l(1, 1) = 4, cq,l(1, 1, 1) = 8, and so on. Therefore, for any f1, . . . , fd ∈
H�2 and any m ∈ Nd \ {0} with |m| > 3, we have :

κm(I2(f1), . . . , I2(fd)) = 2|m|−1(|m| − 1)!〈fλ1⊗̃1 . . . ⊗̃1fλ|m|−1
, fλ|m|〉H⊗2 ,

where fλk , k = 1, . . . , λ|m| has been de�ned in the statement of Theorem 4.6. As
such, we extend [1, Proposition 4.2] to the multidimensional setting.
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Proof of Theorem 4.6. If f ∈ H�p and g ∈ H�q (p, q > 1), the multiplication formula yields

〈DIp(f),−DL−1Iq(g)〉H = p 〈Ip−1(f), Iq−1(g)〉H

= q

p∧q−1∑
r=0

r!

(
p− 1

r

)(
q − 1

r

)
Ip+q−2−2r(f⊗̃r+1g)

= q

p∧q∑
r=1

(r − 1)!

(
p− 1

r − 1

)(
q − 1

r − 1

)
Ip+q−2r(f⊗̃rg). (4.27)

Thanks to (4.27), it is straightforward to prove by induction on |m| that

Γl1,...,l|m|(F ) (4.28)

=

qλ1∧qλ2∑
r2=1

. . .

[qλ1+...+qλ|m|−1
−2r2−...−2r|m|−1]∧qλ|m|∑
r|m|=1

cq,l(r2, . . . , r|m|)1{r2<
qλ1

+qλ2
2

}
. . .

×1
{r2+...+r|m|−1<

qλ1
+...+qλ|m|−1

2
}
Iqλ1+...+qλ|m|−2r2−...−2r|m|

(
fλ1⊗̃r2fλ2 . . . ⊗̃r|m|fλ|m|

)
.

(4.29)

Now, let us take the expectation on both sides of (4.29). We get

κm(F )

= (|m| − 1)!E[Γl1,...,l|m|(F )]

= (|m| − 1)!

qλ1∧qλ2∑
r2=1

. . .

[qλ1+...+qλ|m|−1
−2r2−...−2r|m|−1]∧qλ|m|∑
r|m|=1

cq,l(r2, . . . , r|m|)1{r2<
qλ1

+qλ2
2

}
. . .

×1
{r2+...+r|m|−1<

qλ1
+...+qλ|m|−1

2
}
1
{r2+...+r|m|=

qλ1
+...+qλ|m|

2
}
× fλ1⊗̃r2fλ2 . . . ⊗̃r|m|fλ|m| .

Observe that, if 2r2 + . . . + 2r|m| = qλ1 + . . . + qλ|m| and r|m| 6 qλ1 + . . . + qλ|m|−1
− 2r2 −

. . .− 2r|m|−1, then

2r|m| = qλ|m| +
(
qλ1 + . . .+ qλ|m|−1

− 2r2 − . . .− 2r|m|−1

)
> qλ|m| + r|m|,

that is, r|m| > qλ|m| , so that r|m| = qλ|m| . Therefore,

κm(F )

= (|m| − 1)!

qλ1∧qλ2∑
r2=1

. . .

[qλ1+...+qλ|m|−1
−2r2−...−2r|m|−1]∧qλ|m|∑
r|m|=1

cq,l(r2, . . . , r|m|)1{r2<
qλ1

+qλ2
2

}
. . .

×1
{r2+...+r|m|−1<

qλ1
+...+qλ|m|−1

2
}
1
{r2+...+r|m|=

qλ1
+...+qλ|m|

2
}

×〈fλ1⊗̃r2fλ2 . . . ⊗̃r|m|−1
fλ|m|−1

, fλ|m|〉H⊗qλ|m| ,

which is the announced result, since cq,l(r2, . . . , r|m|−1, qλ|m|) = (qλ|m|)!cq,l(r2, . . . , r|m|−1). 2
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4.3 Yet another proof of Theorem 1.1

As a corollary of Theorem 4.6, we can now perform yet another proof of the implication
(ii) → (i) (the only one which is di�cult) in Theorem 1.1. So, let the notation and
assumptions of this theorem prevail, suppose that (ii) is in order, and let us prove that
(i) holds. Applying the method of moments/cumulants, we are left to prove that the
cumulants of Fn verify, for all m ∈ Nd,

κm(Fn)→ κm(N) =

{
0 if |m| 6= 2
Cij if m = ei + ej

as n→∞.

Let m ∈ Nd \ {0}. If m = ej for some j (that is, if and only if |m| = 1), we have
κm(Fn) = E[Fj,n] = 0. If m = ei + ej for some i, j (that is, if and only if |m| = 2), we have
κm(Fn) = E[Fi,nFj,n] → Cij by assumption (1.1). If |m| > 3, we consider the expression
(4.26). Thanks to (3.22), from (ii) we deduce that ‖fi,n ⊗r fi,n‖L2([0,T ]qi ) → 0 as n → ∞
for all i, whereas, thanks to (1.1), we deduce that qi!‖fi,n‖2

L2([0,T ]qi ) = E[F 2
i,n]→ Cii for all

i, so that supn>1 ‖fi,n‖L2([0,T ]qi ) <∞ for all i. Let r2, . . . , r|n|−1 be some integers such that

(i)�(iv) in Theorem 4.6 are satis�ed. In particular, r2 <
qλ1+qλ2

2
. From (3.20)-(3.21), it

comes that ‖fλ1,n⊗̃r2fλ2,n‖L2([0,T ]
qλ1

+qλ2
−2r2 )

→ 0 as n→∞. Hence, using Cauchy-Schwarz

inequality successively through

‖g⊗̃rh‖L2([0,T ]p+q−2r) 6 ‖g ⊗r h‖L2([0,T ]p+q−2r) 6 ‖g‖L2([0,T ]p)‖h‖L2([0,T ]q)

whenever g ∈ L2
s([0, T ]p), h ∈ L2

s([0, T ]q) and r = 1, . . . , p ∧ q, we get that

〈fλ1,n⊗̃r2fλ2,n . . . ⊗̃r|m|−1
fλ|m|−1,n, fλ|m|;n〉L2([0,T ]

qλ|m| )
→ 0 as n→∞.

Therefore, κm(Fn)→ 0 as n→∞ by (4.26).
2
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