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Abstract. — Given a smooth proper dg-algebra A, a perfect dg A-module
M and an endomorphism f of M , we define the Hochschild class of the pair
(M, f) with values in the Hochschild homology of the algebra A. Our main
result is a Riemann-Roch type formula involving the convolution of two such
Hochschild classes.

1. Introduction

An algebraic version of the Riemann-Roch formula was recently obtained by
D. Shklyarov [25] in the framework of the so-called noncommutative derived
algebraic geometry. More precisely, motivated by the well known result of
A. Bondal and M. Van den Bergh about "dg-affinity" of classical varieties, D.
Shklyarov has obtained a formula for the Euler characteristic of the Hom-
complex between two perfect modules over a dg-algebra in terms of the Euler
classes of the modules.

On the other hand, M. Kashiwara and P. Schapira [12] initiated an approach
to the Riemann-Roch theorem in the framework of deformation quantization
modules (DQ-modules) with the view towards applications to various index
type theorems. Their approach is based on Hochschild homology which, in
this setup, admits a description in terms of the dualizing complexes in the
derived categories of coherent DQ-modules.

The present paper is an attempt to extract some algebraic aspects of this
latter approach with the hope that the resulting techniques will provide a
uniform point of view for proving Riemann-Roch type results for DQ-modules,
D-modules etc. (e.g. the Riemann-Roch-Hirzebruch formula for traces of
differential operators obtained by M. Engeli and G. Felder [6]). In this
paper, we obtain a Riemann-Roch theorem in the dg setting, similarly as
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D. Shklyarov. However, our approach is really different of the latter one in
that we avoid the categorical definition of the Hochschild homology, and use
instead the Hochschild homology of the ring A expressed in terms of dualizing
objects. Our result is slightly more general than the one obtained in [25].
Instead of a kind of non-commutative Riemann-Roch theorem, we rather
prove a kind of non-commutative Lefschetz theorem. Indeed, it involves
certain Hochschild classes of pairs (M,f) where M is a perfect dg module
over a smooth proper dg algebra and f is an endomorphism of M in the
derived category of perfect A-modules. Moreover, our approach follows [12].
In particular, we have in our setting relative finiteness and duality results
(Theorem 3.16 and Theorem 3.27) that may be compared with [12, Theorem
3.2.1] and [12, Theorem 3.3.3]. Notice that the idea to approach the classical
Riemann-Roch theorem for smooth projective varieties via their Hochschild
homology goes back at least to the work of N. Markarian [17]. This approach
was developed further by A. Căldăraru [3], [4] and A. Căldăraru, S. Willerton
[5] where, in particular, certain purely categorical aspects of the story were
emphasized. The results of [3] suggested that a Riemann-Roch type formula
might exist for triangulated categories of quite general nature, provided they
possess Serre duality. In this categorical framework, the role of the Hochschild
homology is played by the space of morphisms from the inverse of the Serre
functor to the identity endofunctor. In a sense, our result can be viewed as a
non-commutative generalization of A. Căldăraru’s version of the topological
Cardy condition [3]. Our original motivation was different though it also
came from the theory of DQ-modules [12].

Here is our main result:

Theorem. — Let A be a proper, homologically smooth dg algebra, M ∈
Dperf(A), f ∈ HomA(M,M) and N ∈ Dperf(Aop), g ∈ HomAop(N,N).

Then

hhk(N
L
⊗
A
M, g

L
⊗
A
f) = hhAop(N, g) ∪ hhA(M,f),

where ∪ is a pairing between the corresponding Hochschild homology groups
and where hhA(M,f) is the Hochschild class of the pair (M,f) with value in
the Hochschild homology of A.

The above pairing is obtained using Serre duality in the derived category of
perfect complexes and, thus, it strongly resembles analogous pairings, studied
in some of the references previously mentioned (cf. [3], [12], [26]). We prove
that various methods of constructing a pairing on Hochschild homology lead
to the same result. Notice that in [23], A. Ramadoss studied the links between
different pairing on Hochschild homology.
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To conclude, we would like to mention the recent paper by A. Polishchuk
and A. Vaintrob [21] where a categorical version of the Riemann-Roch theo-
rem was applied in the setting of the so-called Landau-Ginzburg models (the
categories of matrix factorizations). We hope that our results, in combination
with some results by D. Murfet [18], may provide an alternative way to derive
the Riemann-Roch formula for singularities.
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P. Schapira for suggesting this problem to me, for his guidance and for his
support. I am very grateful to Y. Soibelman for carefully explaining his article
[15] to me and to B. Keller for patiently answering my questions about dg
categories. I would like to thank A. Căldăraru for explaining his articles to
me and K. Ponto for explanations concerning her works [22]. I would like
to warmly thank D. Shklyarov and G. Ginot for many useful discussions and
precious advices. Finally, I would like to thank Damien Calaque and Michel
Vaquié for their thorough reading of the manuscript and numerous remarks
which have allowed substantial improvements.

2. Conventions

All along this paper k is a field of characteristic zero. A k-algebra is a k-
module A equiped with an associative k-linear multiplication admitting a two
sided unit 1A.

All the graded modules considered in this paper are cohomologically Z-
graded. We abbreviate differential graded module (resp. algebra) by dg mod-
ule (resp. dg algebra).

If A is a dg algebra andM and N are dg A-modules, we write Hom•A(M,N)
for the total Hom-complex.

If M is a dg k-module, we define M∗ = Hom•k(M,k) where k is considered
as the dg k-module whose 0-th components is k and other components are
zero.

We write ⊗ for the tensor product over k. If x is an homogeneous element
of a differential graded module we denote by |x| its degree.

If A is a dg algebra we will denote by Aop the opposite dg algebra. It is
the same as a differential graded k-module but the multiplication is given by
a · b = (−1)|a||b|ba. We denote by Ae the dg algebra A ⊗ Aop and by eA the
algebra Aop ⊗A.
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By a module we understand a left module unless otherwise specified. If A
and B are dg algebras, A-B bimodules will be considered as left A ⊗ Bop-
modules via the action

a⊗ b ·m = (−1)|b||m|amb.
If we want to emphasize the left (resp. right) structure of an A-B bimodule
we will write AM (resp. MB). If M is an A ⊗ Bop-modules, then we write
Mop for the corresponding Bop⊗A-module. Notice that (Mop)∗ ' (M∗)op as
B ⊗Aop-modules.

3. Perfect modules

3.1. Compact objects. — We recall some classical facts concerning com-
pact objects in triangulated categories. We refer the reader to [20].

Let T be a triangulated category admitting arbitrary small coproducts.

Definition 3.1. — An object M of T is compact if for each family (Mi)i∈I
of objects of T the canonical morphism

(3.1)
⊕
i∈I

HomT (M,Mi)→ HomT (M,
⊕
i∈I
Mi)

is an isomorphism. We denote by T c the full subcategory of T whose objects
are the compact objects of T .

Recall that a triangulated subcategory of T is called thick if it is closed
under isomorphisms and direct summands.

Proposition 3.2. — The category T c is a thick subcategory of T .

We prove the following fact that will be of constant use.

Proposition 3.3. — Let T and S be two triangulated categories and F and
G two functors of triangulated categories from T to S with a natural transfor-
mation α : F ⇒ G. Then the full subcategory Tα of T whose objects are the
X such that αX : F (X)→ G(X) is an isomorphism, is a thick subcategory of
T .

Proof. — The category Tα is non-empty since 0 belongs to it and it is stable
by shift since F and G are functors of triangulated categories. Moreover, the
category Tα is a full subcategory of a triangulated category. Thus, to verify
that Tα is triangulated, it only remains to check that it is stable by taking
cones. Let f : X → Y be a morphism of Tα. Consider a distinguished triangle
in T

X
f→ Y → Z → X[1].
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We have the following diagram

F (X)
F (f) //

oαX

��

F (Y ) //

oαY

��

F (Z) //

αZ

��

F (X[1])

oαX [1]
��

G(X)
G(f) // G(Y ) // G(Z) // G(X[1]).

By the five Lemma it follows that the morphism αZ is an isomorphism. There-
fore, Z belongs to Tα. This implies that the category Tα is triangulated.

It is clear that Tα is closed under isomorphism. Since F and G are functors
of triangulated categories they commutes with finite direct sums. Thus, Tα is
stable under taking direct summands. It follows that Tα is a thick subcategory
of T .

Definition 3.4. — The triangulated category T is compactly generated if
there is a set G of compact objects G such that an object M of T vanishes if
and only if we have HomT (G[n],M) ' 0 for every G ∈ G and n ∈ Z.

Theorem 3.5 ([19, 24]). — Let G be as in Definition 3.4. An object of T is
compact if and only if it is isomorphic to a direct factor of an iterated triangle
extension of copies of object of G shifted in both directions.

Remark 3.6. — The above theorem implies that the category of compact
objects is the smallest thick subcategory of T containing G.

3.2. The category of perfect modules. — In this section, following [14],
we recall the definition of the category of perfect modules.

Let A be a differential graded algebra. One associates to A its category of
differential graded modules, denoted C(A), whose objects are the differential
graded modules and whose morphisms are the morphisms of chain complexes.

Recall that the category C(A) has a compactly generated model structure,
called the projective structure, where the weak equivalences are the quasi-
isomorphisms, the fibrations are the level-wise surjections. The reader may
refer to [10] for model categories and to [7, ch.11] for a detailed account on
the projective model structure of C(A).

The derived category D(A) is the localisation of C(A) with respects to the
class of quasi-isomorphisms. The category D(A) is a triangulated category,
it admits arbitrary coproducts and is compactly generated by the object A.
Theorem 3.5 leads to Proposition 3.7 which allows us to define perfect modules
in terms of compact objects.

Proposition 3.7. — An object of D(A) is compact if and only if it is isomor-
phic to a direct factor of an iterated extension of copies of A shifted in both
directions.
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Definition 3.8. — A differential graded module is perfect if it is a compact
object of D(A). We write Dperf(A) for the category of compact objects of
D(A).

Remark 3.9. — This definition implies immediatly that M is a perfect k-
module if and only if

∑
i dimk Hi(M) <∞.

A direct consequence of Proposition 3.7 is

Proposition 3.10. — Let A and B be two dg algebras and F : D(A)→ D(B)
a functor of triangulated categories. Assume that F (A) belongs to Dperf(B).
Then, for any X in Dperf(A) , F (X) is an object of Dperf(B).

Proposition 3.11. — Let A and B be two dg algebras and F,G : D(A) →
D(B) two functors of triangulated categories and α : F ⇒ G a natural transfor-
mation. If αA : F (A) → G(A) is an isomorphism then αM : F (M) → G(M)
is an isomorphism for every M ∈ Dperf(A).

Proof. — By Proposition 3.3, the category Tα is thick. This category contains
A by hypothesis. It follows by Remark 3.6 that Tα = Dperf(A).

Definition 3.12. — A dg A-moduleM is a finitely generated semi-free mod-
ule if it can be obtain by iterated extensions of copies of A shifted in both
directions.

Proposition 3.13. — (i) Finitely generated semi-free modules are cofi-
brant objects of C(A) endowed with the projective structure.

(ii) A perfect module is quasi-isomorphic to a direct factor of a finitely gen-
erated semi-free module.

Proof. — (i) is a direct consequence of [7, Proposition 11.2.9].
(ii) follows from Proposition 3.7 and from the facts that, in the projective

structure, every object is fibrant and finitely generated semi-free modules
are cofibrant.

Remark 3.14. — The above statement is a special case of [27, Proposition
2.2].

3.3. Finiteness results for perfect modules. — We summarize some
finiteness results for perfect modules over a dg algebra satisfying suitable
finiteness and regularity hypothesis. The main reference for this section is
[27]. Most of the statements of this subsection and their proofs can be found
in greater generality in [27, §2.2]. For the sake of completeness, we give the
proof of these results in our specific framework.
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Definition 3.15. — A dg k-algebra A is said to be proper if it is perfect over
k.

The next theorem, though the proof is much easier, can be thought as a
dg analog to the theorem asserting the finiteness of proper direct images for
coherent OX -modules.

Theorem 3.16. — Let A, B and C be dg algebras. Assume B is a proper
dg algebra. Then the functor ·

L
⊗
B
· : D(A⊗ Bop)× D(B ⊗ Cop)→ D(A⊗ Cop)

induces a functor ·
L
⊗
B
· : Dperf(A⊗Bop)× Dperf(B ⊗ Cop)→ Dperf(A⊗ Cop).

Proof. — According to Proposition 3.10, we only need to check that (A ⊗
Bop)

L
⊗
B

(B⊗Cop) ' A⊗Bop⊗Cop ∈ Dperf(A⊗Cop). In C(k), B is homotopically
equivalent to H(B) :=

⊕
n∈Z Hn(B)[n] since k is a field. Then, in C(A⊗Cop),

A ⊗ Bop ⊗ Cop is homotopically equivalent to A ⊗ H(Bop) ⊗ Cop which is a
finitely generated free A⊗ Cop-module since B is proper.

We recall a regularity condition for dg algebra called homological smooth-
ness, [15], [27].

Definition 3.17. — A dg-algebra A is said to be homologically smooth if
A ∈ Dperf(Ae).

Proposition 3.18. — The tensor product of two homologically smooth dg-
algebras is an homologically smooth dg-algebra.

Proof. — Obvious.

There is the following characterization of perfect modules over a proper
homologically smooth dg algebra extracted from [27, Corollary 2.9].

Theorem 3.19. — Let A be a proper dg algebra. Let N ∈ D(A).
(i) If N ∈ Dperf(A) then N is perfect over k.
(ii) If A is homologically smooth and N is perfect over k then N ∈ Dperf(A).

Proof. — We follow the proof of [26].
(i) Apply Proposition 3.10.

(ii) Assume that N ∈ D(A) is perfect over k. Let us show that the
triangulated functor ·

L
⊗
A
N : D(Ae) → D(A) induces a triangulated functor
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·
L
⊗
A
N : Dperf(Ae)→ Dperf(A). Let pN be a cofibrant replacement of N . Then

Ae
L
⊗
A
N ' Ae ⊗A pN ' A⊗ pN.

In C(k), pN is homotopically equivalent to H(pN) :=
⊕
n∈Z Hn(pN)[n]. Thus,

there is an isomorphism in D(A) between A ⊗k pN and A ⊗k H(pN). The
dg A-module A ⊗k H(pN) is perfect. Thus, by Proposition 3.10, the functor
·

L
⊗
A
N preserves perfect modules. Since A is homologically smooth, A belongs

to Dperf(Ae). Then, A
L
⊗
A
N ' N belongs to Dperf(A).

A similar argument leads to (see [27, Lemma 2.6])

Lemma 3.20. — If A is a proper algebra then Dperf(A) is Ext-finite.

3.4. Serre duality for perfect modules. — In this subsection, we recall
some facts concerning Serre duality for perfect modules over a dg algebra and
give various forms of the Serre functor in this context. References are made
to [2], [8], [25].

Let us recall the definition of a Serre functor, [2].

Definition 3.21. — Let C be a k-linear Ext-finite triangulated category. A
Serre functor S : C → C is an autoequivalence of C such that there exist an
isomorphism

(3.2) HomC(Y,X)∗ ' HomC(X,S(Y ))

functorial with respect to X and Y where ∗ denote the dual with respect to
k. If it exists, such a functor is unique up to natural isomorphism.

Notation 3.22. — We set D′A = RHomA(·, A) : (D(A))op → D(Aop).

Proposition 3.23. — The functor D′A preserves perfect modules and induces
an equivalence (Dperf(A))op → Dperf(Aop). When restricted to perfect modules,
D′Aop ◦ D′A ' id.

Proof. — See [26, Proposition A.1].

Proposition 3.24. — Suppose N is a perfect A-module and M is an arbitrary
left A ⊗ Bop-module, where B is another dg algebra. Then there is a natural
isomorphism of B-modules

(3.3) (RHomA(N,M))∗ ' (M∗)op L
⊗
A
N
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Theorem 3.25. — In Dperf(A), the endofunctor RHomA(·, A)∗ is isomorphic

to the endofunctor (Aop)∗
L
⊗
A
−.

Proof. — This result is a direct corollary of Proposition 3.24 by choosing
M = A and B = A.

Lemma 3.26 and Theorem 3.27 are probably well known results. Since we
do not know any references for them, we shall give detailed proofs.

Lemma 3.26. — Let B be a proper dg algebra, M ∈ Dperf(A⊗Bop) and N ∈
Dperf(B ⊗ Cop). There are the following canonical isomorphisms respectively
in Dperf(Bop ⊗ C) and Dperf(Aop ⊗ C):

(3.4) B∗
L
⊗
Bop

RHomB⊗Cop(N,B ⊗ Cop) ' RHomCop(N,Cop)

RHomA⊗Bop(M,A⊗ RHomCop(N,Cop))

' RHomA⊗Cop(M
L
⊗
B
N,A⊗ Cop).(3.5)

Proof. — (i) Let us prove formula (3.4). Let N ∈ C(B ⊗ Cop). There is a
morphism of Bop ⊗ C modules

ΨN : B∗ ⊗Bop Hom•B⊗Cop(N,B ⊗ Cop)→ Hom•Cop(N,Cop)

such that ΨN (δ ⊗Bop φ) = m ◦ (δ ⊗ idCop) ◦ φ where m : k ⊗ Cop → Cop and
m(λ ⊗ c) = λ · c. Clearly, Ψ is a natural transformation between the functor
B∗ ⊗Bop Hom•B⊗Cop(·, B ⊗ Cop) and Hom•Cop(·, Cop). For short, we set

F (X) = B∗
L
⊗
Bop

RHomB⊗Cop(X,B ⊗ Cop) and G(X) = RHomCop(X,Cop).

If X is a direct factor of a finitely generated semi-free B ⊗ Cop-module, we
obtain that RHomB⊗Cop(X,B⊗Cop) ' Hom•B⊗Cop(X,B⊗Cop) and the Bop⊗
C-module Hom•B⊗Cop(X,B⊗Cop) is flat over Bop since it is flat over Bop⊗C.
By Lemma 3.4.2 of [9] we can use flat replacements instead of cofibrant one to
compute derived tensor products. Thus F (X) ' B∗ ⊗Bop HomB⊗Cop(X,B ⊗
Cop).

Since B⊗Cop is a cofibrant Cop-module, it follows that the forgetful functor
from C(B⊗Cop) to C(Cop) preserves cofibrations. Thus, X is a cofibrant Cop-
module. It follows that G(X) ' HomCop(X,Cop). Therefore, Ψ induces a
natural transformation from F toG when they are restricted to Dperf(B⊗Cop).
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Assume that X = B ⊗ Cop. Then we have the following commutative
diagram

B∗ ⊗Bop Hom•B⊗Cop(B ⊗ Cop, B ⊗ Cop)
ΨB⊗Cop

//

o
��

Hom•Cop(B ⊗ Cop, Cop)

o
��

B∗ ⊗Bop Bop ⊗ C

o
��

Hom•k(B,Hom•Cop(Cop, Cop)

o
��

B∗ ⊗ C ∼ // Hom•k(B,C)

which proves that ΨB⊗Cop is an isomorphism. The bottom map of the diagram
is an isomorphism because B is proper. Hence, by Proposition 3.11, ΨX is an
isomorphism for any X in Dperf(B ⊗ Cop) which proves the claim.

(ii) Let us prove formula (3.5). We first notice that there is a morphism of
A⊗ Cop-modules functorial in M and N

Θ : Hom•A⊗Bop(M,A⊗Hom•Cop(N,Cop))→ Hom•A⊗Cop(M ⊗B N,A⊗ Cop)
defined by ψ 7→ (Ψ : m⊗ n 7→ ψ(m)(n)).
If M = A ⊗ Bop and N = B ⊗ Cop, then it induces an isomorphism. By
applying an argument similar to the previous one, we are able to establish the
isomorphism (3.5).

The next relative duality theorem can be compared to [12, Thm 3.3.3] in
the framework of DQ-modules though the proof is completely different.

Theorem 3.27. — Assume that B is proper. Let M ∈ Dperf(A ⊗ Bop) and
N ∈ Dperf(B ⊗ Cop). There is a natural isomorphism in Dperf(Aop ⊗ C)

D′A⊗Bop(M)
L
⊗
Bop

B∗
L
⊗
Bop

D′B⊗Cop(N) ' D′A⊗Cop(M
L
⊗
B
N).

Proof. — We have

D′(M)
L
⊗
Bop

B∗
L
⊗
Bop

D′(N)

' RHomA⊗Bop(M,A⊗Bop)
L
⊗
Bop

B∗
L
⊗
Bop

RHomB⊗Cop(N,B ⊗ Cop)

' RHomA⊗Bop(M,A⊗Bop)
L
⊗
Bop

RHomCop(N,Cop)

' RHomA⊗Bop(M,A⊗ RHomCop(N,Cop))

' RHomA⊗Cop(M
L
⊗
B
N,A⊗ Cop).
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One has (see for instance [8])

Theorem 3.28. — Let A be a proper homologically smooth dg algebra. The
functor N 7→ (Aop)∗

L
⊗
A
N,Dperf(A)→ Dperf(A) is a Serre functor.

Proof. — According to Lemma 3.20, Dperf(A) is an Ext-finite category.

By Theorem 3.25, the functor (Aop)∗
L
⊗
A
− is isomorphic to the functor

RHomA(·, A)∗. Moreover using Theorem 3.19 and Proposition 3.23 one
sees that RHomA(·, A)∗ is an equivalence on Dperf(A) and so is the functor

(Aop)∗
L
⊗
A
·. By applying Theorem 3.27 with A = C = k, B = Aop, N = M

and M = RHomA(N,A) one obtains

RHomA(N, (Aop)∗
L
⊗
A
M) ' RHomA(M,N)∗.

Definition 3.29. — One sets SA : Dperf(A) → Dperf(A), N 7→ (Aop)∗
L
⊗
A
N

for the Serre functor of Dperf(A).

The Serre functor can also be expressed in term of dualizing objects. They
are defined by [15], [1], [8]. Related results can also be found in [11]. One
sets:

ω−1
A := RHomeA(Aop, eA) = D′eA(Aop),
ωA := RHomA(ω−1

A , A) = D′A(ω−1
A ).

The structure of Ae-module of ω−1
A is clear. The object ωA inherits a structure

of Aop-module from the structure of Aop-module of A and a structure of A-
module from the structure of Aop-module of ω−1

A . This endows ωA with a
structure of Ae-modules.

Since A is a smooth dg algebra, it is a perfect Ae-module. Proposition 3.23
ensures that ω−1

A is a perfect Ae-module. Finally, Proposition 3.19 shows that
ωA is a perfect Ae-module.

Proposition 3.30. — The functor ω−1
A

L
⊗
A
− is left adjoint to the functor

ωA
L
⊗
A
−.

One also has, [8]

Theorem 3.31. — The two functors ω−1
A

L
⊗
A
− and SA from Dperf(A) to

Dperf(A) are quasi-inverse.
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Proof. — The functor SA is an autoequivalence. Thus, it is a right adjoint of
its inverse. We prove that ω−1

A

L
⊗
A
− is a left adjoint to SA. On the one hand

we have for every N,M ∈ Dperf(A) the isomorphism
HomDperf(A)(N,SA(M)) ' (HomDperf(A)(M,N))∗.

On the other hand we have the following natural isomorphisms

RHomA(ω−1
A

L
⊗
A
N,M) '(M∗

L
⊗
A
ω−1
A

L
⊗
A
N)∗

'((ω−1
A )op L

⊗
Ae

(N ⊗M∗))∗

'RHomAe(RHomeA(ω−1
Aop ,

eA), (N ⊗M∗))∗

'RHomAe(A, (N ⊗M∗))∗.
Using the isomorphism

HomDperf(Ae)(A,N ⊗M∗) ' HomDperf(A)(M,N),
we obtain the desired result.

Corollary 3.32. — The functors ω−1
A

L
⊗
A
· : Dperf(A)→ Dperf(A) and ωA

L
⊗
A
· :

Dperf(A)→ Dperf(A) are equivalences of categories.

Corollary 3.33. — The natural morphisms in Dperf(Ae)
A→RHomA(ω−1

A , ω−1
A )

A→RHomA(ωA, ωA)
are isomorphisms.

Proof. — The functor ω−1
A

L
⊗
A
· induces a morphism in D(Ae)

A ' RHomA(A,A)→ RHomA(ω−1
A

L
⊗
A
A,ω−1

A

L
⊗
A
A) ' RHomA(ω−1

A , ω−1
A ).

Since ω−1
A

L
⊗
A
· is an equivalence of category, for every i ∈ Z

HomA(A,A[i]) ∼→ HomA(ω−1
A , ω−1

A [i]).
The results follows immediately. The proof is similar for the second morphism.

Proposition 3.34. — Let A be a proper homologically smooth dg algebra.
We have the isomorphisms of Ae-modules

ωA
L
⊗
A
ω−1
A ' A, ω−1

A

L
⊗
A
ωA ' A.
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Proof. — We have

ωA
L
⊗
A
ω−1
A ' RHomA(ω−1

A , A)
L
⊗
A
ω−1
A

' RHomA(ω−1
A , ω−1

A )
' A.

For the second isomorphism, we remark that

RHomA(ωA, A)
L
⊗
A
ωA ' RHomA(ωA, ωA)

' A,

and

RHomA(ωA, A) ' RHomA(ωA, A)
L
⊗
A
ωA

L
⊗
A
ω−1
A

' ω−1
A

which conclude the proof.

Corollary 3.35. — Let A be a proper homologically smooth dg algebra. The
two objects (Aop)∗ and ωA of Dperf(Ae) are isomorphic.

Proof. — Applying Theorem 3.27 with A = B = C = Aop, M = N = Aop,
we get that ω−1

A

L
⊗
A

(Aop)∗
L
⊗
A
ω−1
A ' ω−1

A in Dperf(Ae). Then, the result follows
from Corollary 3.34.

Remark 3.36. — Since ωA and (Aop)∗ are isomorphic as Ae-modules, we will
use ωA to denote both (Aop)∗ and RHomA(ω−1

A , A) considered as the dualizing
complexes of the category Dperf(A).

The previous results allow us to build an "integration" morphism.

Proposition 3.37. — There exists a natural "integration" morphism in
Dperf(k)

ωAop
L
⊗
Ae
A→ k.

Proof. — There is a natural morphism k → RHomAe(A,A). Applying (·)∗ and
formula (3.3) with A = Ae and B = k, we obtain a morphism A∗

L
⊗
Ae
A → k.

Here, A∗ is endowed with its standard structure of right Ae-modules that
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is to say with its standard structure of left eA-module. Thus, ωAop
L
⊗
Ae
A '

A∗
L
⊗
Ae
A→ k.

Corollary 3.38. — There exists a canonical map ωA → k in Dperf(k) in-
duced by the morphism of Proposition 3.37.

4. Hochschild homology and Hochschild classes

4.1. Hochshchild homology. — In this subsection we recall the definition
of Hochschild homology, (see [13], [16]) and prove that it can be expressed in
terms of dualizing objects, (see [3], [5], [12], [15]).

Definition 4.1. — The Hochshchild homology of a dg algebra is defined by

HH(A) := Aop L
⊗
Ae
A.

The Hochschild homology groups are defined by HHn(A) = H−n(Aop L
⊗
Ae
A).

Proposition 4.2. — If A is a proper and homologically smooth dg algebra
then there is a natural isomorphism

(4.1) HH(A) ' RHomAe(ω−1
A , A).

Proof. — We have

Aop L
⊗
Ae
A ' (D′Ae ◦ D′eA(Aop))

L
⊗
Ae
A

' D′Ae(ω−1
A )

L
⊗
Ae
A

' RHomAe(ω−1
A , A).

Remark 4.3. — There is also a natural isomorphism
HH(A) ' RHomAe(A,ωA).

It is obtain by adjunction from isomorphism (4.1).

There is the following natural isomorphism.

Proposition 4.4. — Let A and B be a dg algebras. Let M ∈ Dperf(A) and
S ∈ Dperf(B) and N ∈ D(A) and T ∈ D(B) then

RHomA⊗B(M ⊗ S,N ⊗ T ) ' RHomA(M,N)⊗ RHomB(S, T ).
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Proof. — clear.

A special case of the above proposition is

Proposition 4.5 (Künneth isomorphism). — Let A and B be proper ho-
mologically smooth dg algebras. There is a natural isomorphism

KA,B : HH(A)⊗HH(B) ∼→ HH(A⊗B).

4.2. The Hochschild class. — In this subsection, following [12], we
construct the Hochschild class of an endomorphism of a perfect module and
describe the Hochschild class of this endomorphism when the Hochschild
homology is expressed in term of dualizing objects.

To build the Hochschild class, we need to construct some morphism of
Dperf(Ae).

Lemma 4.6. — Let M be a perfect A-module. There is a natural isomor-
phism

(4.2) RHomA(M,M) ∼ // RHomAe(ω−1
A ,M ⊗ D′AM).

Proof. — We have

RHomA(M,M) ' D′AM
L
⊗
A
M

' Aop L
⊗
Ae

(M ⊗ D′AM)

' RHomAe(ω−1
A ,M ⊗ D′AM).

Thus, we get an isomorphism

(4.3) RHomA(M,M) ∼ // RHomAe(ω−1
A ,M ⊗ D′AM).

Definition 4.7. — The morphism η in Dperf(Ae) is the image of the identity
of M by morphism (4.2) and ε in Dperf(Ae) is obtained from η by duality.

(4.4) η : ω−1
A →M ⊗ D′AM,

(4.5) ε : M ⊗ D′AM → A.

The map η is called the coevaluation map and ε the evaluation map.
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Applying D′Ae to (4.4) we obtain a map

D′Ae(M ⊗ D′AM)→ Aop.

Then using the isomorphism of Proposition 4.4,

D′Ae(M ⊗ D′AM) ' D′A(M)⊗ D′Aop(D′AM)
' D′A(M)⊗M,

we get morphism (4.5).
Let us define the Hochschild class. We have the following chain of mor-

phisms

RHomA(M,M) ' D′AM
L
⊗
A
M

' Aop L
⊗
Ae

(M ⊗ D′AM)

id⊗ε−→ Aop L
⊗
Ae
A.

We get a map

(4.6) HomDperf(A)(M,M)→ HH0(A).

Definition 4.8. — The image of an element f ∈ HomDperf(A)(M,M) by
the map (4.6) is called the Hochschild class of f and is denoted hhA(M,f).
The Hochschild class of the identity is denoted hhA(M) and is called the
Hochschild class of M .

Remark 4.9. — If A = k and M ∈ Dperf(k), then

hhk(M,f) =
∑
i

(−1)i Tr(Hi(f : M →M)),

see for instance [12].

Lemma 4.10. — The isomorphism (4.1) sends hhA(M,f) to the image of f
under the composition

RHomA(M,M) ∼ // RHomAe(ω−1
A ,M ⊗ D′AM) ε◦ // RHomAe(ω−1

A , A)

where the first morphism is defined in (4.2) and the second morphism is in-
duced by the evaluation map.
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Proof. — This follows from the commutative diagram:

RHomA(M,M)

id
��

∼ // Aop L
⊗
Ae

(M ⊗ D′AM)

��

idA⊗ε // Aop L
⊗
Ae
A

��
RHomA(M,M) ∼ // RHomAe(ω−1

A ,M ⊗ D′AM) ε // RHomAe(ω−1
A , A).

Remark 4.11. — Our definition of the Hochschild class is equivalent to the
definition of the trace of a 2-cell in [22]. This equivalence allows us to use
string diagrams to prove some properties of the Hochschild class, see [22] and
[3], [5].

Proposition 4.12. — Let M,N ∈ Dperf(A), g ∈ HomA(M,N) and h ∈
HomA(N,M) then

hhA(N, g ◦ h) = hhA(M,h ◦ g).

Proof. — See for instance [22, §7].

5. A pairing on Hochschild homology

In this section, we build a pairing on Hochschild homology. It acts as the
Hochschild class of the diagonal, (see [12], [3], [5], [25]). Using this result, we
prove our Riemann-Roch type formula. We follow the approach of [12].

5.1. Hochschild homology and bimodules. — In this subsection, we
translate to our language the classical fact that a perfect A ⊗ Bop-module
induces a morphism from HH(B) to HH(A). We need the following technical
lemma which generalizes Lemma 4.6.

Lemma 5.1. — Let K ∈ Dperf(A ⊗ Bop). Let C = A ⊗ Bop. Then, there
are natural morphisms in Dperf(Ae) which coincide with (4.4) and (4.5) when
B = k,

ω−1
A → K

L
⊗
B
D′CK,

(5.1) K
L
⊗
B
ωB

L
⊗
B
D′CK → A.

Proof. — By (4.4), we have a morphism in Dperf(A⊗Bop ⊗B ⊗Aop)

ω−1
C → K ⊗ D′CK.



18 FRANÇOIS PETIT

Applying the functor −
L
⊗
Be
B, we obtain

ω−1
C

L
⊗
Be
B → K ⊗ D′CK

L
⊗
Be
B

and by Proposition 4.4

ω−1
C ' ω

−1
A ⊗ ω

−1
Bop ' ω−1

A ⊗ D′Be(B).

Then there is a sequence of isomorphisms

ω−1
A ⊗ RHomBe(B,B) ∼→ ω−1

A ⊗ (D′BeB
L
⊗
Be
B) ∼→ ω−1

C

L
⊗
Be
B

and there is a natural arrow ω−1
A

id⊗1−→ ω−1
A ⊗RHomBe(B,B). Composing these

maps, we obtain the morphism

ω−1
A → ω−1

A ⊗ (D′BeB
L
⊗
Be
B)→ ω−1

C

L
⊗
Be
B → (K ⊗ D′CK)

L
⊗
Be
B.

For the map (5.1), we have a morphism in Dperf(A⊗Bop ⊗B ⊗Aop) given
by the map (4.5)

K ⊗ D′CK → C.

Then applying the functor −
L
⊗
Be
ωB, we obtain

(K ⊗ D′CK)
L
⊗
Be
ωB → C

L
⊗
Be
ωB ' (A⊗Bop)

L
⊗
Be
ωB.

Composing with the natural "integration" morphism of Proposition 3.37, we
get

(K ⊗ D′CK)
L
⊗
Be
ωB → A

which proves the lemma.

We shall show that an object in Dperf(A⊗Bop) induces a morphism between
the Hochschild homology of A and that of B.

Let K ∈ Dperf(A⊗Bop). We set C = A⊗Bop and S = K⊗(ωB
L
⊗
B
D′C(K)) ∈

D(Ae ⊗ (Be)op).
We have

S
L
⊗
Be
ω−1
B ' K

L
⊗
B
ω−1
B

L
⊗
B
ωB

L
⊗
B
DC(K) S

L
⊗
Be
B ' K

L
⊗
B
ωB

L
⊗
B
D′C(K).

' K
L
⊗
B
D′C(K)
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The map
(5.2) ΦK : HH(B)→ HH(A).
is defined as follow.

RHomBe(ω−1
B , B)→ RHomC(S

L
⊗
B
ω−1
B , S

L
⊗
B
B)

→ RHomAe(ω−1
A , A).

The last arrow is associated with the morphisms in Lemma 5.1. This defines
the map (5.2).

5.2. A pairing on Hochschild homology. — In this subsection, we build
a pairing on the Hochschild homology of a dg algebra. It acts as the Hochschild
class of the diagonal, (see [12], [3], [5], [25]). We also relate ΦK to this pairing.

A natural construction to obtain a pairing on the Hochshild homology of a
dg algebra A is the following one.

Consider A as a perfect k− eA bimodule. The morphism (5.2) with K = A
provides a map

ΦA : HH(eA)→ HH(k).
We compose ΦA with KAop,A and get
(5.3) HH(Aop)⊗HH(A)→ k.

Taking the 0th degree homology, we obtain

(5.4) 〈·, ·〉 : (
⊕
n∈Z

HH−n(Aop)⊗HHn(A))→ k.

In other words 〈·, ·〉 = H0(ΦA) ◦H0(KAop,A).
However, it is not clear how to express ΦK in term of the Hochschild class

of K using the above construction of the pairing. Thus, we propose another
construction of the pairing and shows it coincides with the previous one.

Proposition 5.2. — Let A,B,C be three proper homologically smooth dg al-
gebras and K an object of Dperf(A⊗Bop).
There is a natural map

HH(A⊗Bop)⊗HH(B ⊗ Cop)→ HH(A⊗ Cop)
inducing, for every i ∈ Z, an operation

∪B :
⊕
n∈Z

(HH−n(A⊗Bop)⊗HHn+i(B ⊗ Cop))→ HHi(A⊗ Cop)

such that for every λ ∈ HHi(B ⊗ Cop), Hi(ΦK ⊗ id)(λ) = hhA⊗Bop(K) ∪B λ.

Before proving Proposition 5.2, let us do the following remark.
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Remark 5.3. — Let M ∈ Dperf(A). There is an isomorphism in Dperf(k)

ωA
L
⊗
A
M 'M

L
⊗
Aop

ωAop .

The next proof explains the construction of ∪B :
⊕
n∈Z(HH−n(A⊗ Bop)⊗

HHn+i(B ⊗ Cop)) → HHi(A ⊗ Cop). We also prove the equality Hi(ΦK ⊗
id)(λ) = hhA⊗Bop(K) ∪B λ.

Proof of Proposition 5.2. — (i) We identify (A⊗Bop)op and Aop ⊗B.
We have
HH(A⊗Bop) 'RHomAe⊗eB(ω−1

A⊗Bop , A⊗Bop)

'RHomAe⊗eB(ω−1
A ⊗ ω

−1
Bop

L
⊗
Bop

ωBop , A⊗Bop L
⊗
Bop

ωBop)

'RHomAe⊗eB(ω−1
A ⊗B

op, A⊗ ωBop).

Let SAB = ω−1
A ⊗Bop and TAB = A⊗ ωBop . Similarly, we define SBC

and TBC . Then, we get

HH(A⊗Bop)⊗HH(B ⊗ Cop)
' RHomAe⊗eB(SAB, TAB)⊗ RHomBe⊗eC(SBC , TBC)

→ RHomAe⊗eC(SAB
L
⊗
Be
SBC , TAB

L
⊗
Be
TBC).

Using the morphism k → RHomeB(Bop, Bop), we get

k → Bop L
⊗
Be
ω−1
B .

Thus, we get

ω−1
A ⊗ C

op → (ω−1
A ⊗B

op)
L
⊗
Be

(ω−1
B ⊗ C

op).

We know by Proposition 3.37 that there is a morphism

ωBop
L
⊗
Be
B → k.

we deduce a morphism

(A⊗ ωBop)
L
⊗
Be

(B ⊗ ωCop)→ A⊗ ωCop .

Therefore we get

HH(A⊗Bop)⊗HH(B ⊗ Cop)→ HH(A⊗ Cop).
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Finally, taking the cohomology we obtain,⊕
n∈Z

(HH−n(A⊗Bop)⊗HHn+i(B ⊗ Cop))→ HHi(A⊗ Cop).

(ii) We follow the proof of [12]. We only need to prove the case where C = k.
The general case being a consequences of Lemma 5.4 (i) below. We set
P = A⊗Bop. Let α = hhA⊗Bop(K). We assume that λ ∈ HH0(B). The
proof being similar if λ ∈ HHi(B). By Proposition 4.10, α can be viewed
as a morphism of the form

ω−1
A⊗Bop → K ⊗ D′P (K)→ A⊗Bop.

We consider λ as a morphism ω−1
B → B. Then, following the construc-

tion of ΦK , we observe that ΦK(λ) is obtained as the composition

ω−1
A

// K
L
⊗
B
D′PK

λ // K
L
⊗
B
ωB

L
⊗
B
D′PK // A

We have the following commutative diagram in Dperf(k).

ω−1
A

��

(ω−1
A ⊗Bop)

L
⊗
Be
ω−1
B

λ //

o
��

ωA ⊗Bop L
⊗
Be
B

o
��

((ω−1
A ⊗ ω

−1
Bop)

L
⊗
Bop

ωBop)
L
⊗
Be
ω−1
B

λ //

o
��

((ω−1
A ⊗ ω

−1
Bop)

L
⊗
Bop

ωBop)
L
⊗
Be
B

�� **

(ω−1
A⊗B

L
⊗
Bop

ωBop)
L
⊗
Be
ω−1
B

λ //

��

(ω−1
A⊗Bop

L
⊗
Bop

ωBop)
L
⊗
Be
B

��

((K ⊗ D′PK)
L
⊗
Bop

ωBop)
L
⊗
Be
B

∼
tt ��

(K ⊗ ωB
L
⊗
B
D′PK)

L
⊗
Be
ω−1
B

λ //

o
��

(K ⊗ ωB
L
⊗
B
D′PK)

L
⊗
Be
B

o
��

(A⊗Bop L
⊗
Bop

ωBop)
L
⊗
Be
B

o
��

K
L
⊗
B
ω−1
B

L
⊗
B
ωB

L
⊗
B
D′PK

λ // K
L
⊗
B
B

L
⊗
B
ωB

L
⊗
B
D′PK

��

A⊗ ωBop
L
⊗
Be
B

��
K

L
⊗
B
ωB

L
⊗
B
D′PK // A.

This diagram is obtained by computing H0(ΦK)(λ) and α∪λ. The left
column and the row on the bottom induces H0(ΦK)(λ) whereas the row
on the top and the right column induces α∪λ. This diagram commutes,
consequently H0(ΦK)(λ) = hhA⊗Bop(K) ∪ λ.
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We now give some properties of this operation.

Lemma 5.4. — Let A, B, C and S be proper homologically smooth dg alge-
bras, λABop ∈ HHi(A⊗Bop). Then

(i) ∪B ◦ (∪A ⊗ id) = ∪A ◦ (id⊗∪B) = ∪A⊗Bop.

(ii) hhA⊗Aop(A) ∪A λABop = λABop and λABop ∪B hhB⊗Bop(B) = λABop.

Proof. — (i) is obtained by a direct computation using the definition of ∪

(ii) results from Proposition 5.2 (ii) by noticing that ΦA and ΦB are equal
to the identity.

From this natural operation we are able to deduce a pairing on Hochschild
homology. Indeed using Proposition 5.2 we obtain a pairing

(5.5) ∪ :
⊕
n∈Z

(HH−n(Aop)⊗HHn(A))→ HH0(k) ' k.

To relate the two preceding constructions of the pairing, we introduce a third
way to construct it. Proposition 5.2 gives us a map

∪eA :
⊕
n∈Z

(HH−n(Ae)⊗HHn(eA))→ HH0(k) ' k.

Then there is a morphism

HH−n(Aop)⊗HHn(A)→ k

λ⊗ µ 7→ hhAe(A) ∪eA (λ⊗ µ).

Using Proposition 5.2, we get that

Hi(ΦA)(λ⊗ µ) = hhAe(A) ∪eA (λ⊗ µ).

By Lemma 5.4, we have

hhAe(A) ∪eA (λ⊗ µ) = (λ ∪A hhA⊗Aop(A)) ∪A µ
= λ ∪ µ.

This proves that these three ways of defining a pairing lead to the same pair-
ing. It also shows that the pairing is equivalent to the action of the Hochschild
class of the diagonal.
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5.3. Riemann-Roch formula for dg algebras. — In this section we prove
the Riemann-Roch formula announced in the introduction.

Proposition 5.5. — Let M ∈ Dperf(eA) and let f ∈ HomA(M,M). Then

hhk(A
L
⊗
eA
M, idA

L
⊗
eA
f) = hhAe(A) ∪ hheA(M,f)

Proof. — Let λ = hheA(M,f) ∈ HH0(eA) ' Hom(eA)e(ω−1
eA ,

eA). As previ-
ously, we set B = eA. We denote by f̃ the image of f in HomBe(ω−1

B ,M ⊗

D′BM) by the isomorphism (4.2) and by
˜

idA
L
⊗
eA
f the image of idA

L
⊗
eA
f by the

isomorphism (4.2) applied with A = k and M = A
L
⊗
B
M . We obtain the

commutative diagram below.

ω−1
k

//

˜
idA

L
⊗
eA
f

++

A
L
⊗
B
ω−1
B

L
⊗
B
ωB

L
⊗
B
D′BopA

λ //

f̃
��

A
L
⊗
B
B

L
⊗
B
ωB

L
⊗
B
D′BopA // k

A
L
⊗
B

(M ⊗ D′BM)
L
⊗
B
ωB

L
⊗
B
D′BopA

o
��

ε
55

(A
L
⊗
B
M)⊗ D′k(A

L
⊗
B
M)

CC

The map ω−1
k → A

L
⊗
B
ω−1
B

L
⊗
B
ωB

L
⊗
B
D′BopA is obtained by applying Lemma

5.1 with A = k, B = eA, K = A. Then,

ω−1
k → A

L
⊗
B
D′BopA ' A

L
⊗
B
ω−1
B

L
⊗
B
ωB

L
⊗
B
D′BopA.

The morphism A
L
⊗
B
B

L
⊗
B
ωB

L
⊗
B
D′BopA→ k is obtained as the composition of

A
L
⊗
B
B

L
⊗
B
ωB

L
⊗
B
D′BopA ' A

L
⊗
B
ωB

L
⊗
B
D′BopA

with

(5.6) A
L
⊗
B
ωB

L
⊗
B
D′BopA→ k.

The morphism (5.6) is the map (5.1) with A = k, B = eA, K = A.
The vertical isomorphism is obtained by applying Theorem 3.27 with A =

C = k, B = Bop, M = M and N = A.
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By Lemma 4.10, the composition of the arrows on the bottom is
hhk(A

L
⊗
eA
M, idA

L
⊗
eA
f) and the composition of the arrow on the top is

H0(ΦA(hheA(M,f))). It results from the commutativity of the diagram
that

hhk(A
L
⊗
eA
M, idA

L
⊗
eA
f) = H0(ΦA)(hheA(M,f)).

Then using Proposition 5.2 we get

hhk(A
L
⊗
eA
M, idA

L
⊗
eA
f) = hhAe(A) ∪ hheA(M,f).

We state and prove our main result which can be viewed as a noncommuta-
tive generalization of A. Căldăraru’s version of the topological Cardy condition
[3].

Theorem 5.6. — Let M ∈ Dperf(A), f ∈ HomA(M,M) and N ∈
Dperf(Aop), g ∈ HomAop(N,N). Then

hhk(N
L
⊗
A
M, g

L
⊗
A
f) = hhAop(N, g) ∪ hhA(M,f).

where ∪ is the pairing defined by formula (5.5).

Proof. — Let u be the canonical isomorphism from A
L
⊗
eA

(N ⊗M) to N
L
⊗
A
M .

By definition of the pairing we have

〈hhAop(N, g),hhA(M,f)〉 = H0(ΦA) ◦H0(KAop,A)(hhAop(N, g)⊗ hhA(M,f))
= hhAe(A) ∪ hheA(N ⊗M, g ⊗ f)

= hhk(A
L
⊗
eA

(N ⊗M), idA
L
⊗
eA

(g ⊗ f))

= hhk(A
L
⊗
eA

(N ⊗M), u−1 ◦ (g
L
⊗
A
f) ◦ u)

= hhk(N
L
⊗
A
M, g

L
⊗
A
f).

The last equality is a consequence of Proposition 4.12.

Remark 5.7. — By adapting the proof of Proposition 5.5, we are also able
to obtain the following result that should be compared to [12, Theorem 4.3.4]

Theorem 5.8. — Let A, B, C be proper homologically smooth dg algebras.
Let K1 ∈ Dperf(A⊗Bop), K2 ∈ Dperf(B ⊗Cop), f1 ∈ HomA⊗Bop(K1,K1) and
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f2 ∈ HomB⊗Cop(K2,K2). Then

hhA⊗Cop(K1
L
⊗
B
K2, f1

L
⊗
B
f2) = hhA⊗Bop(K1, f1) ∪B hhB⊗Cop(K2, f2).
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