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Abstract. Based on frequency-domain transformation technique, this paper pro-
poses an attack detection scheme for stochastic control systems under stochastic
cyber-attacks and disturbances. The focus is on designing an anomaly detector for
the stochastic control systems. First, we construct a model of stochastic control
system with stochastic cyber-attacks which satisfy the Markovian stochastic pro-
cess. And we also introduced the stochastic attack models that a control system is
possibly exposed to. Next, based on the frequency-domain transformation tech-
nique and linear algebra theory, we propose an algebraic detection scheme for a
possible stochastic cyber-attack. We transform the detector error dynamic equa-
tion into an algebraic equation. By analyzing the rank of the stochastic matrix
E (Q(z0)) in the algebraic equation, residual information is obtained and anoma-
lies in the stochastic system are detected. In addition, sufficient and necessary
conditions guaranteeing the detectability of the stochastic cyber-attacks are ob-
tained. The presented detection approach in this paper is simple, straightforward
and more ease to implement. Finally, the results are applied to some physical
systems that are respectively subject to a stochastic data denial-of-service (DoS)
attack and a stochastic data deception attack on the actuator. The simulation re-
sults underline that the detection approach is efficient and feasible in practical
application.

Keywords: Cyber-attacks detection, Stochastic control system, Stochastic DoS
attack, Stochastic data deception attack.

1 Introduction

As networks become ubiquitous and more and more industrial control systems are also
connected to open public networks, control systems are increasingly exposed to cyber-
attacks [1]-[4]. Some well-known examples are the Nimda attack [2], the SQL Slam-
mer attack [3], the July 2009 cyber-attacks [4]. A control system is vulnerable to these
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threats and successful attacks on control systems can cause serious consequences which
may lead to the loss of vital societal function, financial loss and even loss of life [5].
Therefore, these attacks should be detected as soon as possible in order to prevent seri-
ous consequences. In recent years, the problem of cyber-attacks on controlled systems
has been realized and it is currently attracting considerable attention (see e.g. [6]-[21]).
For example, S. Amin [6] and D. G. Eliades [13] did research on the cyber security
of water systems. A.R. Metke [14], S. Sridhar [15], A.H. Mohsenian-Rad [16] and F.
Pasqualetti [21] focus on cyber-attacks on smart grid systems. While cyber-attacks in
conventional IT systems are only influencing information, cyber-attacks on control sys-
tems are changing physical processes and hence the real world [17]. Previous methods
and tools used to protect traditional information technology against cyber-attacks might
finally not completely prevent successful intrusion of malware in the control system.
Therefore, new approaches are needed. Although networked control systems are pro-
tected by information technology (IT) security measures, attackers might nevertheless
find a way to get unauthorized access and compromise them by means of cyber-attacks.
This cyber-attacks should be detected as soon as possible with an acceptable false alarm
rate and also be identified and isolated. Therefore, there is an urgent need for an effi-
cient cyber-attack detection system as an integral part of the cyber infrastructure, which
can accurately detect cyber-attacks in a timely manner such that countering actions can
be taken promptly to ensure the availability, integrity and confidentiality of the sys-
tems. These new requirements increase the interest of researchers in the development
of cyber-attack detection and isolation techniques [17]-[20]. However, the existing de-
tection approaches [17]-[20] are not yet sufficient to cope with complex cyber-attacks
on a control process, which motivates our research in this area.

This paper presents an algebraic detection approach for a stochastic control sys-
tem under stochastic cyber-attacks and disturbances. The basic idea is to use suitable
observers to generate residual information with regard to cyber-attacks, i.e. compro-
mised sensor signals and controller outputs. An anomaly detector for the stochastic
system under stochastic cyber-attacks is derived. The main contributions in the paper
are as follows. First, we construct a model of stochastic control system with stochastic
cyber-attacks which satisfy the Markovian stochastic process. And we also introduced
the stochastic attack models that a control system is possibly exposed to. Next, based
on the frequency-domain transformation technique and linear algebra theory, we pro-
pose an algebraic attack detection scheme for the control system subject to stochastic
cyber-attacks and disturbances. F. Hashim [18] also use a frequency domain analysis
in the detection of DoS attacks, he proposes the detection algorithm by investigating
the frequency spectrum distribution of the network traffic. However, we transform the
detector error dynamic equation into an algebraic equation, which make the discus-
sion of the problem simpler and more straightforward. Moreover, we extend the idea
in [22] to control systems with stochastic disturbances and apply it to detect a possible
stochastic attack. Here, we consider the possible cyber-attacks as the non-zero solutions
of the algebraic equation and the residual as its constant vector. By analyzing the rank
of stochastic matrix E (Q(z0)) in the algebraic equation, the residual information is ob-
tained. Further, based on the rank of E(Q(z0)) and the obtained residual information,
we are able to determine the detectability of the possible cyber-attacks. Some sufficient
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and necessary conditions are obtained, which guarantee that a stochastic cyber-attack is
detectable or undetectable. In addition, by using the linear matrix inequation (LMI) al-
gorithm, we also propose an approach for determining the detector gain matrix. Finally,
the obtained results are applied to some physical systems that are respectively subject to
stochastic data DoS attacks and stochastic data deception attacks on the actuator. Two
simulation examples are given to illustrate the effectiveness of the obtained results. In
example 1, we discuss a control system that is subjected to a stochastic data deception
attack and disturbance. In example 2, we use the laboratory process in [23] that con-
sists of four interconnected water tanks (QTP). Simulation results underline that the
proposed attack detection approach is effective and feasible in practical application.

The paper is organized as follows. In section II, the system models and the mod-
els of stochastic attacks are introduced. In section III, the main results and proofs are
presented. We design an anomaly detector for a control system under stochastic cyber-
attacks and disturbances. Some sufficient and necessary conditions guaranteeing the
detectability of cyber-attacks are obtained. In section IV, we provide two simulation ex-
amples to demonstrate the effectiveness and feasibility of the obtained results. Finally,
some conclusions are discussed in Section V.

2 Problem Formulation

Consider the following stochastic control system:

.
x(t) = Ax(t)+Bu(t)+α(t)F1aa

k(t)+E1ω(t)

x(0) = x0 (1)

y(t) = Cx(t)+β (t)F2as
k(t)+E2ν(t)

where x(t) ∈ Rn is the state vector. x0 is the initial state, y(t) ∈ Rm is the measurement
output, u(t)∈ Rr is the known input vector. aa

k(t)∈ Rr denotes the actuator cyber-attack
or the physical attack and as

k(t) ∈ Rm denotes the sensor cyber-attack. ω(t) and ν(t)
are systems noise and process noise, respectively. A,B,F1,E1,and C,F2,E2 are known
constant matrices with appropriate dimensions. α(t) and β (t) are Markovian stochastic
processes taking the values 0 and 1 and satisfy the following probability

E{α(t)} = Prob{α(t) = 1}= ρ (2)

E{β (t)} = Prob{β (t) = 1}= σ .

Where event α(t) = 1(or β (t) = 1) shows the actuator (or the sensor) of the system is
subjected to a cyber-attack, so an actuator cyber-attack aa

k(t) (or a sensor cyber-attack
as

k(t)) occurs; event α(t) = 0 (or β (t) = 0) implies no a cyber-attack on the actuator (or
on the sensor). ρ ∈ [0,1] (or σ ∈ [0,1]) reflects the occurrence probability of the event
that the actuator (or the sensor) of the system is subjected to a cyber-attack. Assuming
α(t) and β (t) are independent stochastic variables and satisfy

E{α(t)β (t)}= E{α(t)}E{β (t)}. (3)
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Further, assuming α(t) and β (t) are independent of measurement noises ω(t),ν(t) and
the initial state x0. Generally, cyber-attacks targeting control systems mainly include
denial-of-service (DoS) attacks and deception attacks. In the sequel of the paper, we
introduce these attack models that can be modelled by the stochastic system model (1).

2.1 Modeling Stochastic Data Denial-of-Service Attacks

In stochastic data DoS attacks, the objective of the adversary is to prevent the actua-
tor from receiving control commands or the controller from receiving sensor measure-
ments. Therefore, by jamming the communication channels, compromising devices and
preventing them from sending data, attacking the routing protocols, flooding the com-
munication network with random data and so on, the adversary can launch a stochastic
data DoS attack that satisfies Markovian stochastic processes. Using the general frame-
work (1), a stochastic DoS attack on the actuator and on the sensors can be respectively
modelled as

⎧
⎨

⎩

α(t) ∈ {0,1} , t ≥ t0
F1 = B

aa
k(t) =−u(t)

(I) and

⎧
⎨

⎩

β (t) ∈ {0,1} , t ≥ t0
F2 =C

as
k(t) =−x(t)

(II)

2.2 Modeling Stochastic Data Deception Attacks

In stochastic data deception attacks, the adversary attempts to prevent the actuator or the
sensor from receiving an integrity data, therefore, he sends false information ũ(t) �= u(t)
or ỹ(t) �= y from controllers or sensors. The false information can include: a wrong
sender identity, an incorrect sensor measurement or an incorrect control input; an in-
correct time when a measurement was observed, or inject a bias data that cannot be
detected in the system. The adversary can launch these attacks by obtaining the se-
cret keys or by compromising some controllers or sensors. A stochastic data deception
attack on the actuator and on the sensors can be modelled as

⎧
⎨

⎩

α(t) ∈ {0,1} , t ≥ t0
F1 = B

aa
k(t) =−u(t)+ ba

k(t)
(III) and

⎧
⎨

⎩

β (t) ∈ {0,1} , t ≥ t0
F2 =C

as
k(t) =−x(t)+ bs

k(t)
(IV)

where ba
k(t) and bs

k(t) are deceptive data that the adversary attempts to launch on the
actuator and the sensor, respectively.

Especially, when the adversary attempts to launch a detective data ba
k(t) (or bs

k(t))
that makes the transfer function Gba

kr(s) (or Gbs
kr(s)) is zero, a zero dynamic attack

occurs. Where Gba
kr(s) (or Gbs

kr(s)) is the transfer function from the zero attack signal
to residual signal. Obviously, a zero dynamic attack is undetectable. A stochastic zero
dynamic attack on the actuator and sensor can be respectively modelled as

⎧
⎪⎪⎨

⎪⎪⎩

α(t) ∈ {0,1} , t ≥ t0
F1 = B

aa
k(t) = ba

k(t)
Gba

kr(s) = 0

(V) and

⎧
⎪⎪⎨

⎪⎪⎩

β (t) ∈ {0,1} , t ≥ t0
F2 =C

as
k(t) = bs

k(t)
Gbs

kr(s) = 0

(VI)
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3 Stochastic Cyber-Attack Detection Scheme Based on
Frequency-Domain Description

In this section, our objective is the anomaly detection. We assume the following con-
ditions are satisfied: (1) the pair (A,B) is controllable; (2) (A,C) is observable. For
convenience on discussion, we ignore the influence of control inputs in the sequel of
the paper because they do not affect to the residual when there are no modeling errors
in the system transfer matrix. Therefore, the system can be rewritten (1) as follows

.
x(t) = Ax(t)+α(t)F1aa

k(t)+E1ω(t)

x(0) = x0 (4)

y(t) = Cx(t)+β (t)F2as
k(t)+E2ν(t).

We assume the following anomaly detector

.

x̃(t) = Ax̃(t)+ B̃r(t)

x̃(0) = 0 (5)

r(t) = y(t)−Cx̃(t)

where B̃ is the detector gain matrix, the output r(t) represents the residual.
We consider system (4) and detector (5). Let

e(t) = x(t)− x̃(t)

then we obtain the following anomaly detector error dynamic

.
e(t) = Ae(t)+Bak(t)+E1d(t) (6)

r(t) = Ce(t)+Dak(t)+E2d(t)

with the following matrices

A = (A− B̃C), B =
[

F1α(t) −β (t)B̃F2
]
, E1 =

[
E1 −B̃E2

]
(7)

D =
[

0 F2β (t)
]
, E2 =

[
0 E2

]

and the vectors

ak(t) =

[
aa

k(t)
as

k(t)

]

,d(t) =

[
w(t)
v(t)

]

,d1(t) =

[
ak(t)
d(t)

]

. (8)

First, we give the definition of an undetectable cyber-attack on control systems which
will be used in the sequel of the paper.

Definition 1. For the stochastic control system (4) and the detector (5), if a cyber-attack
ak(t) on the system (4) leads to the residual r(t) of the measurement output equal to
zero, then the attack is undetectable.
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Before presenting the main results, we first give the following lemmas that can be
used to determine the detector gain matrix.

Lemma 1. [8] The error dynamic (6) with d1(t) = 0 is asymptotically stable, if there
exists symmetric positive definite matrix P > 0 and matrix X such that the following
LMI holds

Λ = AT P+PA−CTXT −XC < 0. (9)

When the LMI is solvable, the detector gain matrix is given by B̃ = PX .
Next, based on a frequency-domain description, we transform the error dynamic (6)

into the following algebraic equation

Q(s)X(s) = B(s) (10)

where

Q(s) =

[
A− sI Bk E1

C Dk E2

]

, X(s) =

⎛

⎝
e(s)
ak(s)
d(s)

⎞

⎠ , B(s) =

(
0

r(s)

)

.

Remark 1. Here, due to the cyber-attack ak(t) is a stochastic signal, matrices B and
D are the resulting stochastic matrices, correspondingly, the system matrix Q(s) is a
stochastic matrix. In order to obtain effective results, we introduce E(Q(s)) that is a
mathematical expectation of the stochastic matrix Q(s) and

E (Q(s)) = E

[
(A− B̃C)− sI F1α(t) −β (t)B̃F2 E1 −B̃E2

C 0 β (t)F2 0 E2

]

=

[
(A− B̃C)− sI ρF1 −σ B̃F2 E1 −B̃E2

C 0 σF2 0 E2

]

.

Further, by discussing the rank of stochastic matrix E (Q(s)), we obtain some important
results.

Theorem 1. For the system (4), assume that the expectation of the stochastic matrix
E(Q(s)) has full column normal rank. The cyber-attack ak(t) (0 �= ak(t) ∈ G) as t = z0

is undetecable, if and only if there exists z0 ∈ C, such that

E (Q(z0))Y (z0) = 0. (11)

Where

E (Q(z0)) =

[
(A− B̃C)− z0I ρF1 −σ B̃F2 E1 −B̃E2

C 0 σF2 0 E2

]

Y T (z0) =
(

e(z0) aa
k(z0) as

k(z0) w(z0) v(z0)
)T

G is a set of undetectable cyber-attacks and the detector gain matrix B̃ = PX is given by
Lemma 1.

Proof. (if) The proof of the sufficiency is obvious. If there is a z0 ∈ C such that (11)
holds for all ak(z0) ∈ G, it becomes obvious that the equation (10) is homogeneous.
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Therefore, the output residual r(z0) = 0 and the cyber-attack ak(t) as t = z0 is unde-
tectable.

(only if) Assume that the cyber-attack ak(t) as t = z0 is undetectable and since

E(Q(s)) = E

[
A− sI B E1

C D E2

]

has full column normal rank, then by the definition 1, there must exist a z0 ∈ C such
that the residual r(z0) = 0 and

E (Q(z0))X(z0) = 0. (12)

Substituting (7) into (12), we obtain (11). The proof of Theorem is completed.
From Theorem 1, we can obtain the following corollary:

Corollary 1. For the system (4), assume that the expectation of the stochastic matrix
E(Q(s)) has full column normal rank. The cyber-attack ak(t) (0 �= ak(z0) ∈ G) as t = z0

is an undetectable zero dynamic attack, if there exists z0 ∈ C and e0 �= 0, such that

[
(A− B̃C)− z0I ρF1 −σ B̃F2

C 0 σF2

]
⎛

⎝
e0

aa
0

as
0

⎞

⎠= 0. (13)

Where e0 = e(0) is an error state zero direction associated with z0, aa
0 and as

0 are zero
dynamics attack directions on the actuator and the sensor, respectively. Under this con-

dition, we can obtain the zero attack policy as ak(t) =

(
aa

0
as

0

)

ez0t such that the transfer

function Gaa
kr(s) = 0 and Gas

kr(s) = 0.
Corollary 1 is a consequence of Theorem 1.

Theorem 2. For the system (4), assume that the expectation of the stochastic matrix
E (Q(s)) has full column normal rank. The cyber-attack ak(t) (0 �= ak(t) ∈ G) as t = z0

is undetectable, if and only if there exists z0 ∈ C such that

rankE(Q(z0))< dim(Y (z0)). (14)

Where dim(Y (z0)) is the dimension of vector Y (z0).

Proof. (if) Since the expectation of stochastic matrix E(Q(s)) has full column normal
rank and there is a z0 ∈ C such that

rankE(Q(z0))< dim(Y (z0)).

It becomes obvious that z0 is an invariant zero [22] of the detector error dynamic(6).
Then by Theorem 1, the cyber-attack ak(t) as t = z0 is undetectable.

(only if) Assume that the cyber-attack ak(t) as t = z0 is undetectable, then there must
exist a z0 ∈ C such that the residual r(z0) = 0 and the following equation

E(Q(z0))Y (z0) = B(z0) (15)
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is a homogeneous equation, i.e.

E(Q(z0))Y (z0) = 0. (16)

If we assume
rankE(Q(z0)) = dim(Y (z0))

then the homogeneous equation (16) has a zero as its unique solution. However, this is
contradictory to the condition that

Y
∣
∣s=z0 �= 0

is a solution of (16). Therefore the assumption is false, only

rankQ(z0)< dim(Y (z0))

is true. This finally completes the proof of Theorem 2.
The following theorem shows the condition that the stochastic cyber-attacks are de-

tectable.

Theorem 3. For the system (4), assume that the expectation of stochastic matrix E(Q(s))
has full column normal rank. The cyber-attack ak(t) (0 �= ak(t)∈G) is detectable, if and
only if the following condition

rankE(Q(z0)) = dim(Y (z0)) (17)

always holds for any z0 ∈ C. Where G is a set of detectable cyber-attacks, dim(Y (z0))
is the dimension of vector Y (z0).

Proof. The proof of the Theorem 3 is similar to that of the Theorem 2, therefore, we
omit it.

Actually, the Theorem 3 is equivalent to the following corollary.
Corollary 2. For the system (4), assume that the expectation of stochastic matrix

E(Q(s)) has full column normal rank. The cyber-attack ak(t) (0 �= ak(t) ∈ G) is de-
tectable, if and only if no z0 ∈ C exists such that

rankE(Q(z0))< dim(Y (z0)) (18)

4 Simulation Results

In this section, we provide two simulation examples to illustrate the effectiveness of the
obtained results.

Example 1. Consider the following system that is subjected to a stochastic data decep-
tion attack (III)

.
x(t) = Ax(t)+α(t)Baa

k(t)+E1ω(t)

x(0) = x0 (19)

y(t) = Cx(t).
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and with the following parameters:

A =

⎡

⎢
⎢
⎣

−0.9 0 0.1 0
0 −0.2 0 −0.1
0 0 −0.4 0
0 0 0 −0.3

⎤

⎥
⎥
⎦ ,B =

⎡

⎢
⎢
⎣

0.03
0
0

0.09

⎤

⎥
⎥
⎦ ,E1 =

⎡

⎢
⎢
⎣

0
0.04545
0.09090

0

⎤

⎥
⎥
⎦ ,C =

[
0.5 0 0 0
0 0.5 0 0

]

.

Applying the Lemma 1, the corresponding detector gain matrix is obtained as follows

B̃ =

⎡

⎢
⎢
⎣

0.58890 0
0 3.5714

0.0981 0
0 −0.7143

⎤

⎥
⎥
⎦ .
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Fig. 1. The time response of residual and error dynamic under aa
k(t) = 0 and ω(t) = 0

Set the initial conditions as x(0) = [0.8,−0.5,−1,0.2]Tand x̃(0) = [0,0,0,0]T . When
the stochastic event α(t) = 0, the system is not subject to a cyber-attack, i.e. aa

k(t) = 0.
The error dynamic without stochastic attacks and noises should be asymptotically stable
according to Lemma 1. Fig.1. displays the time response of the residual signal and the
error dynamic under aa

k(t) = 0 and ω(t) = 0. Fig.2. displays the time response of the
system states and the residual signal under noise ω(t) �= 0 and attack aa

k(t) = 0. These
simulation results show that the system (19) is stable when the attack signal aa

k(t) = 0.
When the stochastic event α(t) = 1 and the attacked probability ρ = 0.8, the stochas-

tic matrix rank(E(Q(s))) = 6, and no z0 exists such that rank(E(Q(z0))) < 6, that is
to say, for any z0, rank(E(Q(z0))) has always full column rank. According to Theorem
3, the deception signal aa

k(t) is detectable. Fig.3. shows the deception signal aa
k(t) and

stochastic noise signal, respectively. Fig.4. shows the time response of the residual and
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Fig. 2. The time response of residual and system states under ω(t) �= 0 and aa
k(t) = 0
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Fig. 3. The noise signal ω (t) and deception attack signal aa
k(t)
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Fig. 4. The time response of residual and plant states under deception signal aa
k(t)

Fig. 5. Quadruple-tank water system

system (19) under the deception signal aa
k(t). Fig.4. also demonstrates the system can

not be work normally under the cyber-attack. Simulation results underline that a cyber-
attack can be effectively detected if the condition in the Theorem 3 is satisfied.

Example 2. Consider the model of the QTP (see [23]):

.
x = Ax+Bu (20)

y = Cx.

The QTP controlled through a wireless communication network, which is depicted in
Fig.5. In order to detect the attacks on the actuators Pump 1 and Pump 2, we consider
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Fig. 6. The time response of residual and error dynamic without attack

the operating points P+ [23] with the following parameters:

A =

⎡

⎢
⎢
⎣

−0.0158 0 0.0256 0
0 −0.0109 0 0.0178
0 0 −0.0256 0
0 0 0 −0.0178

⎤

⎥
⎥
⎦ ,B =

⎡

⎢
⎢
⎣

0.0482 0
0 0.0350
0 0.0775

0.0559 0

⎤

⎥
⎥
⎦ ,C =

[
0.5 0 0 0
0 0.5 0 0

]

.

Assume that the system (20) is subject to a zero dynamic attack (V) on the actuator, the
corresponding detector gain matrix can be obtained as follows

B̃ =

⎡

⎢
⎢
⎣

0.7852 0
0 0.4766

2.7432 0
0 1.4367

⎤

⎥
⎥
⎦ .

When the stochastic event α(t) = 0, i.e. aa
k(t) = 0, Fig.6. displays the error dynamic

is asymptotically stable. When the stochastic event α(t)= 1 and the attacked probability
ρ = 0.5, the stochastic matrix rank(E(Q(s))) = 6, however, there exists a z0 = 0.0127
such that rank(E(Q(z0))) = 5 < 6. According to Theorem 2, the cyber-attacks signal is
undetectable, because it is possible for the adversary to launch a stochastic zero attack
signal aa

k(t) as the following:

aa
k(t) =

[−1.074
1

]

e0.0127t

such that the transfer function Gaa
kr(s) is zero. Fig.7. displays the attack signal aa

k(t)
and the time response of the residual and the QTP under the attack, respectively. It is
clear that the QTP can not work normally under the stochastic attack. Simulation results
demonstrate that a cyber-attack on the control system is undetectable if the condition in
the Theorem 2 is satisfied.
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Fig. 7. The attack signal and the time response of residual and plant states under zero dynamic
attack aa

k(t)

5 Conclusion

This paper presents an algebraic detection scheme for control systems under stochastic
cyber-attacks and disturbances. It is a relatively simple and straightforward detection
approach. Based on the frequency-domain transformation technique and linear algebra
theory, an effective anomaly detector is derived. Further, some sufficient and necessary
conditions are obtained, which guarantee that a stochastic cyber-attack is detectable or
undetectable. The main work focuses on stochastic cyber-attacks detection approach
on control systems and we mention the stochastic attacks model that control systems
are possibly exposed to. The proposed scheme is applied to some physical systems that
are subject to the stochastic data DoS attack and data deception attack, respectively.
Simulation results underline that the proposed attack detection approach is effective and
feasible in practical application. Before the cyber intruders are removed and the security
branches are closed, or operators start the repair or exchange of faulty components, the
physical process must be kept in a safe state as long as possible. Therefore, next steps
that are urgent for us to consider are the cyber-attacks fault-tolerant control and fault
estimation on control systems.
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