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Abstract—We describe the channel equalization problem and its prior
estimate of the channel estate information (CSI), as a joint Bayesian
estimation problem to improve each symbol posterior estimates at the
input of the channel decoder. Our solution takes into consideration
not only the uncertainty due to the noise in the channel, but also the
uncertainty in the CSI estimate. The marginalization to compute each
posterior from the full posterior cannot be computed in linear time,
because it depends on all the transmitted symbols. Hence, we also put
forward an approximate posterior, inspired by the BCJR algorithm,
which is optimal from the Kullback-Leibler divergence viewpoint and
presents a complexity identical to the BCJR algorithm. We also use a
graphical model representation of the full posterior, in which the pro-
posed approximation can be readily understood. The proposed posterior
estimates are more accurate than those computed using the ML estimate
for the CSI. To illustrate this point, we measure the bit error rate at the
output of a Low-Density Parity-Check decoder, which needs the exact
posterior for each symbol to detect the incoming word and it is sensitive
to a mismatch in those posterior estimates.

Index Terms—channel equalization, Bayesian inference, fading chan-
nels, inter-symbol interference, LDPC coding, BCJR algorithm.

I. INTRODUCTION

Channel coding typically assumes the symbols passes through an
additive white Gaussian noise (AWGN) channels [1]. For dispersive
channels, e.g. in wireless multipath channels, to avoid inter-symbol
interference (ISI), an optimal channel equalizer recovers the AWGN-
channel memoryless sequence prior to the channel decoder [2], [3].
Hence, the channel state information (CSI) is assumed known and the
maximum likelihood sequence detector (MLSD) [4] (i.e. the Viterbi
algorithm) provides at the receiver end the most probable transmitted
sequence. Alternatively, the BCJR [5] algorithm computes the a
posteriori probabilities (APP) for each transmitted symbol providing
bitwise optimal decisions. These APP are suitable inputs to reliable
error correcting codes, such as low-density parity-checks (LDPC),
allowing maximal achievable rates for the communication system
[6]–[8].

Maximum likelihood (ML) is the standard approach to estimate the
CSI. The ML criterion uses a known training sequence in a preamble
or pilots of the transmitted data. These preambles are typically short
to improve the efficiency of the transmission in time varying channels.
However, short sequences yield inaccurate CSI estimates. Therefore,
the BCJR with the CSI estimated by ML, denoted hereafter as ML-
BCJR, only delivers an approximation to the APP for the transmitted
symbols. These inaccurate APP estimates degrade the performance of
the LDPC decoder, which may fail to deliver the correct transmitted
codeword or may even fail to converge at all.

Several works focus on the effects of this imperfect estimation of
the CSI upon the performance of the communication system [9]–
[11]. Hence, different techniques have been proposed to deal with
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Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés
(Madrid), Spain. E-mail: fernando@tsc.uc3m.es

the problem of an inaccurate knowledge of the CSI. In [12], per-
survivor processing is proposed for maximum likelihood sequence
estimation, whenever the uncertainties in the channel estimation
restrict the standard Viterbi algorithm. Since the advent of turbo
processing, some Bayesian approaches have been proposed to embed
and consider the uncertainties in the whole iterative process of
equalization and decoding. Otnes and Tuchler propose an approxi-
mate solution to include the uncertainties in the computation of the
APP [13]. Wang and Chen put forward a blind algorithm, based on
an iterative marginalization of the channel posterior through Gibbs
sampling, to compute an approximation to the APP [14]. Similarly,
Lu and Wang consider the uncertainties of other critical parameters
in an OFDM system [15]. Anastasopoulos and Chugg propose an
adaptative soft-input soft-output algorithm that computes the APP
exchanging soft metrics to combine and marginalize information of
the channel estimation [16]. Alternatively, Skoglund et al. show that it
is posible to face the multipath fading by jointly considering channel
estimation and error correction [17], through a practical construction
of error-correcting codes and its metrics [18]–[20]. Recently, Chi
et al. put forward a Bayesian blind detector that, considering only
the channel distribution information, jointly faces the tasks of data
detection and channel estimation in a MIMO system [21]. Finally,
in [22] we introduce a nonlinear nonparametric equalizer to provide
accurate symbol-by-symbol estimates with good performance at the
output of a LDPC decoder.

In this paper to improve the performance of the standard ML-
BCJR equalizer, we propose a Bayesian equalizer (BE), which
integrates the uncertainty in the CSI to produce more accurate APP
estimates. The bit error rate (BER) at the equalizer output only
differ slightly in favor of the BE, because at this point we only
consider hard decisions. By further employing an LDPC code [8],
[23], we experimentally show that these new estimates of the APP
significantly improve the performance of the channel decoder, which
needs accurate APP to provide a correct estimation of the transmitted
word. These gains are more pronounced for high signal-to-noise ratios
(SNRs), channels with long impulsive responses and/or short training
sequences. Nevertheless, the proposed approach does not have an
analytical description and cannot be computed in linear-time in the
number of symbols as the BCJR algorithm, thus we also propose
an approximation to the Bayesian solution, hereafter referred to as
the approximate Bayesian equalizer (ABE), that presents the same
complexity as the ML-BCJR solution, but it is able to retain most of
the gain of the full Bayesian approach. Compared to the solution in
[22], the BE is parametric, it provides the posterior probability for
linear channels and, most important, its computational complexity
is identical to the BCJR equalizer. Some preliminary results were
presented in [24], [25]. In this paper we rewrite and extend these
works to better show the connection with the BCJR and justify the
ABE as the optimal Kullback-Leibler divergence approximation to
the BE. Also, we analyze the proposed methods from a graphical
model point of view and we address the memoryless channel problem.
Finally, we extend the approaches for any linear modulation.

The following notation is used throughout the paper. If u is a
vector, u/ui denotes the whole vector u except for its ith entry and
uj

i is a vector with the entries of u in the range i to j. For the sake
of simplicity, ui+L−1

i will be referred to as ui. If A is a matrix, A>

represents the transpose of A and AH its Hermitian.

II. ML-BCJR EQUALIZATION

We consider the discrete-time dispersive communication sys-
tem depicted in Fig. 1. A block of K message bits, m =
[m1,m2, . . . ,mK ]>, is encoded with a rate R = K/N code into
b = [b1, b2, . . . , bN ]>. An M-ary modulation is considered to obtain
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Fig. 1. System model.

NS = dN/ log2Me symbols. The block frame transmitted1 over the
channel is u = [u1, u2, . . . , uNS ]>. The channel H(z) is completely
specified by the CSI, i.e., h = [h1, h2, . . . , hL]>, where L is the
length of the channel impulsive response. In this paper, we model
h as independent zero-mean complex Gaussians (Rayleigh fading).
The received signal yields:

xi = u>i h + wi (1)

where wi represents an AWGN channel with variance σ2
w. Thus, we

denote the received sequence by x = [x1, x2, . . . , xNS ]>.
The maximum likelihood criterion is the standard tool for channel

estimation. Thus, prior to every coded block of data, we transmit
a preamble with n known symbols (u◦1, . . . , u

◦
n). The receiver uses

D = {x◦i , u◦i }ni=1, i.e. the training sequence, to estimate the channel
by maximizing:

ĥML = arg max
h

p(x◦|u◦,h). (2)

In the ML-BCJR equalizer, this estimation is provided to the BCJR
algorithm to obtain the APP for each transmitted symbol,

p(ui|x, ĥML) i = 1, . . . , NS , (3)

which are the inputs to the LDPC decoder [26], that provides the
maximum a posteriori estimate for mk. This receiver is limited by
the fact that it only takes into consideration the uncertainty in the
channel noise and not the uncertainty in the estimation process, i.e.
it assumes the ML estimate is the true CSI. If the training sequence
is long enough this might be the case, but it does not need to be in
most cases of interest, where we need to keep this training sequence
as short as possible.

III. BAYESIAN EQUALIZATION

In this paper, we propose to use Bayesian statistics to take into
consideration the uncertainties in the CSI estimate and provide more
accurate estimates of the APP. The Bayesian equalizer (BE) estimates
the APP as follows:

p(ui|x,D) =

∫
p(ui|x,h)p(h|D)dh, (4)

where p(ui|x,h) is given by the BCJR algorithm for each particular
h and p(h|D) is the posterior of the CSI:

p(h|D) =
p(h)p(x◦,u◦|h)

p(x◦,u◦)
=

p(h)
∏n

i=1
p(xi

◦|ui
◦,h)

p(x◦1, . . . , x
◦
n|u◦1, . . . , u◦n)

. (5)

In our model p(h) is Gaussian, and according to (1) the likelihood
is Gaussian too:

p(x◦|u◦,h) ∼ N ( (U◦)>h, σ2
wI), (6)

p(h) ∼ N (0,Ch), (7)

1We transmit an additional sequence of L− 1 known symbols to end in a
known state of the Trellis, but for the sake of simplicity they are not considered
in the notation.

hence, the numerator in (5) is the product of complex valued
Gaussians that leads to a Gaussian posterior:

p(h|D) ∼ N (hh|D,Ch|D), (8)

whose mean and covariance matrix are:

hh|D = (C−1
h + U◦(U◦)Hσ−2

w )−1U◦x◦σ−2
w , (9)

Ch|D = (C−1
h + U◦(U◦)Hσ−2

w )−1. (10)

Equation (4) can only be computed numerically, as we later
show, because p(ui|x,h) is a discrete random variable. But we can
interchange the integral by the sums in the forward-backward BCJR
algorithm as follows:

p(ui|x,D) =
1

Z

∑
u/ui

∫
p(x|u,h)p(u)p(h|D)dh. (11)

In the light of (4)-(10), both the CSI posterior and the likelihood of
the data are Gaussians and the marginalization over h in (11) can be
analytically computed as:

p(ui|x,D) =
1

Z

∑
u/ui

p(x|u,D), (12)

where this Gaussian likelihood yields:

p(x|u,D) ∼ N (U>hh|D,U
HCh|DU + σ2

wI). (13)

We can solve the Bayesian equalizer by using either (4) or (12), since
they are equivalent. But both approaches have their own limitations:
the BE in (4) is not analytically tractable; and the BE in (12) needs
to sum over a Gaussian with a full covariance matrix and we cannot
run the forward backward recursions, because the Markov property
is lost.

We can use Monte Carlo sampling to solve (4). We consider the
following steps:

1) Obtain G random samples from the posterior of the CSI in (5).
2) Solve the BCJR algorithm for each sample from p(h|D).
3) Average the results in Steps 1-2,

p(ui|x,D) ≈ 1

G

G∑
j=1

p(ui|x,hj). (14)

This solution is time demanding, because we have to calculate G
times the BCJR algorithm.

IV. APPROXIMATE BAYESIAN EQUALIZER

Since the covariance matrix of the likelihood in (13) is non-
diagonal, the forward and backward recursions approach cannot be
used by the Bayesian equalizer in (12). This poses a major problem
when computing the solution, because the APP cannot be computed
in linear-time in the number of symbols and the full integration is
NP hard. In this section, we approximate the solution in (12). The
resulting algorithm, the ABE, presents the same complexity of the
ML-BCJR and it is able to incorporate the uncertainties in the CSI
estimation.
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In Fig. ?? we have plotted the inverse covariance matrix in (13)
for 1000 BPSK symbols transmitted trough a channel with L = 6,
n = 15 training symbols and an Eb/N0 = 6 dB (this result
corresponds to a particularization of Section VI-B). We plot the
inverse covariance, because the zero covariates represent conditional
independent components in a Markov random field [?]. In this
figure, we notice that the main diagonal dominates the inverse cross-
covariance terms and those do not decay as the symbols are further
away. The inverse cross-covariance terms only decay towards zero as
the training sequence increases and they all decay equally fast. We
can picture the ML-BCJR algorithm as an approximation to the BE,
in which the Gaussian density in (13) is replaced by:

p̂(x|u,D) ∼ N (U>hML, σ
2
wI), (15)

and being the covariance matrix diagonal allows using the forward-
backward recursion to compute p(ui|x,D) in linear time. We propose
to use the Expectation Propagation (EP) algorithm [27] to approxi-
mate (13) with independent Gaussians, so we are able to use forward-
backward recursions to estimate the APP, as the ML-BCJR does.
EP minimizes the inclusive Kullback-Leibler divergence between
the actual density and the proposed approximation by matching
the moments between the joint distribution and its approximation,
therefore the approximation to (13) can be readily computed as:

p(x|u,D) ≈ p′(x|u,D) ∼ N (U>hh|D,Σ), (16)

where

Σij =

{
(UHCh|DU)ii + σ2

w, if i = j

0, if i 6= j.
(17)

Thus, (12) yields:

p(ui|x,D) ≈ 1

Z

∑
u/ui

p′(x|u,D), (18)

which can be computing through the BCJR algorithm.
The proposed ABE is a better approximation to the BE than the

ML-BCJR equalizer in two ways. First, it uses the posterior mean
instead of the ML estimate. Second, the variance for each sample has
two components: one due to the noise (the only one considered by the
ML-BCJR equalizer) and the other due to the CSI estimation error.
In Fig. ?? the values of LSM: CAMBIAR VALORES σw = 0.251
and the variances in (17) vary between LSM: CAMBIAR VALORES
0.414 and 0.308, which explains the best performance of the ABE
equalizer with respect to ML-BCJR. The approximation loses the
correlation between the symbols, but these correlations are not so
significant in the SNR ranges of interest and they disappear as the
training sequence increases.

Finally, we can point towards two possible directions of improve-
ment for the ABE. We can either use a low rank approximation for
the covariance matrix or a tree-structure for the EP approximation
[28]. But in both cases the number of estates in the Trellis grows
as the number of estates in the BCJR to the power of the order
of the approximation. Furthermore, given the structure of the inverse
covariance matrix (See Fig. ??), the order of the approximation has to
be increased significantly to make a difference, because most inverse
covariates are close to zero and there are no significant correlation
between adjacent symbols. Therefore the complexity of improving the
ABE is higher than solving the Monte Carlo numerical approximation
proposed in the previous Section.

LSM: Fuera, no? Based on these results, we provide some details
on the practical implementation of the forward-backward algorithm to
solve (18). Instead of computing γ in [5], [7] assuming h is obtained
through some estimation criterion such as ML, we marginalize it over

the CSI posterior:

γi
D(p, q) = p′(xi|ui,D)p(ui = u) (19)

where p′(xi|ui,D) yields:

p′(xi|ui,D) =

∫
p(xi|ui,h)p(h|D)dh. (20)

The result of this integral can be analytically calculated since both
terms are Gaussians:

p′(xi|ui,D) ∼ N (u>i hh|D,u
H
i Ch|Dui + σ2

w). (21)

The α and β terms are computed by means of the forward and
backward recursions, as in [5], [7]. Finally, the APP is calculated
from the transition probabilities in a similar way as in [5], [7].

Although the ABE provides a suboptimal computation of the APP
compared to (12), since the diagonal of the covariance matrix in (13)
is dominant, discarding the off-diagonal elements of p(x|u,D) does
not significantly change the APP estimates.LSM: Hasta aqui.

There is a graphical model interpretation of the BE that illustrates
why the forward-backward recursions cannot be applied over it and
why the approximation in ABE allows it. In the computation of
the APP for the Bayesian equalizer in (11), the integration over
p(h|D) introduces a dependence of all the received symbols with
this posterior, as depicted in Fig. 2. Therefore, Markovity cannot be
assumed to obtain the APP through the BCJR algorithm.

h

vi−1 vi vi+1

xi−1 xi xi+1

. . .. . .
si−1 si si+1

ui−1 ui ui+1

Fig. 2. Bayesian network for the equivalent Trellis assuming the marginali-
zation of p(h|D) in (11).

To recover the Markov property, the ABE does not consider this
statistical dependence and assumes for each local computation of
the forward-backward algorithm that p(h|D) is independent for each
received symbol. The corresponding graphical model is included in
Fig. 3. It exhibits a hidden Markov model structure equivalent to
the BCJR equalizer, since xi only depends on the state si, obtained
with the previous state si−1 and the transmitted symbol ui. In this
graphical model, we find an interpretation for (16), in which we
assume that the channel changes in each transmission according to
the CSI posterior, instead of using the same realization for all the
symbols. This model in Fig. 3 is also the one used for the ML-BCJR
algorithm, but in this case h is not a random variable, but a fixed
value equal to the ML estimate that misses the uncertainty in the
CSI.

V. BE FOR MEMORYLESS CHANNEL

The memoryless channel it is an important special case. First, it can
be analytically solved without needing to relay on the ABE. Second,
in OFDM the ISI channel is divided into non-interfering memoryless
channels and, consequently, the one-tap channel model is of particular
interest. If this is the case, we do not have to run the BCJR algorithm



4

. . .. . .
si−1 si si+1

h h h

ui−1 ui ui+1

vi−1 vi vi+1

xi−1 xi xi+1

Fig. 3. Bayesian network for the equivalent Trellis assuming statistical
independence over p(h|D).

to compute the APP since xi only depends on ui. The distribution
of the APP in (4) for an AWGN channel can be obtained by first
computing

p(ui|xi, h) =
p(xi|ui, h)p(ui)

p(xi|h)
=

1

Z
p(xi|ui, h), (22)

and

p(xi|ui, h) ∼ N (ui h, σ
2
w). (23)

We can analytically integrate (4) with (23), since the posterior of
the CSI is Gaussian, ant it follows that

p(ui = u|xi,D) =
1

Z

∫
p(xi|ui = u, h)p(h|D)dh (24)

=
1

Z
exp

(
−
|xi − uihh|D|2

2(σ2
h|D + σ2

w)

)
(25)

is the APP estimate for the Bayesian equalizer in memoryless
channels. In this case, it can be seen that the ABE would provide the
same result as the BE an it has two independent error components,
one due to the noise and the other due to the estimation error, while
the ML-BCJR would only count the noise term and would provide
overconfident estimates to the LDPC decoder.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed BE and ABE, we
compare them versus the standard ML-BCJR solution. The BE is
computed for G = 100 independent random samples. In all the
experiments presented on this section we consider:
• Block frames of 500 random bits encoded with a regular LDPC

code (3,6) of rate 1/2.
• Between frames, a training sequence of n uncoded symbols is

transmitted to estimate the channel.
• Every frame, and its associated training sequence, is sent over

the same Rayleigh fading channel. We assume that the channel
coherence time is greater than the duration of the frame, i.e.,
the channel does not change along the word. All the frames are
transmitted over the same random channel.

• A zero-mean unit-variance Gaussian prior.
In the following simulations we assume different modulations and

lengths of the channel to provide the curves of BER and word error
rate (WER) before and after the LDPC decoder. We use the Belief
Propagation (BP) as the LDPC decoder [26].

A. Memoryless channel

As proposed in Section V, we can exactly compute the APP
estimates for a memoryless channel. In Fig. 4 we compare the BER

curves after the LDPC decoder for the ML-BCJR and the Bayesian
equalizers. We depict the curves for QPSK, 16-QAM and 256-QAM
modulations, assuming a training sequence of length n = 4. We can
observe in Fig. 4 that the gain of the Bayesian equalizer compared
to the ML-BCJR becomes greater with the modulation order, since
the Bayesian approach has more room for improvement. Therefore,
without and increasing in the computational complexity, we obtain a
gain about 0.25 dB for the 256-QAM case and an Eb/N0 = 11 dB.
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Fig. 4. BER performance for the BE (solid lines) and ML-BCJR (dashed
lines) after the LDPC decoder, for a memoryless channel, and different
modulation orders: QPSK (�), 16-QAM (�) and 256-QAM (◦).

B. Performance after equalization and decoding

In Fig. 5 we depict the BER curves before and after the LDPC
decoder for the BE, the ABE and ML-BCJR equalizer. The codeword
is BPSK modulated and the symbols are transmitted through a 6 taps
channel. The length of the training sequence is n = 15 and n = 40
symbols.

In Fig. 5 we first observe that the difference between BER curves
before the LDPC decoder is negligible, since at this point we only
measure how good the APP estimate of the 50% percentile is.
Nevertheless, when we measure the BER after the LDPC decoder,
we obtain a significant gain, because the LDPC decoder benefits
from accurate APP estimates to decode correctly the transmitted
codeword, i.e., the BP uses the APP for each individual bit. These
results sustain our claim that the Bayesian equalizer provides more
accurate predictions of the APP than the ML-BCJR equalizer, as the
LDPC decoding is improved with them.

We propose in Section II Monte Carlo sampling to obtain the
APP estimates of the Bayesian equalizer in (4). Then, to face the
complexity problem, in Section IV we introduce the approximate
Bayesian equalizer (ABE) which, although is an approximation to
the exact result of (4), has the same complexity of the standard
ML-BCJR solution. As illustrated in Fig. 5 and explain in Section
IV, there is a loss of performance for the ABE with respect to the
optimal BE, but the ABE outperforms the ML-BCJR equalizer at
the same computational complexity, while to solve the BE through
Monte Carlo we have to compute G times the BCJR algorithm.

C. Results for different modulations and lengths of the channel

We compare the performance in terms of WER for the ABE versus
the ML-BCJR equalizer, for different modulations and lengths of the
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Fig. 5. BER performance for BE (solid lines), the ABE (dotted lines) and
ML-BCJR equalizer (dashed lines), for a channel with 6 taps before the
decoder with n = 15 (�), before the decoder with n = 40 (O), after the
decoder with n = 15 (◦), and after the decoder with n = 40 (�).

channel. In Fig. 6 we compare both methods for different lengths
of the training sequence, a QPSK modulation and a channel with
L = 3. The WER curve with a perfect knowledge of the CSI is also
included to set a lower bound of performance for the system.
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Fig. 6. WER performance for the ABE (solid lines) and ML-BCJR equalizer
(dashed lines) after the LDPC decoder, for a channel with 3 taps, QPSK
modulation and different lengths of the training sequence, n = 5 (◦), n = 10
(�), n = 15 (�) and n = 25 (5). In dash-dotted line, the BCJR with perfect
CSI.

At higher values of SNR and worse estimations of the channel, due
to shorter training sequences, the difference between Eb/N0 values
of both methods for a certain word error rate increases. This yields
a gain close to 0.3 dB at an Eb/N0 = 7 dB for n = 10 training
samples. Although the performance of the ML-BCJR equalizer tends
to the Bayesian equalizer for higher lengths of the training sequence,
this involves a loss of efficiency (number of information bits over all
transmitted bits) since it requires longer training sequences to obtain
an accurate estimation.

A higher modulation order translates into more states in the Trellis

considered for the forward and backward recursions. Therefore, in
case of uncertainties in the estimated CSI, the number of inaccurate
operations grows and we can expect a higher degradation of the
equalizer performance, which finally yields into more inaccurate APP
estimations. Thus, if we increase the order of the modulation, we can
expect a greater gain for the proposed Bayesian equalizer. To illustrate
this point, in Fig. 7 we include the WER curves for the ABE and the
ML-BCJR equalizer after the LDPC decoder, assuming a 16-QAM
modulation, L = 3 and different lengths of the training sequence.
We can observe in Fig. 7 a gain over 0.5 dB for an Eb/N0 = 9
dB and n = 10. In all the curves the gain of the Bayesian equalizer
increases compared to the previous results for a QPSK modulation.
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Fig. 7. WER performance for the ABE (solid lines) and ML-BCJR equalizer
(dashed lines) after the LDPC decoder, for a channel with 3 taps, 16-QAM
modulation and different lengths of the training sequence, n = 5 (◦), n = 10
(�), n = 15 (�) and n = 25 (5). In dash-dotted line, the BCJR with perfect
CSI.

The longer the impulsive response of the channel is the more uncer-
tainty in the CSI estimate and the higher the room for improvement
for the Bayesian equalizer. To illustrate this, we depict in Fig. 8
the WER curves for the ABE and the ML-BCJR equalizer after the
LDPC decoder, using a QPSK modulation and L = 5. In Fig. 8 we
can observe a gain close to 1 dB for an Eb/N0 = 9 dB and n = 10,
which shows an increase in its performance compared to the 3 taps
scenario.

VII. CONCLUSIONS

Channel equalization has been traditionally solved using a fre-
quentist approach, i.e. maximum likelihood. The Bayesian model
introduced in this paper, in which the posterior probability of the
estimated CSI is taken into consideration, is a more principled
solution, because it takes into account not only the uncertainty due
to the noise, but also the uncertainty about the CSI estimation. The
maximum likelihood solution and the Bayesian equalizer perform
similarly when we predict the transmitted symbol. However, the
Bayesian equalizer presents more accurate APP estimates than the
standard maximum likelihood solution. We measure the quality of the
APP estimates using an LDPC decoder, the standard channel codes
in today’s communications systems, since the LDPC decoder needs
the exact APP to perform optimally. We also propose an approximate
Bayesian equalizer that can keep most of the gain of the Bayesian
equalizer at the same computational cost as the ML-BCJR equalizer.
This gain is remarkable in scenarios with short training sequences,
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Fig. 8. WER performance for the ABE (solid lines) and ML-BCJR equalizer
(dashed lines) after the LDPC decoder, for a channel with 5 taps, QPSK
modulation and different lengths of the training sequence, n = 10 (◦), n = 15
(�) and n = 25 (�). In dash-dotted line, the BCJR with perfect CSI.

long channels and multilevel constellations. We have illustrated these
results for LDPC codes and they can be carried over to other coding
schemes that need accurate APP, such as turbo codes.
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