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BICATEGORIES OF FRACTIONS
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ABsTrACT. We fix any bicategory &/ together with a class of morphisms
W s, such that there is a bicategory of fractions & [W;}] (as described

by D. Pronk). Given another such pair (%, Wg) and any pseudofunctor
F : o — A, we find necessary and sufficient conditions in order to have an in-

duced pseudofunctor G : &/ [W;}] — B [VVL_QI] Moreover, we give a simple

description of G in the case when the class W g is “right saturated”.
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INTRODUCTION

In 1996 Dorette Pronk introduced the notion of (right) bicalculus of fractions
(see [Pr]), generalizing the concept of (right) calculus of fractions (described in
1967 by Pierre Gabriel and Michel Zisman, see [GZ]) from the framework of ca-
tegories to that of bicategories. Pronk proved that given a bicategory ¢ together
with a class of morphisms W (satisfying a set of technical conditions called (BF)),
there are a bicategory € [W‘l] (called (right) bicategory of fractions) and a pseu-
dofunctor Uw : € — € [W_l]. Such a pseudofunctor sends each element of W
to an internal equivalence and is universal with respect to such property (see [Pr]
Theorem 21]). The structure of ¢ [W~!] depends on a set of choices [C(W) in-
volving axioms (BF) (see § [[2)); by the universal property of Uy, different sets of
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2 MATTEO TOMMASINI
choices give rise to equivalent bicategories.

Now let us suppose that we have fixed any 2 pairs (&, W) and (%, Wg), both

admitting a right bicalculus of fractions, and any pseudofunctor F : & — %. Then

the following 3 questions arise naturally:

(a) what are the necessary and sufficient conditions such that there are a pseudo-
functor G and a pseudonatural equivalence « as in the following diagram?

o > B
Uw .y h / K huwge
]

(0.1)

(b) If a pair (G, k) as above exists, can we express G in a simple form, at least in
some cases?

(c) Again if (G, k) as above exists, what are the necessary and sufficient conditions
such that G is an equivalence of bicategories?

We are going to give an answer to (a) and (b) in this paper, while an answer to (c)
will be given in the next paper [T2]. In order to prove the results of this paper, a
key notion will be that of (right) saturation: given any pair (¢, W) as above, we
define the (right) saturation Wg,; of W as the class of all morphisms f: B — A in
%, such that there are a pair of objects C, D and a pair of morphisms g : C — B,
h : D — C, such that both f o g and g o h belong to W. If (¢, W) satisfies
conditions (BF), then W C Wy, and W,y = Wyt sat, thus explaining the name
“saturation” for this class. Moreover, we have the following key result:

Proposition 0.1. (Lemma and Proposition 2T0) Let us fiz any pair (6, W)
satisfying conditions (BF). Then also the pair (€, Wgat) satisfies the same condi-
tions, so there are a bicategory of fractions € [W;ﬂ and a pseudofunctor

Uw., 1 C — C [Wai] (0.2)
with the universal property. Moreover, there is an equivalence of bicategories H :

4 [W;ﬂ - % [Wfl} and a pseudonatural equivalence of pseudofunctors T :
Uw = H olUw

sat

sat *
Then an answer to questions (a) is given by the equivalence of (i) and (iii) below.

Theorem 0.2. Let us fix any 2 pairs (o, W o) and (B, W g), both satisfying
conditions (BF), and any pseudofunctor F : of — 9B. Then the following facts are
equivalent:

(Z) fl(wﬂ) c W@,sat;’

(”) fl(w&z{,sat) c W%,sat;

(iii) there are a pseudofunctor G and a pseudonatural equivalence of pseudofunctors
K as in [@I);

(iv) there is a pair (G,k) as in (i), such that the pseudofunctor p, : o —
Cyl (,@ [Wél}) associated to k sends each morphism of W 4 to an internal
equivalence (here Cyl(€) is the bicategory of cylinders associated to any given
bicategory €, see |Bl, pag. 60]).

Then we are able to give a complete answer to question (b) in the case when
F1(W ) € W g: this condition in general is slightly more restrictive than condition
(i) above. In the case when F1(W ) is only contained in W g ot and not in W g,
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we can still give a complete answer to question (b), provided that we allow as target
the bicategory % [nglsat} instead of £ [ngl] (by virtue of Proposition [0} this

does not make any significant difference). To be more precise, we have:
Theorem 0.3. Let us fix any 2 pairs (o, W o) and (B, W g), both satisfying
conditions (BF), and any pseudofunctor F : o — 2.
(A) If F1(W o) € W g sat, then there are a pseudofunctor
G: o |W3| — #[WL.]
and a pseudonatural equivalence K : Uw, ,,, © F = Go Uw,, such that:

(I) the pseudofunctor pz : &/ — Cyl (%’ [Wé}satD associated to k sends each

morphism of W o to an internal equivalence;
(II) for each object Ay, we have Go(Aw) = Fo(Aw);
(III) for each morphism (A, , W, for) : Aer = Boy in o [W;}}, we have

G (Al war, for ) = (Fo(Aly), Falwar), Fi(fr) )
(IV) for each 2-morphism

(4% vl v B+ (Abowhy fl) = (42w, 1%)  (03)

m of [W;,l], we have

G (A% vy v, B ] ) = [Fo(Ad), Fu(vh), Fa(vE), (04)
W, © Falon) © (V) 00, 0 F2(8) @ (v5,00,)

(where the 2-morphisms ¥ are the associators of F).
(B) Furthermore, if J1 (W) C W, then there are a pseudofunctor

G: ﬂ{W;}} — %’[W;ﬂ

and a pseudonatural equivalence K : Uw , o F = Go Uw,,, such that:

e the pseudofunctor uz : o/ — Cyl (,@ [ngl]) associated to Kk sends each mor-
phism of W o to an internal equivalence;
o conditions (II), (III) and (IV') hold.

If 71(W) is only contained in W g ¢ but not in W and if we still want to
describe a pair (G, ) with G with target in Z[W'], then G can be induced
by composing G described in (B) above and the equivalence of bicategories H :
%’[ng}sat] — #B[W '] induced by Proposition [Tl (see Remark [3.7]), but in gen-

eral the explicit description of G is much more complicated than the one of g , since
‘H in general is very complicated to describe explicitly.

In addition, we have:

Corollary 0.4. Let us fix any 2 pairs (o, W) and (B, W g), both satisfying
conditions (BF), and any pseudofunctor F : of — B. Moreover, let us fix any pair
(G, k) as in Theorem [M2A(iv). Then the following facts are equivalent:

(1) G: o [W;;] — B [Wél] is an equivalence of bicategories;
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(2) the pseudofunctor G : o [W;}} — B [ng}sat} described in (A) above is an

equivalence of bicategories.

In the next paper of this series (JT2]) we will find a set of conditions on (%7, W 4, 8,
W g, F) that are equivalent to (2) above. Combining with the previous Corollary,
this will allow us to give a complete answer to question (c).

As an application of the constructions about saturations used in the results above,
in the last part of this paper we will focus on the class of Morita equivalences in
the bicategory of étale differentiable (Lie) groupoids, and we will prove that such
a class is right saturated.

In all this paper we are going to use the axiom of choice, that we will assume from
now on without further mention. The reason for this is twofold. First of all, the
axiom of choice is used heavily in [Pr] in order to construct bicategories of fractions.
In [T1], Corollary 0.6] we proved that under some restrictive hypothesis the axiom of
choice is not necessary, but in the general case we need it in order to consider any of
the bicategories of fractions mentioned above. Secondly, even in the cases when the
axiom of choice is not necessary for the construction of the bicategories &7 [W;}]
and # [ngl} , we will have to use often the universal property of such bicategories
of fractions, as stated in [Pr, Theorem 21], and the proof of this property requires
the axiom of choice.

1. NOTATIONS AND BASIC FACTS

1.1. Generalities on bicategories. Given any bicategory %, we denote its ob-
jects by A, B, ---, its morphisms by f,g, -+ and its 2-morphisms by «, 3, --; we
will use A¢, f¢, g, -+ if we have to recall that they belong to € when we are
using more than one bicategory in the computations. Given any triple of mor-
phisms f : A = B, g: B = C, h: C = D in €, we denote by 0} 4 ¢ the
associator ho(go f) = (hog)o f that is part of the structure of €’; we denote by
m¢: foidy = fand vy :idpof = f the right and left unitors for & relative to any
morphism f as above. We denote any pseudofunctor from % to another bicategory
9 by F = (Fo, Fi,Fe, ¥ ,07) : € — 2. Here for each pair of morphisms f, g as
above, w;f is the associator from F1(go f) to Fi(g) o F1(f) and for each object A,

o7 is the unitor from F(ida) to idz,(4).

We recall that a morphism e : A — B in a bicategory ¥ is called an internal
equivalence (or, simply, an equivalence) of € if and only if there exists a triple
(€,6,&), where € is a morphism from B to A and § : idy = €oe and  : eo
€ = idp are invertible 2-morphisms in % (in the literature sometimes the name
“(internal) equivalence” is used for denoting the whole quadruple (e, e, d, £) instead
of the morphism e alone). In particular, € is an internal equivalence (it suffices to
consider the triple (e, &1, 67 1)) and it is usually called a quasi-inverse (or pseudo-
inverse) for e (in general, the quasi-inverse of an internal equivalence is not unique).
An adjoint equivalence is a quadruple (e, e, d, ) as above, such that

ve® (€510) © e ® (e 0) O =i (1.1)

and

Fg@(i€*£)®9r1 @(6*ig)®vg1:ig (1.2)

e,e,e
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(this more restrictive definition is actually the original definition of internal equi-
valence used for example in [Mac, pag. 83]). By |L| Proposition 1.5.7] a morphism
e is (the first component of) an internal equivalence if and only if it is the first
component of a (possibly different) adjoint equivalence.

In the following pages, we will use often the following easy lemmas (a detailed proof
of the second and third lemma is given in the Appendix).

Lemma 1.1. Let us suppose that e : A — B is an internal equivalence in a
bicategory € and let v : e = € be any invertible 2-morphism in €. Then also
€ is an internal equivalence.

Lemma 1.2. Let us fiz any bicategory €; the class Wequiv of all internal equi-
valences of € satisfies the “2-out-of-3” property, i.e. given any pair of morphisms
f:B—=>Aandg:C — B, if any 2 of the 3 morphisms f,g and f o g are internal
equivalences, so is the third one.

Lemma 1.3. Let us fiz any bicategory € and any triple of morphisms f: B — A,
g:C — Bandh:D — C, such that both fog and goh are internal equivalences.
Then the morphisms f,g and h are all internal equivalences.

We recall from [Stl (1.33)] that given any pair of bicategories ¢ and 2, a pseu-
dofunctor F : € — Z is a weak equivalence of bicategories (also known as weak
biequivalence) if and only if the following 2 conditions hold:

(X1) for each object Ay there are an object A% and an internal equivalence from
Fo(A%) to Ag in Z;

(X2) for each pair of objects A4, By, the functor F(A¢, By) is an equivalence of
categories from ¢ (Aw, Bg) to 2(Fo(A¢), Fo(Bz)).

Since in all this paper we assume the axiom of choice, then each weak equivalence of

bicategories is a (strong) equivalence of bicategories (also known as biequivalence,

see [PW], § 1]), i.e. it admits a quasi-inverse. Conversely, each strong equivalence

of bicategories is a weak equivalence. So in the present setup we will simply write

“equivalence of bicategories” meaning weak, equivalently strong, equivalence. Also

the proof of the following lemma can be found in the Appendix.

Lemma 1.4. Let us fix any pair of bicategories €, 2, any pair of pseudofunctors
F,G: € — 2 and any pseudonatural equivalence ¢ : F = G. If F is an equivalence
of bicategories, then so is G.

In the following pages we will often use the following notations: given any pair of
bicategories €, 2 and any class of morphisms W in &,

(a) Hom(¥%, 2) is the bicategory of pseudofunctors ¢ — 2, Lax natural transfor-
mations of them and modifications of Lax natural transformations;

(b) Hom'(%, 2) is the bicategory of pseudofunctors ¢ — 2, pseudonatural trans-
formations of them and pseudonatural modifications of pseudonatural transfor-
mations (a bi-subcategory of (a));

(¢) Homw (%, 2) is the bi-subcategory of (a), such that all the pseudofunctors,
the Lax natural transformations and the modifications send each element of
W to an internal equivalence; here a Lax natural transformation is considered
as a pseudofunctor from % to the bicategory of cylinders Cyl(2) of 2 and a
modification is considered as a pseudofunctor from % to Cyl(Cyl(2)) (see |Bl
pag. 60]);

(d) Homyy (%, 2) is the bi-subcategory of (c), obtained by restricting morphisms
to pseudonatural transformations and 2-morphisms to pseudonatural modifica-
tions.
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Then it is not difficult to prove that:

Lemma 1.5. Given any pair of bicategories € and 2, and any pair of pseudofunc-
tors F,G : € — 2, there is an internal equivalence from F to G in (a) if and only
if there is an internal equivalence in (b) between the same 2 objects (i.e. a pseudo-
natural equivalence of pseudofunctors). Moreover, given any class W of morphisms
in € and any pair of objects F,G in (c), there is an internal equivalence between
such objects in (c) if and only if there is an internal equivalence in (d) between the
same 2 objects (i.e. a pseudonatural equivalence of pseudofunctors).

1.2. Bicategories of fractions. We refer to the original reference [Pr] or to our
previous paper [T1] for the list of axioms (BF1) — (BF5) needed for a bicalculus of
fractions. We recall in particular the following fundamental result.

Theorem 1.6. [Pr, Theorem 21| Given any pair (¢, W) satisfying conditions
(BF), there are a bicategory ¢ [W '] (called (right) bicategory of fractions) and
a pseudofunctor Uw : € — € [Wfl} that sends each element of W to an internal
equivalence and that is universal with respect to such property. Here “universal”
means that for each bicategory 2, composition with Uw gives an equivalence of
bicategories

— olUw : Hom (?o” (W] ,@) — Homw ((@”, @). (1.3)

In particular, the bicategory € [Wfl} s unique up to equivalences of bicategories.

Remark 1.7. The axiom of choice is used heavily in the construction of bicategories
of fractions (see [Prl § 2.2 and 2.3]). In some special cases, one can bypass this
problem, as we explained in [T1, Corollary 0.6]. However, also in such special
cases, in general the proof of Theorem relies on the axiom of choice (for the
construction of the pseudofunctor F in [Pr, Theorem 21]). The present paper
is heavily based on that result, so this requires implicitly to use the axiom of
choice often. For example, even in order to prove basic results (such as the one in
Lemma [2.5]iii) below), one has to use the axiom of choice. Indeed, in the mentioned
Lemma we will implicitly follow the proof of [Prl Theorem 21|, so we will have to
choose a quasi-inverse for any internal equivalence (of the bicategory € where we
are working), and in general this requires the axiom of choice. One of the few cases
when we will not need the axiom of choice is the proof of Proposition Bl (see
Remark B.2)).

Remark 1.8. In the notations of [Pr], the pseudofunctor Uyy is called a bifunctor,
but this notation is no more in use. In [Pr] Theorem [[.] is stated with condition
(BF1) (namely: “all 1-identities of € belong to W, see [T1]) replaced by the slightly
stronger hypothesis

(BF1)’: “all the internal equivalences of & belong to W”.

By looking carefully at the proofs in |Pr], it is easy to see that the only part
of axiom (BEI)’ that is really used in all the computations is (BF1), so we are
allowed to state [Prl, Theorem 21] under such less restrictive hypothesis. Note that
by virtue of Lemma 2.5(ii) and Proposition below, choosing condition (BET)’
instead of (BF1) gives equivalent bicategories of fractions, so this does not make
any significant difference.

For the explicit construction of bicategories of fractions we refer all the time either
to [TI] or to the original construction in [Pr]. We recall that according to [Pr]
the construction of compositions in € [W’l} depends on 2 sets of choices related
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to axioms (BF3) and (BF4) respectively. In [T1, Theorem 0.5] we proved that
actually all the choices related to axiom (BF4) are not necessary, so in order to
have a structure of bicategory on & [W‘l] it is sufficient to fix a set of choices as
follows:

C(W): for every set of data in € as follows

; v
A——B—F (1.4)

with v in W, using axiom (BF3) we choose an object A”, a pair of mor-
phisms v/ in W and f’ and an invertible 2-morphism p in %, as follows:

7N

A’ —5 B——PR.
(1.5)
According to [Prl § 2.1], such choices must satisfy the following 2 conditions:

(C1) whenever ([I4) is such that B = A’ and f = idp, then we choose A” := B’,
f=1idp, v/ :i=vand p:= 7,1 O vy

(C2) whenever ([[4) is such that B = B’ and v = idp, then we choose A” := A’,
fli=f, v :=ida and p:= U]?l Omy.

In the proof of Theorem below we will have to consider a set of choices [CfW)

satisfying also the following additional condition:

(C3) whenever (L4) is such that A’ = B’ and f = v (with v in W), then we choose
A=A fi=1dar, vV i=1da and p :=igoia,, -

Condition ([C3) is not strictly necessary in order to do a right bicalculus of fractions,

but it simplifies lots of the computations below. We have only to check that (C3)

is compatible with conditions (CIJ) and (C2]) required by [Pr], but this is obvious.

In other terms, given any class W satisfying condition (BF3), there is always a set

of choices [Cf W), satisfying conditions (CII), (C2) and (C3)).

We refer to [T1] for a description of the associators @(f’w, the vertical and the
horizontal compositions of 2-morphisms in % [W’l]; such descriptions simplify
the original constructions given in [Pr] and they will be used often in the next
pages. Moreover, we have the following result, whose proof is already implicit
in [Pr, Theorem 21].

Theorem 1.9. [Pr] Let us fix any pair (o7, W o) satisfying conditions (BF), any
bicategory X and any pseudofunctor F : of — B. Then the following facts are
equivalent:

(i) F sends each morphism of W o to an internal equivalence of B;
ii) there are a pseudofunctor G : of (W} — 2B and a pseudonatural equivalence
of
of pseudofunctors % : F = Golw,;
(#3) thereis a pair (G,R) as in (i), such that the pseudofunctor yz : o/ — Cyl(%)
associated to & sends each morphism of W o to an internal equivalence (i.e.
R is an internal equivalence in Homy, (<7, A)).

Proof. Using (X)) on the equivalence ([IL3)) for (¢, W, 2) := (o, W o7, B) together
with Lemma [0l (or looking directly at the first part of [Prl, Proof of Theorem 21]),
we have that (i) and (iii) are equivalent. Moreover, (iii) implies (ii), so in order to
conclude it suffices only to prove that (ii) implies (i). So let us fix any morphism
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Wo : By — A in Wy since K is a pseudonatural equivalence of pseudofunctors,
we have a pair of equivalences £(Ay ), K(By) and an invertible 2-morphism &(w )
as follows:

fl(WQ{)
Fo(Baw) Fo(Aer)
R(Bu) / R(Wer) R(Aw)
Go(Bey) = GoolUw, 0(Bey) GoolUw,,0(Aw) = Go(Ax).

GrolUw ;1 (W)

By Theorem [[L6] we have that Uw_, 1(Ws) is an internal equivalence, hence also
G1oUw,, 1(Ws) is an internal equivalence. So by Lemmas [T and [[2 we get easily
that Fj(wg) is an internal equivalence in 4, i.e. (i) holds. O

2. INTERNAL EQUIVALENCES IN A BICATEGORY OF FRACTIONS AND (RIGHT)
SATURATIONS

In this section we will introduce the notion of right saturation of a class of mor-
phisms in a bicategory and we will prove some useful results about this concept.

Let us fix any pair (%, W) satisfying conditions (BF); according to [Pr, § 2.4], the
pseudofunctor Uy : € — € [Wfl} mentioned in Theorem [[LG] sends each object A
to the same object in the target. For every morphism f : A — B, we have

id f
Uw,(f) = (B —"—B A);
(2.1)
for every pair of morphisms f™ : A — B for m = 1,2 and for every 2-morphism
v:fl'= f?in €, we have

UWQ(’Y) = [AaidAaidAaiidAOidAa’y*iidAi|- (22)

In particular, by Theorem [[6] Uw 1(f) is an internal equivalence in % [W’l]
whenever f belongs to W (actually, it is easy to see that a quasi-inverse for (2.1])
is the triple (B, f,idp)). Then a natural question to ask is the following: are there
other morphisms in € that are sent to an internal equivalence by Uw ¢ In order to
give an answer to this question, first of all we give the following definition.

Definition 2.1. Let us consider any bicategory % and any class of morphisms
W in it (not necessarily satisfying conditions (BF)). Then we define the (right)
saturation Wyt of W as the class of all morphisms f : B — A in €, such that
there are a pair of objects C, D and a pair of morphisms g : C — B, h: D — C,
such that both fog and goh belong to W. We will say that W is (right) saturated
if W = W,

Remark 2.2. Whenever ¢ is a 1-category (with associated trivial bicategory €?),
the notion above coincides with the notion of “left saturation” for a left multiplica-
tive system implicitly given in [KS| Exercise 7.1]. In [KS], the authors mainly focus
on right multiplicative systems (see [KS, Definition 7.1.5]) and “right saturations”,
with left multiplicative systems only mentioned explicitly in [KS| Remark 7.1.7].
Note however that there is not a complete agreement in the literature about what
is a “left” and what is a “right” multiplicative system. In the present paper “right”
corresponds to “left” in [KS|. We prefer to use “right” instead of “left” in order to
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be consistent with the theory of right bicalculus of fractions developed by Pronk
(and with the theory of right calculus of fractions by Gabriel and Zisman). In
particular, one can easily see that a family W of morphisms in a 1-category ¥ is a
left multiplicative system according to [KS| if and only if the pair (42, W) satisfies
axioms (BF) for a right bicalculus of fractions as described in [Pr]. Moreover, in
this case the trivial bicategory associated to the left localization ‘6‘%, mentioned
in [KS| Remark 7.1.18] is equivalent to the right bicategory of fractions €% [W~!].

Remark 2.3. Whenever the pair (¢, W) satisfies conditions (BF1) and (BF2), we
have W C Wy,;. Moreover, if W C W', then Wg,; C W/, .

We will prove in Proposition Z11Ki) below that Wgat = Wit sat, thus explaining
the name “saturation” for such a class. The simplest example of (right) saturated
class is given by the class Woquiv of all internal equivalences of any given bicategory

%, as a consequence of Lemma[[.3] We will show in Section 4] a non-trivial example
of a pair (¢, W) such that W = W,;.

Definition 2.4. Let us fix any bicategory €. According to [PPl Definition 3.3], we
call a morphism f: A — A in € a quasi-unit if there is an invertible 2-morphism
f = id4. We denote by Wi, the class of quasi-units of €. A direct check proves
that (€, Win) satisfies conditions (BF).

Lemma 2.5. Let us fix any pair (€, W) satisfying conditions (BF). Then:
(1) Wiin € W, hence Wiy s the minimal class satisfying conditions (BF);
(#) the right saturation of Wiy is the class Wequiv of internal equivalences of
% ; in particular Wequiv C Waat, i.e. Wyt satisfies condition (BEI) (see
Remark [[J));

(#ii) the induced pseudofunctors

Uw,.: C —C[Wik]  and  Uw...: € —F [quluiv}

are equivalences of bicategories.

Proof. Let us fix any object A in ¢; by (BF1) (see [T1]), W contains id4. Then
by (BF5) W contains any morphism f : A — A such that there is an invertible
2-morphism & : f = id4. So we have proved that W, C W.

Now let us prove (ii). Clearly Wy, C Wequiv, 50 by Remark the right sa-
turated of Wy, is contained in the saturated of Wequiv, which is again Wequiv
by Lemma [[3l Conversely, let us suppose that f : B — A is an internal equiva-
lence. Then there are a morphism ¢g : A — B and a pair of invertible 2-morphisms
0:idgp = go fand £: fog = ids. Since ¢ is invertible, then we get that fog
belongs to Wyin. Analogously, g o f belongs to W,i,. Therefore, if we set h := f,
we have proved that f belongs the right saturation of Wiy, so (ii) holds.

Now let us prove (iii). We have that Wiin € Wequiv, S0 idy : € — € sends each
morphism in Wi, to an internal equivalence of €. So by Theorem applied to
(€, Win, €) and to F := idy, there are a pseudofunctor R : € [W;ﬂln} — % and
a pseudonatural equivalence of pseudofunctors

0:idy = Rolw

min *

Then we consider the pseudonatural equivalence

g:: (iz/{wmin *571) @91/_{&/ R Uw : (Uw,,,, oR)olUw,,,, — id%[wf1 ] olUw ;s

min’ min min
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that is an equivalence in the bicategory Hom(%, ¢ [W;uln] )- Since Winin € Wequiv,

then the pseudofunctor 1 % — Cyl(€) associated to & sends each morphism of
Whin to an internal equivalence, i.e. §~ belongs to Homwy, . (€, € [W71 ]) By

the universal property of U, applied to E, there is an internal equivalence from
Uw,. . oR to id%[w;‘iln] in the bicategory Hom (% [W;uln] € [W;uln] ). By the first
part of Lemma [[.5] this implies that there is an internal equivalence £ between
the same 2 objects in the bicategory Hom' (% [W;uln] ,E€ [W;uln]) Since § is an
internal equivalence in the bicategory Hom' (%', ¢’), then we have proved that U, ..
is an equivalence of bicategories (see L, § 2.2]), with R as quasi-inverse. The proof

for Uw is analogous. (I

min

equiv
Now we have:

Proposition 2.6. Let us fix any pair (€, W) satisfying conditions (BF) and any
morphism f: B — A in €. Then the morphism

Z/{w71(f):<B v g A)

(see () is an internal equivalence in € [W 1] if and only if f belongs to Waay.

If % is a 1-category considered as a trivial bicategory, then this result coincides with
the analogous of [KS| Proposition 7.1.20(i)] for left multiplicative systems instead of
right multiplicative systems (see Remark [22]). The case of a non-trivial bicategory
is much longer, but conceptually similar; we refer to the Appendix for the details.

Corollary 2.7. Let us fix any pair (€, W) satisfying conditions (BF). Given any
pair of objects A', A% in €, any internal equivalence from A' to A% in € [Wfl} 18
necessarily of the form

A A 4 (2.3)
with w in W and f in Wgat. Conversely, any such morphism is an internal equi-

valence in € [Wfl} .

Proof. Let us suppose that (23]) is an internal equivalence in € [W‘l}. By the
description of morphisms in a bicategory of fractions, w belongs to W. So by
Theorem the morphism

U () = (A2 Mo v A1)

is an internal equivalences in % [W’l]. Then using Lemma we get that also
(A3, w, f) oUw 1(w) is an internal equivalence. Now let us suppose that choices
[CkW) give data as in the upper part of the following diagram, with v! in W and
71 invertible:

A4
V1 V2
n
=
A3 ———— Al ——— 43

Then by [Prl § 2.2] we have
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(A?’,W, f) oUw 1(w) = (A4,idA3 OVl,fOVQ).

By (BF4a) and (BF4b) applied to 7, there are an object A%, a morphism v3 : A5 —
A* in W and an invertible 2-morphism ¢ : v!ov? = v2ov?. Then we define an
invertible 2-morphism in ¢ [W '] as follows

r:= [A57V3,V20V37 (iidAg *5) @9;131V11V3,9;i27v3} :
(42w, 1) o Uwa(w) = Uw (/).

By Lemma [[T] applied to I', we get that Uw 1(f) is an internal equivalence, so by
Proposition f belongs to W,s.

Conversely, if f belongs to Wy, again by Proposition 2.6 we get that (A43,id s, f)
is an internal equivalence in ¢ [W_l] Since also (A3, w,id4s) is an internal equi-
valence (because it is a quasi-inverse for (A43,id 43, w)), then also the composition
3 . 3 . (C1) 3 . .
A°id s, f) o (A, w,idgs | =" (A°,woidys, foidys
is an internal equivalence in 4 [W~!]. From this and Lemma [T we get that (Z3)
is an internal equivalence. (I

Given the previous results, 2 natural questions arise for any (%, W) satisfying
conditions (BF):

e does the pair (¢', W) satisfy conditions (BF)?

e if yes, is the resulting right bicategory of fractions equivalent to & [W‘l] ?
Both questions have positive answers, as we are going to show below.

Lemma 2.8. Let us fix any pair (¢, W) satisfying conditions (BF). Then also the
pair (€, Wagat) satisfies the same conditions.

This is the analogous of [KS, Exercise 7.1] (for left multiplicative systems instead of
right multiplicative systems, see Remark [2.2)) in the more complicated framework
of bicategories instead of 1-categories. A detailed proof is given in the Appendix.

Lemma 2.9. Let us fir any any pseudofunctor F : € — 2 and any class of
morphisms W in €. If F sends each morphism of W to an internal equivalence,
then it sends each morphism of W, to an internal equivalence.

Proof. Let us fix any morphism f : B — A in Wy, and let us choose any pair of
objects C, D and any pair of morphisms g : C' — B and h: D — C|, such that both
fogand goh belong to W. Then there is an invertible 2-morphism (the associator
for F relative to the pair (f,g)) in 2 from the internal equivalence F1(f o g) to
the morphism Fi(f) o F1(g). So by Lemma [T we have that F;(f) o Fi(g) is an
internal equivalence of Z; analogously Fi(g) o F1(h) is an internal equivalence.
Then by Lemma applied to the bicategory 2 we conclude that Fi(f) is an
internal equivalence of 2. (|

Proposition 2.10. Let us fix any pair (6, W) satisfying conditions (BF). Then
there are a bicategory of fractions € [Wfl] and a pseudofunctor as in (02, with

sat
the universal property. Moreover, there are 2 equivalences of bicategories

H:C (Wai] — €W and L£:¢ W' —%[Wii],
one the quasi-inverse of the other, and a pseudonatural equivalence of pseudofunc-

tors T : Uw = H oUw,,, that is a morphism in Homy,_ (€,¢ [W~!]).

sat
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Proof. Using Lemma[2.8§and Theorem[LLG] there is a bicategory of fractions ¢ [W;aﬂ
and a pseudofunctor as in ([I.2)), with the universal property. Since W C Wy, then
Uw.,, sends each morphism of W to an internal equivalence. So using Theorem
for (¢, W,Uw._,,), there are a pseudofunctor L as above and a pseudonatural equi-
valence

¢:Uw,, => LolUw in Homyy (¢,¢ [W;aﬂ) . (2.4)

By Proposition 2.6l Uw sends each morphism of Wy, to an internal equivalence
of ¢ [W‘l]; so using Theorem [[9 for (¢, Wgast, Uw ) there are a pseudofunctor H
as in the claim and a pseudonatural equivalence

T:Uw => Holw,, in Homy_ (¢,%[W']) CHomy (¢,4 [W']).
(2.5)

Now we consider the pseudonatural equivalence

g:: 1o (iH * (71) ® 97;71[:7”‘” : (HoL)olUw = Uw = idegw-1) oUw.

By 24) and 23], € is an internal equivalence in the bicategory Homyy (¢,¢ [W™1])
C Homw (¢, ¢ [W™']), so by the universal property of Uw, (X2) and Lemma [[5]
there is a pseudonatural equivalence § : H o £ = idgpw-1]-

Moreover, we consider the pseudonatural equivalence

8= Oz, © (ic+7) ©C: idgpy — (LoH) olw

sat sat *

| oUw

—1
sat
By ([24) and (Z3) the pseudofunctor uz : € — Cyl(¢ [W;aﬂ) associated to 0 sends
each morphism of W to an internal equivalence. So by Lemma 2.9 we conclude that

g sends each morphism of Wy, to an internal equivalence, so ¢ is an internal equi-
valence in Homw_,, (¢, ¢ [Wfl} ). Therefore by the universal property of Uw

sat

(X2) and Lemma [[5] there is a pseudonatural equivalence ¢ : id%[w—l] = LoH.

sat

sat?

Using [L, § 2.2], this proves that £ and H are equivalences of bicategories, one the
quasi-inverse of the other. (I

Proposition 2.11. Let us fix any pair (€, W) satisfying azioms (BF). Then:

(i) the classes Wgay and Wag sat coincide (i.e. Wgyy s (right) saturated);

(ii) the class Wguy satisfies the “2-out-of-3” property, i.e. given any pair of mor-
phisms f: B — A and g : C — B, if any 2 of the 3 morphisms f,g and fog
belong to Wgat, then so does the third one.

In Lemma [Z5](ii) we proved that Wequiv is right saturated; for that class, (ii) above
is simply the already stated Lemma [[.2], that we will use explicitly in the proof
below.

Proof. Using Lemma and Remark 23] we have that Wgay € Wiag sat, SO we
need only to prove the other inclusion. So let us fix any morphism f : B — A
belonging to Wyt sat. By Lemma 2.8 the pair (4, W,y ) satisfies conditions (BF),
so we can apply Proposition for such a pair. Then we get that the morphism

U, () = (B —"— B ——— 4)
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is an internal equivalence in ¢ [W]. Hence H; oUw.,,, 1(f) is an internal equi-
valence in € [Wfl}, where H is the pseudofunctor obtained in Proposition 2.101
Using that proposition, we have an invertible 2-morphism

7r: Uwa(f) = HiolUw,,.a(f)
in ¢ [W~!]. Then by Lemma [T we conclude that also Uw,1(f) is an internal
equivalence in ¢ [Wfl}. By Proposition 2.6, this implies that f belongs to Wg,t,
so (i) holds.

Now let us suppose that any 2 of the 3 morphisms f, g and f o g belong to Wat.
Then by Proposition 6] 2 of the 3 morphisms Uw 1(f), Uw 1(g) and Uw 1(f o g)
are internal equivalences in % [W‘l] Using Lemma [[.1] on the associator of Uw
relative to the pair (f,g), this implies that 2 of the 3 morphisms Uw 1(f), Uw 1(g)
and Uw 1(f) o Uw . 1(g) are internal equivalences. By Lemma [[2] all such 3 mor-
phisms are internal equivalences.

Again by Lemma [[LT] this implies that the 3 morphisms Uw 1(f), Uw . 1(g) and
Uw 1(f o g) are all internal equivalences. Again by Proposition [2.0] this gives the
claim. O

Remark 2.12. In general, even if a pair (¢, W) satisfies axioms (BF), W does
not have to satisfy the “2-out-of-3” property. This is for example the case when
we consider the class Wgeq at1 of all “refinements” in the 2-category (Red .Atl)
of reduced orbifold atlases. We described such data in our paper [T3|; we refer
directly to it for all the relevant definitions. Again referring to that paper, the class
of all “unit weak equivalences” of reduced orbifold atlases satisfies the “ 2-out-of-
3” property, but it is not saturated. This proves that in general the converse of
Proposition 2Z-TT|(ii) does not hold, namely W can satisfy the “ 2-out-of-3” property
without being right saturated.

An interesting known case when the “ 2-out-of-3” property holds is the case when
we consider the class W Gpd of all Morita equivalences of étale differentiable
groupoids. In this case, it was proved in [PS, Lemma 8.1] that Wy gpa has the
mentioned property. Actually, in the last part of this paper we will prove that
W gpa is right saturated, thus giving another proof of [PS, Lemma 8.1].

Now we are able to give the proof of the first main result of this paper.
Proof of Theorem[0.3. Let us define a pseudofunctor as follows:
Fi=Uw,oF: JZ%—)%’[W;;]

and let us denote by Wequiv the class of internal equivalences of the bicategory
B [ngl] By Proposition 2.6,

—1
MWSB (Wequiv) = W%’,sat;
hence

?_I(Weqmv) = ‘Fﬁl(W%’,sat)- (26)

Now we use Theorem [L9 for & replaced by & [Wél} and F replaced by F. So we
have that (i), (iii) and (iv) are equivalent.

Since W7 € W o gat, then (ii) implies (i), so we need only to prove that (i) implies
(ii). So let us suppose that F1(Wg) € Wge; then by (2.6), F sends each
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morphism of W, to an internal equivalence. Therefore by Lemma 29, F sends
each morphism of W s to an internal equivalence. Again by (2.0]), we conclude
that F (Wg{,sat) - W%,sat- O

3. THE INDUCED PSEUDOFUNCTOR G

This section is mainly used to give the proof of Theorem [I.3] The essential part of
such a proof relies on the following proposition.

Proposition 3.1. Let us fix any 2 pairs (o, W o) and (B, W g), both satisfying
conditions (BF) and any pseudofunctor F : of — B such that F1(Wg) C W .
Moreover, let us fiz any set of choices [CAW i) satisfying condition (C3). Then
there are a pseudofunctor

M: @%[W;{l} —)@[W;@q
(where BIW '] is the bicategory of fractions induced by choices (W z)) and a

pseudonatural equivalence ¢ : Uw,, o F = M olhw,,, such that:

(I) the pseudofunctor pc : o — Cyl (,@ [Wél]) associated to ¢ sends each
morphism of W o to an internal equivalence;
(IT) for each object Ay, we have Mo(Ag) = Fo(Aw);
(IIT) for each morphism (A, W, for) : Ay — Bey in o [W'], we have

Ml(A;{aWd) = (fO(A;{)vfl(Wﬂf) oidr,(ar,), Fi(fer) o idzy(ar,) ); (3.1)
(IV) for each 2-morphism

(A2 vl vy, B | (Alwh ) = (A3, 02) B2)

m of [W;,l], we have

MQ({Ai{aV;{aVi{’a%’ﬁ%}) = [fO(Ai{)’fl(VL{)afl(V}zi)’ (3'3)
—1
(”}11<w;> * iﬂ(v@)) OUfe 2 O Folaw) © (w@,vg) ®
. — . _7:
Q(ﬂfl(W}y) * Zf1(vi¢))ﬂ (W].‘ll(f;) * ZJ"—'l(vi{)) waszEJQ
-1

(where the 2-morphisms ] are the associators of F and the 2-morphisms
e are the right unitors of A).

Proof. In order to simplify a bit the exposition, we assume for the moment that
all the unitors and associators of o/ and % are trivial (i.e. that o/ and £ are
2-categories). Using (CI) and (C2), this implies easily that also the unitors for
o [W;ﬂ and %A [W;ﬂ are trivial (even if in general the same is not true for the
associators of such bicategories). For simplicity, we assume also that F is a strict
pseudofunctor (i.e. that it preserves compositions and identities). At the end of the
proof we will discuss briefly the general case.

We set F :=Uw, o F : o — B [Wél} Then we follow the proof of [Pr} Theo-
rem 21| in order to give the explicit description of a pair (M, ¢) induced by F and
that satisfies the claim. According to the mentioned proof in [Pr], first of all we
need to fix some choices as follows.
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(A) We have to choose a structure of bicategory on o/ [W_'] and on 2 [W'].
For that, we fix any set of choices[C(W . ); moreover, we fix any set of choices
[C(W ) satisfying condition (C3) (and obviously satisfying also conditions
(CT)) and (C2)) by definition of set of choices for W, see § [L.2)).

(B) We need to fix some choices as in the proof of [Pr, Theorem 21]. To be more
precise, given any morphism wo : A", — Az in W, we need to choose data
as follows in # [W;ﬁl}:

e a morphism P(w) : Fo(Aw) — Fo(AL,),

e an invertible 2-morphism A(w) : iz, (4, = Fi1(Wer) o P(wWar),

e an invertible 2-morphism Z(wy) : P(Wer) 0 F1(wey) = idz, 4 )
such that the quadruple (F1(We ), P(War), AW ), E(We)) is an adjoint equi-
valence in % [W '] (see § [LT). In particular, we need to choose P(w.y) so
that it is a quasi-inverse for

— id]:o(z“-f ) F1(wWer)
Fi(wer) = (FolAly) —— FolAL,) =L Fo(Aw)).

Since we assumed that J; (W) C W, then we are allowed to choose

Fi(Wer) g car )
P(wer) = (FolAw) <l FolAly) —— Fo(4L,)), "
and
E(We) 1= []:O(A;f)vfl(wpf),idfo(A;{>,if1(Wﬂ>,Z'fl(wﬁn} : (3.5)

(]:0 (A&Zf)a id]:o(Agf)’ id]‘-o(Agf) ) =
— (Fo(Aly), Falwas), Falwar) ) = Frlwir) 0 Pwir).

Since [C{W %) satisfies condition (C3]), then we get that P(w.) o F1(wey) is
the identity of Fy(A’,) in # [W 4| so we can choose

A(We) = Uiy ar ) = {fO(Aizf%id]:o(A’g{)aid]—"o(A’g{)aiidFU(A;{)aiidFU(A;{)} :
P(wWer) O?l(Wﬂ) = (.7:0(14;{),id].-O(A;{),id]_-O(A;{)) —
= (]:O(A;f)aid]—'o(A;;,)aid}'o(A;{))-

Using [Prl Proposition 20| and condition (C3), we get that the quadruple
(F1(War), P(War), A(Wer ), E(Wer)) is an adjoint equivalence as required.

Now we follow the proof of [Prl Theorem 21| in order to define the pair (M, ()
induced by F and by the previous choices. For every object Ao, we have to set
Mo(Aw) = Fo(Ay) = Fo(Aw). Given any 1-morphism

(A;{,ng,fgg) - Ay —s By

in & [W;], following [P1l pag. 265] we have to define

Mi (A W, fur ) 1= Fi(far) 0 P(war). (3.6)

By definition of iw,,, we have:
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_ idrycar ) Fi(fer)
Filfur) = Uw i 0 Falfar) = (Fol(Aly) ——"— Fo(AL) == Fo(Bur)).

Therefore, by condition (C2)) and [P1l § 2.2|, we have

Fi(wer) F1(fer)
My (A War, fur ) = (FolAur) " Fo(AL) = Fo(Bur)).

Now let us fix any pair of morphisms (A7, w?, f7) : Aoy — By for m =1,21in
o/ [W_}| and any 2-morphism in & [W_'] as in (82). Then we recall that the
image of such a 2-morphism via M is obtained as the vertical composition of a
long series of 2-morphisms of 2 [W '] as listed in [P, pag. 266]. In the case under

exam (with the already mentioned assumptions on o/, %2 and F), we have:

MQ([A;,v;,v;,ad,ﬁd]) —T'o.. oI (3.7)

where:
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fP=Fi(fL)eP(wh,)

2= iF, (11, * (ip(wi{) * E(W}Z{ov}j))
=7 (Pirte (Frow o vieptet ovt ) )
I
I =g ) * (“’W) O i, >P(w1¢ov;>)
flO::fl(f;{)o('P(wi{)o(fl(wi{)o(?l(v}y)o?(w}y ové))))
10 . _ _
T =i, 41y * Op(wt ) 7y (w)) Fu (v, JoP(wl, o vl
f9:=f1<f;)o((P<w;>of1(w;))o(ﬁ(v;)omw;oviw))
I =i, )+ (AW % 7,01 ot o
P=Fae (Frstopint ovt)
8 .__ __ _
U’ I'®:= ®f1(f;{),f1(v;),73(w}2¢ ov;
f7::?1(f;ovi¢)o7:'(wi¢ ovi{)

JI7 = TQ(BM) * iP(w}d ovl

)

J

Fo(Aw) FO=F1(f20v2, )oP(wh, ovl)) Fo(Ber)
. —1 .
U 1= (iz, )+ ((A02)) ™ iz e)) ) Fipge, ov/
s (7o ((Pezomionn )2 ) )opiant vt
5. 1
LI = (17,0 <5 P(w2,).F1(w2) Fr (v, ) *ipen ot
sii= (7o (Pemi ovi)) Jop(l ol
4 . _ _ y
5= 07, (52) pw2) Fi(w2, ov2)) ¥ 1P(w, o))
si=((Firope )oFi w2 02 op(wl o)
o - 1 .
§ 1= (Zi(f;)omw;) * Fa (o) ) *UP(wl, ovl,
f2;:((?l(fé)op(wi{))ofl(wi{ ovi{))op(wi{ ov}d)
2 1
“ r @.Fl(fd)op(wﬂ).Fl(wdovd)P(wdovd)
(]—'1 fd )oP(w ) (fl(wiy ovi{)oP(wi{ ovi{))

—_ —1
YT =iz, (2 yopue,) * (E(WE 0 V)

FO=F1(£2)oP(w2))

(3.8)
(here and in the following lines, for simplicity we denote by ©, the associators
0LV for B [W;ﬂ ). In the next pages we are going to compute all the morphisms
and 2-morphisms of ([B.8). In order to do that, for each m = 1,2 let us consider the
following pair of morphisms
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Fi(wy)oFi(viy) F1(wiy)
_—

Fo(A3) Fo(Aw)

Fo(A%)

and let us suppose that the fixed choice[C(W &) for such a pair is given by the data
in the upper part of the following diagram

-7:1(Wg¢)°-7:1(Vg¢) -7:1(Wg¢) (3_9)

with u} in Wy and o invertible (we recall that F1(W ) C W g by hypothesis,
so it makes sense to consider the choice [(fW ) for the pair above). Moreover, let
us suppose that the fixed choice [C(W ) for the pair

Fr(wiy)oF1(viy) Fi(w,)

Fo(A3,) Fo(Aw)

Fo(A2))

is given by the data in the upper part of the following diagram

A%

3 3
Uz 03 Zz
B
=

]:0(143 ) —_—> fo(Ag{) ————————— ]:0(142 )
]:l(Wg;/)o]:l(Vof) ]:l(Wg;/) (310)

with u?, in Wg and o3, invertible. According to the definition of composition
of 1-morphism in a bicategory of fractions (see [Prl, pag. 256]), this set of choices
completely determines the morphisms f9,--- , f!2 as follows:

712 = (Fo(Ah), Fuwh). Fa(Fh)

fll = (IO(A}Of)ald]:o(A;)afl( ;{))O
o (FolAb), Fiwh), iz, ar,) ) o (FolA%), Filwly ovhy), Fi(wh o) )] B4
mvmzl
= (]:O(Ag{) g, (az, )Ji(fd)) o (Ai@vfl(wzfovzf) Ouévz}@) =

= (A%,fl(wd ovd)ou%,]:l(f;{)oz}@) = f10

7 (FoAb)idryan . Fi(f4)) o (FolAl), Fi(wly o vh), Filvly)) =
= (Fo(4%), Falwly o vl ) Filfl ovly)) = 15 = 7,

fo= (]'—O(Agf) Fi(wiovl,), Fi(fZ o g{)) @ 72,

4 @B =2 [(fo(Aif),id;o(A;),fl(f;)) ° (A?%U?%Z?%)}O
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o(Fo(A2). Fulwly o vh ) id ) ) =

= (A?@,]:l(W}yOV}y) Ou?%’fl(fif)oz?ﬁ) = fg’

72T (4%, Fa(wrly ovh) oy, Fi(f2) 07

10 = (Fo(42), Fuwl), Fi(f2)).

Then we need to compute all the 2-morphisms I'',---  T''2. In order to do that,
we will use all the descriptions of associators, vertical and horizontal compositions
that we gave in [T1], applied to the case when the pair (4, W) is given by (%, W &).

First of all, we want to compute the associators ©, appearing in I''', '8, T'* and
I'? (for the associators appearing in I''% and I'°, see below). For each of them we
can apply [T1l Corollary 2.2 and Remark 2.3|, so we get that all such associators
are simply 2-identities. This implies at once that

M =i =ipo, T=ip=ipr, T'=ip=ip and I?=ip=ip.
(3.11)
Moreover, by construction the 2-morphisms A(wl,) and A(w?,) are 2-identities,
hence

I =ip =ips and I® =i =ips, (3.12)
so we will simply omit all the 2-morphisms of (BII]) and (3I2) in the following

lines. Now let us compute I''2. In order to do that, the first step is to compute the
2-morphism

ip(w,) *E(wi ov,) : Pwl) = P(wl))o (7-"1 (wlovl)oP(wl, o v;)) . (3.13)

Using (3.4 we have

Fi(wl) dryaL)

Pwl,) = (FolAw) ——"— Fo(Al,) ——— Fo(AL));

moreover by (), E(wl, ovl,) is represented by the following diagram:

Fo(Ag)

idrg(a,y)

idrg(a,,)
Fr(wiy oviy)

]:O(A,Qf) \ Z‘.7:1(Wi¢ovi¢) ]:0(14‘2{) I3 i]—}(w}#ovi{) }—O(Ad)

idrg a3,

Fi(wioviy) F1(wiy 0viy)

Fo(4) (3.14)

Therefore, using (CI)) and diagram B9) for m = 1, we get that B.I3) is defined
between the following morphisms:

(FoAL) Frlwh) iz, ar,) ) = (Al Fr(whyovh) o ud 2y ).
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In order to compute ([B.I3) we are going to use [T1, Proposition 0.4] with

I':= A(W}Z{ OV}Z{), il = (]:0(14%),id]:O(Ag{),id]:U(AM) ),
2= (FolA%), Fi(wlyovl), Filwl ovl,).
In this case, the 2-commutative diagrams of [T1, Proposition 0.4(0.14)] are given

by

= Fo(AY)

_y =3 \7:0 (A1
= ]_-1

]:()Ag{ —>B .T"()Ag{ — B = foAl
_ldFU(A.u{> u= .7:1 Wd)

(since choices [C{W &) must satisfy condition (CI)) and by

_33

= Fo(A3) ——————— B=Fy(Ay) —— B' = Fy(AL))

f2 Fi(wiy oviy) u=Fi(wi,)

(since in ([B.3) for m = 1 we assumed that this was the fixed choice[C(W &) for the
pair (Fi(wl ovl), Fi(wl)))). Then we need to fix a set of choices as in (F8) —
(F10) in [T1), Proposition 0.4]:

(F8): for m = 1, we choose the data in the upper part of the following

diagram:
A//l, I_-O Ad
iz, (a3, L=Fi(vL)
=iF (wd ovl)
A% = Fo(A3) Fo (Aw) = Fo(Ay);

v —Fl(wdovd =F1( wd)

for m = 2, we choose the data in the upper part of the following diagram:

A//Q

/ _“\

= Fo(A3)) —————— A2 = Fo(A3))
v _ld]-'O(A? ) u’ —U@

A% = AL

(F9) and (F10): we use axioms (BF4a) and (BF4b) for (8, Wg) and ol

—1 —1
(see [B.3) for m = 1); so we get an object A, a morphism t}, : A, — Al
in W4 and an invertible 2-morphism

Wi Fi(vy) oug oty = 2oty
such that
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Olp ¥ i, = iF (wl) * Hip (3.15)

(in general such data are not unique, we make any arbitrary choice as
above). Then we choose the data of (F9) as the data of the upper part of
the following diagram

3 172 __ Al
(Ay) T A" = Ay
u?=ul,

(in this way all the 2-morphisms of [Tl Proposition 0.4(0.15)| are trivial,
except possibly for p? = ol,); moreover, we choose the datum of (F10)
as ' 1= ply; so the technical condition of [T1, Proposition 0.4(F10)] is
satisfied because of (Z15H).

Since n',n% and n® are all 2-identities, then using [T1, Proposition 0.4], we get
immediately that (3I3) is represented by the following diagram:

1
Fo(Ay)
Fi(wlk g al )
1(Wey) ]__1(‘/‘17{)0 o0(Ag,
oul oty
. —1 1 1
fo(Ad) I LF(wl, ovl, )oul ot AL@ (8 1] ]:O(Ad)'
tiz
Fi(wiy oviy)oul ' Zig
1
A@

(3.16)
Therefore, we get easily that I''2 = i, iy ¥ (BI6) is represented by the following
diagram:

Fo(Ay)
Fi(wiy) Fi(vL)o Fi(fi)
oulyotiy
FolAdw) Vimaiovipouton, Ay | 7 (1L * g Fo(Ba).
tis
Fi(wl, ovl, )oul, Fi(fiy)oriy
A
(3.17)
In order to compute I''?, we have first of all to compute the associator
®P(wi¢),?1(w}2{),?1(V}J)op(w; ovl)): (318)

In order to do that, we are going to use [T1, Proposition 0.1] for the triple of
morphisms
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— Fi(wk, ovt Fi(vi
[=Falvh) o P(wl ov) = (Fo(Aw) T2 Fyaz) T myal)),
_ idryal) Fi(wly)
9= Ta(wl,) = (Fo(Al) ——— Fo(Al,) ——" Fo(As)),
. Fi(wl,) L ral) .
h:=P(wy,) = (.7:0(14@{) Fo(A,) .7:0(14@{))

In this case, the 4 diagrams listed in [T1, Proposition 0.1(0.4)] are given as follows;
the ones with § and 7 are a consequence of condition (C2)), the one with & is a
consequence of (C3)), while the one with o is a consequence of the fact that we have
supposed that choices [C(W ) give diagram (33) for m = 1 when applied to the

pair (F1 (W 0ve,), Fi(wey)):

iz, (a3, Fi(viy)
6 = Z]:1 V o= o’(/g

o, FolAl) | Fo(42)) Fo(du) e Fo(l)
Vis) fO(A}z,) F1(Wey 0viy) Fi(wiy)
idryaL) tdz a1, idz a3, Fi(viy)
6 - 2]:1
Fi(wiy) W) Vir) fo(A}j)

Then following [T1, Proposition 0.1], we choose data as follows:
(F1): we set A* ::Z}@, uti=th, v’ i=ul ot and v =1, Lot
(F2): we choose w :=ix, (v1 youl oL}
(F3): given the choices above, then the only possibly non-trivial 2-morphism
in [T} Proposition 0.1(0.8)] is (o) ! * iy, so using (.I5) we can choose
(1)1
pi=(tg)
So by [T1}, Proposition 0.1] we conclude that the associator (BI]) is represented by
the following diagram:

Az

Fi (Wi{ o vi{)ou}B Z:éa
tg
Folde) ¥ imatovpouor, A ()™ FolA).
ulg,otlg,
Fi(why oviy) Filvir)
Fo(AZ)

(3.19)
This implies easily that I''9 = iF, () * (313) is represented by the following dia-
gram:
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Fi(wk, ovl,)oul Fi(f )0z

FolAa)  Vimwi ovponson, Ay iz ()™ Fo(Ba).

u_lqg otlldg

/
!

Fi(wiy oviy) F1(feroVey)
Fo(A3))
(3.20)
Moreover, it is easy to see that I'7 is represented by the following diagram:
Fo(AL)
19ro(a3))
Fo(Aw) Vi ovt)  Fo(A3) I F2(Ba) Fo(Ba ).
idrya3,)
Fr(wiy 0viy) F(feoves)
Fo(AL)
(3.21)

Therefore, using (B.17), (320) and B.2I) together with [T1l Proposition 0.2], we
get that I'" ® I''* © T''2 is represented by the following diagram

Fo(AL)
‘Fl(w}d) w
F1 (Vg{)
Fo(Ay) $irwovt)  Fo(A3) I Fa(Ber) Fo(Bw).
Fo(42))

(3.22)
Now we want to compute I'°. In order to do that, firstly we compute the associator

Opw2,) Fi(w2) Fr(v2,): (3.23)

For that, we use [T1] Proposition 0.1] on the triple of morphisms

Wz, (a3, Fi(v3)

Fo(A3))

[=F(v2) = (Fo(4%) Fo(42)).

dz, a2,

Fi(w2)
Fo(A2) ——" Fo(Aw)),

g:= Fi(w?) = (]:O(Afy)

Fi(w?) a2,

b= Pw) = (Folde) 0 Foaz) L Faz)).
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In order to do that, first of all we have to identify the 2-morphisms in [T1l, Propo-
sition 0.1(0.4)]; using conditions (CIl) and (C2) and @B3) for m = 2, such 2-
morphisms are given as follows:

§:= i]ﬁ(v;)a 0 = 0:2%’) 6 = i]ﬁ(wi,)a n= ’L]:l(vi,)

Using (BF4a) and (BF4b) for (2, W) and 0%, (see (83) for m = 2), there are
an object Zi@, a morphism t?% : Zi@ — A% in Wg and an invertible 2-morphism
pey Fi(v:)) ou oty = 7%, 0%, such that

Ol ¥ i, = iF (w2,) * i (3.24)

Then we perform a series of computations analogous to those leading to [B.I9)), so
we get that the associator (3:23) is represented by the following diagram:

A%
uig Z?@
2
Fo(A2) ¥ iug oz, A, U (uZ) " Fo(AZ).
2 0t2
id}'o(Aiy) e Fi(viy)
Fo(A2))

(3.25)
Then taking the inverse of the previous associator, it is easy to prove that the
2-morphism

I’ =i * (3.25) * g
(fU(A;),idfo(Aé),fl(f;D (]-'U(Az),}‘l(w}z{ ov;,),idfwi{))

is represented by the following diagram:

Fo(A3)
F1(War 0 Vi) 2 2 F1(f20v%)
Ugzoty
FolAw)  Vimmtovijouz oz, Ay Uiz, (2 % 12 Fo(By).

Fl(w}ﬂ ov&lﬂ)ou;@ Fl(fé)ozge

(3.26)
Now we need to compute I'®; by definition of F and of U, 2 (see [Z2))), we have
that ?2(05';{1) is represented by the following diagram:
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Fo(AZ,)
dfo(Ad) . fl(wfd ovfj)
idrya3,)
Fo(A3) 4 iidrg(Af;,) Fo(42)) U Fo (o)™ Fo(Aw).
iy a3,
iz, (a3,) o Fi(wiy oviy)
Fo(A3)
(3.27)
Then we need to compute the composition
UFoaz), (w2, 7 (s2)) * BZD) (3.28)

For that, we are going to use [Tl Proposition 0.4] with I" given by the class of ([3.27)
and g := (Fo(A42)), Fi(w%,), F1(f%)). In order to do that, we have to identify the
pair of diagrams appearing in [T1], Proposition 0.4(0.14)] for m = 1,2. In this case,
we use ([B.9)) for m = 2 and (B10), so we are in the hypothesis of [T1], Proposition 0.4]
if we set

A= A%
ull::u%— f'l::Z%
E] 1 2 .
=0
P = B
Al = Fo(A3 B := Fy(A B’ := Fo(A]
0( ﬂ) fI::]-H(Wi/ OV,201) 0( d) w=F1(wy) 0( d)
and
A/2 :A?’gg
NEH : I =
E] p2 — U‘S@ .
A2 = Fy(AP B = Fo(A = FolAz).
0( d) fr=Fi(wl ovl) O( %) u=Fi(w2,) O( EQ{)

Then we need to fix a set of choices (F8) — (F10) as in [T Proposition 0.4]. In
order to do that, we do a preliminary step as follows: using (BF3) for (%, W),
we choose data as in the upper part of the following diagram, with r?% in Wg and

ng invertible.

5 A% <—A3

u? ot2
= (3.29)

Moreover, using (BF4a) and (BF4b) for (%, W), we choose an object Az, a
morphism s : Ag — ‘Az in W and an invertible 2-morphism

P 720t 0T5 085 = 7501054, (3.30)

such that ix (w2,) * P23 coincides with the following composition:
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72,
A% = Fo(A2))
¥ 0l u% § (o) Fi(w?)
Fi(w?, 0v2))
g~ Ay Vns Fo(4d) U Folaw)? FolA).
Fl(w}d ov}?{)
(8 U% Fi(w,)
3 ‘FO(Ai{)
Zz

Using (3.24), this implies that
. . 2 . . o
(Zfl(wi{) * P%) © (’L]-'l(wfy) * g * ’Lr?@osgg) © (‘FQ(O‘W) * 2 012, 012, osg—g) =
= (0—:39‘3 * ir“; OSgg) © (i]:l(w;{ ovl) ¥z * ngg)' (3.32)

Then we fix the following choices:

(F8): we choose the data in the upper part of the following 2 diagrams:

—2
"o, __
A=A,
u”lzzuéa o tg@ 1 . V/I::tgj
=2 ot2,
=
3 3 1 3 /1 2
A° = Fo(A,)) — A = Fo(A3) - A =A%,
v :ldFO(A?d) u't=ug
A//2 .

W2i=u? —1dA3
/ — ’L 3 \

— Fo(A3,) ——— A% = ]-‘0 (A3,) ———— A? = A3,
v _1d]__0(A3 u’ —uJ&

(F9): we choose A" := Ag, z* = 12,089, 22 :=15 084 and 13 1= ng * is,;

(F10): we choose 3 := pg (the fact that ir, 2 )*pz coincides with diagram
B30 im};lies immediately that the condition of [Tl Proposition 0.4(F10)]
is verified).

Then according to [T1, Proposition 0.4], we get that (328) is represented by the
following diagram:
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‘FO(ALZ{) b N sy, Fo(By).

(3.33)
Lastly, in order to compute I'* we need to compose the class of ([3.33) with the
2-identity of the morphism

P(wly o) = (Fo(AL), Fi(why ovh), iz as,) )

(applied on the left of ([333)). Then we get easily that I'® is represented by the
following diagram:

.Fl(w}y ov;)ou% fl(f;)oz?%,

téaoréaosﬂa
FolAdw) Virmmt, o) ¥18%bsa Ay iz (2, *pas Fo(Bar)-

1‘:?,305@

Fi(wyy oviy)oud, Fi(fZ)oz3,

(3.34)
Now we need to compute I''; we recall that the inverse of E(W}Z{ o V}Z{) has a repre-
sentative given by the inverse of ([B.I4) (namely, the same diagram with upper and
lower part interchanged); moreover,

Fr(f2) 0 Pw) = (FolA2), Fi(wh), Filf2).

We also recall that by construction the morphisms u?%, ta, 1233 and sg belong all to
W. So by (BF2) and (BF5) applied to ;' * is,,, we get that u’, o1, 0 sz belongs
to Wg. Since also ud, belongs to W, then by Proposition 2.I1|(ii) we conclude
that rigg osg belongs to Wz gat. So by Definition 2] there are an object Z/gg and
a morphism s, : Af%, — A@, such that 12, 0sg o8, belongs to W .

Then we use [T1, Proposition 0.4] with p! := agg and p? = i}—(wfﬂ); a set of

choices (F8) — (F10) for this case is easily given by n! := i, 0= o, nP =

r_ 1
T, 013, 055 08, and §' := 043, 013, Then we get that I'" is represented by

the following diagram:

0Sg80Sly"



28 MATTEO TOMMASINI

A%

fl(wg, ov;)ou:;? .Fl(fi{)ozsg

1 085 08l

]:0(‘442?) \ U% *’L.r?;g,C)ng,w)s'@e 2{//@ \ i]-'l(fg{)ozgg ord osgosly fo(Bﬂ)

255015085 08
Fi(wi)

Fi(£2)

Fo(AZ))

Therefore, I'! is also represented by the following diagram:

Fi(wk, ovl,)oud,

]:0(1442{) (8 UE@ * Z.r?% osz A{gg U i.7"1(f§{)ozl3;423 or 085 ]:O(Bsz{)
7z 01 055
Fi(w?) Fi(fZ)
Fo(A%))

(3.35)
Then using (B37), B34) and B32), we get that I'' ® I'® is represented by the
following diagram:

A%

.Fl(w}zﬁ, ov;)ou% .7-'1()‘;,)0429Ze

tggorggosuag

Fo(Aw) | ez Ay Vig 2 *pa Fo(Be),
Z::;Z? or:;8 Oosxn
Fi(w?) — Fi(£Z)
Fo(A2))

where £4 is the following composition

(ifl(w;) * /193) © (ifl(wg,) * [ig * irggos@) © (]:2(0%) * iuégotégorégOSgg)'

Then we get easily that I'' © I'® is also represented by the following diagram:

A%

Fi(wly oviy)ou Fi(fZ)oz2,
t2
Fo(Aw) b Folaw) vz o, A2, ¥ imgz) * (1%) ™ Fo(Buw).
Fi(vZ,)ouZ o
Fi(w?) ot A1)
Fo(AZ))

(3.36)
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If we compose ([3.36) with [B.26), we get that I'' © I'® © I' is represented by the
following diagram:

Fo(A3))
fl(wig ovig) d fl(f;ovfy)
1CFoa)
.7:0(1442{) l} ]:Q(Ofd) .7'-0(143’2{) N[ Z‘]-'l(f‘g{oviy) fO(Bﬂ).
Fi(v3)
m
Fo(AZ))

(3.37)
Lastly, using together (3.22) and ([3.37), we get that ' O3 oI o7 o' oT!2
is represented by the following composition:

Fo(AL))
Fi(wl) 1 Fi(fl)
F1(Vey)
Fo(Aw) I Falaw) Fo(A2) I F2(Ber) Fo(Ber)-
2 Fi(vi)
Fi(wiy) F1(f2)
Fo(AZ))

(3.38)
By the proof of [Pr] Theorem 21| we have that My is well-defined on classes (i.e.
the equivalence class of ([.38) does not depend on the choice of a representative
for (3:2)). Moreover the same result implies that there is a set of unitors ¥ and
associators U making the data (Mo, My, M3) into a pseudofunctor M. Since
we are assuming that F is a strict pseudofunctor, then the class of [B38)) coincides
with the class of ([@.4).

If we denote by Uw, the universal pseudofunctor from % to % [Wél], again
following the proof of [Pr, Theorem 21|, we get a pseudonatural equivalence

(:Uw,oF = MoUw, in Homw, (#,2[W,']).

Since we don’t need to describe ( explicitly here, we postpone its description to
Remark below.

So we have completely proved Proposition Bl in the particular case where &/ and
2 are 2-categories and F is a strict pseudofunctor (i.e. a 2-functor) between them.

In the general case, in the proof above we have to set
E(wer) 1= [FolAly), Fi (W), 7, (ar ),
-1

-1
(ﬂ-]:l(wgf)Oid}'U(Aiy)) © (ﬂfl(wd)) O UF (we)>

-1 1
(W}H (Wd)oid]—‘o(f‘x;{)) © (ﬂfl(wd)) © U}‘l(wd)} :
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(]'"o(Ad), dzy(a,):1d7 (AL ) -

= (]:O(Aizf)a}—l(wﬂ) oidz,(ar,), F1(We) Oid]—'o(A;{))

and

A(wey) = |:]:0(A;{>aidfo(A’g{)aidfo(A’g{);

s ~ s i :
ld}'o(A;{) ° ld}'o(A;{)’ ldFU(A;{) OldFU(A;{):|

(]:0(14;{)’ idx,(ar,) 0id gy (ar,),idr(ar,) 0ldz,(ar ) ) =

= (-FO(A;{)v iz, (a),idxy(a, ) ;

where 7, and v, are the right and left unitors of Z. Moreover, we have to add
unitors and associators for &7, Z and F wherever it is necessary. Then following the
previous computations, we get a pseudofunctor M such that My(Ay) = Fo(Aw)
for each object A/, but that has the slightly more complicated form mentioned in
1) and 33)). For example, (B1)) follows from (34) and (30): in a 2-category we
can omit the pair of identities that we obtain in ([B1]), but we cannot do the same
if A is simply a bicategory. O

Remark 3.2. The proof above implicitly uses the axiom of choice because in (A)
we had to fix a structure of bicategory on & [W;}] and on A [ngl], and this
implicitly requires the axiom of choice in [Pr]. However, choices (B) in the proof
above do not need the axiom of choice since we have a precise prescription on how
to define each morphism P(w, ) and each 2-morphism A(w. ) and Z(wg ), not
relying on axioms (BF). In other terms, the construction of M above does not
require the axiom of choice if we can fix:

e a set choices [CyW ) and

e a set of choices[C{W ») satisfying condition (C3)),
in such a way that the axiom of choice is not used (see also [T1], Corollary 0.6] for
more details).

Corollary 3.3. Let us fix any 2 pairs (o, W) and (B, W g), both satisfying
conditions (BF) and any pseudofunctor F : of — P such that F1(Wg) C Wa.
Moreover, let us fiz any set of choices [CAW ) satisfying condition (C3). Then
there are a pseudofunctor

N M[W;} o @[wg}

(where BIW '] is the bicategory of fractions induced by choices [AW %)) and a
pseudonatural equivalence 0 : Uw,, o F = N olUw ,, such that:

(I) the pseudofunctor py : o/ — Cyl (,%’ [Wél]) associated to O sends each
morphism of W o to an internal equivalence;
(IT) for each object Ay, we have No(Aw) = Fo(Aw);
(IIT) for each morphism (A, W, for) : Ay = By in o [W;ﬂ , we have
N (Al war ) = (Fo(Aly), Fa(war), Filfor) )
(IV) for each 2-morphism as in B2) in o/ [W;] , we have

Nz([Aig,V}y,ny, amﬂ%D = [fO(A?zf)afl(V}zf)afl(V}zf)’
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1
oVt

)71’%,@ © Fa(Bar) © (Qﬂﬁ,,v;)fl}

(where the 2-morphisms ¥ are the associators of F).

Ve 2 © Falaw) © (wv]:l

Proof. Tt is easy to prove that N is well-defined on 2-morphisms, i.e. that it does not
depend on the representative chosen for [3.2]). So the statement gives a description
of N on objects, morphisms and 2-morphisms, hence it suffices to describe a set
of associators and unitors for A" and to prove that the axioms of a pseudofunctor
are satisfied. We want to induce such data from the associators and unitors for the
pseudofunctor M constructed in Proposition Bl Given any morphism

i = (A;{,Wg{, fg{) : Ay — By
in & [W;], we define an invertible 2-morphism

¢ (f) = Mi(f) = Ma(f)

as the class of the following diagram:

Fo(AL)

F1(wer) d Fi(fer)
19ro(al)

—1 -1
FolAy) U 7x (war)oidzyar , F0(AL) 4 TR (fa)oidryar,,  Fo(Ba)-
tdryar,)

fl(Wgy)Oid]:O(A;{) fl(f)Oid]:()(Ai?{)

Fo(AL)

Then given any 2-morphism I" : f o iQ in o [W;ﬂ we have easily the following
identity:

No(T) = (f2) " o Ma(T) 0 (£1). (3.39)

Now given any other morphism g : Byy — Coy in & [W Qﬂ , we define the associator
for \V relative to the pair (g, f) as the following composition:

= (@) e (D7) 0 0w (gof) : Milge f) = Nilg) o Ni(f).

Moreover, for any object A,/, we define the unitor for N relative to A, as the
following composition:

SN =34 0 (ida,,) : Miida,) = idpga,,) = idran) = idag (i) -
Then we claim that the set of data

N = (No = ]:o,Nl,N2,‘I’/.\[aEJ.\/)

is a pseudofuntor. First of all, we have to verify that A preserves associators,
namely that given any pair of morphisms f,g as above and any morphism A :

Cy — Dgyin o [W;], the associator

Oy () N ()N () N1(R) O( 1(g)o/\/1(i)) = ( 1@)0/\/1@) oNi(f) (3.40)

in & [W;al} coincides with the composition:
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-1
(‘Pﬁg * ZM@) © Whog s ONa (eﬁ,g,i) © (‘I’ﬁgoi) © (ZM(@) * ‘Ifﬁfi) - (3.41)

In (B4T) we replace the definition of the associators U2 and we use ([3:39) for ' =
Oh,q.¢- So after some simplifications, [B:41)) is equal to the following composition

((sﬁ (B) g (g)fl) s () )®
(U < inn,(n)) © Uiy © Mo (Bny s ) © (wgfgoi)_l ® (i * \pgfi)_le

®(<P (h) * (@ (9) * ¢ (f) )) (3.42)

Since M is a pseudofunctor by Proposition Bl then the central line of ([42) is
equal to the associator © xy, (n), M, (g),M, (f)- Then by [T1], Corollary 5.1] applied to

the bicategory %4 [ngl} and for x(N1(f)) = ¢(f) (and analogously for g and h),
we conclude that ([3.42) coincides with (B40).

All the remaining axioms of a pseudofunctor for A/ follow easily from the analogous
conditions for the pseudofuntor M and from ([339). So we have proved that there
is a pseudofunctor N satisfying the claim of Corollary 3.3 Then it remains only to
define a pseudonatural equivalence 0 as in the claim. For that, we remark that the
set of invertible 2-morphisms {¢(f)}; (indexed on all morphisms f of o/ [W;])
induces a pseudonatural equivalence ¢ : N' = M. Then we define

0:= ((‘0_1*@'qu{) @C I/{W@ OI:NOZ/{W@{’

where ¢ : Uw, o F = M olUw,, is the pseudonatural equivalence obtained in
Proposition Bl By [Pr}, Proposition 20] the pseudofunctor Uy, sends each mor-
phism of W, to an internal equivalence, hence so does the pseudofunctor asso-
ciated to iy, . therefore also the pseudofunctor associated to ot itty,, Sends
each morphism of W, to an internal equivalence. Since also ¢ does the same by
Proposition 31} then we have proved that d satisfies the claim. O

Remark 3.4. In the proof of [Prl Theorem 21] the unitors and the associators for
the induced pseudofunctor M (]t" in Pronk’s notations) are not described explicitly,
nor it is explicitly shown that all the axioms of a pseudofunctor are satisfied. This
is why we have not described them explicitly in the present paper, nor we have
described explicitly the induced unitors and associators for A/. The reader inter-
ested in such (long, but most of the time straightforward) details can download an
additional appendix from our website (http://matteotommasini.altervista.org).

Remark 3.5. Given the pseudofunctor M constructed in Proposition 3] for each
object A, we have

Uw 5.0 0 Fo(Awr) = Fo(Awr) = Mo(Aer) = Mo olUw ,, 0(Aer ).
Moreover, for each morphism fo : Ay — B we have

Uw 10 Filfer) = (FoAur), iy (a0) Filfer))

and

Miolw ,1(for) = (fO(Aw)afl(idAﬂ) 0 idz, (A, F1(far) 0idzy(a,,) )

Then a pseudonatural equivalence ¢ : Uw,, o F = M olUw, as in Proposition Bl
has to be given by the data of an internal equivalence
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C(Ag{) : ]:O(Ag{) — fo(Ad)
in & [W;ﬁl} for each object A, and by the data of an invertible 2-morphism

((F) t C(Bur) o (FolAur),idrya) FalFr) ) =
= (}'o(Ag{),]i(idAd) oidr,(a,,), Fi1(far)oidr(a,,) ) 0((Ayx)

for each morphism fo : Ay — By . Then following the proof of [Prl Theorem 21],
a possible choice for ( is given as follows. First of all, we set

((Awr) = (FolAw),idry . idrya) ) (3.43)

for each object A.; then we declare that for each morphism fo, as above, {(fu) is
the invertible 2-morphism represented by the following diagram:

Fo(Aw)
dry(a,,) 0idrgay) " drg(B,,) oF1(far)
1AFg(Ag)
1 2
Fo(Ae) ey Fo(Aw) Ve Fo(Ba),
id]‘—U(Ag{)
idry(a,,) o(F1(ida,, )oidry(a,,)) (F1(far)oidzy(a,,))oidry(a,,)
Fo(Aw)

where

1. FyTL -1 3
c2 = (Zldfo(Axy) * (( (UAM) * Zldfo(Axy)) © ﬂ-id}'o(Ad))) *lidry(a,)

2 ._ (o1 —1 )
Cp = (Wfl(fgf)oid}‘o(Aﬂ) OTE (f) GU}-l(fﬂ)) *ldro (a0

Then using the proof of Corollary B3] the induced pseudonatural equivalence 9 :
Uw,, o F = N olw,, coincides with ([3.43) for each object A ; for each morphism
far as above, O(fo) is represented by the following diagram

]"0(14%)

1dFg(Agy)

Fo(Aw) U pig Fo(Awx) U pZ Fo(Bu),

. . idzg(ay)
idry(a,)oFi(ida,,) F1(far)oidry(a,,)

]:o(Agg)

where

1. (s F oy . 2 _ (-1 .
oy = (Zld}'o(Agg) *(o4,,) ) *lidyy sy Mo = (Tr]-‘l(fd) QU}—I(fo)) *tdrga,

In particular, if & is a 2-category and F preserves 1-identities, then 0 is the identical
natural transformation of the pseudofunctor Uw,, o F = N oUw .
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Corollary 3.6. Let us fix any pair (¢, W) satisfying conditions (BF). Let us fix
any pair of choices [QI"(W) for m = 1,2 and let us denote by €™ [W‘l} and Uspy
for m = 1,2 the associated bicategories of fractions and universal pseudofunctors.
Then there is a pseudofunctor

Q:¢' W] —¢* W] (3.44)
that is the identity on objects, morphisms and 2-morphisms. Moreover, there is a
pseudonatural equivalence

¢: Uy = Qollyy in Homyy (¢,¢*[W]).

The existence of an equivalence of bicategories as in ([.44) and of ¢ is an obvious
consequence of the universal property of bicategories of fractions (see [Pr, Theo-
rem 21]). However, in |Prl Theorem 21] there are no explicit descriptions on the
behavior of @ on objects, morphisms and 2-morphisms, so Corollary [3.6] a priori is
not, trivial.

Proof. Let us fix any set of choices[C(W) satisfying condition (C3). Then we apply
Corollary to the case when:
o (o, W) = (¢,W) and the choices for this pair are given by [C]'(W); the
associated bicategory is then € [W‘l];
o (B, Wg) = (¥,W) and the choices for this pair are given by [CAW); we
denote the associated bicategory by & [Wfl];
e the pseudofunctor F is the identity of €.

Then there are an induced pseudofunctor

N W — @ [W
given on objects, morphisms and 2-morphisms as the identity (its associators are
induced by the choices [C]' (W) and [C(W)) and a pseudonatural equivalence of
pseudofunctors

' :Uw = N'ollyy in Homy (¢, [W™]).

Analogously, there are an induced pseudofunctor

N2 €2 W — ¢ [W]
given on objects, morphisms and 2-morphisms as the identity, and a pseudonatural
equivalence

O Uw = N?ollyy in Homy (¢, [W']).
Since the objects, morphisms and 2-morphisms of the source of N2 are the same as

those of its target, we have that actually A/? is a bijection on objects, morphisms
and 2-morphisms. So it is easy to construct a pseudofunctor

N2 g W — @2 [W]
that is an inverse for N'?: it is described as the identity on objects, morphisms
and 2-morphisms; its associators and unitors are induced by the inverses of the
associators and unitors for A2. This induces also a pseudonatural equivalence
T Usy = N?olw in Hom{y, (%,%2 [W_l}) .
Then we define Q := N2 o N'' and we set
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6= 5 prpas, © (i #0Y) O 7+ Uy = Qollly in Homly (%, %% [W1]).
0

Proof of Theorem [I.3. First of all, we prove part (B) of the statement, so let us
assume that F1(Wg) € Wg. Let us suppose that the bicategory % [Wél] is
induced by a set of choices [((W). If [(fW) satisfies condition (C3)), then (B)
coincides with Corollary 33} Otherwise, let us fix another set of choices [C]'(W 4)
satisfying condition (C3)), let us denote by %’ [W;ﬁl} the associated bicategory of
fractions and by L{{,V@ the associated universal pseudofunctor. Then there are a
pseudofunctor

N: o (W) — # W]
and a pseudonatural equivalence 0 : Usy o F = N olUw ,, satisfying Corollary [3.3]
Now we apply Corollary B.6] for [C}(W) :=CI'(W) and [CF(W) :=[C(W). So there
are a pseudofunctor

Q: 7 [W5'| — #[Wj]
that is the identity on objects, morphisms and 2-morphisms, and a pseudonatural
equivalence

¢: Uw, = Qollyy, in Homy (¢,¢[W']).
We set é = QoN : & [W;,l] — A [ngl] Since Q is the identity on objects,
morphisms and 2-morphisms, then the description of G on such data coincides with

the description of A/ on the same data (see Corollary [3.3)), so conditions (II), (III)
and (IV) are satisfied. Then we define:

Ki=0oNuw , © (iQ *8) @9571“‘/)‘,%7;@ (d)*z}-) s Uwy, o]-“:>g~olzlwm,.

Using the properties of 9 and ¢ already stated in Corollaries and B.6] we con-
clude that & satisfies condition (I). This suffices to prove part (B) of Theorem [0.3

Now let us prove also part (A), so let us assume only that 71 (W) C W g sat.
Since (A, W g) satisfies conditions (BF), then by Lemma [2.8 we have that also
(2B, W 5 sa1) satisfies conditions (BF). Therefore, we can apply part (B) to the case
when we replace (%, Wz) by (#, W zsat). So there are a pseudofunctor

G: @%[W;;} — A [W;;Sm}
and a pseudonatural equivalence & : Uw, ,, © F = G olUw ., such that

e the pseudofunctor uz : &/ — Cyl (,@ {ng}sat}) associated to Kk sends each

morphism of W, to an internal equivalence;
e conditions (II), (IIT) and (IV) hold.

O

Remark 3.7. In the case when F;1 (W) N(W g sat ~ Wz) # &, then a pair (G, k)
as in Theorem [0.2(iv) can be obtained in any of the following 2 ways. Both give
the same pseudofunctor (up to pseudonatural equivalences), and in both cases such
a pseudofunctor is very complicated to study directly. The first possibility is to
follow the proof of [Prl Theorem 21], as we did in the proof of Proposition Bl In
this case, it is much more difficult to give a set of data (P(wy ), A(Wy),Z(W))
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for each wo € W, moreover in general one cannot express the composition of
diagram (B8] in a simple form. The second possibility is given as follows: first of
all we consider the pair (G, K) described in Theorem [I.3(A). Then we consider the
pair

Ho B[Wol] — 2[WS], e Uw, = Ha olw,,..
associated to (%, W) by Proposition [Z10 and we set:

o G:=HzoG;

® K= 97{%5,“‘”‘1 © (ip, *F) © 05"

Ha UW g gor+F © (T‘% *iF).

In this case, the complexity of the pseudofunctor G is hidden in the complexity
of Ha, that was also implicitly obtained using [Pr, Theorem 21]: indeed Hgp was
obtained in Proposition ZI0] that uses Theorem [[9] that is essentially part of [Prl
Theorem 21]. Therefore, also in this case in general it is not possible to give a
simple description of G.

Now we are ready to prove the third main result of this paper.

Proof of Corollary[07] Let us fix any pair (G, «) as in Theorem [[2(iv). By that
theorem, we have F1 (W) C W g sa. This implies that there are a pseudofunctor

G: o Wi — 2| WL,
described as in Theorem[0.2(A), and a pseudonatural equivalence & : Uy, ., 0 F =
G olUw ./, that is an internal equivalence in Hom{y, B (gf , B [Wé}sat} ) By Propo-
sition [ZI0] applied to the pair (%, W g), there are an equivalence of bicategories

Ho - @[Wé}sat} — ,@[W;ﬂ

and a pseudonatural equivalence of pseudofunctors

TR - Uw@ — Hgg OUW@,sat

belonging to Hom@vggysat (B, %5 [W;al} ). Now let us consider the following compo-
sition of pseudonatural equivalences of pseudofunctors:

. _ - = -1 -
1= O Gt © (15 F) © 0, © (i) O

—1 .

Gollw,, = (HzoG)olw,.
Now:

e k belongs to Homlwg{ (JZ{, B [W;ﬂ),

e F belongs to Hom(«/, %) and is such that F1 (W) C W g, moreover
Te 18 a morphism in Hom’W@ o (55, B [W;;]), SO Tg * iF is a morphism in
Homyy (o7, B[W3']);

e X is a morphism in Homlwd (Jz{, B [W;?%sat’ } ), SO i34, * K is a morphism in
Homy (o, % [W,']).

We recall that by Theorem we have an equivalence of bicategories

&: Hom (o [W'],#[W31] ) — Homw, (7, 2[W31]),  (345)

given for each object

G (W] — B[W]
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: ~1 —1
in Hom(o [W_'] , 2 [W}']) by

EG):=Golhw,, : ,Q%—L@[W;Bl}

So we have defined an internal equivalence

n: EG) = E(HzoG)

in the bicategory Homyy, (/, % [W'|) C Homw,, (@7, % [W,']). Since € is an
equivalence of bicategories, this implies that there is an internal equivalence from
the pseudofunctor G to HgzoG in the bicategory Hom(&/ [W;ﬂ , B [ngl] ). So by
Lemma there is also an internal equivalence from G to H o G in the bicategory
Hom' (o [W;,l] , B [W;ﬁl} ), i.e. a pseudonatural equivalence of pseudofunctors

d: g:»?—tggoé.

Now H g is an equivalence of bicategories, so H @oé is an equivalence of bicategories
if and only if G is so. So by Lemma [[4] applied to 4, we conclude that G is an
equivalence of bicategories if and only if G is so. O

As a consequence of Corollary [0.4] we have the following necessary (but in general
not sufficient) condition in order to have an induced equivalence between bicatego-
ries of fractions.

Corollary 3.8. Let us fix any 2 pairs (o, W) and (B, W g), both satisfying
conditions (BF), any pseudofunctor F : of — B and let us suppose that there is
a pair (G, k) as in Theorem LA(iv), such that G : & [W_'| — B [W,'] is an
equivalence of bicategories. Then ]-"fl(Wg{ysat) = Wz sat-

Proof. By Theorem [I.2(iv), we have that F1 (W g sat) € Wz sat, hence Wy ooy C
}“fl(W #.sat), S0 we need only to prove the other inclusion.

So let us fix any morphism wg : Ay — By such that F1(wy) € Wg g and
let us prove that wo belongs to Wy g¢. Since id4_, belongs to W, by (BF1),
then Fi(id 4, ) belongs to F1(W o sat) € Wz sat. Moreover, by hypothesis Fi(w)
belongs to W g gat. Therefore, if we apply Proposition 2.11[i) and Corollary 27 to

(B, W z.sa1), we get that the following is an internal equivalence in # [Wélsat}:

fl(idA’ ) F (W )
Fo(Aw) —= Fo(Aw) —5 Fo(Buy). (3.46)
This morphism is the image of the morphism
id a4 w
A Y “—— By (3.47)

via the pseudofunctor
G- M{W;}} — %[ng}m}

described in Theorem[0.2(A). By Corollary [0.4] G is an equivalence of bicategories;
since ([340]) is an internal equivalence then we conclude that ([B.47) is an internal
equivalence. By Corollary 27 applied to (&7, W), we conclude that w., belongs
to Wy O
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As we said above, the previous condition is only a necessary one. In the next paper
of this series (JT2]) we are going to find a set of necessary and sufficient conditions
such that G is an equivalence of bicategories. Combining this with Corollary [0.4]
we will get necessary and sufficient conditions such that G is an equivalence of
bicategories for any pseudofunctor G satisfying the conditions of Theorem [022(iv).

4. APPLICATIONS TO MORITA EQUIVALENCES OF ETALE GROUPOIDS

In this section we apply some of the previous results about saturations to the class
of Morita equivalences of étale differentiable groupoids. We denote any (étale) Lie
groupoid by (2] %& Z,) (omitting the structure morphisms m,i and e only for
clarity of exposition) or simply Z,, and any morphism of Lie groupoids either by

(¢07¢1) or by d)o'

We recall (see M} § 2.4]) that a morphism ¢, : %, — Z, between Lie groupoids
is a weak equivalence (also known as Morita equivalence or essential equivalence) if
and only if the following 2 conditions hold:

(V1) the smooth map ton! : 27 s X, % — 20 is a surjective submersion (here
m! is the projection 27 Xoo %o — Z1 and the fiber product is a manifold
since s is a submersion by definition of Lie groupoid);

(V2) the following square is cartesian (it is commutative by definition of groupoid):

% o 7

(s,t) (s,t)

2 x %

2o x Zp.
(¢ox o) (4.1)

We denote by (5 Gpd) the 2-category of étale groupoids (i.e. Lie groupoids £, such
that dim 2y = dim 27, equivalently such that either s or ¢ are étale smooth maps,
see [MM| Exercise 5.16(2)]) and by W, the class of all Morita equivalences
between such objects. We recall that by [Prl Corollary 43]:

e the pair ((€ gpd), W, 4) satisfies conditions (BF);

e the induced bicategory of fractions (£ Gpd) {Wgép d} is equivalent to the 2-

category of differentiable stacks.

We denote by (PE Gpd) the 2-category of proper, étale groupoids and by (PEE Gpd)
the 2-category of proper, effective, étale groupoids (see [MM]); moreover we de-
note by W« Gpd and W Gpd the classes of all Morita equivalences in such
2-categories. Such classes satisfy again conditions (BF), so a right bicalculus of
fractions can be performed also in such frameworks.

Proposition 4.1. Let us fix any triple of morphisms of étale groupoids as follows
60:%o—>ffoa ’L/].:ﬁ—)@., Qﬁo:@o—)‘%o
and let us suppose that both ¢, o, and ¥, o &, are Morita equivalences. Then ¢,

is a Morita equivalence. Therefore, the (right) saturation of the class W g Gpd
exactly the same same class. The same holds for W & Gpd and W o ¢ Gpd-

Proof. By [MM| Exercise 5.16(4)] the following smooth maps are étale:

¢o oo : Zy — Ao, pror: 21 — 21,
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o 0 & 1 U — Y, Pro&r U — .

Since ¢q o 9 is étale, then ¢g is a submersion; analogously we get that g is a
submersion. Since their composition is étale, this implies that both ¢y and vy are
étale. In the same way, we prove that ¢; and 1 are étale.

Then let us consider the following cartesian diagrams:
n' !
1 s XKooy 20 = (%15 X o %)wz Xy Lo —— 215 X9y Yo ——— 24

2 O w2 O s

Zo Yo % ®o Zo.

Since ¢, 01}, is a Morita equivalence, then by (V) the map to 7! on! is surjective,
so t ol is surjective. Since ¢y is étale, so is m'; moreover, t is étale. Therefore,
t ol is étale, hence a submersion. So we have proved that (V1)) holds for ¢,.

Now let us prove that (V2)) holds for ¢,. By definition of Lie groupoid, we know
that diagram (1)) is commutative, so we have a unique induced smooth map -,
making the following diagram commute:

1
m
21 (5,t) Xpoxo (% X %) 24
72 O (s,t)
% X D Zo x Xo.
Po X po (4.2)

1

Since ¢q is étale, so is ¢g X ¢g, hence so is 7°. Since also ¢, is étale, then we

conclude that the smooth map + is also étale.

Now we claim that ~ is surjective. So let us fix any point x; € £7 and any point
(yo,yp) In % x %, such that (s,%)(x1) = (do(Yo), Po(y)).- We need to prove that
there is a point y; € %4, such that ¢1(y1) = x1, and (s,t)(y1) = (Yo, y}). In order
to prove such a claim, let us consider the following fiber product

Y s Xapgo&o U %
o? O s
Uy 2.

$00&o

Since 1), o &, is a Morita equivalence, then t o o' is surjective. Therefore, there
are a point ug € % and a point §; € % such that s(g;) = o o &(uo) and
t(¥1) = yo. Analogously, there are a point uj € % and a point 7} € % such that



40 MATTEO TOMMASINI

s(71) = o o &o(ug) and t(7)) = yj. Then it makes sense to consider the following
point

Ty :=m(m(¢1(T),21),i0¢1(7))) = (4.3)
=m (¢1(71),m (x1,70 61(71))) € 21

By construction,

5(x1) = 50 ¢1(Yy) = Po 0 5(Yy) = Po 0 o 0 & (uo)

and t(Z1) = ¢o 0 1 o &(up). Since ¢, o 1, is a Morita equivalence, then by (V2)
the following diagram is cartesian

» P10 2
(s,t) O (s,t)
Zo x 2 Zo X 2.
0 0 (¢00%p0 X pootho) 0 0 (4-4)

Therefore, there is a unique object z; € 2 such that (s,t)(z1) = (& (o), o(up))
and ¢1 o11(z1) = T1. Then it makes sense to consider the point

y1 = m (m (i(@), ¥1(21)) , 71) = m (i(7,),m (¥1(21),71)) € %

and we have that

d1(y1) =m(m(iod1(y,), 1 0v1(21)), 01(T1)) =
—m(m(iodi (@), 7)), 61 (T))

Zq.

Moreover, we have

(s:t)(y1) = (s 0i(m), t(@)) = @), t@1)) = (Yo, Yo)-

So we have proved that - is surjective.

Now we have also to prove that v is injective. So let us fix any pair of points y1, 32
in %4 and let us suppose that y(yi) = v(y?). For simplicity, we set

(40, 40) = (s, t)(y1) = T2 o y(yl) = 77 0 (7)) = (5,8)(¥7)

and we choose a quadruple of points (uo, ug,J;,7;) as in the previous lines. Then
for each [ = 1,2 we set:

g =m (m (W, 9),i@) =m [@,m (y1,i7))) € % (4.5)

and we have

s(71) = s(71) = Yo o o(uo) and t(y) = o0 &o(up) for I =1,2.

Since 1)0&, is a Morita equivalence, then by (V2]) the following diagram is cartesian:
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" P10&1 7
(s,t) O (s,t)
Uy x U By X Y.

0% %0 (00&0 x1h00&0) 0 0

Therefore, for each | = 1,2 there is a unique u} € % such that

(s, t)(ull) = (uo, ug) and P 0& (ull) = gll (4.6)
Now by @2) we have ¢1(y1) = 7' o y(yi) = 7" 0o v(y7) = ¢1(y), hence

¢1 011 0 &1 (uf) € o1(71) 2 (m (o1(71), 1 (y1)) io ¢ (Th)) =

=m (m (¢1(T), $1(¥7)) ,i 0 o1(T}) € o1(77) € ¢1 091 0 & (u). (4.7)

Moreover, we have

(5,) 0 &1 (u) = (€0,60) o (5, )(uh) B (€0, €0) (10, ) =2

B (¢, 0) 0 (5,8) (u2) = (s,1) 0 &1 (u?). (4.8)

Since diagram (£4) is cartesian, then by (@8] and [7) we get that & (ul) = & (u?).
Therefore,

~ ED) ED)
Ui o= Yro&i(ul) =¢ro&i(ul) = Ui
From this and (@3] we conclude that y; = y2. This proves that v is injective.

So we have proved that ~ is an étale map that is a bijection, hence = is a diffeomor-
phism of smooth manifolds. This means that diagram (&) is cartesian, so (V2)
holds, hence we have proved that ¢, is a Morita equivalence. (I

Actually, since also ¢, o 1, is a Morita equivalence by hypothesis, then by [PS|
Lemma 8.1] we conclude that v, is a Morita equivalence. Since also ¥, o &, is a
Morita equivalence by hypothesis, then again by [PSl Lemma 8.1] we conclude that
also &, is a Morita equivalence. The same result can also be obtained by remarking
that the class W4 is (right) saturated by Proposition ], hence we can apply

Proposition 2TIii).

Corollary 4.2. Let us fir any morphism ¢, : %, — 2, in (£ Gpd). Then the
following facts are equivalent:

(a) for each étale groupoid %, and for each Morita equivalence py : %, — %, the
morphism

He b

a Ze Ze

is an internal equivalence in (5 Gpd) {Wgépd} ;
(b) the morphism ¢, belongs to Wegg g i

(¢) the morphism ¢, belongs to W g 4 (i.e. it is a Morita equivalence).
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In particular, any 2 étale groupoids Z.', Z2 are equivalent in (5 Gpd) [Wgépd}

if and only if there are an étale groupoid 22 and a pair of Morita equivalences as
follows

i.e. if and only if Z' and X2 are Morita equivalent. The same statements holds if
. . . 5 —1 5 -1

we restrict to the bicategories (PE Gpd) [WPS, dei| and (PEE Gpd) [ngg, de:|'

The equivalence of (a) and (b) is a direct consequence of Corollary 277} the equiva-

lence of (b) and (c) is simply Proposition @I for the case of (£ Gpd). The claims for

(PEGpd) and for (PEE Gpd) follow at once from this and [MM), Proposition 5.6

and Example 5.2.1(2)].

As we mentioned above, by [Prl Corollary 43] the bicategory (5 Gpd) [Wgép d]
is equivalent to the 2-category of differentiable stacks. Therefore, if one wants
to construct a 2-category (equivalent to the 2-category) of differentiable stacks, a

possible way for doing that is the following:

e construct a bicategory &7 and identify a suitable class of morphisms W in it,
so that there is a bicategory of fractions &7 [W;}];

e construct a pseudofunctor F : &/ — (5 Gpd), such that F;(W ) is contained
in the class Wy Gpd of Morita equivalences (in general we should impose that
F1(W ) is contained in the right saturation of Wg gpd- but the 2 classes coin-
cide because of Proposition F);

e consider the induced pseudofunctor G as described in Theorem [L3(A) (since
W goa Is right saturated, this coincides with Theorem [.3(B)) and verify
whether it is an equivalence of bicategories.

Then the natural question to ask is the following: under which conditions on
(o, W, (EGpd), Wg gpdv]:) is the induced pseudofunctor G an equivalence of
bicategories? As we mentioned above, in the next paper [T2] we will tackle and
solve this question in the more general case when the pair ((£Gpd), Wy de) is
replaced by any pair (%, W g) satisfying conditions (BF).

APPENDIX

Proof of LemmalL.2. Let us suppose that both f and g are internal equivalences.
Then there are a pair of morphisms f : A — B, g : B — C and a quadruple of
invertible 2-morphisms as follows:

§:idg = fof, i fof=>idy, (4.9)
v:idg =7gogy, f:gog=—>idp. (4.10)

Then the following pair of compositions prove that fog is an internal equivalence,
with g o f as quasi-inverse:
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ide

c ! B®B J c,

fof [} 0@Ef /
(gof)of
~1
Y %07%9
A

fog gof
gof C fog
4 efog,gJ
(fog)og

RS

ida

Now let us suppose that both f and f o g are internal equivalences. Then there are
a morphism f: A — B and invertible 2-morphisms as in (£3); moreover there are
a morphism h : A — C and a pair of invertible 2-morphisms:

a:ide = ho(fog), B:(fog)oh=id4. (4.11)

Then the following pair of compositions prove that g is an internal equivalence,
with ho f as quasi-inverse (below for simplicity we write 6, for any composition of
2-identities, associators or inverses of associators):

ide

/l—(l\
ho(fog)
c

(hof)og

c,
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hof C g
go(hof) -1
4 Vgonor)
((fog)oh)of
YBrip N
B e A Ve B 4§ B
D S Tof
f
51 _
v 7
idp

Lastly, let us suppose that both f o g and g are internal equivalences. Then there
are a pair of morphisms h: A — C and g : B — C and invertible 2-morphisms as
in (£I0) and (@I1)). Then the following compositions prove that f is an internal
equivalence, with g o h as quasi-inverse.

idp
_ $pt
g C g
9°g 4 0. hO(ng\‘ I (igxa)om,?
— 1, T
B \U'_IU’/V B hof C g B,
idp U’ eg,h,f
u T(goh)of (goh)of
f A goh
fo(goh)
J0rgn
A A.
S~
ida

O

Proof of Lemmall.3 By definition of internal equivalence, there are morphisms
m:A— C and n: B — D and a quadruple of invertible 2-morphisms as follows:

§:ide = mo(fog), & (fog)om=idy,
n:idp = no(goh), w: (goh)on = idp.

Then the following pair of compositions prove that f is an internal equivalence of
¢, with g o m as quasi-inverse:
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idp
—1
li H (goh)on
-1
hon 4 Gg’h’” g
C AN\
(goh)on . 1
B B mo(fog) I (igx0) O, B,
~—_ b - s
dp I O C 7
‘U’ T(gom)of (gom)of
f A gom
fo(gom)

Of.9.m
A
S~ ke

ida

A.

Now both fog and f are internal equivalences, so by Lemma we conclude that
also g is an internal equivalence. Since both g and g o h are internal equivalences,
then again by Lemma we conclude that also h is an internal equivalence. (]

Proof of Lemma[I.7] Since ¢ is a pseudonatural equivalence of pseudofunctors,
then it is described by:

e a collection of internal equivalences ¢(Ay) : Fo(Ax) — Go(Ag) in Z for each
object Ag;

e a collection of invertible 2-morphisms ¢(f¢) in 2 for each morphism f¢ :
Ay — Be, as follows

F1(f«z)
Fo(Aw) =

Fo(Bv)

$(Aw) 7 o(fe) ¢(B)

gO(A%’) W’ gO(B%”)a

satisfying some coherence conditions. Now let us fix any object Ag: by (XII) for
F there are an object A4 and an internal equivalence eg : Fo(Ay) — Ag. Since
¢(A¢) is an internal equivalence, we denote by ¥(Ag) : Go(Aw) — Fo(A¢) any
chosen quasi-inverse for ¢(A¢). Then the internal equivalence eg o ¥(Ay) proves
that (XI)) holds for G.

Proving (X2)) for G is equivalent to proving the following 3 conditions for each pair
of objects A¢, By:

(X2a) for each morphism fg : Go(Ay) — Go(B¢), there are a morphism fg :
A4 — B¢ and an invertible 2-morphism ag : G1(f¢) = f2;
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(X2b) for each pair of morphisms fl,f2 : Ay — By and for each pair of 2-
morphisms al, a2 : fL = f2,if Go(ad) = Go(aZ ), then al, = a2

(X2¢) for each pair f}g, ffg as above and for each 2-morphism ag : Gi( f}g) =
G1(f2), there is a 2-morphism ay : f& = fZ such that Go(ay) = ag.

Let us prove (X2al), so let us fix any morphism fo : Go(Ay) — Go(Bw). Since

both ¢(A¢) and ¢(By) are internal equivalences, then there are internal equiva-

lences ¥(Ag) : Go(Ag) = Fo(Aw), ¥(Bg) : Go(By) — Fo(B¢) and invertible

2-morphisms as follows in Z:

0ag tldryay) = Y(Av) 0 d(Aw),  ay : 9(Aw) 0 P(Av) = idg, (a4
(53clf : id]-‘o(B%) - 1/)(B<g) o QS(Bcg), &, ¢(B<g) o 1/}(339&) — ing(B,g) .
By (X2al) for F, there are a morphism f¢ : A — B¢ and an invertible 2-morphism

ag : Fi(fe) = (Bg) o fo o ¢(Ag).
Then the composition of the following invertible 2-morphism proves that (X2al)
holds for G (for simplicity, we omit all the unitors and associators of 2):

. Go(Aw)
idgy(ag)
Lt A b (0(Fe)
Ag 1(fe <
Go(Ae) — 2, Fo(Ag) Tulre) Fo(Bs) —2E, Go(By).
“\ I
id idgo(B(g)
1dgg(Ag)
Go(Aw) Go(Be)

2

Now let us prove (X2h), so let us fix any pair of morphisms f2, f2 : Ay — By, any
pair of 2-morphisms ai, a2, : fL = f2 and let us suppose that Go(al) = Ga(a2,).
By the coherence conditions on ¢, we get that

(io30) * Falad)) = 62) 7 @ (Galad) ¥ ican)) © BLFE) =
=o(fe) 'O (92(0435) * i(b(Acg)) © o(fg) = (id)(Bcg) * ]:2(0435))-

Then we get (associators and unitors of 2 omitted)

Folal) = (5;; * ifl(ffg)) o) (i’lb(Bcg) * (i¢(3%) * fg(a%))) 0] (5B,g * ifl(f}g)) =

= (55; *ifl(f%)) ® (iw(B(g) * (i(b(B(g) *fg(a%))) © (53% *i]'—l(f(‘lg)) = Fola2),

so by (X2H)) for F we conclude that ol = aZ. So (X2h) holds for G; the proof that
(X2d) holds for G is similar. O

Proof of Proposition[2.6l Let us suppose that Uw 1(f) is an internal equivalence.
Then there are an internal equivalence

€= (A A B)

in ¢ [W~!] and an invertible 2-morphism in ¢’ [W~!]
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= Uwa(f)oe = (A,idA,idA)
(the target of = is the identity of A in € [W‘l]). By definition of composi-
tion in ¢ [W~!] (see [Pr, § 2.2]) and by condition (C2), we have Uw 1(f) o e =

(C,voidg, fog), so by [Pr, § 2.3] any representative for Z is given as follows, with
(voidg) ouin W and &' invertible:

C
voids fog
A %3 c NS A;
ida ’ ida
A

using [T} Proposition 0.8] we can choose the data above in such a way that also &2
is invertible in €. Then we define g := gou : C' — B and we consider the invertible
2-morphism in ¢

vi= (51)71 ©&®05u: fog=>(voidz)ou.
Since the target of v belongs to W, then by (BF5) we have that fog belongs to W.
Since e is a morphism in & [W_l] , then v belongs to W let us suppose that choices

[CAW) give data as in the upper part of the following diagram, with r* in W and
invertible:

Then by [Pr} § 2.2] and () we have eolw,1(v) = (C’,idg or!, gor?). By (BF4a)
and (BF4b) applied to 7, there are an object C”, a morphism 13 : C” — C’ in
W and an invertible 2-morphism ¢ : ' or® = r? or3. Then we define an invertible
2-morphism in & [W‘l} as follows:

.= [C”,r?’,r2 or’, (iidé % 5) ® Oﬁé,rl,ﬁ,,@;’;ﬁ ceolw(v) = (5,id5,§).

Since (voidg) o u belongs to W, then we get easily that also vou belongs to
W. So by Theorem the morphism Uw 1(vou) is an internal equivalence in
€ [Wfl}. Moreover, by construction also e is an internal equivalence. Therefore,
eoUw 1(vou) is an internal equivalence. Now let us consider the invertible 2-

morphism in ¢ [W ]

—1
. €W , U )
(F * “/{w,l(u)) © 69 Uw,1(v), Uw,1(u) © (19 * wv“}lv) ’

eolw(vou) = (5, 1d5,g) o Uw.1(1); (4.12)
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here /%W denotes the associator of Uy relative to the pair (v,u) and 0&W is the
associator of ¢ [W~!| relative to the triple (e,Uw,1(v),Uw 1(u)). Using (@I2),
Lemma [[.T] and condition (C2)), we get that the morphism

(6, ldé,g) ° Z/[WJ(U) _ (C ideo oide C gou B)
(4.13)
is an internal equivalence of € [Wfl}. Now there is an obvious invertible 2-
morphism in ¥ [W’l] from (C,id¢,g o u) = Uw,1(g) to EIF), so again by
Lemma [T we have that Uw 1(g) is an internal equivalence of ¢ [W™1].

So if we perform on g the same computations that we did on f, we get an object
D and a morphism h : D — C such that g o h belongs to W. By comparing with
Definition 211 this proves that f belongs to Wat.

Conversely, let us suppose that f: B — A belongs to Wy,t, so let us suppose that
there are a pair of objects C, D and a pair of morphisms g : C — B, h: D — C,
such that both f o g and g o h belong to W. Then it makes sense to define a
morphism in % [W’l] as follows:

fog g

ti= (A C B).

We want to prove that ¢ is a quasi-inverse for Uw 1(f). By (C2)) we have

fog)oid o
Uw,l(f)OEZ(A eajede C feo A>,
so we can define an invertible 2-morphism in ¢ [Wfl} as follows:

== Ca idCafogaU;olgGﬂ-ngGF(fog)oidcaU;ongﬂ'fog} : uW,l(f)ot = (AaldAaldA)

So in order to conclude that Uw 1(f) is an internal equivalence, we need only to
find and invertible 2-morphism A : (B,idp,idg) = t o Uw 1(f). In order to do
that, let us suppose that the fixed choices[C(W) give data as in the upper part of
the following diagram, with [ in W and p invertible:

E
l m
/ P \
=
B ; A Foa C.

By [Px}, § 2.2], this implies that

tolbwa(f) = (B —="—p—""— B).

By (BF3) there are data as in the upper part of the following diagram, with p in
W and ¢ invertible:
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F
p n
o
/:\
E ; B oy D.

Then it makes sense to consider the following invertible 2-morphism in ¢

a:=0fghon © (if * 9;2,71) ® (if * 0’) © 051, © (/fl * ip) © Ofog,m,p :

(fog)o(mop) = (fog)o(hon).

Since fog belongs to W, by (BF4a) and (BF4b) there are an object G, a morphism
¢ : G — F in W and an invertible 2-morphism 3 : (mop)ogq = (hon)ogq. Then
we define an invertible 2-morphism in %

0= (vl_l * ipoq) ® 91_,1)1,11 ® (071 * iq) ® (997;”1 * iq) © 04, hon,q®
Q(ig * ﬁ) © (ig * em,p,q) © 9;717%13011 © U(gom)o(poq) *
idpo((gom)o(poq)) = (idpol)o (poq).

Then it makes sense to define an invertible 2-morphism in % [W_l] as follows:

A= [Gv (g © m) o (p © Q);p °q, 5; U(gom)o(poq):| :
(B, idg,idpg ) = (E,idB ol,go m) =tolw(f).
This suffices to conclude. O

Actually, a direct computation using [Prl, pagg. 260-261] proves that the quadruple
(Uw1(f), 1, A, ) is an adjoint equivalence, but this fact was not needed for the
proof above.

Proof of Lemma[Z8 Condition (BF1) is obvious since W C Wg,;.

Let us fix any pair of morphisms w : B — A and v : C — B, both belonging to
Wi.t. By Proposition 2.6, we have that

ideo v idp w

C C B and B B A

are both internal equivalences in ¢ [W~!]. So by (C2) and Lemma [[Z also their

composition

id¢ oide wWovVv

C C A

is an internal equivalence. So using Lemmal[[Tland ([21]), we get that also Uw 1(wov)
is an internal equivalence. Again by Proposition [2.6] this implies that w o v belongs
to Wgat. Therefore (BF2) holds for (%', Wat).

Let us prove (BF3), so let us fix any morphism w : A — B in Wy, and any
morphism f : C — B. Since w belongs to Wg,¢, there are an object A’ and
a morphism v : A’ — A such that wov belongs to W. Since (BF3) holds for
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W, there are an object D, a morphism w' : D — C in W C Wy, a morphism
f': D — A’ and an invertible 2-morphism « : (wov) o f' = fow’. Then the data

Da Wla VOf/, a®9w,v,f’
prove that (BF3) holds for (4, Wgat).

For simplicity of exposition, we give the proof of (BF4) only in the special case
when € is a 2-category. The proof of the general case follows the same ideas,
adding associators and unitors wherever it is necessary. In order to prove (BF4a),
let us fix any morphism w : B — A in Wy, any pair of morphisms f!, f2: C — B
and any 2-morphism « : wof! = wof2. Since w belongs to Wg,, then there are
a pair of objects B, B” and a pair of morphisms w’ : B —+ B and w" : B” — B’
such that both wow’ and w’ ow” belong to W. By (BF3) for (¢, W), for each
m = 1,2 there is a set of data (D™, g™, u™,~™) in € as in the following diagram,
with u” in W and ~4™ invertible:

Dm
Y
=
C B B”

Again by (BF3) for (¢, W), there is a set of data (D3,z!,22, ¢) in € as follows,with

z! in W and ¢ invertible

D14>C’<—D2

Now we define a 2-morphism in % as follows:

&= (iw g *z) ® (iwon *qﬁ) © (a*zu) © (iw ()7 *z) :
wow ow” ogl oz' = wow ow” og? 0 7%. (4.14)

Since wow’ belongs to W, then by (BF4a) for (¢, W) there are an object D, a
morphism z : D — D3 in W and a 2-morphism

B:w'oglozl oz = w"o0g? 07’03,
such that

Ay = lwow * 5. (4.15)

Now let us set

vi=ulozloz: D — C;

such a morphism belongs to W (hence also to W, ) because of (BF2) for (¢, W).
Then it makes sense to define:

8= (ifz*qs—l*z'z) © ( (72)*1*@2”) © (iW/*B) © (vl*z) tflov= fZov.
(4.16)
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By replacing ([@I4) in ({I3), we get:

QA Xy = QA KTyl gyl og =

— iy ((zf « ! *z) ® ((72)*1 *z) ® (z‘W, *B) ® (71 *z)) o, .5

So we have proved that (BF4a) holds for (%', Wgat).

Moreover, if in the previous computations we assume that « is invertible, then so
is @ because 7',7* and ¢ are invertible. Then by (BF4b) for (¢, W) we get that
also [ is invertible, hence also f is invertible, so (BF4b) is verified for (€, Wgat).

Now let us prove that also (BF4c) holds for (¢, Wg,t). So let us suppose that
there are an object D', a morphism v/ : D' — C in Wy and a 2-morphism
B flov' = f2ov/, such that

O kiy =1y % 3. (4.17)

Following the proof of (BF3) for (¢, Wg,:) above, there are data (D, t,t’, 1) as in
the following diagram, with t in W and p invertible:

D

’
V:'LllOZIOZ v

Then we define a 2-morphism as follows

A= (72 *zt) o) (z‘f2 *mizot) ® (z‘f2 *M—l)@

@(ﬂ' *it/) ©) (ifl *M) ® ((71)71 *izlozot) :

1 2

/ 1" / 1"
w ow”ogl ozl ozot = wow’ 0g? 0z

ozot. (4.18)

By construction, w’ o w” belongs to W, so by (BF4a) for (¢, W) there are an object
D, a morphism r: D — D in W and a 2-morphism

P glozlozotor:>g2022020tor,
such that

)\*ir = iW/OW// *’l/) (419)
Then we have

Q*lzotor = (iw*')/?*izzozotor)@(iwon*Qb*izotor)@
, , -1 . >
G(a*lulozlozotor) G('Lw* (71) *'Lzlozotor) =

(;) (iw*’y2 >kizzozotor) ®© (iwon *Qs*izotor) © (iwon *,LL71 *Zr)Q

. . ) ) 1
@(a*lv/ot/or) ®© (Zwofl *,U*Zr) o (Zw % (,yl) *Zzlozotor) (Z:m)
= (iw *72 *iz20zotor) © (’L'won *¢*izotor) O} (iwon *’u—l *ir)G
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@(iw *ﬁl *it’or) © (iwof1 *M*ir) © ('L'w * (71)71 *izlozotor) =

e (iw « X x z) D o rown 1, (4.20)
where the passage denoted by (*) is given by the interchange law. Then we define
7/ := zotor : D — D3; such a morphism belongs to W by (BF2) for (¢, W).
Moreover, we set:

B =g % w'og' oz}
Then (£.20) reads as follows:

o7 = w"og?0z?07 . (4.21)

Tkl = o ¥ - (4.22)
Now wow’ belongs to W by construction. Therefore, we can apply (BF4c) for
(¢, W) to the pair of identities given by (£IH) and [@22]). So there is a set of data
(E,p,s,v) as in the following diagram

such that zos belongs to W, v is invertible and

(B’ « ip) © (zw ogtont * y) - (ZW ogZos? * y) © (E « z) (4.23)

Now we have:

@I

i % B iy T o iy D N ke
@Iz . . . ) -1
= (72*Zz20zotorop)Q(ZfZ*Qﬁ*@zotorop)@(le*ﬂ 1*Zrop)®

@(ﬂ’ *it/orop) © (ifl *M*irop) © ( (1) *izlozotmp). (4.24)
Moreover, by (£I6]) we have:

bt # Brris = (VQ*Z‘Z%ZOS) © (if2*¢*izo5) © (ﬂ*z) o ( (71)‘1*121”05). (4.25)
Then:

(72 *ztp) © (z‘fZ wmzotmp) © (z‘f2 wp ! *imp)@

. . . . —1 R *
@(ﬂ/ *Zt/orop) ® (Zfl *M*Zrop) O] (Zfloul ozl *l/) © ( ('Yl) >k'Lzlozos) (:)

(*) . . .
= (72 *Zzzozotorop) © (’sz *Qﬁ*@zotorop)@

@(z‘f2 T *z‘rop) © (ﬂ’ *z‘t/orop) © (z‘fl *u*imp)@
() i eroteron) @ (iwronapon +v) 2
€ (iw/ *BI * ip) ® (iwlowﬂ oglozl * 1/) €z
@ (iw/ow// 0gZoz? * l/) ® (iW/ *B*zs) @]}

D (1 oot ) © (1 4 0ser)0
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@(z‘f2 wmzos) ® (ﬁ*is) © ((71)*1 *z) ®)
(;) ( 2 *iZ2OZOtOI‘Op) © (Z.fQOuzoz2 *V)®
@(ifz *qﬁ*izos) ©) (ﬁ*is) ® ((71)71 *izloZOS) )

(;) ( 2 *iZQOZOtOrOp) © ('L'f2 *¢*izotorop)®

O(igzomom +v) @ (B41s) © (1) #imonos), (4.26)

where all the identities denoted by () are given by the interchange law in €. Since
71,42 and ¢ are invertible, then identity (#26) implies that

(Zf2 *M_l *irop) [O) (ﬁ/ *it’orop) ® (’Lfl *M*irop) ® (’L'floulozl * V) =

= (if2oulozl *Z/) ® (ﬂ*ls)

Therefore, we have the following identity:

(8% ivorep) © {ip s [(1rivep) © (iwron +v)] } =
:{iﬂ* Ku*imp)®(iulozl*u)}}®(ﬂ*z‘s). (4.27)

Now we define a morphism s’ :=t'orop: F — D’ and an invertible 2-morphism

¢:= (M*irop) ® (iulozl *V) :

vos=nulozlozos = v/ ot'orop=v'os .

Then [@27) reads as follows:

(5’ *z) © (ifl *g) — (¢f2 *g) ® (ﬂ*z)

By construction, u!, z!' and z os belong to W,,, so by the already proved condition
(BF2) for (¢, W) we have that also vos = uloz! ozos belongs to Wg,y; this
proves that (BF4c) holds for (€, Wgat).

1

Lastly, let us fix any pair of morphisms w,v : B — A, any invertible 2-morphism
« : v = w and let us suppose that w belongs to Wg,t. Then there are a pair of
objects C, D and a pair of morphisms w' : C — B and w” : D — C, such that
both wow’ and w’ o w” belong to W. By (BF5) for (¢, W) applied to « * iy, we
get that vow’ belongs to W. Therefore, v belongs to W, i.e. (BF5) holds for
((ga Wsat)- g
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