
FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps

Steven Arzt, Siegfried Rasthofer,
Christian Fritz, Eric Bodden

EC SPRIDE
Technische Universität Darmstadt

firstName.lastName@ec-spride.de

Alexandre Bartel, Jacques Klein,
and Yves Le Traon

Interdisciplinary Centre for Security,
Reliability and Trust

University of Luxembourg
firstName.lastName@uni.lu

Damien Octeau, Patrick McDaniel
Department of Computer Science and

Engineering
Pennsylvania State University

{octeau,mcdaniel}@cse.psu.edu

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Abstract
Today’s smartphones are a ubiquitous source of private and confi-
dential data. At the same time, smartphone users are plagued by
carelessly programmed apps that leak important data by accident,
and by malicious apps that exploit their given privileges to copy such
data intentionally. While existing static taint-analysis approaches
have the potential of detecting such data leaks ahead of time, all ap-
proaches for Android use a number of coarse-grain approximations
that can yield high numbers of missed leaks and false alarms.

In this work we thus present FLOWDROID, a novel and highly
precise static taint analysis for Android applications. A precise
model of Android’s lifecycle allows the analysis to properly handle
callbacks invoked by the Android framework, while context, flow,
field and object-sensitivity allows the analysis to reduce the number
of false alarms. Novel on-demand algorithms help FLOWDROID
maintain high efficiency and precision at the same time.

We also propose DROIDBENCH, an open test suite for evaluating
the effectiveness and accuracy of taint-analysis tools specifically
for Android apps. As we show through a set of experiments using
SecuriBench Micro, DROIDBENCH, and a set of well-known An-
droid test applications, FLOWDROID finds a very high fraction
of data leaks while keeping the rate of false positives low. On
DROIDBENCH, FLOWDROID achieves 93% recall and 86% pre-
cision, greatly outperforming the commercial tools IBM AppScan
Source and Fortify SCA. FLOWDROID successfully finds leaks in a
subset of 500 apps from Google Play and about 1,000 malware apps
from the VirusShare project.

Categories and Subject Descriptors F.3.2 [Semantics of Program-
ming Languages]: Program analysis; D.4.6 [Security and Protec-
tion]: Information flow controls

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9-11 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594299

1. Introduction
According to a recent study [9], Android has seen a constantly
growing market share in the mobile phone market, which is now
at 81%. With Android phones being ubiquitous, they become a
worthwhile target for attacks on users’ privacy-sensitive data. Felt et
al. classified different kinds of Android malware [12] and found that
one of the main threats posed by malicious Android applications
are privacy violations which leak sensitive information such as
location information, contact data, pictures, SMS messages, etc.
to the attacker. But even applications that are not malicious and
were carefully programmed may suffer from such leaks, for instance
when they contain advertisement libraries [16]. Many app developers
include such libraries to obtain some remuneration for their efforts,
but few of them fully understand their privacy implications, nor
are they able to fully control which data these libraries process.
Common libraries distill private information that identifies a person
for targeted advertisement such as unique identifiers (e.g., IMEI,
MAC-address, etc.), country or location information.

Taint analyses address this problem by analyzing applications
and presenting potentially malicious data flows to human analysts
or to automated malware-detection tools which can then decide
whether a leak actually constitutes a policy violation. These ap-
proaches track sensitive “tainted” information through the applica-
tion by starting at a pre-defined source (e.g. an API method return-
ing location information) and then following the data flow until it
reaches a given sink (e.g. a method writing the information to a
socket), giving precise information about which data may be leaked
where. The analyses can inspect the app both dynamically and stati-
cally. Dynamic program analyses, though, require many test runs
to reach appropriate code coverage. Moreover, current malware can
recognize dynamic monitors as the analyzed app executes, causing
the app to pose as a benign program in these situations.

While static code analyses do not share these problems, they run
the risk of being imprecise, as they need to abstract from program
inputs and to approximate runtime objects. The precise modeling
of the runtime execution is particularly challenging for Android
apps, as those apps are no stand-alone applications but are actually
plugins into the Android framework. Apps consist of different
components with a distinct lifecycle. During an app’s execution,
the framework calls different callbacks within the app, notifying
it of system events, which can start/pause/resume/shutdown the
app etc. [17]. To be able to effectively predict the app’s control
flow, static analyses must not only model this lifecycle, but must
also integrate further callbacks for system-event handling (e.g., for
phone sensors like GPS), UI interaction, and others. As we show in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31219796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this work, recognizing callbacks is anything but trivial and requires
dedicated algorithms. Another challenge is posed by sources of
sensitive information such as password fields in the user interface.
The respective API calls returning their contents cannot be detected
based on the program code alone. Instead, their detection requires
a model of auxiliary information stored in the manifest and layout
XML files. Last but not least, like any application written in Java,
Android apps also contain aliasing and virtual dispatch constructs.
Typical static analyses for Java handle these problems through some
degree of context and object sensitivity. The framework nature of
Android makes this problem harder than usual, as we found it to
expose extraordinarily deep aliasing relationships.

Past data-flow analysis approaches for Android [14, 15, 24,
40] handle the above challenges in an unsatisfactory manner us-
ing coarse-grained over- as well as under-approximations. Under-
approximations, usually caused by the lack of a faithful lifecycle
model, can cause these analyses to miss important data flows. In
practice even worse, though, the tools’ over-approximations can
cause many false warnings, easily overwhelming security analysts
to the point at which they stop using the analysis tools entirely.

In this work, we therefore present FLOWDROID, a novel static
taint-analysis system specifically tailored to the Android platform,
and based on novel on-demand algorithms that yield high precision
while maintaining acceptable performance. FLOWDROID analyzes
the apps’ bytecode and configuration files to find potential privacy
leaks, either caused by carelessness or created with malicious
intention. Opposed to earlier analyses, FLOWDROID is the first
static taint-analysis system that is fully context, flow, field and
object-sensitive while precisely modeling the complete Android
lifecycle, including the correct handling of callbacks and user-
defined UI widgets within the apps. This design maximizes precision
and recall, i.e., aims at minimizing the number of missed leaks
and false warnings. To obtain deep context and object sensitivity
while maintaining acceptable performance, FLOWDROID uses a
novel on-demand alias analysis. The analysis algorithm is inspired
by Andromeda [37] but improves over Andromeda’s in terms of
precision. We have open-sourced FLOWDROID in summer 2013.
The tool has already been picked up by several research groups and
we are in contact with a leading producer of anti-virus tools, who
plans to use FLOWDROID productively in the analysis backend.

For us and others to be able to measure scientific progress in
this important field of research it is required that researchers are
able to conduct comparative studies of Android taint-analysis tools.
Unfortunately, up until now there exist no benchmarks that would
allow for systematic studies. As another contribution of this work
we thus make available DROIDBENCH, a novel open-source micro-
benchmark suite for comparing the effectiveness of taint analyses for
Android. We have made DROIDBENCH available online in spring
2013 and know of several research groups who have used it already
to measure and improve the effectiveness of their Android analysis
tools [19]. A first group of external researchers has already agreed
to contribute further micro benchmarks to the suite [35].

FLOWDROID can be used to secure in-house developed Android
apps as well as assist in the triage of Android malware. Both
use cases demand not a perfect but yet a reasonably low rate
of false positives and false negatives. A set of experiments with
SecuriBench Micro, DROIDBENCH and some well-known apps
containing data leaks shows that FLOWDROID finds a very high
fraction of data leaks while keeping the rate of false positives low.
On DROIDBENCH 1.0, FLOWDROID achieves 93% recall and 86%
precision, greatly outperforming the commercial tools AppScan
Source [2] and Fortify SCA [3]. Further experiments with real apps
confirm FLOWDROID’s utility in practice.

To summarize, this work presents the following original contri-
butions:

• FLOWDROID, the first fully context, field, object and flow-
sensitive taint analysis which considers the Android application
lifecycle and UI widgets, and which features a novel, particularly
precise variant of an on-demand alias analysis;

• a full open-source implementation of FLOWDROID,
• DROIDBENCH, a novel, open and comprehensive micro bench-

mark suite for Android flow analyses,
• a set of experiments confirming superior precision and recall

of FLOWDROID compared to the commercial tools AppScan
Source and Fortify SCA, and

• a set of experiments applying FLOWDROID to over 500 apps
from Google Play and about 1000 malware apps from the
VirusShare project [1].

We make available online our full implementation as an open
source project, along with all benchmarks and scripts to reproduce
our experimental results:

http://sseblog.ec-spride.de/tools/flowdroid/

Space limitations preclude us from including some details necessary
to fully reproduce our approach. We thus publish an accompanying
Technical Report, [13] which formalizes FLOWDROID’s transfer
functions and gives additional details on the implementation.

The paper continues as follows. Section 2 gives a motivating
example and explains the necessary background on Android security.
Section 3 explains how FLOWDROID models the Android lifecycle
while Section 4 gives important details about the actual taint
analysis. In Section 5, the paper discusses implementation details
and limitations, while Section 6 evaluates FLOWDROID. Section 7
discusses related work and Section 8 concludes.

2. Background and Example
We start by giving a motivating example and then explain the attacker
model this work assumes. The example in Listing 1 (abstracted from
a real-world malware app [42]) implements an activity, which in
Android represents a screen in the user interface. The app reads
a password from a text field (line 5) whenever the framework
restarts the app. When the user clicks on a button of the activity, the
password is sent via SMS (line 24). This constitutes a tainted data
flow from the password field (the source) to the SMS API (the sink).
In this example, sendMessage() is associated with a button in the
app’s UI, which is triggered when the user clicks the button. In
Android, listeners are defined either directly in the code or in the
layout XML file, as is assumed here. Thus, analyzing the source code
alone is insufficient—the analysis must also process the metadata
files to correctly associate all callback methods. In this code a leak
only occurs if onRestart() is called (initializing the user variable)
before sendMessage() executes. To avoid false negatives, a taint
analysis must model the app lifecycle correctly, recognizing that a
user may indeed hit the button after an app has restarted.

To avoid false positives, an analysis of this example must be
field sensitive: the user object contains two fields for the user name
and password, but only the latter of which should be considered a
private value. Object-sensitivity, while not required for this example,
is essential to distinguish objects originating at different allocation
sites but reaching the same code locations. In our experiments we
found some cases requiring deep object sensitivity to be able to
automatically dismiss false positives. This is due to the relatively
deep call and assignment chains of the Android framework.

Operations such as string concatenation (line 19) require a model
that defines whether and how data flows through those operations.
Treating such operations as normal method calls and analyzing
library methods like application code can be imprecise (because

http://sseblog.ec-spride.de/tools/flowdroid/

1 public class LeakageApp extends Activity{
2 private User user = null;
3 protected void onRestart (){
4 EditText usernameText =

(EditText)findViewById(R.id.username);
5 EditText passwordText =

(EditText)findViewById(R.id.pwdString);

6 String uname = usernameText.toString ();
7 String pwd = passwordText.toString ();
8 if(! uname.isEmpty () && !pwd.isEmpty ())
9 this.user = new User(uname , pwd);

10 }
11 // Callback method in xml file
12 public void sendMessage(View view){
13 if(user == null) return;
14 Password pwd = user.getpwd ();
15 String pwdString = pwd.getPassword ();
16 String obfPwd = "";
17 //must track primitives:
18 for(char c : pwdString.toCharArray ())
19 obfPwd += c + "_"; // String concat.
20
21 String message = "User: " +
22 user.getName () + " | Pwd: " + obfPwd;
23 SmsManager sms = SmsManager.getDefault ();
24 sms.sendTextMessage("+44 020 7321 0905",

25 null , message , null , null);
26 }

Listing 1: Example Android Application

it ignores the operations’ semantics) and, as we found, is often
forbiddingly expensive in practice.

Attacker model FLOWDROID can be used to detect data flows
in general, no matter whether they are caused by carelessness or
malicious intent. For malicious cases, we assume the following
attacker model. The attacker may supply an app with arbitrary
malicious Dalvik bytecode. Typically, the attacker’s goal would be
to leak private data through a dangerously broad set of permissions
granted by the user [4]. FLOWDROID makes sound assumptions
on the installation environment and app inputs, meaning that the
attacker is free to tamper with those as well. FLOWDROID does
assume, however, that the attacker has no way of circumventing
the security measures of the Android platform or exploiting side
channels. Further, we assume that the attacker does not use implicit
flows [20] to disguise data leaks. Given the current kind of available
malware, this is a very reasonable assumption.

3. Precise Modelling of Lifecycle
In the following we explain FLOWDROID’s precise modeling of
the lifecycle, including entry points, and asynchronously executing
components and callbacks.

Multiple entry points Unlike Java programs, Android applications
do not have a main method. Apps instead comprise many entry
points, i.e., methods that are implicitly called by the Android frame-
work. The Android operating system defines a complete lifecycle
for all components in an application. There are four different kinds
of components an app developer can define: activities are single
focused user actions, services perform background tasks, content
providers define a database-like storage, and broadcast receivers
listen for global events. All these components are implemented by
deriving a custom class from a predefined operating system class,
registering it in the AndroidManifest.xml file and overwriting
the lifecycle methods. The Android framework calls these methods

to start or stop the component, or to pause or resume it, depending
on environment needs. For instance, it can stop an application be-
cause of memory depletion, and later restart it when the user returns
to it [17]. In result, when constructing a call graph, Android analy-
ses cannot simply start by inspecting a predefined “main” method.
Instead, all possible transitions in the Android lifecycle must be
modeled precisely. To cope with this problem, FLOWDROID con-
structs a custom dummy main method emulating the lifecycle. In the
following we explain how this method is constructed.

Asynchronously executing components An application can con-
tain multiple components, e.g., three activities and one service. Al-
though the activities run sequentially, one cannot pre-determine their
order. One activity could, for instance, be the main one initially visi-
ble to the user and then launch either one of the others depending on
user input. Services run as parallel background tasks. FLOWDROID
models this execution by assuming that all components (activities,
services, etc.) inside an application can run in an arbitrary sequential
order (including repetition). Some static analyses are path sensi-
tive, i.e., consider each possible program path separately. In such
cases, considering all possible orderings would be very expensive.
FLOWDROID bases its analysis on IFDS [32], an analysis frame-
work which is not path sensitive and instead joins analysis results
immediately at any control-flow merge point. FLOWDROID can thus
generate and efficiently analyze a dummy main method in which
every order of individual component lifecycles and callbacks is
possible; it does not need to traverse all possible paths.

Callbacks The Android operating system allows applications to
register callbacks for various types of information, e.g., location
updates or UI interactions. FLOWDROID models these callbacks in
its dummy main method, for instance to recognize cases where an
application stores the location data that the framework passes to the
callback as a parameter, and later sends this data to the Internet when
the activity is stopped. The order in which callbacks are invoked
cannot generally be predicted, which is why FLOWDROID assumes
that all callbacks can be invoked in any possible order. However,
callbacks can only happen while the parent component (e.g. activity)
is running. For precision, FLOWDROID thus associates components
(activities, services, etc.) with the callbacks they register. An activity
may, for instance, register callbacks that get invoked when a button
is pressed. The respective callback handler would then have to be
analyzed between the onResume() and onPause() events of this
activity only.

There are two different ways to register callback handlers on the
Android platform. Firstly, callbacks can be defined declaratively in
the XML files of an activity. Alternatively, they can also be registered
imperatively using well-known calls to specific system methods.
FLOWDROID supports both ways. Additionally, for malware there
is the risk that an attacker registers undocumented callbacks by
overwriting methods of the Android infrastructure, some of which
could even be called by native code. FLOWDROID recognizes such
overwritten methods, handling them similar to normal callback
handlers such as button clicks.

For finding callbacks registered in the application code, FLOW-
DROID first computes one call graph per component, starting at the
lifecycle methods (onCreate(), onStop(), etc.) implemented in the
respective component class. This call graph is then used to scan for
calls to Android system methods that use one of the well-known
callback interfaces as a formal parameter type. Afterwards, the call
graph is incrementally extended to include these newly discovered
callbacks, and the scan is run again since callback handlers are free
to register new callbacks on their own, potentially requiring FLOW-
DROID to re-extend the call graph and re-analyze until a fixed point
it reached. While this method is more expensive than just scanning
for classes implementing the callback interfaces, it delivers a more

LeakageApp la = new LeakageApp();

la.onCreate();

la.onStart();

la.onResume();

p

p la.sendMessage();

la.onPause();

p

la.onStop();

p

p la.onRestart();

la.onDestroy();

Figure 1: CFG for dummy main method

precise mapping between components and callbacks. This does not
only reduce false positives, but we also found it to considerably de-
crease the runtime of the following taint analysis. Once the dummy
main method has been constructed, FLOWDROID computes a final
call graph using this method as the app’s entry point.

For callbacks defined in the layout XML files, the respective
XML file is mapped to one or more application components using
the respective layout controls. A button-click handler, for instance,
is only valid for the activity that hosts the respective button. FLOW-
DROID analyzes each activity to see which identifiers from the XML
file it registers. This information is then used to create the mapping.

Example Note that, to gain maximal precision, FLOWDROID
generates a new dummy main method for each app analyzed.
Each main method will only involve the part of the lifecycle that,
according to the app’s XML configuration files, can actually occur at
runtime. Disabled activities are automatically filtered and callback
methods are only invoked in the contexts of the components to which
they actually belong. A button-click handler, for instance, is only
analyzed in the context of its respective activity. In Figure 1 we show
the control-flow graph of the dummy main method for our previous
example. The graph models a generic activity lifecycle augmented
with the sendMessage callback. In this figure, p represents an
opaque predicate of which we know that FLOWDROID won’t be
able to evaluate it statically. In result, the analysis will automatically
consider on equal terms both branches for conditions involving p.

4. Precise Flow-Sensitive Analysis
One major difficulty in the analysis is how to implement high object
sensitivity to resolve aliasing effectively. Figure 2 (abstracted from
a real-world case) shows how FLOWDROID combines a forward-
taint analysis and an on-demand backward-alias analysis to deduce
that b.f is tainted at the sink. In step 1 , the tainted variable w is
propagated forward, tainting the heap object x.f. Step 2 continues
the taint tracking for w and x.f. The important step is 3 : Whenever
a heap object gets tainted, the backward analysis searches upwards
for aliases of the respective object (x.f in this case). At 7 , the
alias b.f is found and then propagated forward as a normal taint.

void foo(z) {
x = z.g;
w = source();
x.f = w;

}

void main() {
a = new A();
b = a.g;
foo(a);
sink(b.f);

}

w

x.f

x.f

z.g.fa.g.f

b.f

1

2

3

4
5

6
7

Figure 2: Taint analysis under realistic aliasing

FLOWDROID models the taint-analysis problem within the
IFDS [32] framework for inter-procedural distributive subset prob-
lems. Section 4.1 explains the transfer functions that the analysis
uses. Most functions are relatively standard. There is one important
situation, however, in which FLOWDROID’s analysis differs from
standard taint-analysis algorithms, namely at statements at which
tainted values are assigned to the heap, i.e., to fields or arrays. This
situation will cause the backward alias analysis to be called, details
of which we will explain in Section 4.2. Due to space restrictions
we keep the description of flow functions on an informal level. To al-
low others to reproduce our approach, the accompanying Technical
Report contains a complete formalization [13].

4.1 Taint analysis
Both the forward and backward analysis propagate access paths.
An access path is of the form x.f.g where x is a local variable or
parameter and f and g are fields. Access paths can have different
lengths up to a user-customizable maximal length (5 by default). An
access path of length 0 is a simple local variable or parameter, e.g.,
x. In FLOWDROID, an access path implicitly describes the set of all
objects reachable through this path, e.g., x.f includes taints x.f.g,
x.f.h, x.f.g.h and so on.

The transfer function for assignments taints the left-hand side if
any of the operands on the right-hand side is tainted. Assignments
to array elements are treated conservatively by tainting the entire
array. Assigning a “new”-expression to a variable x erases all
taints modeled by access paths rooted at x. Method calls translate
access paths to the callee’s context by replacing actual with formal
parameters; the inverse translation happens at method returns,
including the return value if present. As usual with IFDS-based
analyses, FLOWDROID also includes a call-to-return flow function
(bypassing each method call on the side of the caller). This function
propagates taints not relevant for the call, generates new taints at
sources, reports taints at sinks and propagates taints for native calls.
Section 5 gives further information on the latter.

4.2 On-demand alias analysis
Whenever a tainted value is assigned to a heap location such as
a field or an array, FLOWDROID searches backwards for aliases
of the target variable to then taint them as well. In Listing 2, for
now consider the first call to taintIt (line 3), which taints the
formal parameter in. In line 10, this will cause the access path x.f
to get tainted due to the assignment x.f = in. In this situation
(generally at all assignments to the heap), FLOWDROID will initiate
a backward search for aliases of x.f, finding out.f in line 9. At this
point, a new forward taint propagation is started for out.f from this
statement, which will eventually discover the leak in line 11. The
backward analysis will also continue to search backwards, though,
discovering the alias p.f in main, with which it then spawns a
forward analysis leading to a second taint-flow report at line 4.

Maintaining context sensitivity Algorithms 1 and 2 show the
main loops of both the forward and the backward analysis solver in

x = out;

x.f = in;

...

0 in x.f

handoverpath edgetaint flow

entry
0 x.f out.f

x.f0 out.fin

injected
context

naive
approach

Figure 3: Analysis handover with context injection in taintIt

Algorithm 1 Main loop of forward solver

1: while WorkListFW 6= ∅ do
2: pop 〈sp, d1〉 → 〈n, d2〉 off WorkListFW

3: switch (n)
4: case n is call statement:
5: if summary exists for call then
6: apply summary
7: else
8: map actual parameters to formal parameters
9: end if

10: case n is exit statement:
11: install summary 〈sp, d1〉 → 〈n, d2〉
12: map formal parameters to actual parameters
13: map return value back to caller’s context
14: case n is assignment lhs = rhs:
15: d3 := replace rhs by lhs in d2
16: insert 〈sp, d1〉 → 〈n, d3〉 into WorkListBW

17: extend path-edges via the propagate-method of the classical
IFDS algorithm

18: end while

Algorithm 2 Main loop of backward solver

1: while WorkListBW 6= ∅ do
2: pop 〈sp, d1〉 → 〈n, d2〉 off WorkListBW

3: switch (n)
4: case n is call statement:
5: if summary exists for call then
6: apply summary
7: else
8: map actual parameters to formal parameters
9: end if

10: extend path-edges via the propagate-method of the classi-
cal IFDS algorithm

11: case n is method’s first statement:
12: install summary 〈sp, d1〉 → 〈n, d2〉
13: insert 〈sp, d1〉 → 〈n, d2〉 into WorkListFW

14: do not extend path-edges via the propagate-method of the
classical IFDS algorithm, killing current taint d2

15: case n is assignment lhs = rhs:
16: d3 := replace lhs by rhs in d2
17: insert 〈sp, d1〉 → 〈n, d3〉 into WorkListFW

18: extend path-edges via the propagate-method of the classi-
cal IFDS algorithm

19: end while

1 void main() {
2 Data p = new ..., p2 = new ...
3 taintIt(source(), p);
4 sink(p.f);
5 taintIt("public", p2);
6 sink(p2.f);
7 }
8 void taintIt(String in, Data out) {
9 x = out;

10 x.f = in;
11 sink(out.f);
12 }

Listing 2: Example for context injection

pseudo code. The algorithmic representation assumes the reader
to be familiar with the algorithmic description of the original
IFDS algorithm [32]. Both solvers operate on their own worklist,
containing so-called path-edges that summarize the data-flows
computed so far up to the current statement/node n. An edge
〈sp, d1〉 → 〈n, d2〉 effectively states that the analysis concluded
that d2 holds at n if d1 holds at the start point sp of n’s procedure p.
In our particular implementation, the abstract-domain values di are
effectively access paths describing references to tainted values. The
handover between both analyses is quite non-trivial. If coordinated
in a naive fashion, one will easily obtain two independent analyses
that each on their own may be context sensitive, but would in
combination produce analysis information for unrealizable paths
along conflicting contexts. For instance, note that in the example
from Listing 2 the aliases of x.f become tainted only if in was
tainted previously. In particular, the analysis should not report a leak
at line 6, whose corresponding taintIt-call only propagated the
string "public".

Figure 3 shows both how a naive implementation could cause
such a false positive, and how FLOWDROID handles the problem by
injecting contexts from one analysis to another. The figure assumes
some familiarity with the typical notation [32] for flow functions
within the IFDS framework. Here the black nodes represent data-
flow facts before/after the respective statement and the black and
red edges represent data flows. The fact 0 is the tautological fact that
is always true, which is why one 0 node always connects to the next.
The left-hand side of the figure shows how the forward taint analysis
determines x.f to be tainted. When processing the assignment
to x.f, the forward analysis spawns an instance of the backward
alias analysis, shown on the right-hand side. The naive way to
spawn this analysis would be to initialize it with an edge from 0 to
x.f (dotted line). This implementation, although straightforward,
leads to imprecision, as its semantics state that aliases of x.f are
tainted no matter what. In Listing 2, this could cause the analysis
to incorrectly report a taint violation even for p2.f. The correct
way is thus to inject into the backwards analysis the context of the
forward analysis: FLOWDROID consults the “path edge” to x.f,
which the IFDS algorithm stores as a side-effect of its summary
computation. It then injects that entire edge into the backward solver.
(see Algorithm 1, line 16) Context injection happens both ways. At
line 9 in the example, when the backward analysis spawns a forward
analysis for out.f, it injects into the forward analysis the original
context in. (see Algorithm 2, line 17) Semantically, for the example
this implies that all taints that both analyses discover for taintIt
are conditional w.r.t. in being tainted initially.

A second problem is to avoid false positives due to unrealizable
paths: FLOWDROID needs to prevent the backwards analysis to
return into contexts not analyzed by the forward analysis (and
vice versa). To implement this constraint, the backward analysis
in FLOWDROID actually never returns into the caller at all. Instead,

1 Data p = new ..., p2 = p;
2 sink(p2.f);
3 p.f = source();
4 sink(p2.f);

Listing 3: Example for activation statements

whenever finding an alias it triggers the forward analysis on that
alias, such as for out.f in line 9. It is then the task of the forward
analysis to map back any relevant taints into the caller’s context.
In the example, the forward analysis knows the calling context it
originated from, which is why it can easily make sure to map back
the taints into the right context only. In the example, the forward
pass would map out.f to p.f in line 3 only, not to p2.f in line 5. In
essence, the backwards analysis can descend into callees, but never
returns back into callers; all returns are handled by the forward
analysis. When the backwards analysis descends into a call, it will
eventually spawn a forward analysis when reaching the method
header. (see Algorithm 2, line 13) The forward analysis can then
make sure to only return into the right caller because its context
is injected by the backward analysis. (Technically, its incoming-
set [26] is injected.) Whenever the forward analysis maps back to
the caller a taint associated with a heap object, it spawns a new alias
search inside the caller.

Maintaining flow sensitivity Andromeda [37] is another taint-
analysis tool that inspired FLOWDROID’s on-demand alias analysis.
Andromeda’s analysis, however, can lead to flow-insensitive results.
In the example in Listing 3, the analysis would report two leaks at
lines 2 and 4, even though the first call to sink definitely happens
before p2.f becomes tainted. In fact, the very same problem would
hold also for FLOWDROID’s analysis as we described it above: the
backward analysis would discover the tainted alias p2.f at line 1
and trigger a forward pass with that value, causing a taint to be
reported henceforth anywhere where p2.f is leaked.

FLOWDROID addresses this problem by keeping track of what
we call activation statements. Whenever spawning an instance of the
backwards alias analysis, the respective access path is augmented
with the current statement, the alias’ activation statement. Also,
the tainted alias is marked as inactive. Semantically, only active
taints cause leaks when reaching a sink. Inactive taints are aliases to
memory locations which have not yet been tainted. Whenever the
backward analysis spawns the forward analysis again, and when then
the forward analysis propagates the aliased taint over its activation
statement, the taint becomes activated and thus gains its ability to
actually cause leaks to be reported. In the example, the activation
statement is at line 3, which thus causes the analysis to only report a
leak at the succeeding line 4, avoiding the false alarm at line 2.

In general, activation statements are representatives of call trees.
Assume for a moment that the heap assignment in Listing 3 was
contained inside a method call such as it was the case in the
assignment at line 10 of Listing 2, which occurs within method calls
to taintIt. In that example, when the forward analysis processes
the return edge back into line 3 of main, the analysis globally
associates the call to taintIt (line 3) with the activation statement
since whenever this call has completed, the activation statement also
has been processed and thus the taint will be active. In other words,
activation statements are used for looking up the call trees in which
they occur to translate them back into (transitive) callers.

To the best of our knowledge, FLOWDROID is the first approach
to implement an on-demand analysis that fully maintains context
and flow sensitivity. In the future we plan to investigate to what
extent the principles explained here can be reused outside the scope
of taint analysis, ideally yielding a rather generic extension of IFDS.

parse manifest file

parse .dex files

parse layout xmls

generate
main method

build call graph

perform taint
analysis

source, sink and
entry-point detection

Figure 4: Overview of FLOWDROID

Further algorithmic details Our implementation of IFDS uses
the extensions explained by Naeem and Lhoták [26]. With this
extension, the IFDS implementation computes the program’s super
graph on the fly, which means that in our case we compute taint
information only for those variables/access paths that are indeed
tainted. Our implementation uses two instances of the IFDS solver,
each of which with slight adjustments as explained in Algorithms
1 and 2. Each instance contains a separate table of summary
functions that, as in the original IFDS algorithm, is used to avoid
re-computation for the same callees under the same contexts di.

5. Implementation
FLOWDROID extends the Soot framework [21] which provides
important prerequisites for a precise analysis, in particular the three-
address code intermediate representation Jimple and the accurate
call-graph analysis framework Spark [22]. A plugin called Dex-
pler [5] allows FLOWDROID to convert Android’s Dalvik bytecode
into Jimple. On top of Soot and Dexpler, FLOWDROID further uses
Heros [7], a scalable, highly multi-threaded implementation of the
IFDS framework [32]. We next explain FLOWDROID’s architecture,
while the subsequent sections explain important implementation
details and FLOWDROID’s current limitations.

Architecture Figure 4 shows FLOWDROID’s architecture. An-
droid applications are packaged in apk files (Android Packages),
which are essentially zip-compressed archives. After unzipping an
archive, FLOWDROID searches the application for lifecycle and
callback methods as well as calls to sources and sinks. This is done
by parsing various Android-specific files, including the layout XML
files, the dex files containing the executable code and the mani-
fest file defining the activities, services, broadcast receivers and
content providers in the application. Next, FLOWDROID generates
the dummy main method from the list of lifecycle and callback
methods. This main method is then used to generate a call graph
and an inter-procedural control-flow graph (ICFG). Starting at the
detected sources, the taint analysis then tracks taints by traversing
the ICFG as explained in Section 4. FLOWDROID is configured
with sources and sinks inferred by our SuSi project [30], by far the
most comprehensive one available. The concrete lists of sources
and sinks are available from the FLOWDROID website. At the end,
FLOWDROID reports all discovered flows from sources to sinks. The
reports include full path information. To obtain this information, the
implementation links data-flow abstraction objects to their predeces-
sors and to their generating statements. This allows FLOWDROID’s
reporting component to fully reconstruct a graph of all relevant as-
signment statements that might have caused a taint violation at the
given sink.

Defining shortcuts Including the full JRE or Android platform
runtime in the analysis not only requires a lot of analysis time and
memory, but, due to approximations performed during the library’s
analysis, can also lead to undesired imprecision. FLOWDROID
therefore comprises an interface for external library models. The tool
supports a simple textual file format for defining certain “shortcut

rules”. Predefined rules handle collection classes, string buffers and
similar commonly used data structures, e.g., specifying that adding a
tainted element to a set taints the entire set. Technically, the shortcuts
are implemented using the call-to-return edge. If a library call has
no associated rule then it is fully analyzed.

Native Calls Both Java and the Android platform support the
invocation of native methods written in C or other unmanaged
languages. For a Java-based analysis, such methods are black
boxes which cannot be analyzed. FLOWDROID comes with explicit
taint-propagation rules for the most common native methods, such
as System.arraycopy. In this example, the rule defines the third
argument (the output array) to become tainted if the first argument
(the input array) is tainted before the call. For native methods
without an explicit rule, FLOWDROID assumes a sensible default:
call arguments and the return value to become tainted if at least
one parameter was tainted before. This is neither entirely sound nor
maximally precise but is likely the best practical approximation in a
black-box setting.

Inter-Component Communication FLOWDROID over-approxi-
mates explicit inter-component communication by regarding method
which send intents as sinks and callbacks which receive intents as
sources. Android also supports implicit intent-based communication,
e.g., by setting the result value of a called activity which is then
automatically passed back to the calling activity by the operating
system. Supporting such behavior together with a more accurate
inter-component connection model is left to future work. In particu-
lar, we are working on integrating FLOWDROID with EPICC [27], a
novel static analysis that uses Soot and Heros to perform a String
analysis to resolve inter-app communication more precisely.

Limitations Although FLOWDROID is generally aiming for a
sound analysis, it does share some inherent limitations with most
other static-analysis tools. For instance, FLOWDROID resolves
reflective calls only if their arguments are string constants, which is
not always the case. On the Java platform, reflection-analysis tools
such as TamiFlex [8] can be used to make static analysis tools aware
of reflective calls issued at runtime. Such tool require load-time
instrumentation through java.lang.instrument, though, which the
Android platform does not currently support. Unsoundness can also
arise in case the Android lifecycle contains callbacks we are not
aware of, or through native methods that our rules model incorrectly.
At the moment FLOWDROID is also oblivious to multi-threading: it
assumes threads to execute in an arbitrary but sequential order, which
is generally unsound as well. Fully incorporating sound support for
multi-threading is a big challenge in its own right, which we thus
leave to future work.

6. Experimental Evaluation
Our evaluation addresses the following research questions:

RQ1 How does FLOWDROID compare to commercial taint-analysis
tools for Android in terms of precision and recall?

RQ2 Can FLOWDROID find all privacy leaks in InsecureBank, an
app specifically designed by others to challenge vulnerability-
detection tools for Android [28], and what is its performance?

RQ3 Can FLOWDROID find leaks in real-world applications and
how fast is it?

RQ4 How well does FLOWDROID perform when being applied
to taint-analysis problems related to Java, not Android, both in
terms of precision and recall?

The next sections address each research question in detail.
Section 6.5 explains why, unfortunately, we were unable to directly
compare FLOWDROID to other academic Android analysis tools.

6.1 RQ1: Commercial taint-analysis tools
While there are benchmark suites for analyzing web applications or
specifically for detecting different kinds of Java vulnerabilities [23],
there is no Android-specific analysis benchmark suite at the moment.
This is problematic because the generic Java test suites do not cover
aspects like the Android lifecycle, callbacks or interactions with
UI elements like password fields. Thus, they cannot be used for
assessing the practical effectiveness of Android analysis tools.

DroidBench Specifically for this work, we therefore developed an
Android-specific test suite called DROIDBENCH. In this evaluation
we consider version 1.0, which contains 39 hand-crafted Android
apps. The suite can be used to assess both static and dynamic taint
analyses, but in particular it contains test cases for interesting static-
analysis problems (field sensitivity, object sensitivity, tradeoffs in
access-path lengths etc.) as well as for Android-specific challenges
like correctly modeling an application’s lifecycle, adequately han-
dling asynchronous callbacks and interacting with the UI. Our Tech-
nical Report [13] gives additional information about the individual
apps. We have made available online DROIDBENCH in spring 2013
and know of several research groups [19] who have used it already
to measure and improve the effectiveness of their Android analysis
tools. A first group of external researchers has already agreed to
contribute further micro benchmarks to the suite [35].

Table 1 presents the analysis results for FLOWDROID and two
commercial analysis tools (explained in the following) when applied
to DROIDBENCH. As the results show, FLOWDROID achieves 93%
recall and 86% precision.1 As explained before, for performance
reasons, FLOWDROID handles array indices imprecisely. The same
limitation applies to ListAccess1, causing false positives in the first
category. Handling indices precisely and efficiently is an interesting
research question in its own [10]. Button2 causes a false positive
because FLOWDROID does not currently support strong updates. In
result, it cannot kill taints for certain button combinations. Allowing
strong updates would require a (probably quite expensive) must-
alias analysis. Incorporating such an analysis into FLOWDROID is
out of the scope of this work. IntentSink1 is not detected because
the test case contains no actual sink. Instead, the tainted value is
stored in an intent which is then handed back to the activity by the
framework. Such cases are hard to handle without special treatment.
StaticInitialization1 fails because Soot currently assumes all static
initializers to execute at the beginning of the program, which in this
case is not correct. Determining exactly where such initializers can
execute at runtime is an interesting research question. We plan to
add better support in the future.

Comparison with IBM AppScan Source We compared FLOW-
DROID with IBM AppScan Source [2] version 8.7, on all tests
from DROIDBENCH. AppScan Source distinguishes three different
categories of findings: vulnerabilities, exceptions of type 1 and ex-
ceptions of type 2. Like reports by FLOWDROID, vulnerabilities
include a complete path from source to sink. For a type 1 exception,
there is a flow from source to sink as well, but the semantics of
some methods along the propagation path is unknown (e.g. possible
sanitization). Since FLOWDROID does not support sanitization at
the moment, we consider both vulnerabilities and type 1 exceptions
as findings. For type 2 exceptions on the other hand, there is no
trace. These reports are generated when certain code constructs (e.g.
writing a variable value into the log file) are detected. As these find-
ings are highly imprecise and completely disregard data flow, we
do not count them as findings. As Table 1 shows, AppScan Source
finds only about 50% of all leaks. Major problems occur with the

1 We exclude the analysis of implicit flows [20] caused through control-flow
dependencies as none of the tools, including FLOWDROID was designed to
analyze such flows.

? = correct warning, ? = false warning, = missed leak
multiple circles in one row: multiple leaks expected

all-empty row: no leaks expected, none reported

App Name AppScan Fortify FlowDroid
Arrays and Lists

ArrayAccess1 ?

ArrayAccess2 ? ? ?

ListAccess1 ? ? ?

Callbacks
AnonymousClass1 ? ?

Button1 ? ?

Button2 ? ? ? ? ? ?

LocationLeak1 ? ?

LocationLeak2 ? ?

MethodOverride1 ? ? ?

Field and Object Sensitivity
FieldSensitivity1
FieldSensitivity2
FieldSensitivity3 ? ? ?

FieldSensitivity4 ?

InheritedObjects1 ? ? ?

ObjectSensitivity1
ObjectSensitivity2 ?

Inter-App Communication
IntentSink1 ? ?

IntentSink2 ? ? ?

ActivityCommunication1 ? ? ?

Lifecycle
BroadcastReceiverLifecycle1 ? ? ?

ActivityLifecycle1 ? ? ?

ActivityLifecycle2 ? ?

ActivityLifecycle3 ?

ActivityLifecycle4 ? ?

ServiceLifecycle1 ?

General Java
Loop1 ? ?

Loop2 ? ?

SourceCodeSpecific1 ? ? ?

StaticInitialization1 ?

UnreachableCode ?

Miscellaneous Android-Specific
PrivateDataLeak1 ?

PrivateDataLeak2 ? ? ?

DirectLeak1 ? ? ?

InactiveActivity ? ?

LogNoLeak
Sum, Precision and Recall

? , higher is better 14 17 26
? , lower is better 5 4 4

, lower is better 14 11 2
Precision p = ? /(? + ?) 74% 81% 86%
Recall r = ? /(? +) 50% 61% 93%
F-measure 2pr/(p+ r) 0.60 0.70 0.89

Table 1: DROIDBENCH test results

handling of callbacks and the Android component. It appears like
the advertised support for Android is mostly restricted to AppScan
being configured with some appropriate sources and sinks. AppScan
shows a relatively decent precision of 74%.

Comparison with Fortify SCA Fortify SCA [3] by HP is another
commercial tool widely used by security analysts. Similar to IBM
AppScan Source, Fortify also provides different kinds of findings,
such as data flows from sensitive sources to public sinks, requests for
security-sensitive permissions, calls to security-sensitive methods,
etc. In our evaluation, we only considered findings about data flows.
All tests were carried out using version 5.14. As can be seen in
Table 1, Fortify SCA shows problems similar to those of IBM
AppScan, like the handling of the Android component lifecycle

and callbacks. Figure 1 shows that Fortify detects 4 out of 6 data
leaks for the lifecycle tests, but closer inspection shows that this
only happens by chance. In these tests, the data source involves a
static field, which Fortify apparently treats in a special way that
coincidentally causes a leak to be reported. When removing the
static modifier, which does not change the semantics of the test
case, Fortify does not detect the leak any longer. Fortify’s precision
measures as 81%.

Conclusion From our experiments we conclude that, to not over-
burden the user with false positives, AppScan Source and Fortify
SCA aim for relatively high precision while sacrificing recall, thus
risking to miss actual privacy leaks. In comparison, FLOWDROID
shows a significantly higher recall and even a slightly improved
precision.

6.2 RQ2: Performance on InsecureBank
InsecureBank [28] is a vulnerable Android app created by Paladion
Inc. specifically for the purpose of evaluating analysis tools such
as FLOWDROID. It contains various vulnerabilities and data leaks
similar to those found in real-world applications. Analyzing the
application takes about 31 seconds on a laptop computer with an
Intel Core 2 Centrino CPU and 4 GB of physical memory running
on Windows 7 with Oracle’s Java Runtime version 1.7 (64 bit) in its
default settings. FLOWDROID finds all seven data leaks which we
all verified by hand. There are no false positives nor false negatives.

6.3 RQ3: Performance on Real-World Applications
For assessing FLOWDROID on real applications, we applied it to
the 500 most popular Android applications from Google Play.2

Fortunately, despite FLOWDROID’s high recall, the analysis did not
reveal any leaks hinting at truly malicious behavior. Nevertheless,
the majority of apps was reported to—probably accidentally—leak
sensitive information like the IMEI (a unique ID) or location data
into logs and preference files.

Samsung’s Push Service, for instance, logs the phone’s IMEI.
Logs are problematic, as the OS does not impose the same access re-
strictions on logs as it does on files: for devices running Android 4.0
or lower, all logs are readable by any app that has the READ LOGS
permission. The problem is deemed so important that the mecha-
nism was changed in Android 4.1. Since this version, logs are only
privately visible, unless the app is run with debugging enabled. Addi-
tionally, Samsung’s Push Service also broadcasts an Android intent
containing the IMEI. All other applications can simply subscribe to
this intent and get the broadcast IMEI, thereby circumventing the
Android permission system for this data item.

The game Hugo Runner stores longitude and latitude into a pref-
erences file. As we verified by hand, though, those preferences were
correctly written in private mode, precluding any access by other
apps. This indicates again how important a precise environment
model is to reduce the number of false positives. Future tools should
thus model the respective APIs more precisely.

For most examined apps FLOWDROID terminated in under
a minute. The instance that took the longest to complete was
Samsung’s Push Service which took about 4.5 minutes to analyze.

We also ran FLOWDROID on about 1000 known malware sam-
ples from the VirusShare project [1]. The average runtime was 16
seconds since the Malware samples seem to be comparatively small.
The minimum runtime was 5 seconds, the maximum was 71 seconds
which only happened for a single, comparatively large application.
Most of the apps contained two data leaks (1.85 leaks per appli-
cation on average), usually with identification information like the

2 For legal reasons we are unable to provide these applications online. To be
able to reproduce our results, though, researchers may email the first author
to obtain a copy of those applications.

Test-case group TP FP
Aliasing 11/11 0
Arrays 9/9 6
Basic 58/60 0
Collections 14/14 3
Datastructure 5/5 0
Factory 3/3 0
Inter 14/16 0
Pred n/a n/a
Reflection n/a n/a
Sanitizer n/a n/a
Session 3/3 0
StrongUpdates 0/0 0
Sum 117/121 9

Table 2: SecuriBench Micro test results

IMEI being sent to a remote server to register the phone, or sent
as part of an SMS message, sometimes to a premium-rate number.
Some malware applications were even found to receive data through
broadcast receivers and to then send out this data in SMS messages.
This can allow other applications to send SMS messages indirectly,
without requiring the respective permission on their own.

6.4 RQ4: SecuriBench Micro
FLOWDROID was specifically designed for Android, and in this
space gains much precision through its complete and precise han-
dling of Android’s lifecycle. Nevertheless, there is nothing that
would preclude software developers from applying FLOWDROID to
Java applications as well. To assess how well FLOWDROID is set
up for this use case, we evaluated FLOWDROID against Stanford
SecuriBench Micro [23] version 1.08, a common set of 96 J2EE mi-
cro benchmarks originally intended for web-based applications. For
each of the benchmarks in the suite, we manually defined the nec-
essary lists of sources, sinks and entry points. Since FLOWDROID
supports a simple textual file format for defining these parameters,
and since all benchmarks cases have the same structure, this was not
much effort. We omitted from our experiments test cases involving
sanitization, reflection, predicates and multi-threading. As we ex-
plained earlier, such features are out of scope for our analysis tool,
just as they are for all other existing Android analysis tools.

Table 2 shows our test results grouped by test categories. The
TP column shows the true positives, i.e., the number of actual leaks
that FLOWDROID found. For the example of Basic, for instance,
FLOWDROID found 58 out of 60. The FP column shows the number
of false positives, i.e., the finding that FLOWDROID reported that did
not correspond to actual leaks, but were rather artifacts of an overly
approximate analysis. In most cases this number is reasonably low
or even zero, except for the Arrays category in which FLOWDROID
reports 6 false positives. Again, those are caused by the failure to
model array indices precisely.

6.5 Comparison with Other Tools
We also tried to compare FLOWDROID to a number of other
tools from the scientific literature, namely TrustDroid [41], Leak-
Miner [40], and the tool by Batyuk et al. [6]. Unfortunately none of
those tools are available online, nor did the respective authors reply
to our inquiries.

We tried to run DROIDBENCH on SCanDroid [14], but faced
technical difficulties. The tool did not report any findings at all in
our setup. Though being in contact with the authors, we were unable
to fix these issues and both sides eventually gave up. The authors of
AndroidLeaks [15] promised to run their tool on DROIDBENCH but
never delivered. We also contacted the authors of CHEX [24], but
they were unable to provide the tool or any benchmark results due
to intellectual property claimed by NEC. Starostin [25] declined to

participate in the experiment as his tool ignores aliasing, making
any comparison meaningless. The authors of ScanDal [19] could not
provide their tool due to intellectual property claimed by Samsung,
but used our benchmark suite and feedback to improve their analysis.
According to the authors, on DROIDBENCH, the analysis now
reports results similar to FLOWDROID.

In result, we were unable to successfully evaluate even a single
scientific taint-analysis tool for Android on our own. This is quite
unfortunate, as it restricts us to comparing to those tools only
based on the available publications. We hope that the availability of
FLOWDROID and DROIDBENCH will greatly improve this situation
in the future. After all, publishing irreproducible results hinders
progress in the field and is considered unacceptable in most other
sciences.

7. Related Work
There are several approaches to static analysis of Android applica-
tions differing in precision, runtime, scope and focus.

One of the most sophisticated ones is CHEX [24], a tool to detect
component hijacking vulnerabilities in Android applications by
tracking taints between externally accessible interfaces and sensitive
sources or sinks. Although not built for the task, CHEX can, in
principle, be used for taint analysis. CHEX does not analyze calls
into Android framework itself but instead requires a (hopefully
complete) model of the framework. In FLOWDROID such a model
is optional and, except for native calls, is used only to increase
precision and performance. Users can thus omit the model entirely
and still be sure not to lose taints. CHEX’s entry-point model
requires an enumeration of all possible “split orderings” which
is not necessary in FLOWDROID. Furthermore, CHEX is limited to
at most 1-object-sensitivity, while FLOWDROID’s demand-driven
alias analysis allows for contexts of arbitrary lengths (using a default
of 5). We found 1-object-sensitivity to be too imprecise in practice.

LeakMiner [40] appears similar to our approach from a technical
point of view: like FLOWDROID, it is based on Soot, uses Spark for
call-graph generation, it implements the Android lifecycle, and the
paper states that an app can be analyzed in 2.5 minutes on average.
However, the analysis is not context-sensitive which precludes the
precise analysis of most test cases in DROIDBENCH.

AndroidLeaks [15] also states the ability to handle the Android
Lifecycle including callback methods. It is based on WALA’s
context-sensitive System Dependence Graph with a context-
insensitive overlay for heap tracking, but is not as precise as
FLOWDROID, because it taints the whole object if tainted data
is stored in one of its fields, i.e., is neither field nor object sensitive.
This precludes the precise analysis of many practical scenarios.

SCanDroid [14] is another tool for reasoning about data flows
in Android applications. Its main focus is the inter-component
(e.g. between two activities in the same app) and inter-app data
flow. This poses the challenge of connecting intent senders to their
respective receivers in other applications. SCanDroid prunes all
call edges to Android OS methods and conservatively assumes the
base object, the parameters, and the return value to inherit taints
from arguments. This is much less precise than FLOWDROID’s
treatment; FLOWDROID applies this default rule only for native
calls not modeled explicitly. FLOWDROID currently models intent
sending as sink and intent reception as source, yielding a sound
treatment of inter-app communication. In the future, we plan to
integrate FLOWDROID with EPICC [27], a novel static analysis that
uses String analysis to precisely resolve inter-app communication.

Other approaches like CopperDroid [31] dynamically observe
interactions between the Android components and the underlying
Linux system to reconstruct higher-level behavior. Special stim-
ulation techniques are used for exercising the application to find
malicious activities. Attackers, however, can easily modify an app

to detect whether it is running inside a virtual machine and then
leak no data during that time [29]. Alternatively, data leaks might
only occur after a certain runtime threshold. Aurasium [38] and
DroidScope [39] largely suffer from the same shortcomings with
respect to static leak detection.

TaintDroid [11] is one of the most sophisticated Android taint-
tracking systems to date. As a dynamic approach, however, it yields
some quite different tradeoffs compared to FLOWDROID. For in-
stance, TaintDroid has no problem tracking taints through reflective
method calls, as TaintDroid is implemented as an extension to the
execution environment, for which it does not matter whether meth-
ods are invoked through reflection or not. On the other hand, if used
for triaging malware before installation time, then TaintDroid can
successfully detect malware only if paired with a dynamic testing
approach that yields decent code coverage. Static ahead-of-time
analyses like FLOWDROID do not share this shortcoming because
they cover all execution paths. Secondly, a dynamic approach such
as TaintDroid can be fooled by a malicious apps that recognize that
it is being analyzed in which case the app could simply refrain from
performing any malicious activities [29]. While this is not problem-
atic if the dynamic analysis is installed on the end user’s mobile
phone (in that case, the malware would effectively be tamed), it is
problematic if the dynamic analysis is only used for ahead-of-time
triaging of malware that could then later on be installed on a sys-
tem not protected by the dynamic analysis (in which case the app
could resume its malicious activities). Static approaches such as
FLOWDROID do not share this particular shortcoming as they never
actually execute the app.

F4F [36] is a framework for performing taint analysis of
framework-based applications using a specification language called
WAFL for describing the functional behavior of the respective frame-
work. While originally created for web applications, it might also
be extended to model the Android framework by adding a WAFL
generator for Android. FLOWDROID’s dummy-main generation has
the big advantage to only include components and callbacks that
are indeed accessed by the app. This, however, requires a semantic
model of the app’s manifest, the layout XML files, the compiled
resources file and the app’s source code, which are all interleaved.
F4F could at best be used to give a coarse approximation modeling
the common denominator of all possible apps.

FLOWDROID currently handles exceptional flows through a
coarse over-approximation. Kastrinis and Smaragdakis have recently
presented a novel and particularly efficient approach for analyzing
exceptions and points-to analysis in combination [18]. It would be
interesting to see whether FLOWDROID can easily benefit from an
integration of some of those concepts.

Rountev et al. have proposed a way to pre-compute summaries
for large libraries with the intention to speed up the repeated analysis
of client code [33]. For Android apps, which come with the huge
Android framework, such an approach makes a lot of sense. Roun-
tev’s work is based on the IDE framework [34], which FLOWDROID
also uses internally to conduct its IFDS-based analyses. It should
therefore be entirely possible to incorporate the authors’ ideas into
FLOWDROID.

Dillig et al. developed an approach to more precisely analyzing
the contents of collections and arrays [10]. The required analysis
effort is non-trivial, but given our results it is clear that FLOWDROID
could increase its precision further by implementing analysis sup-
ports along those lines.

8. Conclusions
We have presented FLOWDROID, a novel and highly precise static
taint-analysis tool for Android applications. Unlike previous ap-
proaches, FLOWDROID adequately models Android-specific chal-
lenges like the application lifecycle or callback methods, which

helps reduce missed leaks or false positives. Novel on-demand algo-
rithms allow FLOWDROID to maintain efficiency despite its strong
context and object sensitivity. For assessing the effectiveness of
analysis tools, we have proposed the Android-specific benchmark
suite DROIDBENCH and used it for comparing FLOWDROID to the
commercial tools AppScan Source and Fortify SCA, showing that
besides finding more real leaks (93% of all leaks in total), FLOW-
DROID also has a higher precision (86%) resulting in fewer false
positives. We hope that in the future DROIDBENCH will serve as a
standard test set for Android taint analyses.

For analyzing the top 500 real-world applications from Google’s
Play Store, FLOWDROID only took under a minute per application
and found several leaks. About 1000 malware samples were ana-
lyzed in about 16 seconds per minute, uncovering 2 leaks per sample
on average. An evaluation of FLOWDROID on SecuriBench Micro
shows a 96% recall with only 9 false positives.

In future work we plan to improve the support for handling reflec-
tion. Also we are interested in pre-computing library abstractions
automatically.

Acknowledgements We would like to thank Stephan Huber from
Fraunhofer SIT for supporting us with real-world applications from
the Google Play market and Dr. Karsten Sohr from TZI Bremen
for supporting us with the Fortify SCA evaluation. Thanks to Marc-
André Laverdière and others for contributions to a our implemen-
tations of FLOWDROID, Soot and Heros. This work was supported
by a Google Faculty Research Award, by the BMBF within EC
SPRIDE and ZertApps, by the Hessian LOEWE excellence initia-
tive within CASED, by the DFG within the project RUNSECURE,
a project associated with the DFG Priority Programme 1496 “Re-
liably Secure Software Systems – RS3”, by the Fonds National de
la Recherche (FNR), Luxembourg, under the AndroMap project,
and by the National Science Foundation Grants No. CNS-1228700,
CNS-0905447, CNS- 1064944 and CNS-0643907. Any opinions,
findings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views
of the National Science Foundation or any other funding partner.

References
[1] Virus share, aug 2013. http://virusshare.com/.

[2] IBM Rational AppScan, Apr. 2013. http://www-01.ibm.com/
software/de/rational/appscan/.

[3] Fortify 360 Source Code Analyzer (SCA), Apr. 2013.
http://www8.hp.com/us/en/software-solutions/software.
html?compURI=1214365#.UW6CVKuAtfQ.

[4] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Automatically
securing permission-based software by reducing the attack surface: an
application to android. In ASE 2012, pages 274–277, 2012.

[5] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot. In
Proceedings of the ACM SIGPLAN International Workshop on State of
the Art in Java Program analysis, SOAP ’12, pages 27–38, 2012.

[6] L. Batyuk, M. Herpich, S. Camtepe, K. Raddatz, A.-D. Schmidt,
and S. Albayrak. Using static analysis for automatic assessment
and mitigation of unwanted and malicious activities within android
applications. In Malicious and Unwanted Software (MALWARE), 2011
6th International Conference on, pages 66–72, 2011.

[7] E. Bodden. Inter-procedural data-flow analysis with ifds/ide and soot.
In Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program analysis, SOAP ’12, pages 3–8, 2012.

[8] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming
reflection: Aiding static analysis in the presence of reflection and
custom class loaders. In ICSE ’11: International Conference on
Software Engineering, pages 241–250. ACM, May 2011.

http://virusshare.com/
http://www-01.ibm.com/software/de/rational/appscan/
http://www-01.ibm.com/software/de/rational/appscan/
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1214365#.UW6CVKuAtfQ
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1214365#.UW6CVKuAtfQ

[9] I. D. Corporation. Worldwide quarterly mobile phone tracker 3q12,
Nov. 2012. http://www.idc.com/tracker/showproductinfo.
jsp?prod_id=37.

[10] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs using
containers. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’11, pages
187–200, 2011.

[11] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. Sheth. Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In R. H. Arpaci-Dusseau and
B. Chen, editors, OSDI, pages 393–407. USENIX Association, 2010.

[12] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey
of mobile malware in the wild. In Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices,
SPSM ’11, pages 3–14, New York, NY, USA, 2011. ACM. . URL
http://doi.acm.org/10.1145/2046614.2046618.

[13] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel. Highly precise taint analy-
sis for android applications. Technical Report TUD-CS-2013-0113,
EC SPRIDE, May 2013. URL http://www.bodden.de/pubs/
TUD-CS-2013-0113.pdf.

[14] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. Scandroid: Automated
security certification of android applications.

[15] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks:
automatically detecting potential privacy leaks in android applications
on a large scale. In Proceedings of the 5th international conference on
Trust and Trustworthy Computing, TRUST’12, pages 291–307, 2012.

[16] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks, WISEC ’12, pages 101–112, New York, NY, USA, 2012.
ACM. . URL http://doi.acm.org/10.1145/2185448.2185464.

[17] G. Inc. Application fundamentals. 2013. URL http://developer.
android.com/guide/components/fundamentals.html.

[18] G. Kastrinis and Y. Smaragdakis. Efficient and effective handling of
exceptions in java points-to analysis. In R. Jhala and K. D. Bosschere,
editors, CC, volume 7791 of Lecture Notes in Computer Science, pages
41–60. Springer, 2013.

[19] J. Kim, Y. Yoon, K. Yi, and J. Shin. ScanDal: Static analyzer for
detecting privacy leaks in android applications. In H. Chen, L. Koved,
and D. S. Wallach, editors, MoST 2012: Mobile Security Technologies
2012, Los Alamitos, CA, USA, May 2012. IEEE.

[20] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows: Can’t live
with ‘em, can’t live without ‘em. In Proceedings of the 4th International
Conference on Information Systems Security, ICISS ’08, pages 56–70,
Berlin, Heidelberg, 2008. Springer-Verlag. .

[21] P. Lam, E. Bodden, O. Lhotak, and L. Hendren. The soot framework
for java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), Oktober 2011.

[22] O. Lhoták and L. Hendren. Scaling java points-to analysis using spark.
In G. Hedin, editor, Compiler Construction, volume 2622 of LNCS,
pages 153–169. Springer Berlin Heidelberg, 2003. .

[23] B. Livshits. Securibench micro, Mar. 2013. http://suif.stanford.
edu/~livshits/work/securibench-micro/.

[24] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting
android apps for component hijacking vulnerabilities. In CCS 2012,
pages 229–240, 2012.

[25] C. Mann and A. Starostin. A framework for static detection of privacy
leaks in android applications. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC ’12, pages 1457–1462, 2012.

[26] N. A. Naeem, O. Lhoták, and J. Rodriguez. Practical extensions to the
ifds algorithm. In Compiler Construction 2010, pages 124–144, 2010.

[27] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.
Traon. Effective inter-component communication mapping in android:
An essential step towards holistic security analysis. In USENIX Security
Symposium 2013, Aug. 2013.

[28] Paladion. Insecurebank test app. http://www.paladion.net/
downloadapp.html.

[29] N. J. Percoco and S. Schulte. Adventures in bouncerland. Blackhat
USA, 2012.

[30] S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach
for classifying and categorizing android sources and sinks. In 2014
Network and Distributed System Security Symposium (NDSS), Feb.
2014. URL http://www.bodden.de/pubs/rab14classifying.
pdf. To appear.

[31] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors. In EUROSEC, Prague, Czech Republic, April 2013.

[32] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL ’95, pages 49–61, 1995.

[33] A. Rountev, M. Sharp, and G. Xu. Ide dataflow analysis in the presence
of large object-oriented libraries. In Compiler Construction, volume
4959 of LNCS, pages 53–68. Springer, 2008.

[34] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. In TAPSOFT ’95,
pages 131–170, 1996.

[35] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar. On the effectiveness
of dynamic taint analysis for protecting against private information
leaks on android-based devices, 2013.

[36] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg.
F4F: taint analysis of framework-based web applications. In OOPSLA
2011, pages 1053–1068, 2011.

[37] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. An-
dromeda: Accurate and scalable security analysis of web applications.
In FASE 2013, pages 210–225, 2013.

[38] R. Xu, H. Saı̈di, and R. Anderson. Aurasium: practical policy enforce-
ment for android applications. In USENIX Security 2012, Security’12,
pages 27–27, Berkeley, CA, USA, 2012. USENIX Association.

[39] L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In
USENIX Security 2012, Security’12, pages 29–29, Berkeley, CA, USA,
2012. USENIX Association.

[40] Z. Yang and M. Yang. Leakminer: Detect information leakage on
android with static taint analysis. In Software Engineering (WCSE),
2012 Third World Congress on, pages 101–104, 2012.

[41] Z. Zhao and F. Osono. Trustdroid: Preventing the use of smartphones
for information leaking in corporate networks through the used of
static analysis taint tracking. In Malicious and Unwanted Software
(MALWARE), 2012 7th International Conference on, pages 135–143,
2012.

[42] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, SP ’12, pages 95–109, 2012.

http://www.idc.com/tracker/showproductinfo.jsp?prod_id=37
http://www.idc.com/tracker/showproductinfo.jsp?prod_id=37
http://doi.acm.org/10.1145/2046614.2046618
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf
http://www.bodden.de/pubs/TUD-CS-2013-0113.pdf
http://doi.acm.org/10.1145/2185448.2185464
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://www.paladion.net/downloadapp.html
http://www.paladion.net/downloadapp.html
http://www.bodden.de/pubs/rab14classifying.pdf
http://www.bodden.de/pubs/rab14classifying.pdf

	Introduction
	Background and Example
	Precise Modelling of Lifecycle
	Precise Flow-Sensitive Analysis
	Taint analysis
	On-demand alias analysis

	Implementation
	Experimental Evaluation
	RQ1: Commercial taint-analysis tools
	RQ2: Performance on InsecureBank
	RQ3: Performance on Real-World Applications
	RQ4: SecuriBench Micro
	Comparison with Other Tools

	Related Work
	Conclusions

