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Abstract. We describe natural maps between (parts of) QF , the space of quasifuchsian hyperbolic

metrics on a product 3-manifold S × R, and GH−1, the space of maximal globally hyperbolic anti-

de Sitter metrics on the same manifold, defined in terms of special surfaces (e.g. minimal/maximal
surfaces, CMC surfaces, pleated surfaces) and prove that these “Wick rotations” are at least C1 smooth

and symplectic with respect to the canonical symplectic structures on both QF and GH−1. Similar

results involving the spaces of globally hyperbolic de Sitter and Minkowski metrics are also described.
These 3-dimensional results are shown to be equivalent to purely 2-dimensional ones. Namely, con-

sider the double harmonic map H : T ∗T → T × T , sending a conformal structure c and a holomorphic
quadratic differential q on S to the pair of hyperbolic metrics (mL,mR) such that the harmonic maps

isotopic to the identity from (S, c) to (S,mL) and to (S,mR) have, respectively, Hopf differentials equal

to iq and −iq, and the double earthquake map E : T ×ML → T × T , sending a hyperbolic metric m

and a measured lamination l on S to the pair (EL(m, l), ER(m, l)), where EL and ER denote the left

and right earthquakes. We describe how such 2-dimensional double maps are related to 3-dimensional
Wick rotations and prove that they are also C1 smooth and symplectic.
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1. Introduction and results

Notations. We consider a closed, oriented surface S of genus g ≥ 2 and the 3-dimensional product
manifold M = S × R. The boundary of M is the disjoint union of two surfaces homeomorphic to S,
which we denote by ∂+M and ∂−M .

We denote by T the Teichmüller space of S, which is considered either as the space of conformal
structures, the space of complex structures compatible with the orientation, or the space of hyperbolic
metrics on S, all considered up to isotopy, and by T the Teichmüller space of S with the opposite
orientation. Recall that T is naturally endowed with a symplectic form ωWP , called the Weil-Petersson
symplectic form, and T has the corresponding symplectic form ωWP (which differs from ωWP by a sign).

We also denote by ML the space of measured laminations on S and by Q the bundle of holomorphic
quadratic differentials on S. The space of complex projective structures on S, considered up to isotopy,
will be denoted by CP (see §2.2). This space is enowed with a complex symplectic form ωG, called the
Goldman symplectic form. We denote by ωiG the imaginary part of ωG, which defines a real symplectic
structure.

1.1. Wick rotations. The heuristic idea of Wick rotation is old and quite natural. The underlying
space-time of special relativity is the Minkowski space, that is, R4 with the Lorentzian metric −dt2 +
dx2 +dy2 +dz2. Mathematicians (and physicists at the time) were used to the four-dimensional Euclidean
space, R4 with the bilinear form dτ2 + dx2 + dy2 + dz2. A simple way to pass from one to the other is to
“complexify time”, that is, write t = iτ , so that the Minkowski metric is written in terms of the variables
(τ, x, y, z) exactly as the Euclidean metric.

The “Wick rotations” that we consider here, following the spirit of [6], are slightly more elaborate
versions of the same idea. We consider a constant curvature metric g on a 3-dimensional manifold M
(homeomorphic to S × R) along with a surface Σ ⊂ M . (The metric g can be hyperbolic or Lorentzian
of curvature −1, 0 or 1, and the surface Σ is always “special”, it can be a minimal or maximal surface, a
CMC surface, or a pleated surface.) We then note that under various hypothesis there is a unique metric
g′ on M which is also of constant curvature, but of a different type than g, containing a surface Σ′ which
is either isometric or conformal to Σ, and “curved” in the same way, in the sense that they have the same
traceless second fundamental form or measured bending lamination, depending on the case considered.

We are thus interested in the relations between moduli spaces of geometric structures on M = S ×R,
in particular
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• the space QF of quasifuchsian hyperbolic metrics (see §2.3), or more generally the space HE of
hyperbolic ends (see §2.4),

• and the space GH−1 of maximal globally hyperbolic anti-de Sitter metrics (see §2.5),

but also the spaces GH1 and GH0 of maximal globally hyperbolic de Sitter and Minkowski metrics (see
§2.8). We give the main definitions first for maps between quasifuchsian metrics (or more generally
hyperbolic ends) and globally hyperbolic AdS metrics.

1.2. Convex pleated surfaces. Given a quasifuchsian manifold (M,h), or more generaly a hyperbolic
end (E, h), let S+ denote the upper boundary of the convex core of M (see §2.6), respectively the concave

boundary component of E (see §2.4), and denote by (m+, l+) = ∂Hyp+ (h) the induced metric and measured
pleating lamination on S+. The metric m+ is hyperbolic and can be lifted to a complete hyperbolic metric

m̃+ on the universal cover S̃+, and l+ to a measured geodesic lamination l̃+ for m̃+.

Then, the data (m̃+, l̃+) defines a unique pleated surface Σ̃ in AdS3 (see [6]) which by construction
is invariant and cocompact under an action ρ : π1S → isom(AdS3). This action extends in a properly

discontinuous manner to a small tubular neighborhood of Σ̃ in AdS3 and, taking the quotient of this
tubular neighborhood by ρ(π1S), defines an AdS 3-manifold (M ′, g′) which is globally hyperbolic. There-
fore (M ′, g′) embeds isometrically in a unique GHM AdS manifold (M, g) (see [32]). Also by construction,
Σ/ρ(π1S) embeds isometrically as a pleated surface in M , which can only be the upper boundary of the
convex core of M , so that (m+, l+) is also the data defined on the upper boundary of C(M, g)

(m+, l+) = ∂AdS+ (g) .

This therefore defines a “Wick rotation” map WAdS
∂ : QF → GH−1 associating to a quasifuchsian

manifold the GHM AdS manifold with matching convex core boundary data

WAdS
∂ = (∂AdS+ )−1 ◦ ∂Hyp+ .

We refer the reader to [6] for a similar construction.
The following proposition is perhaps not as obvious as it might appear at first sight. It is close in

spirit to [27, Lemma 1.1].

Proposition 1.1. The map WAdS
∂ : QF → GH−1 is injective and C1-smooth.

Note that the smooth structures on QF and GH−1 considered here are induced by the holonomy maps

holHyp : QF → X and holAdS : GH−1 → T × T . Here X denotes the PSL2C-character variety of S, T
the Teichmüller space of S and T the Teichmüller space of S with the opposite orientation. Also note
that WAdS

∂ becomes one-to-one when extended to the more general setting of hyperbolic ends.
This proposition implies that we can consider the pull-back by WAdS

∂ of the symplectic structure on
the target space. We then obtain the following theorem, whose proof can be found in Section 5.

Theorem 1.2. The map WAdS
∂ : (QF , ωiG)→ (GH−1,

1
2 (ωWP ⊕ ωWP )) is symplectic.

The precise definition of the symplectic structures ωiG and ωWP can be found in Section 2.

1.3. Minimal or maximal surfaces. Given a quasifuchsian manifold (M,h), it is well known (see e.g.
[46]) that M contains a closed minimal surface homeomorphic to S. However this minimal surface is
in general not unique. There is a specific class of quasifuchsian manifolds containing a unique closed,
embedded minimal surface: they are those, called almost-Fuchsian, which contain a closed, embedded
minimal surface with principal curvatures everywhere in (−1, 1), see [46]. We call AF ⊂ QF the space
of almost-Fuchsian metrics on M , considered up to isotopy.

Thus, restricting our attention to h ∈ AF , let Σ ⊂M be its unique closed, embedded minimal surface
and consider its induced metric I and second fundamental form II. It is well known (see e.g. [26]) that
II is then the real part of a holomorphic quadratic differential q for the complex structure defined on S
by the conformal class of I. So ([I], II) define a point (c, q) ∈ Q, and we obtain a map

min : AF → Q
sending an almost-Fuchian metric to the data on its minimal surface.
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Things are somewhat simpler for GHM AdS manifolds. It is well known (see e.g. [26]) that any GHM
AdS manifold contains a unique closed, space-like maximal surface. Moreover, given a complex structure
c and a holomorphic quadratic differential q for c on S, there is a unique GHM AdS metric g such that
the induced metric and second fundamental form on the unique maximal surface in M is I, II with I
compatible with c and II = Re(q). This provides an analogous map

max : GH−1 → Q
sending an GHM AdS metric to the data on its maximal surface and which, by the arguments above, is
one-to-one.

This defines another Wick rotation map Wmin : AF → GH−1 associating to an almost-Fuchian
manifold the GHM AdS manifold with matching minimal/maximal surface data

Wmin : max−1 ◦min.
This map is clearly smooth and injective and we have the following result.

Theorem 1.3. The map Wmin : (AF , ωiG)→ (GH−1,
1
2 (ωWP ⊕ ωWP )) is symplectic.

1.3.1. Constant mean curvature surfaces. The previous picture can be extended by considering constant
mean curvature (CMC) surfaces, rather than minimal or maximal surfaces. Recall that the mean cur-
vature of a surface in a Riemannian or Lorentzian 3-manifold is given by half the trace of its second
fundamental form. We will use a basic and well-known fact (see [22]): the traceless part of the second
fundamental form of an oriented constant mean curvature surface in any constant curvature 3-dimensional
(Riemannian or Lorentzian) manifold is the real part of a holomorphic quadratic differential, for the com-
plex structure associated to its induced metric.

GHM AdS manifold are particularly well-behaved with respect to CMC surfaces. On one hand, any
GHM AdS manifold contains a canonical foliation by CMC surfaces.

Theorem 1.4 (Barbot, Béguin, Zeghib [5]). Any GHM AdS manifold M admits a unique foliation by
closed space-like CMC surfaces, with mean curvature varying between −∞ and∞. That is, for all H ∈ R,
M contains a unique closed space-like CMC-H surface.

On the other hand, one can also associate through CMC-H surfaces a GHM AdS manifold to any
point in Q, thanks to the following proposition (see [26, Lemma 3.10]).

Proposition 1.5. Let H ∈ (−∞,∞). Given c a complex structure and q a holomorphic quadratic
differential for c, there is a unique GHM AdS metric g on M such that the induced metric and traceless
part of the second fundamental form on the unique CMC-H surface in (M, g) is I, II0 with I compatible
with c and II0 = Re(q).

In the quasifuchsian context, it was conjectured by Thurston that the analog of Theorem 1.4 also
holds, but only for almost-Fuchsian manifolds. Lacking a proof of this fact, we introduce the following
notation.

Definition 1.6. We denote by AF ′ the space of quasifuchsian metrics on M which admit a unique
foliation by CMC surfaces with H ∈ (−1, 1).

Note that the Thurston conjecture mentioned above can be reformulated as the fact that AF ⊂ AF ′,
as any closed embedded CMC surface is a leaf of the foliation by the maximum principle.

We can now construct a generalization of the map Wmin associated to any pair of constants H ∈ (−1, 1)
and H ′ ∈ (−∞,∞). For each h ∈ AF ′, let ΣH be the unique closed CMC-H surface in (M,h), let c be
the conformal class of its induced metric, and let q be the traceless part of its second fundamental form.
There is then a unique GHM AdS metric g on M such that the (unique) CMC-H ′ surface in (M, g) has
induced metric conformal to c and the traceless part of its second fundamental form is equal to q. We
denote by WAdS

H,H′ : AF ′ → GH−1 the map sending h to g.

Theorem 1.7. For all H ∈ (−1, 1) and H ′ ∈ (−∞,∞), the map WAdS
H,H′ : (AF ′, ωiG)→ (GH−1,

1
2 (ωWP ⊕

ωWP )) is symplectic.
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1.4. Double maps. We now translate the above stated results purely in terms of surfaces, and of maps
between moduli spaces of surfaces, with no reference to 3-dimensional manifolds. We first consider
harmonic maps and then earthquakes.

1.4.1. Harmonic maps. Recall that a map φ : (M, g) → (N,h) between two Riemannian manifolds is
harmonic if it is a critical point of the Dirichlet energy, defined as

E(φ) =

∫
M

‖dφ‖2dvol .

If M is a surface, the Dirichlet energy is invariant under conformal deformations of the metric on M , so
the notion of harmonic maps from M to N only depends on the choice of a conformal class on M (no
Riemannian metric is needed).

Let’s now consider the case of harmonic diffeomorphisms of a surface S. Let c ∈ T be a complex
structure on S and m ∈ T a hyperbolic metric. Given a diffeomorphism φ : (S, c) → (S,m), its Hopf
differential Hopf(φ) is defined as the (2, 0) part of φ∗m. A key relation between holomorphic quadratic
differentials and harmonic diffeomorphisms is that Hopf(φ) is holomorphic if and only if φ is harmonic.
In addition, we will use the following well-know statements.

Theorem 1.8 (Eells and Sampson [15], Hartman [20], Schoen and Yau[40]). If S is a closed surface
equipped with a conformal class c and m is any hyperbolic metric on S, then there is a unique harmonic
map isotopic to the identity from (S, c) to (S,m).

Theorem 1.9 (Sampson [38], Wolf [48]). Let c ∈ T be a complex structure on a surface S, and let q be a
holomorphic quadratic differential on (S, c). There is a unique hyperbolic metric m on S, well-defined up
to isotopy, such that the Hopf differential of the harmonic map φ : (S, c)→ (S,m) isotopic to the identity
is equal to q.

Together these define a map H : Q → T , from the bundle of holomorphic quadratic differentials to
Teichmüller space, associating to (c, q) the hyperbolic metric m.

Definition 1.10. We denote by H : Q → T × T the map defined by

H(c, q) = (H(c,−iq), H(c, iq)) .

We will call H the double harmonic map.

It is a well known fact that the bundle Q of holomorphic quadratic differentials can be identified
with the holomorphic cotangent bundle T ∗(1,0)T over Teichmüller space. We denote by ω∗ the canonical
complex cotangent bundle symplectic structure on T ∗(1,0)T and by ωr∗ its real part, which corresponds
to (half) the real canonical cotangent bundle symplectic structure on T ∗T . We then obtain the following
result.

Theorem 1.11. H : (Q,−ωr∗)→ (T × T , 1
2 (ωWP ⊕ ωWP )) is symplectic.

1.4.2. Earthquakes.

Definition 1.12. A measured geodesic lamination is a closed subset l ⊂ S which is foliated by complete
simple geodesics, defined with respect to a given hyperbolic metric m ∈ T , together with a positive
measure µ on arcs transverse to the leaves of l which is invariant under deformations among transverse
arcs with fixed endpoints (see e.g. [12]). We denote the space of measured geodesic laminations on S,
considered up to isotopy, by ML.

Similarly to holomorphic quadratic differentials, the definition of measured geodesic laminations de-
pends on the choice of a point in T and thus determines a bundle over Teichmüller space. However,
unlike Q, there is a canonical identification between the fibres over any pair m,m′ ∈ T — this extends
the fact that any simple closed geodesic for m′ is isotopic to a unique simple closed geodesic for m (see
[12]). This justifies the notation of ML without any reference to a hyperbolic structure.

Given a hyperbolic metric m ∈ T and a measured geodesic lamination l ∈ML we may define the left
earthquake of m along l. This is a new hyperbolic metric on S denoted by EL(m, l). For l supported on
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a simple close geodesic γ with weight a, EL(m, l) is defined by cutting S along γ, rotating the left-hand
side of γ by length a and then gluing it back. The operation for general laminations is then defined
as certain (well-defined) limiting procedure [44]. Importantly we have the following result, which is a
geometric analogue to the analytic results above.

Theorem 1.13 (Thurston [44]). For any pair m,m′ ∈ T of hyperbolic metrics on S there exists a unique
measured lamination l ∈ML such that m and m′ are related by a left earthquake m′ = EL(m, l).

Theorem 1.14 (Thurston [44], Kerckhoff [25]). The map EL : T ×ML → T is a homeomorphism for
every fixed m ∈ T and a real analytic diffeomorphism for every fixed l ∈ML.

The notion of right earthquake is obtained in the same way, by rotating in the other direction, so that
the right earthquake along l, ER(l), is the inverse of EL(l). So we have two maps EL, ER : T ×ML → T .

Definition 1.15. We denote by E : T ×ML → T × T the map defined by

E(m, l) = (EL(m, l), ER(m, l)) .

We will call E the double earthquake map.

Note that E is a bijection. Indeed, from Thurston’s Earthquake Theorem, given any pair m,m′ ∈ T ,
there is a unique left earthquake path going from m′ to m. In other terms, there is a unique measured
lamination l ∈ ML such that EL(l)(m′) = h. Now let m′′ = EL(l/2)(m′). Then clearly (m,m′) =
E(m′′, l/2). Conversely, given any (m′′, l) ∈ T ×ML such that (m,m′) = E(m′′, l), m′′ must be the
midpoint of the left earthquake path from m′ to m, and this path is associated to l, so the map E
is one-to-one. However there is no reason to believe that E is differentiable — actually it is not even
clear what it would mean, since there is no canonical differentiable structure on ML. To deal with this
differentiability issue we introduce a map δ : T ×ML → T ∗T which sends a hyperbolic metric m ∈ T on
S and a measured lamination l ∈ML to the differential at m of the length function of l, L(l) : T → R,

δ(m, l) = dmL(l) .

This map is a global homeomorphism between T ×ML and T ∗T , see [27, Lemma 2.3].
The following can be seen as a translation of Proposition 1.1, see Section 4 for a proof.

Proposition 1.16. The map EL ◦ δ−1 : T ∗T → T is C1-smooth.

Corollary 1.17. E ◦ δ−1 : T ∗T → T × T is a C1 diffeomorphism.

This corollary then allows to consider the following statement, whose proof can be found in Section 5

Theorem 1.18. The map E ◦ δ−1 : (T ∗T , 2ωr∗)→ (T × T , 1
2 (ωWP ⊕ ωWP )) is symplectic.

1.5. Minkowski and de Sitter manifolds. For GHM Minkowski and de Sitter manifolds, it is also
possible to define Wick rotation mapsWMink

∂ : QF → GH0, WMink
H,H′ : AF ′ → GH0 andW dS

∂ : QF → GH1

and W dS
H,H′ : AF ′ → GH1. The main difference is that these manifolds now do not contain convex pleated

surfaces nor maximal surfaces. Their relation with hyperbolic manifolds in terms of measured laminations
is still possible via: (1) the inital singularity of Minkowski manifolds and (2) the projective duality between
hyperbolic and de Sitter manifolds. The relation in terms of CMC foliations is also available in both cases,
only with H ′ varying between (−∞, 0) and (−∞,−2), respectively.

We shall prove, in the de Sitter case, that the CMC Wick rotations W dS
H,H′ is again symplectic, where

the symplectic structure on GH1 is again the pull-back of the imaginary part of the Goldman symplectic
structure on X .

Theorem 1.19. Let H ∈ (−2, 2) and let H ′ ∈ (−∞,−2). The map W dS
H,H′ : (AF ′, ωiG)→ (GH1, ω

i
G) is

symplectic.

The proof can be found in Section 7.1.
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1.6. Spaces with particles. The results above might have extensions to constant curvature 3-manifolds
of various types containing “particles”, that is, cone singularities of angle less than π along infinite
geodesics connecting the two connected components of the boundary at infinity (in a “quasifuchsian”
hyperbolic manifold) or along a maximal time-like geodesic (in a GHM AdS, dS or Minkowski spacetime).

A number of the tools needed to state the results above are known to extend to this setting. For
quasifuchsian manifolds, an extension of the Bers double uniformization theorem is known in this setting
[34, 29]. The Mess analog for GHM AdS manifolds also extends to this setting with “particles” [13], and
the existence and uniqueness of a maximal surface (orthogonal to the particles) also holds [45]. However
it is not known whether GHM AdS, dS or Minkowski space-times with particles contain a unique foliation
by CMC surfaces orthogonal to the particles.

1.7. Some physical motivations. From a physical point of view there are two approaches to understand
the relation between Teichmüller theory and 3d gravity which motivates the existence of the symplectic
maps considered in the present work. In each approach, one rewrites the Einstein-Hilbert functional in
terms of new variables as to simplify the description of the moduli space of critical points.

Recall that the Einstein-Hilbert functional on the space of 3-dimensional Lorentzian metrics on M is
defined by

S[g] = −
∫
M

(R− 2Λ)dv

where dv and R are the volume form and the scalar curvature of g, Λ = 0,−1, 1 the cosmological constant.
The critical points are given by solutions of Einstein’s equation

Ric− 1

2
(R− 2Λ)g = 0.

The usual approach to describe the moduli space of critical points of the Einstein-Hilbert action
follows from the interpretation of Einstein’s equation as a constrained dynamical system for 2-dimensional
Riemannian metrics on S, see [4, 33]. One starts with the choice of a global time function on M and
decomposes of the 3-dimensional metric g in terms of the induced metric I and the extrincic curvature
II of the leaves of the constant time foliation, which are constrained by the Gauss-Codazzi equations. In
terms of isothermal coordinates z on a leaf Σ, we my write

I = e2ϕ|dz|2, II =
1

2
(qdz2 + q̄dz̄2) + e2ϕH|dz|2,

and the Gauss-Codazzi equation becomes

4∂z∂z̄ϕ = e2ϕ(H2 − Λ)− e−2ϕ|q|2, ∂z̄q = e2ϕ∂z̄H.

Here e2ϕ is the conformal factor of I, H is a the mean curvature of Σ and q is a quadratic differential.
For maximal globally hyperbolic spacetimes, the equations of motion are then uniquely solved given

intial data on any Cauchy surface Σ. Also in this case it is always possible to choose a foliation containing a
constant mean curvature (H = const.) initial surface. The constraints are then easily solved: the Codazzi
constraint equation becomes a holomorphicity equation for the quadratic differential q determined by the
traceless part of II and the Gauss constraint equation becomes an elliptic differential equation for e2ϕ.
The existence and uniqueness of solutions of the Gauss equation are guaranteed for H2 − Λ ≥ 1 (see
[33]) thus showing that the inital data parameterizing the moduli space of globally hyperbolic maximal
spacetimes is given by points in the cotangent bundle over Teichmüller space of the initial Cauchy surface:

GHΛ = T ∗T .

The symplectic structure on GHΛ is also shown to agree, up to a multiplicative constant, with the
real canonical symplectic structure ωr∗ on T ∗T , via symplectic reduction of the cotangent bundle over
Riemannian metrics on S, with its canonical symplectic structure, to the constraint submanifold defined
by the Gauss-Codazzi equation [33].

Another approach to describe the moduli space GHΛ stems from the fact that all Einstein 3-manifolds
have constant sectional curvature equal to the cosmological constant Λ. Thus, such manifolds can be
described as quotients of appropriate domains of either Minkowski, anti-de Sitter or de Sitter 3-spacetime,
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in the Lorentzian setting, and Euclidean, hyperbolic or spherical 3-space, in the Riemannian setting. The
study of 3d Einstein manifolds can thus be viewed in the context of locally homogeneous geometric
structures, i.e. flat GΛ-bundles over spacetime. Such an approach was first suggested in the physics
literature in [1, 47] where the Einstein-Hilbert action is shown to be equivalent to a Chern-Simons action
on the space of G-connections over the spacetime manifold. Here GΛ is the isometry group of the relevant
model spacetime, that is, PSL2Rn sl2R for Λ = 0, PSL2R× PSL2R for Λ = −1, and PSL2C for Λ = 1.

This is obtained by first decomposing the spacetime metric g in terms of a coframe field e and spin
connection ω, which are taken to be independent. By appropriately tensoring the components of e and
ω with Lie algebra generators one then constructs the associated gΛ-valued 1-form A on M . Finally,
translating the Einstein-Hibert action for g in terms of A gives exactly the Chern-Simons action

SGΛ
[A] =

∫
M

BΛ(A ∧ dA+
2

3
A ∧A ∧A) ,

where BΛ denotes an Ad-invariant symmetric bilinear form on gΛ. This provides a description of the
moduli space of spacetimes as a subspace of the moduli space of flat GΛ-connections on S. In the maximal
globally hyperbolic case it is possible to describe the gravitational component completely (see [32, 39])

GHΛ =


T ∗T Λ = 0,

T × T Λ = −1,

CP Λ = 1.

The symplectic structure is now given by the Goldman cup product symplectic form with coefficient
pairing given by BΛ. For the isometry groups of the 3d geometric models described above, the corre-
sponding Lie algebras are know to admit a real 2-dimensional space of such bilinear forms. Thus, there
is a 2-dimensional family of real symplectic forms on the corresponding moduli spaces. In [47] Witten
obtained the relevant bilinear forms for gravity, that is, the ones arrising from the Einstein-Hilbert func-
tional. This identify the relevant symplectic forms on the moduli spaces GHΛ: for Λ = 0 the symplectic
form is given by ωr∗, the real canonical cotangent bundle symplectic form on T ∗T , for Λ = −1 it is given
by ωWP ⊕ ωWP , the difference of Weil-Petersson symplectic forms on each copy of T , and for Λ = 1 by
ωiG, the imaginary part of the complex Goldman symplectic form on CP.

1.8. Content of the paper. Section 2 contains background material on various aspects of the geometry
of surfaces and 3-dimensional manifolds, which are necessary elsewhere, including the definitions and
basic properties of quasifuchsian manifolds and of globally hyperbolic spacetimes of various curvatures,
statements on maximal and CMC surfaces, convex cores, as well as measured laminations and transverse
cocycles.

In Section 3 a more complete description of the double harmonic and double earthquake map, as well
as of the Wick rotation map. We describe the precise relation between those “double” maps and the Wick
rotation maps, and show the equivalence between statements on the “double” maps and statements on
the Wick rotation maps. We prove that the double earthquake and double harmonic map are one-to-one.

Section 4 is mostly focused on the regularity of the double earthquake map, and therefore of the
earthquake map itself. Section 5 contains the proof that the double earthquake map is symplectic, and
then that the double harmonic map is symplectic — the connection between the two statements uses a
volume argument that is developed in Section 5.3.

Section 6 is focused on CMC surfaces, while the content of Section 7 is centered on Minkowski and de
Sitter manifolds.

Acknowledgement. We are particularly grateful to an anonymous referee for many helpful comments.

2. Background material

In this section we develop in greater detail a number of definitions and established results which will
be needed in the later parts of this work. In particular, we will here give the definitions of the moduli
spaces and symplectic structures of interest as well as some useful parametrizations of such objects in
terms of measured laminations and holomorphic quadratic differentials.
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2.1. Teichmüller space. Let S be a closed oriented surface of genus g ≥ 2. We shall consider here two
equivalent definitions of the Teichmüller space T of S.

Definition 2.1. A complex structure c on S is an atlas of C-valued coordinate charts, whose transi-
tion functions are biholomorphic. The Teichmüller space T can be defined as the space of all complex
structures on S compatible with the orientation, considered up to isotopy.

A hyperbolic metric on S is a Riemannian metricm of negative constant curvature−1. The Teichmüller
space T can be equivalently defined as the space of all hyperbolic metrics on S, again considered up to
isotopy.

The relation between the two definitions is given through the Riemann-Poincaré-Koebe uniformiza-
tion theorem, which also identifies T with a connected component of the representation variety R =
Hom(π1S,PSL2R)/PSL2R, associating to each point in Teichmüller space its holonomy representation
ρ : π1S → PSL2R. Such holonomy representations of hyperbolic surfaces are called Fuchsian representa-
tions and are characterized by the maximality of their Euler number [18].

2.1.1. The Weil-Petersson symplectic structure. The L2-norm

‖q‖2WP =
1

8

∫
S

‖q‖2mdam

on the bundleQ of holomorphic quadratic differentials induces a hermitian metric on T via the well-known
identification between Q and the holomorphic cotangent bundle T ∗(1,0)T over Teichmüller space. The
imaginary part of this hermitian metric is then a symplectic form ωWP on T , called the Weil-Petersson
symplectic form.

This is equivalent, up to a sign, to the restriction of the Goldman symplectic structure on R, defined
via the cup product of cohomology classes with coefficients paired with (4 times) the Killing form of sl2R,
see [16]. Specifically,

Theorem 2.2 (Goldman [16]).

ωWP = −ωPSL2R
G .

2.2. Complex projective structures. We now consider another type of structure on the surface S
which has many parallels with our previous considerations.

Definition 2.3. A complex projective structure σ on S is an atlas of CP 1-valued coordinate charts,
whose transition functions are complex projective transformations. We denote by CP the space of all
complex projective structures on S, considered up to isotopy.

Note that there is a natural projection p : CP → T associating to a complex projective structure σ on
S its underlying complex structure c. The space CP can thus be considered as the total space of a bundle
over T . There are agin two possible descriptions of CP obtained by analytic or geometric deformations
of a fixed complex projective structure. The first is related to the bundle Q of holomorphic quadratic
differentials via the Schwarzian derivative, while the second is related to the trivial bundle T ×ML via
the operation of grafting along measured laminations.

2.2.1. Grafting. Given a hyperbolic metric m ∈ T and a measured geodesic lamination l ∈ML one may
define a complex projective structure via grafting of m along l as follows. For l supported on a simple
close geodesic γ with weight a, G(m, l) is defined by cutting S along γ and inserting a Euclidean cylinder
γ × [0, a]. This defines a complex projective structure on S by complementing the Fuchsian projective
structure of m by the projective structure on γ × [0, a] defined by its natural embedding as an annulus
in C∗, see e.g. [14]. As for earthquakes, the operation of grafting is defined for general laminations via a
limiting procedure.

Theorem 2.4 (Thurston, see [23]). The map G : T ×ML → CP is a homeomorphism.
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2.2.2. Schwarzian derivative. Given two complex projective structures σ, σ′ ∈ CP with the same under-
lying complex structure c ∈ T , the Schwarzian derivative of the identity map between (S, σ) and (S, σ′)
is a holomorphic quadratic differential S(σ, σ′) ∈ Qc. The composition rule satisfied by the Schwarzian
derivative means that if σ, σ′ and σ′′ are three complex projective structures with underlying complex
structure c, then S(σ, σ′′) = S(σ, σ′)+S(σ′, σ′′). This identifies CP with the affine bundle of holomorphic
quadratic differentials on T (see [14, §3]) and we may thus write σ′ − σ ∈ Qc instead of S(σ, σ′).

Note however that the identification CP ' Q depends on the choice of a global section T → CP, and
there are distinct “natural” possible choices for such a section, which induce distinct structures on CP.
For now, let’s consider the natural Fuchsian section given by the Fuchsian uniformization of Riemann
surfaces. Thus, given a complex structure c on S, the Riemann Uniformization Theorem provides a
unique Fuchsian complex projective structure σc uniformizing c. Using this canonical section we can
define an identification SF : CP → Q, sending a complex projective structure σ ∈ CP with underlying
complex structure c = p(σ) to (c, σ − σc) ∈ Q. (The subscript “F” here reminds us that we make use of
Fuchsian sections.)

2.2.3. The Goldman symplectic structure. For complex projective structures, unlike the case of complex
structures, holonomies are not enough to parametrize the moduli space. The holonomy map hol : CP → X
gives only a local diffeomorphism between the moduli space of complex projective structures CP and the
PSL2C character variety X = Hom(π1S,PSL2C)/PSL2C, which is surjective but not injective, see e.g.
[14].

On the other hand, the holonomy map can be used to pull-back to CP the Goldman symplectic structure
ωPSL2C
G on X , now obtained by taking the cup-product of the cohomology classes with coefficients paired

with (4 times) the Killing form on sl2C, see [17]. Pulling back ωPSL2C
G by hol thus gives a complex

symplectic structure on CP, which we call ωG. We will denote by ωiG the imaginary part of ωG, which is
a real symplectic structure and will play an important role in what follows.

Also, via the identification of the holomorphic cotangent bundle T ∗(1,0)T with the bundle of holomor-
phic quadratic differentials Q, we may use the Schwarzian parametrization SF : CP → Q to pull-back
the canonical complex symplectic structure ω∗ on T ∗(1,0)T to another complex symplectic structure
ωF = S∗Fω∗ on CP. We will be interested here only in the real part of ω∗, corresponding to (half) the
real symplectic structure on T ∗T . We denote by ωrF the real part of ωF , which is just S∗Fωr∗

The following theorem provides the relation between the Goldman symplectic structure and the pull-
back of the cotangent bundle symplectic structure via the Fuchsian slice, see [30, Corollary 5.13].

Theorem 2.5 (Loustau [30]). ωPSL2C
G = p∗ωPSL2R

G + iωF , where p : CP → T is the canonical forgetful
map. In particular,

ωiG = ωrF .

Note that besides the Goldman symplectic structure, there are other complex symplectic structures
on CP. In fact it is known from Hitchin’s work [21] that there is a hyperkähler structure defined at least
on an open subset of CP. We do not elaborate on this here, however understanding this hyperkähler
structure geometrically can be one motivation for investigating the (complex) symplectic structures on
CP in relation to other moduli spaces of geometric structures.

2.3. Quasifuchsian hyperbolic manifolds. The first moduli space of 3-dimensional geometric struc-
tures will consider here is the space of quasifuchsian hyperbolic metrics on M , which can be most simply
defined in terms of convex subsets. Given a hyperbolic metric h on M , we say that a subset K ⊂ M is
convex if any geodesic segment in M with endpoints in K is contained in K.

Definition 2.6. A complete hyperbolic metric h on M is called quasifuchsian if (M,h) contains a non-
empty compact convex subset. We denote by QF the space of quasifuchsian hyperbolic metrics on M ,
considered up to isotopy.

Note that there are other equivalent definitions of quasifuchsian manifolds, e.g. as quotients of the
hyperbolic 3-space by Kleinian groups whose limit set is a Jordan curve, related to quasiconformal
deformations of Fuchsian representations.



SYMPLECTIC WICK ROTATIONS 11

Given a quasifuchsian manifold (M,h), its universal cover M̃ admits a developing map with values in

H3. This then restricts to a developing map of ∂̃+M into ∂∞H3 ' CP 1 and, since hyperbolic isometries
act on ∂∞H3 as projective transformations, the holonomy representation of (M,h) endows ∂+M with a
complex projective structure σ+ ∈ CP. We thus obtain an injective map ∂Hyp∞ : QF → CP, which is
however not surjective.

We will continue to denote by ωG the pull-back to QF of the complex Goldman symplectic structure
on CP, and by ωiG its imaginary part.

2.4. Hyperbolic ends. As mentioned in Section 1 the description of quasifuchsian manifold in terms of
the upper boundary of the convex core admits an extension to a more general context of hyperbolic ends,
which we now describe in more details. Thus, consider a quasifuchsian manifold (M,h) homeomorphic
to S×R, and let E+ be the upper connected component of M \C(M,h). It is a non-complete hyperbolic
manifold, homeomorphic to S × (0,∞), which is complete on the side corresponding to ∞, and bounded
on the side corresponding to 0 by a concave pleated surface. A hyperbolic manifold of this type is
called a (non-degenerate) hyperbolic end. We call HE the space of (non-degenerate) hyperbolic ends
homeomorphic to S × (0,∞).

Given a hyperbolic end (E, h), we call ∂∞E its “boundary at infinity” corresponding to the “complete”

side, and ∂0E its boundary component which is a concave pleated surface. The universal cover Ẽ

of E admits a developing map with values in H3, which restricts to a developing map of ∂̃∞E into
∂∞H3, which can be identified with CP 1. Since hyperbolic isometries act on ∂∞H3 ' CP 1 as projective
transformations, ∂∞E is endowed with a complex projective structure σ ∈ CP. On the other hand, ∂0E
is endowed with a hyperbolic metric pleated along a measured geodesic lamination. Thus, we have a

pair of maps ∂Hyp∞ : HE → CP and ∂Hyp+ : HE → T ×ML, which are in fact homeomorphisms by the
following result by Thurston.

Theorem 2.7 (Thurston, see [14]). Given a pair (m, l) ∈ T ×ML there is a unique non-degenerate
hyperbolic end (E, h) such that ∂0E has induced metric given by m and bending lamination given by l.
Also, each σ ∈ CP is the complex projective structure at ∂∞E of a unique (non-degenerate) hyperbolic
end E. The relation between the complex projective structure σ and the pair (m, l) is given by the grafting
map G : T ×ML → CP which furthermore is a homeomorphism.

2.5. Globally hyperbolic anti-de Sitter manifolds. The second moduli space of interest in this work
is that of globally hyperbolic maximal anti-de Sitter metrics on M .

The 3-dimensional anti-de Sitter space, denoted here by AdS3, can be defined as the quadric

{p ∈ R2,2 | 〈p, p〉 = −1}

with the induced metric from the metric of signature (2, 2) on R4.

Definition 2.8. A Lorentzian metric g on M is called globally hyperbolic maximal (GHM) anti-de
Sitter (AdS) if (M, g) is locally modeled on AdS3, contains a Cauchy surface and is maximal under these
conditions. We call GH−1 the space of GHM AdS metrics on M , considered up to isotopy.

We say that a surface Σ ⊂M is a Cauchy surface if it is a closed space-like surface homeomorphic to
S such that any inextendible time-like curve on M intersects Σ exactly once. The maximality condition
then says that any isometric embedding (M, g)→ (M ′, g′), with (M ′, g′) also satisfying the two conditions
above, is a global isometry.

The space GH−1 also carries a natural symplectic structure. First, note that the identity component
isom0(AdS3) of the isometry group of AdS3 is isomorphic to PSL2R×PSL2R. Thus, since the holonomy
representation ρ of a GHM AdS metric g on M has values in isom0(AdS3), it can be decomposed as
ρ = (ρL, ρR), where ρL, ρR are morphisms from π1S to PSL2R, well-defined up to conjugation. We will
call ρL and ρR the left and right representations of g.

The following result by Mess [32, 3] provides a classification of GHM AdS manifolds in terms of
their holonomy representations and can be considered as an analog of the Bers Double Uniformization
Theorem.



12 CARLOS SCARINCI AND JEAN-MARC SCHLENKER

Theorem 2.9 (Mess). The representations ρL and ρR have maximal Euler number, so that they are by
[18] holonomy representations of hyperbolic structures mL,mR ∈ T . Given (ρL, ρR) ∈ T × T , there is a
unique GHM AdS metric g ∈ GH−1 such that ρL and ρR are the left and right representations of g.

As a consequence, we have a homeomorphism holAdS : GH−1 → T × T , sending g to (ρL, ρR). More-
over, T is equipped with a natural symplectic structure, given by the Weil-Petersson symplectic form
ωWP , so that T × T is also equipped with a symplectic form ωWP ⊕ ωWP . The symplectic structure on
GH−1 is then obtained by pull-back of ωWP ⊕ ωWP by holAdS .

As we have seen in Section 1 it is possible to identify GH−1 with both T × ML and T × T via

homeomorphisms ∂AdS+ : GH−1 → T ×ML and holAdS : GH−1 → T × T . This is analogous to the
case of hyperbolic ends described above. The T ×ML parametrization is obtained by from the upper
boundary of the convex core data while the T × T parametrization can be obtained by considering any
“well-behaved” Cauchy surface, see [26, Lemma 3.16].

Lemma 2.10. Let Σ be a Cauchy surface in M with principal curvatures everywhere in (−1, 1). Then,
up to isotopy,

mL = I((E + JB)·, (E + JB)·), mR = ((E − JB)·, (E − JB)·) ,
where I and B are the induced metric and shape operator of Σ, respectively, and E is the identity map
from TΣ to itself.

The relation between the two parametrizations is also analogous to the grafting parametrization of
complex projective structures, relevant in the case of hyperbolic end. It is given by the double earthquake
of the induced hyperbolic metric on the upper or lower boundary of the convex core along its bending
lamination.

Theorem 2.11 (Mess [32]). Given a pair (m, l) ∈ T ×ML there is a unique GHM AdS manifold (M, g)
such that ∂+C(M, g) has induced metric given by m and bending lamination given by l. Also, each pair
(mL,mR) ∈ T × T are the hyperbolic metrics corresponding to the left and right Fuchsian holonomies of
a unique GHM AdS manifold. The relation between the pair of hyperbolic metrics and (mL,mR) and the
pair (m, l) is given by the double earthquake map E : T ×ML → T × T which is a homeomorphism by
the Thurston Earthquake Theorem 1.13.

Note that one could equivalently state the above theorem in terms of the data (m−, l−) on the lower
boundary of the convex core. The translation between the upper and lower boundary descriptions is
summarized in Figure 1.

Figure 1. Relation between the left/right metrics and the boundary of the convex core.

2.6. Convex cores of quasifuchsian and globally hyperbolic manifolds. Now consider a quasi-
fuchsian metric h on M . According to the definition given above, M contains a non-empty, compact,
convex subset K. It is easily seen that the intersection of two non-empty convex subsets is also convex,
and it follows that M contains a unique smallest non-empty convex subset, called its convex core and
denoted here by C(M,h).

In some cases, C(M,h) is a totally geodesic surface S. This happens exactly when M is “Fuchsian”,
that is, the image of its holonomy representation is conjugate to a subgroup of PSL2R ⊂ PSL2C. Oth-
erwise, when M is non-Fuchsian, C(M,h) has non-empty interior. Its boundary ∂C(M,h) is then the
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disjoint union of two surfaces S+ and S− homeomorphic to S, facing respectively towards the upper and
lower asymptotical boundaries ∂+M and ∂−M of M . When M is Fuchsian, we set S− = S+ = S, the
totally geodesic closed surface in M .

Both S+ and S− are locally convex surfaces with no extreme points. It follows (see [43]) that their
induced metrics m+ and m− are hyperbolic, and that they are pleated along measured laminations l+
and l−. This associates to h ∈ QF a pair of hyperbolic metrics m+,m− ∈ T and a pair of measured
laminations l+, l− ∈ ML. These data are however not independent with, say, the pair (m−, l−) on
the lower boundary of the convex core being completely determined by the pair (m+, l+) on the upper
boundary. Thus, restricting our attention to the upper boundary, we obtain a map

∂Hyp+ : QF → T ×ML
associating to a quasifuchsian metric h the data (m+, l+) on S+.

2.7. Minimal and maximal surfaces. Besides the boundary of the convex core and the confor-
mal boundary/holonomy parametrizations, quasifuchsian and GHM AdS manifolds also admit a min-
imal/maximal surface parametrizations. Here, in hyperbolic case, we must restrict to a subclass of
quasifuchsian manifolds admiting a unique minimal surface, the so called almost-Fuchsian manifolds.

Definition 2.12. A quasifuchsian metric h on M is almost-Fuchsian if it contains a closed, embedded
minimal surface with principal curvatures in (−1, 1). We denote by AF the space of almost-Fuchsian
metrics on M , considered up to isotopy.

It was noted by Uhlenbeck [46] that almost-Fuchsian manifolds contain only one closed, embedded
minimal surface.

For AdS manifolds, there is a deep relationship between maximal surfaces, harmonic maps and minimal
Lagrangian maps. A key point is the following lemma due to Ayiama, Akutagawa and Wan [2, Proposition
3.1].

Let g be a GHM AdS metric on M , and let Σ be the (unique) closed space-like maximal surface in
(M, g). Let I and II be the induced metric and second fundamental form on Σ, and let mL,mR be the
left and right hyperbolic metrics on Σ.

Lemma 2.13. The identity map fL : (Σ, [I]) → (Σ,mL) (resp. fR : (Σ, [I]) → (Σ,mR)) is harmonic,
and the imaginary part of its Hopf differential is equal to II (resp. to −II). In particular, fR ◦ f−1

L :
(Σ,mL)→ (Σ,mR) is minimal Lagrangian.

2.8. Globally hyperbolic flat and de Sitter manifolds. The 3-dimensional Minkowski space is
defined as the space R2,1 with the flat Lorentzian metric of signature (2, 1).

GHM flat metrics on M are defined in the same manner as in the AdS case described previously, and
we denote by GH0 the moduli spaces of flat GHM metrics on M , considered up to isotopy. We consider
only future complete spacetimes, presenting an initial singularity. Past complete spacetimes are obtained
by time reversal.

The isometry group isom0(R2,1) is isomorphic to a semi-direct product PSL2Rn sl2R. Thus, the holo-
nomy representations of GHM flat manifolds define points in the representation variety Rep(π1S,PSL2Rn
sl2R). A holonomy representation then decomposes as ρ = (ρ0, τ) with linear part ρ0 : π1(S) → PSL2R
and a ρ0-cocycle τ : π1(S)→ sl2R. The following result of Mess [32, 3] provides the classification of GHM
flat metrics in terms of holonomies.

Theorem 2.14 (Mess). The linear part ρ0 of the holonomy representations of a GHM flat metric have
maximal Euler number, so that it is the holonomy representations of a hyperbolic structure h0 ∈ T . Given
ρ0 ∈ T and a ρ0-cocycle τ , there is a unique future complete GHM Minkowski metric h ∈ GH0 such that
ρ0 and τ describes its holonomy representation.

Adding a coboundary to τ is equivalent to conjugating the representation by a translation. Thus only
the cohomology class of τ is relevant. The first cohomology group H1(π1S, sl2RAdρ0

) can be seen as
the fibre of the cotangent bundle T ∗T over Teichmüller space. In fact, the embedding of T into the
PSL2R representation variety parametrizes the tangent space to T at ρ0 by the first cohomology group
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H1(π1S, sl2RAdρ0
) and the non-degenerate cup product can be used as the duality pairing between TT

and T ∗T . We thus have a one-to-one correspondence holMink : GH0 → T ∗T sending h to (ρ0, τ).
The 3-dimensional de Sitter space is defined as the set

dS3 = {x ∈ R3,1 | 〈x, x〉 = 1}
with the induced metric from the 4-dimensional Minkowski metric.

We will denote by GH1 the moduli spaces of de Sitter GHM metrics on M . Again, we consider only
future complete spacetimes.

The isometry group isom0(dS3) is isomorphic to PSL2C. The holonomy representations of GHM dS
manifolds therefore define points in the character variety X . As for quasifuchsian manifolds, and more
generally for hyperbolic ends, the classification of GHM de Sitter spacetimes in terms of holonomies
is not possible since the map holdS : GH1 → X is only a local diffeomorphism (importantly it is not
injective). However, similarly to hyperbolic ends, de Sitter manifolds can be understood in terms of a
complex projective structure at their boundary at future infinity ∂+M . More precisely, the developing

map dev : M̃ → dS3 restricts to a developing map dev : ∂̃+M → ∂+dS
3 ' CP 1. The holonomy

representation ρ : π1S → PSL2C then endows ∂+M with a complex projective structure. We denote the
map associating to a GHM dS manifold (M, g) the corresponding complex projective structure on ∂+M
by ∂dS+ : GH1 → CP. A result of Scannell [39] gives the converse construction of GHM dS manifolds
given a complex projective structure on S. We thus obtain the following result.

Theorem 2.15 (Scannell). GHM de Sitter spacetimes are in one-to-one correspondence with complex
projective structures.

We continue to denote by ωiG the symplectic form on GH1 obtained by pull-back of the imaginary part
of the Goldman symplectic form on CP.

3. Wick rotations and double maps

In this section we explain the relation between the three- and two-dimensional points of view developed
in the introduction. More specifically, we shall see why Theorem 1.2 implies Theorem 1.18, and Theorem
1.3 is equivalent to Theorem 1.11. We then prove that the double earthquake map E and the double
harmonic map H are one-to-one, leaving the discussion of the regularity properties of the earthquake
map for the next section.

3.1. Earthquakes and the boundary of the convex core. Let us start considering the relations
between Theorem 1.2 and Theorem 1.18. As we have seen in the introduction, the definition of the Wick
rotation between hyperbolic ends and GHM AdS manifolds is given by matching the boundary data at
the initial boundary of a hyperbolic ends and at the upper boundary of the convex core of a GHM AdS
manifolds

WAdS
∂ = (∂AdS+ )−1 ◦ ∂Hyp+ : HE → GH−1

(Recall that the maps ∂AdS+ and ∂Hyp+ are defined in Section 2.6.)
The motivation behind this definition is quite clear in terms of 3-dimensional geometry. On the other

hand, due to the lack of a smooth structure on T ×ML, it is unclear how to use the Wick rotation WAdS
∂

to relate the geometric properties of the two moduli spaces. To address this we must describe the Wick
rotation in terms of better behaved (smooth) maps.

First note that by Thurston’s result, Theorem 2.7, we have a relation between the complex projective
data at the asymptotic boundary and the lamination data at the initial boundary of hyperbolic ends
given by grafting

∂Hyp∞ = G ◦ ∂Hyp+ : HE → CP .

The smooth and symplectic structures on CP can in fact be defined via pull-back the inverse of this map
∂Hyp∞ . Analogously, by Mess’ result, Theorem 2.11, the holonomy mapping can be written in terms of
the upper boundary of the convex core in GHM AdS manifolds via the double earthquake map

holAdS = E ◦ ∂AdS+ : GH−1 → T × T ,
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with the smooth and symplectic structures on GH−1 also given via pull-back.
On the other hand, the composition G′ = G ◦ δ−1 of the grafting map G with the inverse of δ :

T ×ML → T ∗T , the map sending (m, l) to dmL(l), is a C1 symplectomorphism between (T ∗T , 2ωr∗)
and (CP, ωiG), see [27]. This motivates us to consider the analogous composition, E ′ = E ◦ δ−1, of the
double earthquake map E with δ−1. We then obtain be the diagram in Figure 2, which is shown below
to be commutative.

Figure 2. Relation between double earthquakes and Wick rotations through pleated surfaces

Lemma 3.1. The diagram in Figure 2 commutes.

Proof. The commutativity of the upper triangle follows directly from the definition of WAdS
∂ , while the

definitions of G′ and E ′ provides the commutativity of the two lower triangles. The fact that the middle left
triangle commutes is a translation of Thurston’s Theorem 2.7, while the middle right triangle commutes
by Mess’ Theorem 2.11. �

This allows us to write the relation between the Wick rotation and the double earthquake map as

WAdS
∂ = (holAdS)−1 ◦ E ′ ◦ (G′)−1 ◦ ∂Hyp∞ .

We record the following consequence for future use.

Remark 3.2. WAdS
∂ is C1-smooth and symplectic if and only if E ′ is C1-smooth and symplectic.

3.2. Harmonic maps and minimal surfaces. Turning now to the relations between Theorem 1.3 and
Theorem 1.11, we shall use a much simpler commutative diagram, see Figure 3. From the introduction,
the map Wmin : AF ′ → GH−1 is defined by matching the holomorphic data of the minimal surface in an
almost-Fuchsian manifold and the maximal surface of a GHM AdS manifold. More precisely, we have

Wmin = max−1 ◦min

where min : AF → T ∗T (resp. max : GH−1 → T ∗T ) is the map sending an almost-Fuchsian (resp.
maximal globally hyperbolic AdS) metric on M to the complex structure and holomorphic quadratic
differential determined on its unique minimal (resp. maximal) surface by the first and second fundamental
forms.

Considering also the maps ∂Hyp∞ : AF ′ → CP and holAdS : GH−1 → T × T we obtain the diagram
Figure 3, which commutes as a direct consequence of Lemma 2.13.

Figure 3. The minimal surfaces Wick rotation

The map α = min ◦(∂Hyp∞ )−1 is symplectic up to sign, see [30, Corollary 5.29].
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Theorem 3.3 (Loustau). Re(α∗ω∗) = −ωiG.

We thus have the following remark.

Remark 3.4. H is symplectic (up to sign) if and only if Wmin is symplectic.

Proof. If H is symplectic (up to sign), then it follows directly from the diagram in Figure 3 that Wmin

is symplectic, because it can be written as a composition of symplectic maps.
For the converse note that both H and Wmin are real analytic.If Wmin is symplectic, it follows from

the diagram that H is symplectic on an open subset of T ∗T . Since the symplectic forms on both T ∗T
and T × T are analytic, it follows that H is symplectic everywhere. �

3.3. The double maps are one-to-one and onto. This part contains (simple) proofs that the double
earthquake map and the double harmonic map are one-to-one.

Lemma 3.5. The map H : T ∗T → T × T is bijective.

Proof. Let (mL,mR) ∈ T × T . There is then a unique minimal Lagrangian diffeomorphism isotopic to
the identity φ from (S,mL) to (S,mR), see [28, Corollaire 2.3.4] or [41]. If we define m = mL + φ∗(mR)
and denote by [m] its underlying conformal structure, then id : (S, c)→ (S,mL) and φ : (S, c)→ (S,mR)
are harmonic with opposite Hopf differentials −iq and iq. Therefore, (mL,mR) = H(c, q), where c is the
complex structure on S associated to [m]. So H is onto.

Conversely, let (mL,mR) ∈ T × T , and let (c, q) ∈ T ∗T be such that (mL,mR) = H(c, q). Then
c = [mL + φ∗(mR)], where φ is the unique minimal Lagrangian diffeomorphism isotopic to the identity
from (S,mL) to (S,mR). Moreover, the Hopf differential of the unique harmonic map isotopic to the
identity from (S, c) to (S,mL) is equal to −iq. This shows that (c, q) is uniquely determined by (mL,mR),
and therefore proves that H is injective. (Note that another equivalent proof is obtained by noting that c
must be the conformal class on the unique minimal surface in (S×S,mL⊕mR) with projections on both
factors diffeomorphisms, and −iq must be the Hopf differential of the projection on the first factor.) �

Lemma 3.6. The double earthquake map E : T ×ML → T × T is bijective.

Proof. Let (mL,mR) ∈ T × T . By Thurston’s Earthquake Theorem (see the appendix in [24]) there
exists a unique l ∈ ML such that mL = EL(mR, 2l). But ER(l) = EL(l)−1 and EL(2l) = EL(l)2. So, if
we set m = EL(mR, l), we have

mL = EL(m, l), mR = ER(m, l)

so that (mL,mR) = E(m, l).
Conversely, if (mL,mR) = E(m′, l′), then mL = EL(mR, 2l

′), so it follows from the uniqueness in the
Earthquake Theorem that 2l′ = 2l, so that l = l′ and m = m′. �

3.4. Wick rotations to flat and dS manifolds. We now consider analogous Wick rotations from
hyperbolic ends to GHM flat and de Sitter manifolds.

3.4.1. Hyperbolic metrics and measured laminations. In analogy to the AdS case, we consider Wick
rotations from hyperbolic ends to GHM flat manifolds WMink

∂ : HE → GH0 given by matching the data
at the inital boundary of hyperbolic ends to the pair formed by the linear holonomy and the measured
lamination dual to the initial singularity of GHM flat manifolds

WMink
∂ : (∂Mink

∗ )−1 ◦ ∂Hyp+ .

Again, using the fact that the cocycle part of the holonomy is related to the measured lamination via
grafting, we may write

holMink = G0 ◦ ∂Mink
∗ : GH0 → T ∗T .

The smooth and symplectic structures on GH0 are again given via pull-back. We now obtain the first
diagram in Figure 4, where we denote G′0 = G0 ◦ δ−1.
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The passage W dS
∂ : HE → GH1 from hyperbolic ends to GHM dS manifolds is given automatically via

duality, by matching the data at their common asymptotic boundary

W dS
∂ = (∂dS∞ )−1 ◦ ∂Hyp∞ .

Here there is no problem with differentiability and the symplectic structures agree, since in both cases
the smooth and symplectic structures are again given via pull-back from CP. The second diagram in
Figure 4 describe these relations.

Figure 4. Wick rotations to flat and de Sitter manifolds

Note that the diagrams in Figure 4 commute, by definition of the some of the maps used, as well as by
Theorem 2.7 (for the middle left triangle of the left diagram and the lower triangle of the right diagram).

3.4.2. CMC surfaces. GHMC flat and de Sitter manifolds are also shown to admit a unique foliation by
CMC surfaces.

Theorem 3.7 (Barbot, Béguin, Zeghib [5]). Any GHM flat and dS manifolds admit a unique foliation
by closed space-like CMC surfaces, with mean curvature in

• (−∞, 0), in the flat case,
• (−∞,−1), in the dS case.

For every prescribed H as above, the spacetimes contain a unique closed space-like CMC-H surface.

As in the AdS case, the first and second fundamental forms of the CMC-H surface are in correspondence
with a point in T ∗T (see [33] and [26, Lemma 6.1]).

Proposition 3.8. Let H ∈ (−∞,−1). Given a complex structure c and a holomorphic quadratic differ-
ential q for c on S, there is a unique GHM dS metric h on M such that the induced metric and traceless
part of the second fundamental form on the unique CMC-H surface in (M,h) is I, II0 with I compatible
with c and II0 = Re(q).

We may therefore construct as a version of the flat and de Sitter CMC-Wick rotation.

Definition 3.9. Let H ∈ (−1, 1), H ′ ∈ (−∞, 0) and H ′′ ∈ (−∞,−1). For each h ∈ AF ′, let SH be
the unique closed CMC-H surface in (M,h), let c be the conformal class of its induced metric, and
let q be the traceless part of its second fundamental form. There is then a unique GHM flat metric
h′ and a unique GHM dS metric h′′ on M such that the (unique) CMC-H ′ surface in (M,h′) and the
unique CMC-H ′′ surface in (M,h′′) have induced metric conformal to c and the traceless part of its
second fundamental form is equal to q. We denote these maps respectively by WMink

H,H′ : AF ′ → GH0 and

W dS
H,H′′ : AF ′ → GH1.

4. Regularity of the earthquake map

We now focus on the C1 regularity of the earthquake map, more specifically on the proof of Proposition
1.16 and of Corollary 1.17. The notations here are similar to those of [27, Section 2.5], with the relevant
adaptations, further developing some of the arguments which in [27] were too elliptic. As in [27], the
arguments will be based on the ideas and tools developed by Bonahon [7, 8].
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4.1. Maximal laminations and transverse cocycles. We first recall basic facts on transverse cocycles
on a surface, which will be used to give a parametrization of both the Teichmüller space T and the space
of measured geodesic laminations ML, see [7].

We start with a fixed reference hyperbolic structure m ∈ T on S and a maximal geodesic lamination
λ ∈ L on (S,m). The maximality condition here is given with respect to inclusion. Equivalently, this
condition can be stated as the property that the complement of λ on S is given by finitely many disjoint
ideal triangles, see [7].

Definition 4.1. A R-valued transverse cocycle σ for a lamination λ is a real valued function on arcs
transverse to λ which is

• additive: σ(k1 t k2) = σ(k1) + σ(k2),
• λ-invariant: σ(k1) = σ(k2) if k1 and k2 are homotopic through a family of arcs transverse to λ.

We denote H(λ,R) the space of all transverse cocycles for λ.

The space H(λ,R) has the structure of a finite dimensional vector space. In particular, if λ is a
maximal lamination, its dimension is given by dimH(λ,R) = 6g − 6.

Note that the notion of transverse cocycles on maximal laminations generalizes the notion of measured
laminations. In fact, the support of any measured lamination l ∈ML is contained (possibly non-uniquely)
into a maximal lamination λ on S. Further, given such maximal lamination λ containing the support of l,
the transverse measure of l defines uniquely a non-negative transverse cocycle µ on λ. Thus any measured
lamination gives rise to a non-negative transverse cocycle on some maximal lamination on S. Conversely,
a non-negative transverse cocycle can be equally seen as a transverse measure on the maximal lamination,
thus defining a measured lamination. This gives a 1-to-1 correspondence between ML

∣∣
λ
, the space of

measured laminations supported on λ, and H(λ,R+), the space of non-negative transverse cocycles on λ.
It is also possible to give a parametrization the Teichmüller space in terms of transverse cocycles.

Given a maximal lamination λ on S, Bonahon [7] defines for each hyperbolic metric m ∈ T a transverse
cocycle σm ∈ H(λ,R), assigning to each transverse arc k to λ a real number σm(k) which we now define.

Let λ̃ be the preimage of λ in the universal cover S̃ of S. The maximality condition for λ then implies
that λ̃ determines a tessellation of S̃ by ideal triangles. For any pair P,Q of such ideal triangles we
associate a real number σPQ as follows. Assuming, first, that P and Q are adjacent, we take σPQ to be
the logarithm of the cross-ratio of the ideal quadrilateral defined by P and Q. Equivalently, σPQ is the
signed hyperbolic distance along their common edge between the orthogonal projections of the opposite
vertices to this edge. For non-adjacent ideal triangles P,Q we then define σPQ as the sum of σP ′Q′ over
all pairs of adjacent ideal triangles P ′, Q′ between P and Q. Note that such sum may be an infinte sum.
However, an upper bound for each of the σP ′Q′ , given by the distance between their outermost edges
[7], implies that σPQ differs from the distance between the innermost edges of P and Q only by a finite
constant, so that σPQ is indeed well defined.

The transverse cocycle σm ∈ H(λ,R) associated to the hyperbolic metric m ∈ T can now be defined.

Given a transverse arc k to λ let k̃ be a lift of k to S̃. By transversality the endpoints of k̃ belong to the
interior of ideal triangles P and Q and we can define σm(k) = σPQ.

Theorem 4.2 (Bonahon [7]). The map ϕλ : T → H(λ,R) defined by

ϕλ(m) = σm

is injective and open. Furthermore, it is real analytic into its image.

4.2. Smoothness of the double earthquake.

4.2.1. Differentiability. We now turn to the C1-smoothness of the double earthquake map E ′ = E ◦ δ−1 :
T ∗T → T × T , starting with the differentiability of EL ◦ δ−1. The strategy here is the same as in [27]
showing that for each maximal lamination λ there is a pair of tangentiable maps Φλ : T ×H(λ,R+)→ T
and Ψλ : T ×H(λ,R+)→ T ∗T such that

• the composition Φλ ◦Ψ−1
λ agrees with EL ◦ δ−1 on δ(T ×ML|λ) ⊂ T ∗T ;
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• for two maximal laminations, λ and λ′, the tangent maps of Φλ ◦ Ψ−1
λ and Φλ′ ◦ Ψ−1

λ′ agree on
T(m,u)T

∗T for all (m,u) ∈ δ(T ×ML|λ ∩ML|λ′).
Start by noting that given a maximal lamination λ the notion of length of measured laminations and of

earthquakes along measured laminations naturally extend to notions of length of transverse cocycles and
shearings along transverse cocycles [7]. Further, such extensions are well behaved under the vector space
structure of H(λ,R) in that the length function L : T × H(λ,R+) → R is linear in its second argument
and the shear map E : T ×H(λ,R+)→ T satisfies the following equivariance property

Eσ+σ′(m) = Eσ ◦ Eσ′(m).

It is thus natural to consider the following tangentiable maps

Φλ(m,σ) = Eσ(m), Ψλ(m,σ) = dmL(σ).

Given m ∈ T and u ∈ T ∗mT let (m, l) = δ−1(m,u) ∈ T ×ML denote the image of (m,u) under the
inverse of δ. Then, choose a maximal lamination λ containing the support of l and let σ ∈ H(λ,R+)
denote the positive transverse cocycle corresponding to the measure of l. It follows directly from the
definitions of length and shears that

Φλ ◦Ψ−1
λ (m,u) = Φλ(m,σ) = EL(m, l) = EL ◦ δ−1(m,u).

Further, from the equivariance of Eσ(m) and the linearity of Lm(σ), we can easily compute

d(m,σ)Φλ(ṁ, σ̇) =
d

dt

∣∣∣
t=0+

Etdmϕλ(ṁ) ◦ Etσ̇ ◦ Eσ(m)

= (edmϕλ(ṁ) + eσ̇)(Eσ(m)) = dmEσ(edmϕλ(ṁ)(m) + eσ̇(m)),

where eσ(m) ∈ TmT is the infinitesimal shearing vector at m determined by σ, and

d(m,σ)Ψλ(0, σ̇) =
d

dt

∣∣∣
t=0+

dmL(tσ̇ + σ) = dmL(σ̇) = e∗σ̇(m),

where ∗ means the duality between T ∗mT and TmT with respect to the Weil-Petersson symplectic form.
Note that here dΦλ and dΨλ denote the tangent maps of Φλ and Ψλ and not their differentials.

To compute the differential of Φλ ◦Ψ−1
λ we introduce a decomposition of the tangent space to T ∗T at

(m,u) into horizontal and vertical subspaces

T(m,u)T
∗T = H(m,u)T

∗T ⊕ V(m,u)T
∗T .

First note that the map δ evaluated at a fixed measured lamination l determines a section sl = δ( · , l) :
T → T ∗T of the cotangent bundle over T . This is in fact a smooth section since the Hessian of the length
function of l depends continuously on both m and l, as follows for instance from [49, Theorem 1.1]. We
can then define the horizontal and vertical subspaces as

H(m,u)T
∗T = {Uh = dmsl(ṁ); ṁ ∈ TmT }, V(m,u)T

∗T = {Uv = u̇; u̇ ∈ T ∗mT } .

(Note that V(m,u)T
∗T does not appear to correspond to the vertical space defined by the Levi-Civita

connection of the Weil-Petersson metric on T .)
A simple computation now gives for a horizontal vector Uh ∈ H(m,u)T

∗T

d(m,u)(Φλ ◦Ψ−1
λ )(Uh) =

d

dt

[
Φλ ◦Ψ−1

λ ◦ sl ◦ π(m(t), u(t))
]

=
d

dt

[
Φλ ◦Ψ−1

λ ◦ sl(m(t))
]

= dm(Φλ ◦Ψ−1
λ ◦ sl)(ṁ) = dmEσ(ṁ) = dmE

L
l (ṁ),

with ṁ = d(m,u)π(Uh), and for a vertical vector Uv ∈ V(m,u)T
∗T

d(m,u)(Φλ ◦Ψ−1
λ )(Uv) =

d

dt

[
Φλ ◦Ψ−1

λ (m,u(t))
]

=
d

dt

[
EΨ−1

λ (m,u(t))(m)
]

= dmEσ(eσ̇(m)) = dmEσ(u̇∗) = dmE
L
l (u̇∗),
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with u̇ = Uv and σ̇ = d(m,u)(pr2 ◦Ψ−1
λ )(u̇). This shows in particular that d(Φλ ◦Ψ−1

λ ) does not depend
on λ, since the right-hand sides of both equations are completely independent on its choice, implying
that EL ◦ δ−1 is differentiable at each point (m,u) ∈ T ∗T with

(1) d(m,u)(E
L ◦ δ−1)(U) = dmE

L
l (ṁ+ u̇∗) .

4.2.2. Continuity of the differential. To complete the argument, it now only remains to show that the
differential of EL ◦ δ−1 is continous. Let α(m,l) : T(m,u)T

∗T → T ∗mT denote the projection onto the

vertical subspace of T(m,u)T
∗T , sending U to u̇. To prove that E ◦ δ−1 is C1, it is sufficient to prove that

α(m,l) vary continuously with (m, l), since all other maps entering the right-hand side of (1) are clearly
smooth by [25] and the analyticity of the Weyl-Petersson symplectic form.

On the other hand, the decomposition of T(m,u)T
∗T into horizontal and vertical subspaces then allows

us to explicitly write α(m,l) as
α(m,l) = id− dmsl ◦ d(m,u)π,

where id is the identity map in T(m,u)T
∗T , dmsl denote the linear horizontal embedding of TmT into

T(m,u)T
∗T and d(m,u)π the natural projection of T(m,u)T

∗T onto TmT . So α(m,l) depends continuously

on (m, l) and this concludes the proof of Proposition 1.16, that EL ◦ δ−1 is C1-smooth.

4.2.3. Proof of Corollary 1.17. The C1-smoothness of ER ◦ δ−1 is proven analogously. Thus Proposition
1.16 implies that E ◦ δ−1 is C1.

The map E : T × ML → T × T is clearly a bijection, because a GHM AdS manifold is uniquely
determined by the induced metric and measured pleating lamination on the upper boundary of the
convex core, and any hyperbolic metric and pleating lamination can be realized in this way. The map
δ : T ×ML → T ∗T is also bijective, see [27]. So E ◦ δ−1 is bijective.

It remains to prove that the differential of E ◦ δ−1 is everywhere invertible. This can be done directly
from (1) and the corresponding expression for the differential of ER ◦ δ−1

d(m,u)(E
R ◦ δ−1)(U) = dmE

R
l (ṁ− u̇∗).

The extra minus sign on the RHS comes from writing right-earthquakes as the inverse of left-earthquakes,
which in terms of shearing corresponds to considering the negative transverse cocycle. Thus, writing
(m+,m−) = E ◦ δ−1(m,u), we have

d(m,u)(E ◦ δ−1)(U) = (dmE
L
l (ṁ+ u̇∗), dmE

R
l (ṁ− u̇∗)) = (ṁ+, ṁ−) ∈ T(m+,m−)T × T ,

and, after some simple algebra, we can solve for (ṁ, u̇) ∈ TmT × T ∗mT in terms of (ṁ+, ṁ−) ∈
T(m+,m−)T × T :

ṁ =
1

2

(
dmE

R
l (ṁ+) + dmE

L
l (ṁ−)

)
, u̇ =

1

2

(
dmE

R
l (ṁ+)− dmELl (ṁ−)

)∗
.

5. Double maps are symplectic

In this section we provide proofs for the symplecticity of the double earthquake and double harmonic
maps, Theorem 1.11 and Theorem 1.18.

5.1. Train Tracks and the Thurston intersection form. We start by recalling here another set of
tools that will be needed in the next part of this section. More details can be found e.g. in [35] and [42].

First let’s introduce the notion of a train track carrying a lamination. A train track T on the surface
S is a (regular) tubular neighborhood of an embedded smooth graph with at least 2-valent vertices. We
shall consider only generic train tracks with only 3-valent vertices. The edges of T meet tangentially at
vertices and, therefore, we may divide edges incident to a given vertex as incoming or outgoing according
to the relative direction of their tangent vectors. We denote by ev the incoming edge and by e+

v , e
−
v the

outgoing edges of a vertex v, where the + and − signs denote the order of the outgoing edges with respect
to the incoming one given by a fixed choice of orientation of the surface.

An edge weight system for T is a map a : E(T )→ R assigning a weight a(e) ∈ R to each edge e ∈ E(T )
and satisfying the switch relation

a(ev) = a(e+
v ) + a(e−v )
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for each vertex v ∈ V (T ). We denote by W(T ) the vector space of edge weight systems for T .
A lamination λ is said to be carried by a train track T if it is contained in its interior in such a way that

the leaves of λ are transverse to the normal fibers of T . In the particular case of a maximal lamination
λ, there is a 1-to-1 correspondence between transverse cocycles σ ∈ H(λ,R) and edge weight systems
a ∈ W(T ) obtained by assigning to each edge e ∈ E(T ) the weight

a(e) = σ(ke)

where ke is any normal fibre of T , see [42].The swich relation is automatically satisfied due to the additivity
of σ. We thus obtain a map H(λ,R)→W(T ) which is shown to be an isomorphism of vector spaces.

The Thurston intersection form on H(λ,R) defined by

ΩTh =
∑

v∈V (T )

da(e+
v ) ∧ da(e−v ).

More precisely, given σ, σ′ ∈ H(λ,R), let a, a′ ∈ W(T ) be the corresponding edge weight systems. Then

ΩTh(σ, σ′) =
∑

v∈V (T )

(
a(e+

v )a′(e−v )− a′(e+
v )a(e−v )

)
.

This gives a non-degenerate 2-form on H(λ,R) which is closely related with the m-length of transverse
cocycles, see [7]. Namely, given a hyperbolic metric m and σ a transverse cocycle, the m-length of σ can
be computed as value of the Thurston intersection between σm and σ

Lm(σ) = −ΩTh(σm, σ).

The main reason we consider Thurston’s intersection form is due to its relation with the Weil-Petersson
symplectic form.

Theorem 5.1 (Bonahon-Sözen [42]). The map ϕλ : (T , ωWP ) → (H(λ,R),ΩTh) is symplectic up to a
sign

ϕ∗λΩTh = −ωWP .

Similarly, the canonical cotangent bundle symplectic structure on T ∗T can also be related with
Thurston’s intersection form. First, note that the map ϕλ : T (S) → H(λ,R) naturally identifies the
cotangent space to T (S) at m with the cotangent space to H(λ,R) at σm which, furthermore, is just the
dual space H(λ,R)∗ to H(λ,R):

T ∗mT (S) = T ∗σmH(λ,R) = H(λ,R)∗.

The total space of the cotangent bundle T ∗T (S) over T (S) is then identified with a subset of H(λ,R)×
H(λ,R)∗ by

(ϕλ, (ϕ
−1
λ )∗) : (m,u) 7→ (ϕλ(m), (ϕ−1

λ )∗u) = (σm, σ
∗
u).

Using the Thurston intersection form we may further identify the dual space H(λ,R)∗ with H(λ,R) via

σ 7→ σ∗ = ΩTh( · , σ)

so the symplectic form on H(λ,R)×H(λ,R)∗ can be written as

Ω∗

(
(σ1, τ

∗
1 ), (σ2, τ

∗
2 )
)

= ΩTh(τ1, σ2)− ΩTh(τ2, σ1).

Proposition 5.2. The map (ϕλ, (ϕ
−1
λ )∗) : (T ∗T , ωr∗)→ (H(λ,R)×H(λ,R)∗,Ω∗) is a symplectomorphism

(ϕλ, (ϕ
−1
λ )∗)∗Ω∗ = 2ωr∗ .

Proof. We only need to compare the canonical Liouville 1-forms θ on T ∗T (S) and Θ onH(λ,R)×H(λ,R)∗

θ(m,u)(U) = u(π∗U), Θ(σ,τ∗)(ρ, χ
∗) = τ∗(ρ).

Pulling-back Θ by (ϕλ, (ϕ
−1
λ )∗) gives

((ϕλ, (ϕ
−1
λ )∗)∗Θ)(m,u)(U) = (ϕλ)∗u((ϕλ)∗π∗U) = θ(m,u)(U).
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Thus

(ϕλ, (ϕ
−1
λ )∗)∗Ω∗ = (ϕλ, (ϕ

−1
λ )∗)∗dΘ = dθ = 2ωr∗ .

�

5.2. The double earthquake map is symplectic. We now provide a proof that the double earth-
quake map E ′ is symplectic, up to a multiplicative factor, Theorem 1.18. First we need a description of
earthquakes along measured laminations in terms of transverse cocycles for maximal laminations.

Thus, given (m, l) ∈ T ×ML let m′ = EL(m, l) denote the left earthquake of m along l and let λ
be a maximal lamination on S containing the support of l. Denote by σ = σm the transverse cocycles
associated with m and by τ the transverse measure of l. We now compute the transverse cocycle σ′ = σm′

corresponding to m′. Let us fix a transverse arc k to λ. Let k̃ be a lift of k to the universal cover of
S. By transversality, the endpoints of k̃ lay in the interior of triangles P , Q in the triangulation of S̃
determined by the complement S̃\λ̃ of the preimage λ̃ of λ. We only need to consider the case where
P and Q are adjacent since for non-adjacent triangles the cocycles are obtained as the sum of cocycles
of the intermediate pairs of triangles. The construction of the transverse cocycle associated with a
hyperbolic metric is given by orthogonally projecting the third vertex of P and Q to their common edge
and computing the signed hyperbolic distance between the obtained pair of points (equivalently, this is
given by the logarithm of the cross-ratio of the ideal square determined by P and Q). The action of the
earthquake EL(l), as viewed from P , is then to shift the projected point from Q by τ . Therefore, the
transformation of the PQ-cocycle is

σPQ 7→ σ′PQ = σPQ + τPQ

where τPQ is the measure of any arc transversally intersecting λ̃ a unique time at the common edge of P
and Q. If P and Q are non-adjacent, the formula

σPQ 7→ σ′PQ = σPQ + τPQ

is still valid, where now σPQ, τPQ are given by the sum (possibly with an infinite number of terms) over
intermediate pairs of triangles. The measure of the transverse arc k is then given by

σm′(k) = σm(k) + τ(k)

and we see that the transverse cocycles of m and m′ are related by

σm′ = σm + τ.

Proof of Theorem 1.18. From the discussion above, we may write the double earthquake map E : T ×
ML → T × T in terms of transverse cocycles for λ as

Eλ(σ, τ) = (ϕλ, ϕλ) ◦ E ◦ (ϕ−1
λ , ιλ)(σ, τ) = (σ + τ, σ − τ).

Here we denote by ιλ : H(λ,R+) → ML the map assigning to a non-negative transverse cocycle τ the
measured lamination with support λ and transverse measure τ .

On the other hand by the relation between the m-length of measured laminations and Thurston’s
intersection form recalled above,

Lm(l) = −ΩTh(σm, σl) ,

we may also describe the inverse of the map δ : T ×ML → T ∗T in terms of cocycles by

δλ(σ, τ) = (ϕλ, (ϕ
−1
λ )∗) ◦ δ ◦ (ϕ−1

λ , ιλ)(σ, τ) = (ϕ−1
λ σ, ϕ∗λτ

∗) = (σ,−τ∗) .

Thus the double earthquake map E ′ : T ∗T → T × T can be realized by

E ′λ(σ, τ∗) = Eλ ◦ δ−1
λ (σ, τ∗) = (σ − τ, σ + τ) .

Now note that the map E ′λ : H(λ,R) × H(λ,R)∗ → H(λ,R) × H(λ,R) defined above is a symplec-
tomorphism (up to a multiplicative factor) with respect to the cotangent bundle symplectic form on



SYMPLECTIC WICK ROTATIONS 23

H(λ,R)×H(λ,R)∗ and the difference of Thurston intersection forms on H(λ,R)×H(λ,R)

E ′λ∗(ΩTh ⊕ ΩTh)
(

(ρ1, θ
∗
1), (ρ2, θ

∗
2)
)

= ΩTh(ρ1 − θ1, ρ2 − θ2)− ΩTh(ρ1 + θ1, ρ2 + θ2)

= −2ΩTh(θ1, ρ2) + 2ΩTh(θ2, ρ1) = −2ΩT∗T

(
(ρ1, θ

∗
1), (ρ2, θ

∗
2)
)
.

Finally, restricting to the appropriate subsets, we have

1

2
E ′∗(ωWP ⊕ ωWP ) = −1

2
E ′∗ ◦ (ϕλ, ϕλ)∗(ΩTh ⊕ ΩTh)

= −1

2
(ϕλ, (ϕ

−1
λ )∗)∗ ◦ E ′λ∗(ΩTh ⊕ ΩTh)

= (ϕλ, (ϕ
−1
λ )∗)∗ΩT∗T = 2ωr∗ .

�

Proof of Theorem 1.2. The proof that WAdS
∂ : HE → GH−1 is symplectic now follows from Theorem 1.18

and Remark 3.2. �

5.3. The dual Schläfli formula for convex cores of AdS manifolds. The main point of this section
is a result on the variation, under a deformation, of the volume (or rather the dual volume) of the convex
core of a globally hyperbolic AdS manifold. Although not obviously related to the main results of this
paper, this formula is the key tool in proving, in the next section, that the double harmonic map is
symplectic.

The result presented here should be compared with the Schläfli formula obtained by Bonahon [9] for
convex cores of quasifuchsian hyperbolic manifolds, and to the dual formula, for the variation of the dual
volume of quasifuchsian manifolds, used in [27]. The result we prove here (and need below) is the AdS
analog of the dual Schläfli formula of [27]. We do not consider here the Schläfli formula itself for AdS
convex cores, however it is possible that it could be obtained from the dual formula by a fairly direct
argument (possibly similar to the argument used in the other direction in [27] in the hyperbolic setting).

Definition 5.3. Let g ∈ GH−1 be a GHM AdS metric on M . We denote by Ω+ the domain of M
bounded by the unique maximal surface S ⊂ M and by the upper boundary ∂+C(M, g) of the convex
core of M , and set

V ∗+(g) = V (Ω+)− 1

2
Lm+

(l+) ,

where V (Ω+) is the volume of Ω+ and m+ and l+ are the induced metric and the measured bending
lamination on ∂+C(M, g).

A key point of the proof of the symplecticity of the double harmonic map will be the following variation
formula for the volume V ∗+.

Lemma 5.4. The function V ∗+ : GH−1 → R is tangentiable. For a first-order variation of the GHM AdS
metric g, the corresponding variation of V ∗+ is

(2) (V ∗+(g))′ = −1

4

∫
S

〈I ′, II〉IdaI −
1

2
dm+

L(l+)(m′+) ,

where I and II are the induced metric and second fundamental form on the unique maximal Cauchy
surface S in M .

We denote by V ∗ the sum of V ∗+ and V ∗−, analogously defined in terms of the lower boundary of the
convex core, and by (m, l) the hyperbolic metric and measured lamination induced on the whole boundary

of the convex core ∂C(M, g) = ∂+C(M, g) t ∂−C(M, g). The dual Schläfli formula for convex core of
GHM AdS manifolds now follows directly.

Proposition 5.5. In a first-order variation of the GHM AdS metric g,

(V ∗(g))′ = −1

2
dmL(l)(m′) .
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Proof. This follows directly from applying 5.4 both to V ∗+ and to the corresponding quantity V ∗− for the
part of M between the maximal surface S and the lower boundary of the convex core, that is, the quantity
corresponding to V ∗+ after changing the time orientation of M . The first term on the right-hand side of
(2) is then exactly compensated by the corresponding term for the lower half of the convex core, and only
the second term remains. �

The proof of Lemma 5.4 will basically follow from a first variation formula for the volume of AdS
domains with smooth boundary. In the following statement we denote by I, II,H the induced metric,
second fundamental form and mean curvature of the boundary, with H = 1

2 trI(II), and suppose that the
orientation conventions are such that II is positive when the boundary is convex.

Lemma 5.6. Let Ω be a 3-dimensional manifold with boundary, with a one-parameter family of AdS
metrics (gt)t∈[0,1] such that the boundary is C1,1 smooth and space-like. Then

V (Ω)′ =

∫
∂Ω

H ′ +
1

4
〈I ′, II〉daI .

Here V (Ω)′ = (d/dt)V (Ω, gt)|t=0 and similarly for the other primes.

This statement is the exact Lorentzian analog, in the 3-dimensional case, of [36, Theorem 1] (see also
[37] for a complete proof). The argument there can be used almost with no modification here. We leave
the details to the interested reader. (The proof can be obtained by integrating by parts the equation
satisfied by a normalized deformation of the AdS structure on the convex core, considered as a symmetric
2-tensor.)

Note that Lemma 5.6 could be stated in a much more general way by considering a higher-dimensional
manifold with a one-parameter family of Einstein metrics, as in [37]. The fact that the boundary is space-
like is not essential. Note also that an alternate proof can be found, for Riemannian Einstein manifolds,
in [19].

Corollary 5.7. Under the same conditions as in Lemma 5.6, let

V ∗(Ω) = V (Ω)−
∫
∂Ω

HdaI .

Then

V ∗(Ω)′ =
1

4

∫
∂Ω

〈I ′, II − 2HI〉IdaI .

Proof. This follows from Lemma 5.6 because an elementary computation shows that(∫
∂Ω

HdaI

)′
=

∫
∂Ω

H ′ +
H

2
〈I ′, I〉IdaI .

�

The last technical tool that will be needed in the proof of Lemma 5.4 is the description of the surfaces
equidistant from a convex pleated surface in AdS3. This description is directly analogous to what is
well-known for the equidistant surfaces from a convex pleated surface in H3, so we give only a brief
account here, leaving the details to the reader. We consider a past-convex space-like pleated surface
Σ ⊂ AdS3, denote its induced metric by m and its measured pleating lamination by l, and will denote
by Σr the equidistant surface at time-distance r in the past of Σ (i.e., in the convex domain bounded by
Σ — this contrasts with the hyperbolic situation where one typically considers the equidistant surface in
the concave region).

The simplest case occurs when l = 0 and Σ is totally geodesic. Then a simple computation shows
that Σr is umbilic and future-convex, with principal curvatures equal to − tan(r). If on the other hand
we suppose that Σ is made of two totally geodesic half-planes P1 and P2 intersecting at an angle θ along
their common boundary, we obtain that Σr has three components:

• two umbilic surfaces P1,r and P2,r, with orthogonal projection on Σ respectively on P1 and P2,
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• a strip S of width θ sin(r), which projects orthogonally to ∂P1 = ∂P2, where one principal
direction (along the axis) is 1/ tan(r), while the other is − tan(r).

Suppose now that Σ is a past-convex space-like pleated surface in a GHM AdS manifold, with rational
measured bending lamination l. It follows from the previous description that Σr has umbilic regions
(projecting orthogonally to the complement of the support of l in Σ) with principal curvatures − tan(r),
and “strips” projecting orthogonally to the support of l, with principal curvatures equal to 1/ tan(r) and
to − tan(r). In particular, it will be important below to note that the area of Σr is

A(Σr) = cos2(r)(−2χ(S)) + sin(r) cos(r)Lm(l) .

It follows by continuity that the same area formula holds for general (not rational) measured bending
lamination.

We can now provide a direct proof of Lemma 5.4. Note that this contrasts with the argument given
in [27], where the “dual Schläfli formula” was proved using Bonahon’s Schläfli formula (see [11, 10]).
It appears likely that, in the hyperbolic setting too, a direct proof of the dual Schläfli formula can be
given without going through Bonahon’s Schläfli formula, which is more complicated even to state since
it involves the first-order variation of the measured bending lamination.

Proof of Lemma 5.4. Recall that weighted multicurves are dense inML. Therefore for any data (m+, l+)
on the upper boundary of the convex core, l+ can be approximated by a sequence of laminations supported
on a disjoint union of closed curves. It is therefore sufficient to prove the lemma when l+ is supported
on a disjoint union of closed curve. We will focus on this situation in the rest of the proof.

We consider a smooth one-parameter family (gt)t∈[0,1] of AdS metrics on M and the corresponding
one-parameter family of hyperbolic metrics and measured laminations (mt, lt)t∈[0,1] induced on the upper
boundary of the convex core. It is convenient here to choose a maximal lamination λ containing the
support of l, so that l can be identified with the corresponding transverse cocycle, as outlined in Section
4.1. A first order variation ġ = (dgt/dt)|t=0 of g then determines a first-order variation ṁ ∈ TmT of m

and a first-order variation l̇ ∈ H(λ,R) of l.
We can now slightly change the perspective and consider (m, l) as the main variables, with the first-

order variation ġ of g to be determined by first-order variations ṁ and l̇ of m and l. Thus, given
(m, l) ∈ T × H(λ,R), let (M, g) be the GHM AdS manifold whose upper boundary of the convex core
has induced metric m and measured bending lamination l and denote by S the unique maximal Cauchy
surface in M , and by Ω the domain in M bounded by S and by the upper boundary of the convex core
∂+Ω. We will now prove that

V ∗+(m, l) = V (Ω)− 1

2
Lm(l)

is tangentiable with the correct derivative.
Our strategy to prove the variation formula for V ∗+ will be to approximate the pleated surface ∂+Ω

by equidistant surfaces, to which we can apply the smooth dual Schläfli formula of Lemma 5.6. So, for
r > 0, we denote by Σr the set of points at time distance r from ∂+Ω in the past. If r is small enough,
then Σr ⊂ Ω. We then call Ωr the compact domain in M bounded by S and Σr. So Ωr is contained in
Ω, more precisely Ω is composed of all points at time distance at most r from Ωr in its future.

We denote by Ir, IIr, Hr the induced metric, second fundamental form and mean curvature of Σr, and
define

V ∗r (m, l) = V (Ωr)−
∫

Σr

HrdaIr .

The first-order variation formula for V ∗r follows from Lemma 5.6 and the proof of Corollary 5.7:

(V ∗r (m, l))′ = −
∫
S

(
H ′ +

1

4
〈I ′, II〉

)
daI +

1

4

∫
Σr

〈I ′r, IIr − 2HrIr〉IrdaIr .

Note that the terms corresponding to Σr is different from the term on S since, in the definition of
V ∗r (m, l), an integral mean curvature term is added but it is only an integral on Σr. The first integral
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already occurs in the statement of Lemma 5.4, and moreover H ′ = 0 since S remains a maximal surface
throughout the deformation. So, to prove the statement, we need to show that

(3)

∫
Σr

〈I ′r, IIr − 2HrIr〉IrdaIr
r→0−→ −2dmL(l)(ṁ) .

For r > 0 small enough, Σr is C1,1 smooth — this is the Lorentzian analog of the well-known fact
that the equidistant surface from a convex pleated surface in hyperbolic space, on the concave side of the
complement, is C1,1 smooth. Note that Σr is not convex, but this will not play any role in the argument.

There is a well-defined nearest-point projection ρ : Σr → ∂+Ω. Therefore we can decompose Σr in two
components:

• Σlr is the inverse image by ρ of the support of l, so that is a closed subset of Σr,
• Σfr = Σr\Σlr is the open set of points which project to a point of ∂+Ω which has a totally geodesic

neighborhood.

Both Σlr and Σfr are smooth surfaces.
The area of Σfr depends on the area of ∂+Ω, specifically:

A(Σfr ) = cos2(r)(−2πχ(S)) .

Similarly, the area of Σlr depends on the length of l for m:

A(Σlr) = sin(r) cos(r)Lm(l) .

As a consequence, we can express the volume of Ωr in terms of the volume of Ω:

V (Ωr)− V (Ω) =

∫ r

s=0

(
sin(s) cos(s)Lm(l) + cos2(s)(−2πχ(S))

)
ds

r→0−→ 0 .

Moreover ∫
Σr

HrdaIr
r→0−→ 1

2
Lm(l) ,

and it follows that V ∗r (m, l)→ V ∗+(m, l) in the local C0 sense as r → 0.

Clearly, Σfr is the disjoint union of open surfaces which are equidistant from a plane and therefore
umbilic, with principal curvatures equal to − tan(r). The local geometry of Σlr is slightly more interesting.
It has a foliation Λ by geodesics, each of which project to a leaf of l. The directions parallel to Λ
are principal directions, with corresponding principal curvature − tan(r), while the principal curvature
corresponding to the directions orthogonal to Λ is cotan(r).

As a consequence, the mean curvature of Σr is equal to − tan(r) + cotan(r) on Σlr, and to −2 tan(r)
on Σfr . It follows that IIr − 2HrIr is equal to

• −cotan(r)Ir on directions parallel to Λ on Σlr,
• tan(r)Ir on directions orthogonal to Λ on Σlr and on all directions in Σfr .

To prove (3), we decompose the first-order variation of Ir in two terms: dIr(ṁ) corresponding to

ṁ, and dIr(l̇) corresponding to l̇. We will compute separately the contribution of each term to the
limit of the integral on the left-hand side of (3). For both computations, we will consider the area
A(Σr) = A(Σlr) +A(Σfr ) of Ir. Similarly as in the hyperbolic setting (see eg [26]) we have

A(Σr) = −2πχ(S) + sin(r) cos(r)Lm(l) .

The first-order deformation dIr(l̇) corresponds to varying the bending on ∂+Ω while keeping the
induced metric fixed, so it vanishes in the directions parallel to Λ on Σlr (which project to directions
parallel to the support of the bending lamination on ∂+Ω). So it follows from the description of IIr−2HrIr
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given above that ∫
Σr

〈dIr(l̇), IIr − 2HrIr〉IrdaIr =

∫
Σr

〈dIr(l̇), tan(r)Ir〉IrdaIr

= 2 tan(r)dA(Σr)(l̇)

= 2 sin2(r)dLm(l̇)

= 2 sin2(r)Lm(l̇)
r→0−→ 0 .

Similarly, dIr(ṁ) is bounded on Σfr , while it vanishes on Σlr on directions orthogonal to Λ. It follows
that∫

Σr

〈dIr(ṁ), IIr − 2HrIr〉IrdaIr =

∫
Σlr

〈dIr(ṁ),−cotan(r)Ir〉IrdaIr +

∫
Σfr

〈dIr(ṁ), tan(r)Ir〉IrdaIr .

However ∫
Σfr

〈dIr(ṁ), tan(r)Ir〉IrdaIr
r→0−→ 0 ,

while ∫
Σlr

〈dIr(ṁ),−cotan(r)Ir〉IrdaIr = −cotan(r)

∫
Σlr

〈dIr(ṁ), Ir〉IrdaIr

= −2cotan(r)dA(Σlr)(ṁ)

= −2 cos2(r)dmL(l)(ṁ)
r→0−→ −2dmL(l)(ṁ) .

Summing up, we obtain Equation (3).
Therefore,

dV ∗r (m, l)→ −
∫
S

(
H ′ +

1

4
〈I ′, II〉

)
daI −

1

2
dmL(l)(m′) .

pointwise as r → 0. Since V ∗r (m, l)→ V ∗(m, l) in C0 as r → 0, the result follows. �

5.4. The double harmonic map is symplectic. We turn here to the proof of Theorem 1.11: the
double harmonic map H : T ∗T → T × T is symplectic up to a factor, more precisely,

H∗(ωWP ⊕ ωWP ) = −2ωr∗ ,

where ωr∗ is the real part of the complex symplectic structure on T ∗T .
The key part of the argument is the dual Schläfli formula, more specifically Lemma 5.4 seen in the

previous section. Note that a similar argument was used in the hyperbolic setting by Loustau in [31].
We will use the diagram in Figure 5, which is a variant of other similar (related) diagrams presented

in the paper.

Figure 5. Earthquakes and harmonic maps associated to GHM AdS manifolds

In this diagram we denote by ∂′ : GH−1 → T ∗T the composition ∂′ = δ ◦ ∂AdS+ .
This diagram is commutative. The fact that the right triangle commutes is a direct translation of

Lemma 2.13. In the left square, the triangles not involving the holAdS map commute by definition, while
the two triangles involving holAdS commutes by Theorem 2.11 and Lemma 2.13.
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Proposition 5.8. The map max ◦ ∂′−1
is symplectic up to a factor −2: (max ◦ ∂′−1

)∗ωr∗ = −2ωr∗.

Proof of Proposition 5.8. Recall that the map δ : T ×ML → T ∗T is defined as δ(m, l) = dmL(l). Let θ
denote the canonical Liouville 1-form of T ∗T , that is, the 1-form on T ∗T defined at a point (m,u) ∈ T ∗T
by

∀U ∈ T(m,u)T
∗T , θ(U) = u(π∗U) ,

where π : T ∗T → T is the canonical projection. It follows from the defintion of δ that

δ∗θ(ṁ, l̇) = d(L(l))(ṁ) .

Pulling back this 1-form on GH−1 by the map ∂′, we obtain that

((∂′)∗θ)(ṁ, l̇) = ((∂ ◦ δ)∗θ)(ṁ, l̇) = d(L(l))(ṁ) ,

where (ṁ, l̇) is now taken to define a tangent vector to GH−1, as seen at the beginning of Section 5.3.
A very similar argument shows that

(max∗θ)(İ , İI) =

∫
S

〈İ , II〉daI ,

where (I, II) determine a point in GH−1 and (İ , İI) a tangent vector to GH−1 at this point.
Lemma 5.4 can therefore be stated as follows: on GH−1,

dV ∗+ = −1

4
max∗θ − 1

2
(∂′)∗θ .

Taking the differential, we obtain that

0 = −1

4
max∗ωr∗ −

1

2
(∂′)∗ωr∗ ,

and therefore that

(max ◦ (∂′)−1)∗ωr∗ + 2ωr∗ = 0 .

�

Proof of Theorem 1.11. The proof clearly follows from Proposition 5.8, and from the diagram in Figure
5, because Theorem 1.18 asserts that

(E ′)∗(1

2
(ωWP ⊕ ωWP )) = 2ωr∗ .

�

Proof of Theorem 1.3. The proof that the map Wmin : AF → GH is symplectic follows from Theorem
1.11 and from Remark 3.4. �

6. Constant mean curvature surfaces

In this section we consider the symplectic structures induced on the various moduli spaces of geometric
structures in 3 dimensions (AF ′,GH−1,GH0 and GH1) by their identification with T ∗T through constant
mean curvature surfaces. We then prove Theorem 1.7.

6.1. CMC surfaces in hyperbolic manifolds. Recall that AF ′ denotes the subspace of AF of almost-
Fuchsian metrics on S × R which admit a foliation by CMC surfaces, with mean curvature going from
−1 to 1. Conjecturally, AF ′ = AF . An elementary application of the maximum principle shows that
for h ∈ AF ′, (M,h) contains a unique closed, embedded CMC-H surface, which is a leave of the CMC
foliation.

Definition 6.1. For all H ∈ (−1, 1), we denote by CMCHypH : AF ′ → T ∗T the map sending a hyperbolic
metric h ∈ AF ′ to ([I], II0), where [I] is the conformal class of the induced metric and II0 is the traceless
part of the second fundamental form of the unique closed, embedded CMC-H surface in (M,h).
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A key point for us is that the symplectic form obtained onAF ′ by pulling back the cotangent symplectic
structure on T ∗T to AF ′ by all those maps is always the same. We will see below that the same result,
basically with the same proof, extends to globally hyperbolic constant curvature space-times.

Proposition 6.2. Let H,H ′ ∈ (−1, 1). Then (CMCHypH )∗ωr∗ = (CMCHypH′ )∗ωr∗.

Proof. We suppose, without loss of generality, that H ′ > H. Let Σ and Σ′ be the closed, embedded
surfaces with constant mean curvature H and H ′, respectively, and let Ω be the domain bounded by Σ
and Σ′. We orient both Σ and Σ′ towards increasing values of H. We define

V ∗(Ω) = V ol(Ω)−
∫

Σ′
H ′daI +

∫
Σ

HdaI .

Corollary 5.7 then indicates that, in a first-order deformation of g,

2V ∗(Ω)′ =

∫
Σ′

1

2
〈I ′, II − 2H ′I〉IdaI −

∫
Σ

1

2
〈I ′, II − 2HI〉IdaI .

(Note that the signs are slightly different from those in Corollary 5.7 because the orientation of Σ is
different, here it is towards increasing values of H and therefore towards the interior of Ω.)

Clearly we have
II = II0 +HI ,

so that
II − 2HI = II0 −HI .

As a consequence,

2V ∗(Ω)′ =

∫
Σ′

1

2
〈I ′, II0〉IdaI −H ′

∫
Σ′

1

2
〈I ′, I〉IdaI −

∫
Σ

1

2
〈I ′, II0〉IdaI +H

∫
Σ

1

2
〈I ′, I〉IdaI

=
1

2

∫
Σ′
〈I ′, II0〉IdaI −

1

2

∫
Σ

〈I ′, II0〉IdaI −H ′A(Σ′)′ +HA(Σ)′ .

Another way to state this is that

2d (2V ∗(Ω) +H ′A(Σ′)−HA(Σ)) = (CMCHypH′ )∗θ − (CMCHypH )∗θ ,

where θ is the Liouville form on T ∗T . It follows that

(CMCHypH′ )∗ωr∗ − (CMCHypH )∗ωr∗ = d((CMCHypH′ )∗θ − (CMCHypH )∗θ) = 0 .

�

6.2. CMC surfaces in Lorentzian space-times. Recall that, according to Theorem 1.4, any GHM
AdS manifold admits a unique foliation by CMC surfaces, with mean curvature going monotonically from
−∞ to ∞. This makes the following definition possible.

Definition 6.3. For all H ∈ R, we call CMCAdSH : GH−1 → T ∗T the map sending a GHM AdS metric
g ∈ GH−1 to ([I], II0), where [I] is the conformal class of the induced metric and II0 is the traceless part
of the second fundamental form of the unique closed, embedded CMC-H surface in (M, g).

Proposition 6.4. Let H,H ′ ∈ (−∞,∞). Then (CMCAdSH )∗ωr∗ = (CMCAdSH′ )∗ωr∗.

The proof is exactly the same as in the hyperbolic setting, since the dual Schläfli formula has the same
statement.

Things are similar in the de Sitter setting. According to Theorem 3.7, any GHM de Sitter manifold
has a unique foliation by CMC surfaces, with mean curvature varying between −∞ and −1 (with the
orientation conventions used here).

Definition 6.5. For all H ∈ (−∞,−1), we call CMCdSH : GH1 → T ∗T the map sending a GHM dS
metric g ∈ GH1 to ([I], II0), where [I] is the conformal class of the induced metric and II0 is the traceless
part of the second fundamental form of the unique closed, embedded CMC-H surface in (M, g).

Proposition 6.6. Let H,H ′ ∈ (−∞,−1). Then (CMCdSH )∗ωr∗ = (CMCdSH′)
∗ωr∗.
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The proof is again almost the same as for Proposition 6.2 above. The smooth Schläfli formula has a
different sign in de Sitter manifolds, and it now reads:

V (Ω)′ = −
∫
∂Ω

H ′ +
1

4
〈I ′, II〉IdaI .

Therefore one has to define the dual volume as

V ∗(Ω) = V (Ω) +

∫
∂Ω

HdaI ,

and the variation formula for V ∗ has a minus sign compared to the hyperbolic or AdS cases. However
the proof of Proposition 6.6 can be done as the proof of Proposition 6.2, with obvious sign differences.

Finally, in the Minkowski space, Theorem 3.7 indicates that any GHM Minkowski manifold has a
unique foliation by CMC surfaces, with mean curvature varying between −∞ and 0.

Definition 6.7. For all H ∈ (−∞, 0), we call CMCMink
H : GH0 → T ∗T the map sending a GHM AdS

metric g ∈ GH0 to ([I], II0), where [I] is the conformal class of the induced metric and II0 is the traceless
part of the second fundamental form of the unique closed, embedded CMC-H surface in (M, g).

Proposition 6.8. Let H,H ′ ∈ (−∞, 0). Then (CMCMink
H )∗ωr∗ = (CMCMink

H′ )∗ωr∗.

The proof is again similar, but with larger differences. The smooth Schläfli formula now reads as∫
∂Ω

H ′ +
1

4
〈I ′, II〉IdaI = 0 .

We now define

F (Ω) =

∫
∂Ω

2HdaI ,

and have the following variation formula for F under a first-order deformation:

F (Ω)′ =

∫
∂Ω

1

2
〈I ′, II − 2HI〉IdaI .

The proof of Proposition 6.8 can then proceed as the proof of Proposition 6.2, with F instead of V ∗.

Proof of Theorem 1.7. Note that for all H ∈ (−1, 1) and H ′ ∈ (−∞,∞), we have

WAdS
H,H′ = (CMCAdSH′ )−1 ◦ CMCHypH .

We first consider the special case where H = H ′ = 0. With the notations used above, CMCHyp0 = min

while CMCAdS0 = max. We already know by Theorem 3.3 that min : (AF , ωiG)→ (T ∗T , ωr∗) is symplectic
up to the sign, that is

min∗ωr∗ = −ωiG .

Moreover, WAdS
0,0 = Wmin : (AF , ωiG)→ (GH−1,

1
2 (ωWP ⊕ωWP )) is symplectic by Theorem 1.3. It follows

that max : (GH−1,
1
2 (ωWP ⊕ ωWP ))→ (T ∗T ,−ωr∗) is also symplectic.

Proposition 6.2 and Proposition 6.4 therefore indicate that for all H ∈ (−1, 1) and H ′ ∈ (−∞,∞),

CMCAdSH′ and CMCHypH are symplectic. Therefore, WAdS
H,H′ : (AF ′, ωiG)→ (GH−1,

1
2 (ωWP ⊕ωWP )) is also

symplectic. �

7. Minkowski and de Sitter manifolds

In this section we prove that the symplectic structure ωiG on the moduli space GH1 of globally hy-
perbolic de Sitter manifolds is identical (up to the sign) to the symplectic structure induced by the
identification of GH1 with T ∗T through CMC surfaces. The proof of Theorem 1.19 will follow.

We then describe some conjectural statements for globally hyperbolic Minkowski manifolds.
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7.1. De Sitter CMC Wick rotation are symplectic. The proof of Theorem 1.19 is mostly based,
in addition to the content of the previous sections, on the following proposition. We call ∆ : HE → GH1

the duality map, that is, the map sending a hyperbolic end E to the “dual” GHM de Sitter manifold,
which has the same complex projective structure at future infinity as E. So ∆ = (∂dS∞ )−1 ◦ ∂Hyp∞ is a
homeomorphism from HE to GH1, such that ∆∗ωiG = ωiG. We also call ∆′ the restriction of ∆ to the
space AF ′ of almost-Fuchsian metrics admitting a folation by CMC surfaces.

Proposition 7.1. For all H∗ ∈ (−∞,−1) and all H ∈ (−1, 1), we have

(CMCdSH∗ ◦∆′)∗ωr∗ = (CMCHypH )∗ωr∗ .

The proof is based on a basic differential geometry computation concerning the term which appears
in the smooth Schläfli formula of Lemma 5.6.

Lemma 7.2. Let Σ be a closed, embedded, locally convex surface with non-degenerate shape operator in
a hyperbolic end E. In a first-order deformation of E and Σ, we have on Σ

2H ′ +
1

2
〈I ′, II〉IdaI =

1

2
〈III ′, II − 2H∗III〉IIIdaIII ,

where III is the third fundamental form of Σ and H∗ = H/(K + 1) is the mean curvature of the dual
surface.

Proof. By definition, we have III = I(B·, B·), where B is the shape operator of Σ. Let B∗ = B−1 and let
id denote the identity, then

II − 2H∗III = III((B∗ − tr(B∗)Id)·, ·) = III

(
B

detB
·, ·
)
.

Let A : TΣ → TΣ be the self-adjoint (for I) bundle morphism such that I ′ = I(A·, ·). Then a simple
computation shows that

III ′ = III((B−1AB +B−1B′ + (B−1B′)†)·, ·) ,
where the † is the adjoint with respect to III. Therefore

〈III ′, II − 2H∗III〉III =
tr((B−1AB +B−1B′ + (B−1B′)†)B)

detB
.

Since B† = B, it follows that

〈III ′, II − 2H∗III〉III =
tr(AB + 2B′)

detB
.

But daIII = det(B)daI , so it follows that

〈III ′, II − 2H∗III〉IIIdaIII = tr(AB + 2B′)daI = (4H ′ + 〈I ′, II〉I)daI ,

as needed. �

Proof of Proposition 7.1. Let E ∈ HE be a hyperbolic end, and let M ∈ GH1 be the dual GHM de Sitter
manifold. Thanks to Proposition 6.2 and Proposition 6.6, we only need to prove the statement for any
arbitrary value of H and H∗, so we suppose (without loss of generality) that Σ∗H∗ is on the positive side
of ΣH .

We denote by Ω the domain of M bounded by ΣH and Σ∗H∗ . We then define

W = V (Ω) +

∫
ΣH

HdaI = V (Ω)−HA(ΣH) .

It then follows from Lemma 5.6 and from Corollary 5.7 that, in a first-order deformation of M ,

2W ′ =

∫
Σ∗H∗

2H ′∗ +
1

2
〈I ′, II〉daI −

∫
ΣH

1

2
〈I ′, II − 2HI〉daI .

(The sign differs from that of Corollary 5.7 because of the orientation on ΣH .)
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Using Lemma 7.2, we can reformulate this equation as

2W ′ =

∫
Σ∗H∗

1

2
〈III ′, II − 2H∗III〉daIII −

∫
ΣH

1

2
〈I ′, II − 2HI〉daI .

Now the duality between H3 and dS3 exchanges the induced metric and the third fundamental forms of
surfaces, and the equation becomes

2W ′ =

∫
ΣH∗

1

2
〈I ′, II − 2H∗I〉daI −

∫
ΣH

1

2
〈I ′, II − 2HI〉daI

=

∫
ΣH∗

1

2
〈I ′, II0〉daI −H∗A(ΣH∗)

′ −
∫

ΣH

1

2
〈I ′, II0〉daI +HA(ΣH)′ .

This means that

d(2W +H∗A(ΣH∗)−HA(ΣH)) = (CMCHypH )∗θ − (CMCdSH∗)
∗θ ,

where θ denotes again the Liouville form of T ∗T . The result follows by taking the exterior differential of
this last equation. �

We can now prove Theorem 1.19.

Proof of Theorem 1.19. Let H ∈ (−1, 1) and H∗ ∈ (−∞,−1), then it follows from the definition of W dS
H,H∗

that

W dS
H,H∗ = (CMCdSH∗)

−1 ◦ CMCHypH .

The statement therefore follows directly from Proposition 7.1, along with Theorem 3.3. �

7.2. Minkowski Wick rotations and Wick rotations between moduli spaces of Lorentzian
space-times. We do not elaborate here on the symplectic properties of Wick rotations between quasi-
fuchsian manifolds and GHM Minkowski manifolds. Note that there are at least two natural Wick
rotations one can consider:

• The map Wmink
H,H′ : AF ′ → GH0, depending on the choice of H ∈ (−1, 1) and of H ′ ∈ (−∞, 0)

sending an almost-Fuchsian manifold M ∈ AF ′ containing a CMC-H surface ΣH to the unique
GHM Minkowski containing a CMC-H ′ surface with the same data ([I], II0) as Σ. (This map is
well-defined by [26, Lemma 6.1].)
• The map sending a hyperbolic end E with boundary data (m, l) ∈ T ×ML on its pleated surface

to the GHM Minkowski manifold for which (m, l) describes the initial singularity (see [32]).

It would be interesting to know whether those maps have interesting properties related to the natural
symplectic structures on AF ′ (resp. HE) and on GH0.

As a final note, we have considered here only Wick rotations between hyperbolic manifolds and constant
curvature Lorentzian space-times — either AdS, de Sitter or Minkowski. However a number of state-
ments on “Wick rotations” between constant curvature Lorentzian space-times of different types (AdS to
Minkowski, etc) clearly follow by composing different maps. We leave the details to the interested reader.
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