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A TALE OF THREE HOMOTOPIES

VLADIMIR DOTSENKO AND NORBERT PONCIN

ABSTRACT. For a Koszul operad &2, there are several existing approaches to the notion of a homotopy be-
tween homotopy morphisms of homotopy #?-algebras. Some of those approaches are known to give rise to
the same notions. We exhibit the missing links between those notions, thus putting them all into the same
framework. The main nontrivial ingredient in establishing this relationship is the homotopy transfer theorem
for homotopy cooperads due to Drummond-Cole and Vallette.

1. INTRODUCTION

From as early as Quillen’s work on rational homotopy theory [45], equivalences of various homotopy
categories of algebras have proved to be one of the key tools of homotopical algebra. (This paper does
not aim to serve as a historical reference, so we refer the reader to [28] and references therein). The types
of algebras for which the corresponding homotopy categories have attracted most attention over years
are, eloquently described by Jean-Louis Loday, “the three graces”, that is associative algebras, associative
commutative algebras, and Lie algebras. However, the corresponding questions make sense for any type
of algebras, or, in a more modern language, for algebras over any operad. For instance, for the algebra of
dual numbers k[g]/(€?) viewed as an operad with unary operations only, algebras are chain complexes, and
a good understanding of the corresponding homotopy category naturally leads to the notion of a spectral
sequence [31]. In general, a “nice” homotopy theory of algebras over an operad & is available in the
case of any Koszul operad. More precisely, there are several equivalent ways to relax a notion of a dg
(standing for differential graded) &7-algebra up to homotopy, and define appropriate homotopy morphisms
of homotopy algebras.

Although a few available ways to write down a definition of a homotopy £?-algebras and a homotopy
morphism between two homotopy algebras are easily seen to be equivalent to one another, in order to
describe the homotopy category of dg &?-algebras one has also to be able to encode homotopy relations
between homotopy morphisms. (Another instance where this question naturally is raised comes from the
informal relationship between the categorification of &7-algebras and relaxing &7-algebras up to homotopy,
see, . g. [2, 29]). Basically, there are at least the following three natural candidates to encode homotopies
between morphisms:

e The concordance relation between homotopies, based on two different augmentations of the dg
algebra Q([0, 1]) of differential forms on the interval (this notion is discussed in [46] in detail; it
seems to have first appeared in unpublished work of Stasheff and Schlessinger [48] and is inspired
by a paper of Bousfield and Gugenheim [7])

e Several notions of homotopy relations based on the interpretation of homotopy morphisms as
Maurer—Cartan elements in a certain L..-algebra:

— The Quillen homotopy notion (close to the above notion of concordance) suggesting that
two Maurer—Cartan elements in an algebra L are homotopic if they are images of the same
Maurer—Cartan element in L[z, dt] under two different morphisms to L

— The gauge homotopy notion suggesting that the component Ly of an L.-algebra L acts on
Maurer—Cartan elements, and homotopy classes are precisely orbits of that action. Gauge
symmetries of Maurer—Cartan elements in differential graded Lie algebras are already some-
what prominent in the seminal paper of Nijenhuis and Richardson [43]; their role has been fur-
ther highlighted by Schlessinger and Stasheff [48], and promoted to the context of 2-groupoids
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by Deligne [13]. A systematic treatment of gauge symmetries of Maurer—Cartan elements in
L..-algebras is due to Getzler [21], and his methods were specifically used to define homotopy
of L.-morphisms by Dolgushev [14].

— The cylinder homotopy notion coming from the cylinder construction of the dg Lie alge-
bra controlling Maurer—Cartan elements; such a cylinder is shown [9] to be given by the
Lawrence—Sullivan construction [32].

e The notion of operadic homotopy suggesting that the datum of two homotopy algebras, two ho-
motopy morphisms between them, and a homotopy between those two morphisms is the same as
the datum of an algebra over a certain cofibrant replacement of the coloured operad describing the
diagram

of A-algebras (this approach a la Boardman and Vogt [5] was pursued by Markl in [39], following
the description of homotopy algebras and homotopy morphisms via algebras over minimal models
of appropriate operads [38]).

The goal of this paper is to exhibit, for a Koszul operad Z, interrelationships between these definitions,
putting the above approaches in a common context. For some notions of homotopies between Maurer—
Cartan elements, it is done in a recent preprint [8]. The interplay between concordance, Quillen homotopy,
and operadic homotopy is explained in this paper. This would be useful for working with homotopy cate-
gory of homotopy Z-algebras, as in [49].

A very important computation which is in a way at heart of both some very interesting recent results
in rational homotopy theory [8, 9] and our theorem on operadic homotopy is homotopy transfer of the dg
commutative algebra structure of differential forms on the interval leading to a homotopy commutative al-
gebra structure on the Cech cochain complex of the interval with Bernoulli numbers as structure constants.
This computation was first performed by Cheng and Getzler [11]. In [8], a version of the computation of
Cheng and Getzler was performed on the dual level, resulting on a homotopy cocommutative coalgebra
structure on the Cech chain complex of the interval which they show to recover the universal enveloping
algebra of the Lawrence—Sullivan Lie algebra. There is a subtle point in this statement: the dual of the
algebra of differential forms is not a coalgebra, since the coproduct lands in the completed tensor product,
however if one ignores the fact that intermediate computations involve infinite series that technically do
not exist, the transferred structure is an honest homotopy coalgebra. In our case, since we perform a sim-
ilar computation but transfer the structure of a homotopy cooperad (using results of Drummond-Cole and
Vallette [18]), the situation becomes even more subtle. We therefore create a framework that justifies the
infinite series computations, proving directly that partial sums of those infinite series give higher structures
that converge as the upper summation limit goes to infinity.

The paper is organised as follows. In Section 2, we briefly recall all necessary definitions and facts of
operadic homotopical algebra. In Section 3, we provide background information on the existing notions of
homotopies; even though the three different notions of a homotopy between Maurer—Cartan elements in Le-
algebras are fairly well understood, we spell out the corresponding definitions for the sake of completeness.
In Section 4, we explain the relationship between the notion of concordance homotopy and that coming
from homotopy of Maurer—Cartan elements. In Section 5, we explain the relationship between the notion
of concordance homotopy and that of operadic homotopy. In fact we provide the first, to our knowledge,
explicit recipe to write a definition of operadic homotopy, even though it is complicated since it involves
nested trees in homotopy transfer formulae. We conclude with an outline of some future directions in
Section 6.

Acknowledgements. We would like to thank David Khudaverdyan for inspiring discussions, Urtzi Buijs
and Aniceto Murillo for sending copies of their related work, and Alberto Canonaco for sending a copy
of [10]. Special thanks are due to Bruno Vallette for numerous useful discussions and for sharing a prelim-
inary version of [49], to Ezra Getzler for enlightening discussions of [21], and to Martin Markl and Martin
Doubek for discussions of rich ideas of [39] and [16]. Some extensive work on this paper was done while
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the first author was visiting Maria Ronco at University of Talca; he is most grateful for the invitation and
the excellent working conditions enjoyed during his stay there.

2. OPERADIC HOMOTOPICAL ALGEBRA

We do not aim to provide a comprehensive treatment of homotopical algebra for operads since it would
require a textbook rather than a paper; we however tried to collect all basic notation, slightly uncommon
definitions and some proofs of facts we could not locate in the available literature. We refer the reader to
[34] for all the missing details.

2.1. Operads: notational (and other) conventions. All vector spaces are defined over a field k of
characteristic 0. We shall use coloured operads throughout, and therefore we find it beneficial to recall
some definitions, directing the reader to [34] for definitions of the corresponding non-coloured notions.
More details on coloured operads can be found in [50]. For a set C, a C-coloured S-module is a functor
from the category of C-coloured finite sets (with colour-preserving bijections as morphisms) to C-graded
vector spaces. Similarly to how a non-coloured S-module ¥ is completely determined by the compo-
nents ¥ (n) := ¥ ({1,2,...,n}), a C-coloured S-module ¥  is completely determined by its components
V(cty. .. en) =Y {(L,c1),(2,¢2),...,(n,cn)}) forey,...,cp € C.

In some instances, we shall use C-graded chain complexes, that is, C-graded vector spaces for which
each individual component is a chain complex. The category of C-coloured S-modules has an important
object that we denote by .#; it is the functor that vanishes on all sets except one-element sets, and on
a one-element set with the only element of colour c, its value is the C-graded vector space whose only
nonzero component is that of colour ¢, and that component is one-dimensional. For a non-coloured chain
complex U, and ¢ € C, we denote by U, the C-graded chain complex whose only nonzero component is the
c-graded one, and it is equal to C. For a non-coloured S-module ¥, and ¢y, ¢, € C, we denote by ¥, _,,)
the C-coloured S-module whose only nonzero components are #{¢, _,¢,)(¢1,C1,---,¢1) 1= ¥ (1)c,.

\qh,—/
n times

The category of C-coloured S-modules has a well known monoidal structure called composition and de-
noted by o for which .# is the unit; monoids in this category are called C-coloured operads. For a C-graded
vector space Z, the coloured endomorphism operad Endyz is the C-coloured operad whose component
Endz(cy,...,cn) is the C-graded vector space with the c-graded component being Hom(Z., ® - -- ® Z,, , Z.),
and obvious composition maps. An algebra over a C-coloured operad & is a C-graded vector space Z
together with a morphism of coloured operads & — Endz. The additional characteristics “coloured” and
“differential graded” that an operad or an S-module may have will always be clear from the context, and
we shall use just the words “operad” and “S-module” in most cases for brevity. It is also worth recalling
that besides the composition ¥ o %', one can also define the infinitesimal composition ¥ oy %', which
consists of the elements of ¥ o (. @ #) that are linear in #'.

To handle suspensions, we introduce a formal symbol s of degree 1. For a graded vector space L, its
suspension sL is nothing but ks ® L. For an augmented (co)operad & (for example, for every (co)operad &
with dim @ (1) = 1), we denote by ¢ its augmentation (co)ideal.

We shall frequently use the chain complex C,([0,1]), the Cech chain complex of the interval. It is the
chain complex that has basis elements 0, 1, and 01 of degrees 0, 0, and 1 respectively, and the differential
2(01)=1-0.

2.2. Operadic Koszul duality and homotopy algebras. Given an S-module ¥/, one can define the free
operad F (¥') generated by ¥ and the cofree cooperad F (V') generated by ¥'; as S-modules, they both
are spanned by “tree-shaped tensors”. Each of them admits a weight grading, e.g. .7 (¥ )U‘) is spanned by
tree-shaped tensors corresponding to trees with k vertices, or, in other words, by composites of k generators.

A dg operad is called quasi-free if its underlying operad is free. A model of an non-dg operad & is a
quasi-free operad (% (% ),d) equipped with a surjective quasi-isomorphism (% (% ),d) — ¢. We shall
use the definition of minimal models for operads from [18] which is more general than the one from [40],
and is required for our purposes. Namely, we say that a quasi-free operad (.F (% ),d) is minimal if its
differential is decomposable, that is d(% ) C .Z (% )(Z%, and its S-module of generators admits a direct
sum decomposition % = @y % ¥ satisfying d(% *V) ¢ F (@, %), the Sullivan triangulation
condition.
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To an S-module ¥ and an S-submodule % C .7 (7)) one can associate an operad
P=DV %),
the universal quotient operad & of .% (¥') for which the composite
R—F(V)—>» O

is zero. Similarly, to an S-module ¥ and an S-submodule #Z C .Z(¥ )(2) one can associate a cooperad
2= 2(V, %), the universal suboperad € C F“(¥') for which the composite

C s FV) > FV)D /%
is zero. The Koszul duality for operads assigns to an operad &2 = (¥, %) its Koszul dual cooperad
D= D(sV s> R),
and to a cooperad 2 = 2(¥, %) its Koszul dual operad
D= P(s\V s R).

An operad & is said to be Koszul if its Koszul complex (71 o & with the differential coming from a certain
twisting morphism between &1 and &) is quasi-isomorphic to .#.

It is well known that if &2 is a Koszul operad, then the datum of a homotopy &7-algebra structure on
a vector space V is equivalent to the datum of a square zero coderivation of degree —1 of the cofree &2i-
coalgebra &1(V). Such a coderivation makes the latter coalgebra into a chain complex referred to as the
bar complex of V, and denoted B(V). For every homotopy Z?-algebra structure on V, we shall denote by

Dy the differential of B(V), and by df/k) the k-th restriction of Dy, which is a composite of the restriction
of Dy to Zi(k) ®s, VK € 21(V) and the projection Z1(V) — V.

The same definitions apply when replacing algebras with coalgebras: for a Koszul cooperad 2, a struc-
ture of a homotopy 2-coalgebra on a vector space V is exactly the same as a square zero derivation of
degree 1 of the free 2i-algebra 2i(V). Such a datum makes the latter coalgebra into a cochain complex
referred to as the cobar complex of V and denoted Q(V).

The above statements also apply to the case when V itself is a homotopy (co)operad, that is a homotopy
(co)algebra over the (Koszul) coloured (co)operad encoding non-coloured operads. In the case of non-
symmetric operads, that coloured operad is defined and studied in detail in [50], in the case of symmetric
operads, the definition is given in [3, 30]. We however would like to make some clarifying remarks since
when applying the Koszul duality to that operad one may make different choices, and end up with several
different notions of homotopy operads, see, e.g. a recent preprint [12] where the action of symmetric
groups on operads is also relaxed up to homotopy. We consider operads coloured by a category [44]: the
set of colours for our operads is Ny = {1,2,...}, but in addition each colour n has S, as its group of
automorphisms. Hence, the coloured collections underlying the corresponding coloured operads will be
collections of vector spaces V(ci,...,c,;c) that, in addition to the action of permutations corresponding to
same colours in the list cy,...,c,, have a left kS, ® --- ® kS,,-module structure, and a right kS.-module
structure, and the left S;; ® - - - ® kS, -module structure is compatible with permutations of colours. For such
operads, it is possible to generalise the notion of Koszul duality a la [22], the notion of a Grobner basis a la
[15], and various results of operadic homotopical algebra a la [34, Chapter 10]; these generalisations, while
would require a separate paper to fill in all the details, are fairly straightforward, and we are using them
implicitly in several proofs throughout this paper. In fact, the only coloured operad of this generalised form
that we need is the coloured operad & with generators ¢ s € O (n,m;n+m—1),1 <i<n, 6 € Sy+n—1; this
operation encodes infinitesimal operadic compositions via ; s (f,g) = (f c;g).o. This operad is presented
by quadratic relations that encode associativity of operadic compositions [40]. Moreover, one of several
standard choices of normal forms for computing operadic compositions (e.g. by choosing left-to-right
levelisations of trees) leads to a conclusion that this operad is Koszul because it can be easily seen to
admit a quadratic Grobner basis [15], and by a direct inspection, this operad is self-dual with respect to
Koszul duality for coloured operads. Even more generally, for a given set of colours C (without nontrivial
automorphisms), a C-coloured homotopy (co)operad V can be viewed as a homotopy (co)algebra over an
appropriate coloured (co)operad O¢; this coloured (co)operad satisfies all the properties we just outlined
for C = {x}.
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In particular, this translates into the fact that for an S-module %, a square zero derivation of degree
—1 of the free operad .% (s~'#) is equivalent to a structure of a homotopy cooperad on #, see [50]; in
fact, for a cooperad S-module %/, the free operad .7 (s~'#') equipped with that differential is precisely
the cobar complex Q(%#). In terms of operadic cobar complexes, one can give an alternative definition of
homotopy algebras over Koszul operads: a homotopy Z-algebra structure (or a &?.-algebra structure) on
a chain complex V is the same as the structure of an algebra over the cobar complex Q(Z?1) on V. (This
cobar complex is often denoted by #..). Similarly to how cooperations of an A.-coalgebra are indexed by
positive integers (the label of a cooperation describes in how many parts it splits its argument), cooperations
of a homotopy cooperad # are indexed by trees. For each tree ¢, the cooperation A;: s~ % — .Z (s~ W)
takes an element of s~' % to a sum of terms in the free operad .7 (s~!#), each term corresponding to a
certain way to decorate internal vertices of ¢ by elements of s~ 1% It is of course possible to encode these
as maps from # to .% (#') by applying appropriate (de)suspensions, thus arriving to the more conventional
definition where the infinitesimal decomposition map in a usual cooperad has degree 0.

Throughout this paper, we always use the letter &2 to denote a non-coloured non-graded finitely gen-
erated Koszul operad with &2(1) = k. The “non-coloured” assumption is merely there to simplify the
notation a little bit (all the results hold in the coloured case also), while the other assumptions cannot be
just dropped, while each of them can in principle be replaced by a more weak but more technical assump-
tion, e.g. instead of considering operads with #?(1) = k one can look at augmented operads admitting a
minimal model in the sense described above. Under our assumptions, the cobar complex Q( 1) is the
minimal model of .

2.3. Morphisms and homotopy morphisms. To deal with homotopy algebras and their morphisms, we
shall mainly use {x,y}-coloured S-modules and operads. For a non-coloured operad &2 = .% (¥)/(%), a
pair of &-algebras and an algebra morphism between them can be encoded as an algebra over a certain
{x,y}-coloured operad &, ,.. The generators of that operad are ¥(x—x) (encoding the structure maps of
the first algebra), ¥{,_,,) (encoding the structure maps of the second algebra), and the S-module .7 ), for
which the only nonzero component is ./, (x) = ky (encoding the map between the two algebras). Its
relations are Z(,_,y)» X(y—y)» A f 0 V(x_yy) = V(ysy) 0 f" for each v € ¥'(n). This operad is homotopy
Koszul in the sense of [41]; we shall recall its minimal model below.

Recall that a homotopy morphism between two homotopy Z?-algebras is the same as a dg Zi-coalgebra
morphism between their bar complexes. (Dually, a homotopy morphism between two homotopy 2-
coalgebras is the same as a dg 2i-algebra morphism between their cobar complexes). Similarly to how
a homotopy #-algebra structure can be defined as an algebra over the operad Z., = Q( 1), there is a
description of homotopy morphisms in terms of algebras over some dg operad, which we shall now define.

Let us consider the {x,y}-coloured S-module

Voo 1= Pl © Pl B8P

(x=y)?
It has a structure of a homotopy cooperad defined as follows: on ﬁ( xx) and %(y_)y), one uses the
cooperad structure corresponding to that of &1, whereas on s@éx ) there are two types of nonzero de-
composition maps, the map

Pl 2P = Proq PT2PY 005 Py

obtained by de-suspending the infinitesimal decomposition &1 — &1 o) 1 in the cooperad &1, and the
map

X—y

3”2 > P Pio P %s—lgzi(yﬁy)OW(i)Hy)
obtained by de-suspending the full decomposition &1 — Zio 1, The fact that all these maps satisfy the
constraints required by the definition of a homotopy cooperad follow from the fact that the structure maps
of &1 satisty the constraints of a cooperad (coassociativity).
The following proposition follows by inspection from the definition of a homotopy morphism as the
morphism of bar complexes; we omit the proof.

x—y)

Proposition 1. The datum of a homotopy morphism between two homotopy &-algebras X and Y is equiv-
alent to an algebra over the cobar complex Q(Ve_e00) for which the actions of P (vx) and Py,
induce the given homotopy &?-algebra structures on X and Y respectively.
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In what follows, we shall denote the cobar complex Q(¥e—ec) by Pe_se . The following statement
extends the understanding of homotopy &7-algebras as algebras over the minimal model of 7; it is essen-
tially [41, Prop. 56] for which we provide a detailed proof.

Proposition 2. The operad P, e o is the minimal model of Pe_e.

Proof. Let us consider the weight filtration of the cobar complex Q(¥e_se ), that is the filtration by the
number of internal vertices of trees in the free operad. Inspecting the definition of the homotopy cooperad
Ye_e, We see that the differential d° of the corresponding spectral sequence is equal to zero, and the
differential d! is obtained from forgetting the full decomposition map on s@(ix ) that is only retaining
the map

gzi

(x—y

) =P Ploy PT=P 005 Py
obtained by de-suspending the infinitesimal decomposition &1 — Zio(;) &1 in the cooperad 1. Thus,

the cobar complex Q(¥e_e.) With the differential d' becomes isomorphic to Q((@ﬁa.)i), the cobar

complex of the operad 3”@,. with generators ¥, © ¥(,,) ® 4| y) and relations Z(;_,y), %y, and
f oV for each v € ¥ (n). The latter operad is known to be Koszul [41, Lemma 55], so the homology
of the cobar complex of its Koszul dual is concentrated in degree zero. Thus further differentials of our
spectral sequence vanish, and the homology of Q(¥,_.. ) is concentrated in degree zero, where it is, by
direct inspection, equal to P, _,,. O

2.4. Homotopy transfer theorem for homotopy cooperads. One of the key features of homotopy struc-
tures is that they can be transferred along homotopy retracts. The following result generalising (and dual-
ising) both the homotopy transfer formulae for A.-coalgebras [30, 34] and the homotopy transfer formulae
for (pr)operads [25] is proved in [18]. The signs in the formulae are Koszul signs coming from various
(de)suspensions, and writing them by a closed formula is not in any way useful; see [25] for some further
explanations of the origin of signs.

Proposition 3 ([18]). Let (¢,{A;}) be a homotopy cooperad. Let (€ ,d ) be a dg S-module, which is a
homotopy retract of the dg S-module (€ ,dg):

p
HC(%vd(bﬂ) <~ (%7d%) :
l
Consider the formulae

(D Zt = Zif(P) © ((A,HIH) O jik (- (AZ3H) Oja ((AtzH) Oj Atl))) oi,

where t is a tree with at least two vertices, and the sum is over all possible ways of writting it by successive
expansions of trees with at least two vertices,

t=(((noj2)0)13) ) 0j titr s
so one begins with the tree t|, expands its vertex ji by replacing it with the tree t;, then expands the vertex
J2 of the result by replacing it with the tree t3 etc. (The notation (AyH) o; A, means that we apply AyH
at the j™ vertex of the t-shaped elements of the free operad arising upon the application of A,). These
formulae create the necessary “correction terms” one has to add to the transferred decomposition maps
t(p) oA, oi in order to define a homotopy cooperad structure on the dg S-module (€ ,d ).

2.5. Maurer-Cartan description of homotopy algebras and morphisms. Here we discuss, following
[41, 50], a description of homotopy £?-algebras and homotopy morphisms of those algebras in terms of
solutions to the Maurer—Cartan equation in a certain L..-algebra. Unlike the case of differential graded Lie
algebras, the defining equation of Maurer—Cartan elements in L..-algebras only makes sense under some
extra conditions; we recall one of the possible choices, following [4].

Definition 1. A L..-algebra L is said to be complete if it is equipped with a decreasing filtration
L=F'LDF*LD>...DF'LD...

such that



A TALE OF THREE HOMOTOPIES 7

e for each k and r, we have
G(F'L,L,....L) CF™"'L
e for each r, there exists some N such that for all kK > N we have
b(L,L,...,L) CF'L
e [ is complete with respect to this filtration, that is the canonical map
L— @L J/F'L
is an isomorphism.
A complete Lo.-algebra L is said to be profinite if each quotient L/F"L is finite dimensional.
A class of complete L..-algebras that we shall primarily need for our purposes is given by convolution
Le.-algebras. Suppose that € is a homotopy cooperad with the total decomposition map
Ag:s '€ — F(s1¢)2),
and & is a dg operad with the induced composition map
Hy: F(2)2Y 5 2.
(Note that we use the (de)suspended definition in one case, and the usual definition in the other one; this
corresponds to the almost-self-duality of the coloured operad encoding non-coloured operads). In this case
the collection Homy (¢, £2) is a homotopy operad, the convolution homotopy operad of € and &, and
hence the product of components of this collection is an Le-algebra [50]. The structure maps ¢, of that
L..-algebra are, forn > 1,
(2) En((pl . (Pn) — Z (_1)Sgl‘l(0-,¢1-,~-.-,¢n)ﬁtg/; f¢) (¢0‘(l) R...Q® ¢O'(n)) o (S®n) OAnS7] ,
oES,

where A, is the component of Ay which maps € to .7 (%) ("), that is the sum of all cooperations A, over
trees ¢ with n internal vertices, see [41, 50]. The map /¢ is the usual differential of the space of maps
between two chain complexes:

((9)=D(9) =drpo¢—(~1)%pody.

The product of the spaces of S,-equivariant maps

H Homg, (4 (n), Z(n))

n>1
can be shown to be an L..-subalgebra of this algebra, which we shall be referring to as convolution L..-
algebra of € and &.

All L.-algebras we consider in this paper will arise as convolution algebras. To ensure their complete-

ness, we shall be using the following result (which, in all cases we deal with, will be manifestly applicable).

Proposition 4. If the cobar complex of € is a minimal operad with finite-dimensional components AL of
the decomposition € = @y €'%) implementing the Sullivan triangulation condition, then L, the convolu-
tion Le-algebra of € and & is a complete L..-algebra with respect to the filtration whose p™ term FPL is
given by
[T Homs,(&®(n), 2(n)),
n>1,k>p
that is the maps that vanish on @y, AV

Proof. The first condition of completeness follows directly from the Sullivan triangulation condition: the
operadic decomposition of an element from % ()) with k < r does not contain elements from 4" and
higher, so ¢;(F'L,L,...,L) C F"T!'L. The second condition essentially expresses the fact that for every
¢ € € the number of trees 7 for which A;(c) # 0 is finite. The third condition is obvious. O O

Definition 2. Let L be a complete L..-algebra with the structure maps ¢, k > 1. An element & € L_; is
said to be a Maurer—Cartan element (notation: oo € MC(g)) if

1
Y Efk(oc,oc,...,a) =0.
=1



8 VLADIMIR DOTSENKO AND NORBERT PONCIN

Note that the Maurer—Cartan equation in a complete L.-algebra makes sense, since the infinite series
converges with respect to topology defined by the filtration. In all formulae throughout this paper, we only
use infinite series in L.-algebras that are complete, and no convergence issues ever arise.

Let L be a complete L..-algebra with the structure maps ¢y, k > 1, and let o be a Maurer—Cartan element
of that algebra. One can consider the following new operations on L:

1
L (X1, ey Xy) i= pg’o w£n+p(oc,.;7.,oc,x1, ey Xp)-

It is known [21, Prop. 4.4] that the underlying vector space of L equipped with the structure maps ¢%, k > 1,
is again a complete L..-algebra, denoted by L*. The L.-structure of that algebra is sometimes called the
Lo-structure twisted by «.

Let us consider the {x,y}-coloured homotopy cooperad Y. . from Section 2.3, and {x,y}-coloured
operad Endy, oy, . The general construction of Section 2.5 produces an Lo.-algebra structure on the space of
S-module morphisms

fxﬁy = HOI’HS(%H.?M, Endxx@yy)
between them. This space of morphisms can be naturally identified with the space

(hy,hy, hyy) € Homy (21(X),X) & Homy (21 (Y),Y) & Homy (s 21 (X),Y ),
and in what follows we shall view this latter space as the underlying space of the L..-algebra Zx y.
The following is proved in [41] for properads, and is essentially present in [30] in the case of operads.

Proposition 5. A rriple of elements (hy,hy,hyy) of the vector space

Homy (21(X),X) ®Homy (Z1(Y),Y) @ Homy (s 21 (X),Y)
is a solution to the Maurer—Cartan equation of the Le-algebra Ly y if and only if hy is a structure of
a homotopy P-algebra on X, hy is a structure of a homotopy &-algebra on'Y, and hyy is a homotopy
morphism between these algebras.

Moreover, for two given homotopy Z?-algebra structures on X and Y, it is possible to describe ho-
motopy morphisms between the corresponding algebras in the same way. Suppose that X and Y are two

homotopy &7-algebras, so that the algebra structures are enconded by the elements A, € Homy (£1(X),X)

and h, € Homy (&1 (Y),Y ) respectively. Since the zero map is manifestly a homotopy morphism, the triple
o = (hy,hy,0) is a Maurer—Cartan element of the L..-algebra Zx y.

Proposition 6. In the twisted L..-algebra £y, the subspace
Z(X,Y) :=Homy (s Z1(X),Y)

is an Le-subalgebra. Solutions to the Maurer—Cartan equation in that subalgebra are in one-to-one corre-
spondence with homotopy morphisms between X and Y .

Proof. First, using the homotopy cooperad structure on ¥4_, -, ONe can see by direct inspection that if we
put B = (0,0,hy,) € Zx y, then the element o + 8 is a Maurer—Cartan element of % y if and only if 8
is a Maurer—Cartan element of Z{'y- Therefore, if we check that Z(X,Y) is an Le.-subalgebra of £y,
the statement follows. In fact, it is possible to show that . (X,Y) is an ideal of Zx y, that is £ (xp, ... ,)ék)
is in Z(X,Y) whenever at least one of the arguments is. Indeed, the decomposition maps of &,

and %(y%y) do not produce elements from sﬁ(x )

, therefore the first two components of the element
ék(x1 g ,xk) of

Homy (Z1(X),X) @ Homy (21 (Y),Y) ® Homy (s 2 (X),Y)
vanish whenever at least one of the x; is in Z(X,Y). This implies that £ (X,Y) is a subalgebra of the
twisted algebra, since the twisted operations are made up of the original ones, and in each term at least one

of the arguments belongs to the subspace .£(X,Y). O O

It is easy to use our formulae to obtain explicit formulae for the structure maps of the L..-algebra
Z(X,Y). Its differential is given by the formula

3) 01(9)(sx) = (di) 0 @) (sx) + (—1)?1(9 0 sDx) (x),
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and for k£ > 1, the structure maps ¢ are given by

“4) OO, 00 (sx) = Y (d;vwO(id®¢a(1)®“-®¢a(k>)0(1®S®k)°A]§fl)(x),
oSy

where
A’;{l C PNUX) = Pi(k) ®s, DXk

is the k™ cooperation in the cofree Zi-coalgebra 21 (X).

3. OVERVIEW OF EXISTING NOTIONS OF HOMOTOPIES

3.1. Concordance. The definition in this section originates from a classical geometric picture: if
fiXxI—=Y

is a homotopy connecting the two given manifold maps p(-) = f(-,0) and ¢(-) = f(-,1) between smooth
manifolds X and Y, then p and g induce the same map on the cohomology. This is proved by constructing
a chain homotopy between p and g. Let us briefly recall the way it is done. The map f induces a morphism
of de Rham complexes

Q) ffY) = (X))

(if we can work with algebraic differential forms, so that Q*(X xI) ~ Q*(X) ® Q*(I)), and is determined
by two maps fo, f1: Q*(Y) — Q*(X) ® Q%(I) with

fH(e) = fole)+ filc)d

for each ¢ € Q*(Y). Writing down the condition for f* to be a map of chain completes, we observe that

(=) fo(e)dr = —dx (fi(e))di + fi(dy (c)) dt,
and integrating this equation over I gives
q" —p" =dxh+hdy,

where h(c) = (=1)lI=1 [, fi(c) dt.

It is very natural to apply a similar approach to homotopy algebras. Note that tensoring with Com does
not change the operad, so, for example, if a chain complex V has a structure of a homotopy &?-algebra, the
tensor product V ® Q* (1) is a homotopy &?-algebra as well. For each structure map A, we have

AV ®wi,....vpR@,) =tA(vi,...,v)) (O A+ A®y),

with the sign determined by the Koszul sign rule. In what follows, we develop this idea, denoting Q°(7) by
Q for brevity.

Definition 3. Two homotopy morphisms p, g between two homotopy &?-algebras X,Y are said to be con-
cordant if there exists a morphism ¢ of dg &?i-coalgebras

¢:B(X) > B(YoQ)
for which p(v) = ¢ (v)|;=0 and ¢(v) = ¢(v)|;=1 whenever v € B(X).

Remark 1. One of the first fundamental results of formal deformation theory states that for an L..-algebra
L and Artinian local algebra A, there exists a bijection between the set of Maurer—Cartan elements of the
Le.-algebra L ® A and the set of all dg coalgebra morphisms from m to the bar complex B(L) (see, e.g.,
Drinfeld’s letter to Schechtman on deformation theory [17]). In a sense, the notion of concordance may be
thought as an attempt to use this definition with A being the dg algebra Q, which however is not Artinian
so various precautions and reformulations are required.

Remark 2. In the case & = Lie, this definition of concordance is closely related to that from [46]. The
main difference is that there cobar complexes are used, and hence one needs to dualise algebras in question.
In the case of infinite dimensional vector spaces, this would create various technical problems, and hence
we chose to alter the definition. In our case, such a map is determined by its corestriction B(X) — Y ® Q
which has to satisfy a certain equation (compatibility with differentials), while in [46], concordance is
defined via a map of cobar complexes Q(Y*) — Q(X*) ® Q (reminiscent of the “geometric” map above)
which is determined by its restriction Y* — Q(X*) ® Q subject to compatibility with differentials. One
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easily checks that if the algebras X and Y are finite-dimensional, then in both definitions the data involved
and the conditions on that data are exactly the same.

3.2. Homotopy of Maurer—Cartan elements of L..-algebras. In this section, we outline the notions of
homotopy between Maurer—Cartan elements of homotopy Lie algebras.

Warning. We would like remind the reader that the letter L always denotes a complete L..-algebra. For
such an algebra, we shall use, on several occasions, notation like L[t] = L ® k|t], or more generally L A,
where A is some finitely generated differential graded algebra. In such cases, we shall implicitly mean that
instead of those spaces we shall work with their completions with respect to the filtration derived from the
filtration on L for which L is complete. (If L is nilpotent as in [21], then no such completion would of
course be needed, but for L complete it is necessary).

One available approach to equivalence of Maurer—Cartan elements is inspired by rational homotopy
theory. Namely, if one considers a simplicial differential graded commutative associative algebra Q, whose
n-simplices are differential forms on the n-simplex A”, then one can prove, under appropriate finiteness
assumptions, that for a differential graded Lie algebra L, the set of homomorphisms of differential graded
algebras from the cohomological Chevalley—Eilenberg complex C*(L) to €, is naturally identified with
Maurer—Cartan elements of L ® ,,. This suggests to introduce a simplicial set MC, (L) by the formula

MC,(L) = MC(L®Q,),

and that set is in some sense is the main protagonist of rational homotopy theory, connecting homotopy
theory of nilpotent differential graded Lie algebras and that of nilpotent rational topological spaces.

In [21], Getzler proposed to study a simplicial set Y (L) which is smaller than MC, (L) but carries the
same homotopy information. The main ingredient in his construction is the Dupont’s [19] chain homotopy
Se: Q2 — Q27! by definition,

Yo(L) :={a € MC,(L): s¢(at) = 0}.

Quillen homotopy. The notion of Quillen homotopy equivalence of Maurer—Cartan elements also uses the
de Rham algebra Q = Q| = Q*(I) and its two evaluation morphisms ¢s: (Q,d) — (k,0), s € {0,1}, given
by ¢,(t) = s, where ¢ is, as above, the coordinate in I. The motivation for this definition is geometric: if L
is a model of a pointed space Y in the sense of rational homotopy theory, then, as pointed out in [9], L& Q
is a model of the evaluation fibration ev: map*(1,Y) — Y, ev(y) = y(1).

Definition 4. Two elements o, oy € MC(L) are said to be Quillen homotopic if there exists f € MC(LRQ)
for which ¢o(B) = o, ¢1(B) = 0.

Gauge homotopy. The set MC(L) under appropriate finiteness assumptions acquires a structure of a scheme,
see [47]. It is well understood that the right notion of “gauge symmetries” of MC(L), for L being a dg Lie
algebra, is given by the group associated to the Lie algebra Ly, see [23] for details. So it is natural to
look for a similar concept in the general case of L..-algebras. The corresponding theory was systematically
developed by Getzler [21]. Application of these L..-gauge symmetries to studying homotopies between
morphisms of L.-algebras goes back to [14].

The following statement is contained in [21]; however, there it is a consequence of much more general
results, so for the convenience of the reader we present a more hands-on proof.

Proposition 7. Let L be an L.-algebra, and x € Ly. The vector field V, on L_; defined by
Vi(@) = =4 (x)
is a tangent vector field of the set of Maurer—Cartan elements of L.

Proof. Note that the tangent vectors § € L_; to MC(L) at a point @ are characterized by

1
Y —bi(a,...,a,B)=0,
p>0P: —
p times

that is

(¥ (B) =0.
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The value of V, at « satisfies this condition since
0§ (Ve(@)) = £5(—£7 (x)) = = (£8)*(x) = 0,
which completes the proof. (] (]

Let o be a Maurer—Cartan element of L, and consider the the integral curve () of V; starting at o, that
is the solution of the differential equation
— + 0 (x)=0
2 A (x)
satisfying the initial condition a(0) = a. (This solution is an element of L[t] (completed as usual), an
explicit formula for it is given in [21, Prop. 5.7]). The previous result implies the following statement.

Corollary 1. We have o(t) € MC(L[t]). Also, for each t the element o.(t) is an element of MC(L).
This suggests a meaningful definition of gauge homotopy.

Definition 5. Two elements oy, o; € MC(L) are said to be gauge homotopic if for some x € L there exists
an integral curve o/(¢) of V, with o(0) = o and (1) = a;.

In Section 4.2 below, we shall explain why two Maurer—Cartan elements are gauge homotopic if and

only if they are Quillen homotopic. That was proved in [37] for dg Lie algebras. In [14], this statement is
needed in the full generality for L..-algebras; however, the proof given there formally proves a somewhat
weaker statement, so we fill that gap here rather than merely referring the reader to [14].
Cylinder homotopy. The main motivation for the definition of this section is as follows. Consider the quasi-
free dg Lie algebra [ with one generator x of degree —1 and the differential d given by dx = — % [x,x]. Note
that for a dg Lie algebra L the set of Maurer—Cartan elements can be identified with the set of dg Lie
algebra morphisms from [ to L. Thus, if in the homotopy category of dg Lie algebras we can come up
with a cylinder object for [, the homotopy relation for Maurer—Cartan elements can be defined using that
cylinder. It turns out that a right cylinder is given by the Lawrence—Sullivan construction.

The Lawrence—Sullivan Lie algebra £ is a (pronilpotent completion of a) certain quasi-free Lie alge-
bra, that is, a free graded Lie algebra with a differential d of degree —1 satisfying d> = 0 and the Leibniz
rule. It is freely generated by the elements a, b, z, where |a| = |b| = —1, |z| =0, and

1 1
da+ E[a,a] =db+ E[b’b] =0,

ad,

exp(ad;) — 1 (b-a),

dz=1[z,b]+ ) o 2di(b—a) =ad.(b) +
>0 "'
where the By are the Bernoulli numbers. It is indeed shown in [9] that this algebra gives the right cylinder

object for [ in the homotopy category of dg Lie algebras, hence the following definition.

Definition 6. Two elements o, € MC(L) are said to be cylinder homotopic if there exists an Le.-
morphism from £;g to L which takes a to oy and b to ¢;.

It turns out that the arising notion of homotopy for Maurer—Cartan elements is equivalent to the other
ones available.

Proposition 8 ([8, Prop. 4.5]). Two Maurer—Cartan elements of an L.-algebra are cylinder homotopic if
and only if they are Quillen homotopic.

In what follows, we shall use as a toy example the homotopy coassociative algebra Ay g that corresponds
to the differential on the universal enveloping algebra of £;5. This A coalgebra is defined on the linear
span of the elements u = sa, v = sb, w = sz, where |u| = [v| =0, |w| = 1, and is explicitly given by

Siw)=u—v, &(u)=35()=0,

B (w) = —%w@(uw) - %(u+v>®w, &) =—uxu, &(v)=-vew,
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3.3. Operadic homotopy. Let us recall the operadic approach to homotopies between homotopy mor-
phisms [16, 39]. Recall that homotopy Z?-algebras are algebras over operad Z.. = Q(4?1), the minimal
model of the operad &2, and homotopy morphisms between homotopy algebras are algebras over the min-
imal model &,_;e . of the coloured operad &,_,, encoding morphisms of Z?-algebras. One hopes to
include these results in a hierarchy of results that would incorporate higher homotopies as well, but the
situation is somewhat subtle.

In [39], an operadic approach to homotopies between morphisms is outlined. Let us state a version of
that approach which is inspired by [39, Th. 18]. Our formulae are different in two ways. First, we restrict
ourselves to the case of a Koszul operad &2, and as a consequence are able to make some formulae more
precise. Second, we work with homotopy cooperads as opposed to quasi-free operads, therefore some
(de)suspensions make signs in our formulae differ from those of [39], and the differential is separated from
the decomposition maps.

Definition 7. We say that the operad & satisfies the homotopy hypothesis if there exists a quasi-free
resolution of the operad &, of the form Q(¥4=4 ), Where the homotopy cooperad Y= . has the
underlying chain complex

%:{.’oo = W(X*}x) @ﬁ(yﬁy) EBSL@‘ ®C.([O, 1})7

(x=y)
and the decomposition maps

- induced by infinitesimal decomposition maps of the cooperad 21 on both 21 ,_,,) and Zi(,_, )

- induced by the homotopy cooperad structure of the #4_,e .. On both ﬁ(x _yy®0and Zi( ) @1
- on elements sM,_,,,) ®01 € s(@('x ) ® 01 corresponding to an element M € £21(n) have the shape
(6) A(SM(x—y) @01) = 010 (M, 1)) — (M(y5y)) © [[01] ] + -,
where

[[01]], = Sym (01 ®0°0D 11201002 ... 1% ®01) ,

and the “non-leading terms” (denoted by ‘- -’ in the formula above) belong to the ideal generated
by the operations s Zi(,_, ) @ C.([0,1]) of arity strictly less than n (that justifies referring to them
as non-leading terms).

Assuming that the homotopy hypothesis is satisfied, it is natural to define homotopy between two ho-
motopy morphisms of two homotopy Z7-algebras as a Q(¥e—. «)-algebra whose structure maps from
Py and P, define the given homotopy -algebra structures, structure maps from Zi(,_,,) ©0
and %Oc —y) ®1 define the given morphisms. Essentially, the structure map ﬁ(x —y) ® 01 provides a
homotopy between the morphisms.

The claim of [39, Th. 36] essentially implies that the homotopy hypothesis holds. In [16], it is noted
that the proof of the above result given in [39] is incomplete, and a proof of a much more general statement
under, however, somewhat more restrictive assumptions on the operad &7 is given. In Section 5, we shall
explain how to view this result from a different angle and prove the homotopy hypothesis for any Koszul
operad.

Remark 3. It is worth noticing that even if the homotopy hypothesis holds, such a model of &,_,, does
not have to be unique (it is not minimal by the construction, and hence there is freedom in how to recon-
struct the non-leading terms). In one example, the nonsymmetric operad of associative algebras, explicit
formulae for images of the generators under the differential were computed in [39], and it was observed
that this recovers the definition of a natural transformation between two A-functors based on the notion
of derivation homotopy, as in [20, 26, 33, 35].

Remark 4. The formula for [[4]] makes one think of derivation homotopies as well, but this intuition
is only correct under very restrictive assumptions, e.g., for the case & = Lie the derivation homotopy
formulae only work for Abelian L., algebras, see [46]. Nonetheless the derivation homotopy formulae do
always work for nonsymmetric operads. The reason for that is that one can use the Cech cochain complex
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C.([0,1])" in the place of the de Rham complex €, since tensoring with an associative algebra does not
change the type of algebras for algebras over nonsymmetric operads. The formulae

€0€01 = €01 = €01€1

for computing products in the Cech cochain complex of the interval naturally lead to derivation homotopies.

4. CONCORDANCE AND HOMOTOPY OF MAURER—-CARTAN ELEMENTS

4.1. Concordance and Quillen homotopy.

Theorem 1. Two homotopy morphisms of homotopy &?-algebras X and Y are concordant if and only if
the corresponding Maurer—Cartan elements of £ (X,Y) are Quillen homotopic.

Proof. By definition, p and g are concordant if there exists a morphism of dg #i-coalgebras
B(X) > B(Y®Q)
that evaluates to p and g att = 0 and ¢ = 1 respectively. The set
Hom, g 1_cours (B(X), BY ©.2))
is a subset of the space of degree 0 linear maps
Homy (B(X),Y ® Q)

since a &1-coalgebra morphism from a conilpotent coalgebra to a cofree conilpotent coalgebra is com-
pletely determined by its corestrictions on cogenerators, and the compatibility with differentials imposes
some conditions that cut out a subset of the space of linear maps.

On the other hand, two Maurer—Cartan elements o, a; of MC(.Z(X,Y)) are Quillen homotopic if
there exists f € MC(.Z(X,Y) ® Q) that evaluates to o and o at r = 0 and ¢ = 1 respectively. The set
MC(Z(X,Y)®Q) is a subset of the space of degree —1 elements in

Z(X,Y)®Q ~Homy (s 21(X),Y) ®Q,
and the latter can be identified with the space of degree 0 elements in
Homy (27(X),Y) ® Q ~ Homy (B(X),Y) ® Q ~ Homy (B(X),Y ® Q).

We see that the sets we want to identify are embedded into the same vector space. Let us check that
the actual equations that define these spaces, that is compatibility with differentials and the Maurer—Cartan
equation, actually match.

Let us take an arbitrary degree 0 map ¢ € Homy (B(X),Y ® Q). It gives rise to the unique &?1-coalgebra
morphism ¢ by the formula

b(b) = Y (@0 ™) ony ™ (v).
k>1
Here Ag(k_l) is the Zi-coalgebra decomposition map B(X) — i (k) ®s, (B(X))“*; the remaining notation
in the following formulas has been already introduced in Section 2.2. In order for this morphism to be a dg
coalgebra morphism, we must have

7 ¢ oDy =Dygqod.

Note that since both ¢ o Dy and Dygqo (13 are coderivations of B(X) with values in B(Y ® Q), it is sufficient
to check the condition (7) on cogenerators, that is only look at its projection on Y ® Q. This way we obtain
the condition

®) (id@dpr) o ¢ + (dy) @id)od+ Y (di) o) o (id9™*) o AY ™ = p o Dy.
k>2

Here dpp is the de Rham differential on Q. Note that d,(,lgg can be explicitly computed as

dflo = (d @) or,



14 VLADIMIR DOTSENKO AND NORBERT PONCIN

where 7: (¥ ® Q)% ~ Y®k @ Q®F is the isomorphism obtained via the structure of symmetric monoidal
category of graded vector spaces, and u*): Q¥ — Q is the k-fold product on Q. Let us spell out the
Maurer—Cartan condition for a degree —1 element

v € Homy (sB(X),Y) ® Q

Using explicit formulae (3), (4) for the Le.-algebra structure on .Z(X,Y) to compute elements in the Le-
algebra .Z(X,Y) ® Q, we rewrite the Maurer—Cartan condition

evaluated on an element sb € sB(X) as follows:

©) (@) @id)o (ws)(x) — (ys) o Dx(b) + (1 @ dpr) (ws) (x)+

+ Y (@ o u®)yoro (ide(ys)™) oAy (b) =0.
k>2
It remains to recall that the degree 1 isomorphism that allows us to identify the graded vector space
Homy (sB(X),Y) ® Q with Homy (B(X),Y ® Q) is essentially given by y — ¢ := s, to conclude that
the two conditions (8) and (9) are the same. O O

4.2. Quillen homotopy and gauge homotopy. The following result is not new; it is nothing but a careful
unwrapping of various statements proved in [21].

Proposition 9. Two elements oy, oy € MC(L) are Quillen homotopic if and only if they are gauge homo-
topic.

Proof. Let us begin with an elementary computation. Suppose that ¢ and ¢; are gauge homotopic. This
means that there exists x € L for which an integral curve a(z) of the vector field V, connects oy to ; in
the Maurer—Cartan scheme. It satisfies the differential equation o' (r) + £{(x) = 0.

On the other hand, suppose that o and ; are Quillen homotopic. This means that there exists an
element B € MC(L ® Q) which evaluates at o and a; at + = 0 and # = 1 respectively. Let us write
B = B_1 + Bodt, where B; € L[t], and the homological degree of ; is i. Since (dt)> = 0, the Maurer—Cartan
equation for 8 becomes

[3’_1(t)dt+zk:kl!ék([31,...,ﬁ1) +;ka(ﬁ1,~~~aﬁ17ﬁo)df =0,

k times k times

s0 B_1 € MC(Lf]), and B’ , (t) + 5~ () = 0.

It follows that for each Quillen homotopy 8 = B_1 + Bodt, the pair (B_1, o) is almost exactly the datum
required for gauge homotopy, with the only difference that fy is an element of Ly[¢] rather than Lo, as the
gauge homotopy would require. (In [14], this circumstance is ignored, and a 7-dependent element x is
obtained, which thus does not literally provide a gauge homotopy).

Conceptually, the computations we perform merely mean that the Quillen homotopy is precisely the
homotopy in the simplicial set MC, (L), and the gauge homotopy is precisely the homotopy in the simplicial
set % (L), since the Dupont’s chain homotopy s; in this case singles out constant 1-forms.

Now, recall from [21] that the inclusion of simplicial sets e (L) < MC,4(L) is a homotopy equivalence,
in particular 7y (s (L)) = my(MC(L)). (To be precise, that result applies to nilpotent L..-algebras only, and
for our purposes an appropriate generalisation of that result for complete L.-algebras is required [4]). The
former is precisely given by Maurer—Cartan elements of L modulo the gauge homotopy relation, the latter
is given by Maurer—Cartain elements modulo the Quillen homotopy relation. (] (]

Remark 5. Our proof, in particular, means that the notions of gauge equivalence and Quillen equivalence
coincide in the context of formal deformation theory, where they give rise to equivalence relations on the
Maurer—Cartan sets produced by the deformation functor MCy,: A +— MC(L®A) of Artinian local algebras.
For a nice introduction to formal deformation theory, we refer the reader to [10, 37].
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5. CONCORDANCE AND OPERADIC HOMOTOPY

5.1. The concordance operad. Let X and Y be two homotopy #-algebras. A &i-coalgebra morphism
¢:BX)—>BYoQ)

(required to establish the concordance of the morphisms ¢—g and ¢—) is completely determined by its
corestrictions

PHX) =Y RQ.
These corestrictions must in addition determine a dg coalgebra morphism, that is be compatible with the
differentials of bar complexes. Let us describe this data operadically. Maps

PHX)=YRQ

can be identified with
Homg(z@(')H >®QV,Endxx@yy),

where QV is the graded dual coalgebra of Q, that ;s a vector space with the basis
o= ()", Bi=(d)" (i>0),
and the coalgebra structure
S(oy) =), ou®a,

a+b=i

o(Bi) = Z (Ba @ ap + 0t @ Bp).

a+b=i
This suggests that the datum of two homotopy £?-algebras, and a concordance homotopy between two
homotopy morphisms of those algebras may be equivalent to an algebra over a quasi-free coloured operad
with generators o o
V=5 Piy®s  PiyeP 00"
Let us indeed describe such an operad. Equivalently, we shall define a homotopy cooperad on

%4).79 = SW = ﬁ(x%x) @%(y%y) @Sy(‘ X Qv.

Xy

X—Y)

The homotopy cooperad decomposition map on each of the components ﬁ( xsx) and ﬁ@_,y) is given
by the (honest) cooperad structure on Z7i, the Koszul dual cooperad of &2, each of these components is a
sub-cooperad of s . The homotopy cooperad decomposition of s@(‘x @ QY does not vanish for trees of
two types. The first type is decomposition maps indexed by trees ¢ with two internal vertices; in this case
A(s(p® ®")) is obtained from A, (p) computed in 2! by mapping the root level component isomorphically
to s@éx ) and tensoring the result with @", and mapping the other component isomorphically to ‘@fx )
The second type is decomposition maps indexed by all two-level trees 7; in this case, assuming that the root
of ¢ has k children, A,(s(p® ®")) is obtained by applying the full cooperad map

A=Y i Pi(k) g, (21K

to p, mapping the root level component isomorphically to gzéy )’ mapping the other components isomor-
phically to s@éx Sy and decorating those other components by tensor factors of ¢~ (") e (QV)®X.
These decorations, depending on choices made for writing down representatives of trees, may appear with
signs determined from the Koszul sign rule; in addition to that, there is a sign —1 appearing globally
for all the decompositions of the second type. Finally, the differential of #,_,. o is non-zero only on
s@(‘x ) ® QV, where it is the dual of the de Rham differential dpg on Q. As in the case of homotopy
morphisms, it is easy to check that

- this rule defines a homotopy cooperad, that is, once these maps are used to define a derivation of
the free operad .% (%), the resulting derivation squares to zero,

- the structure of an algebra over the cobar complex Q(7,_,. ) is equivalent to the datum of a pair
of two homotopy &-algebras X and Y and a homotopy morphism between X and ¥ ® Q.

We call the cobar complex Q (74—, o) the concordance operad, and denote it by Pe_.4 .

Theorem 2. The operad Pe_.e is a resolution of the operad Pe_..
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Proof. The inclusion kog — QV is a quasi-isomorphism of dg cocommutative coalgebras. So the induced
map

Verem = ﬁ(xﬁx) @ﬁ(yﬂy) @S«@é ko = Yese 0

X—y)

is a morphism of homotopy cooperads. Let us show that the arising morphism of cobar complexes
gﬂo—)o,oo — gZOHO,Q

is a quasi-isomorphism. That would be sufficient for our purposes: the first of these cobar complexes is
the minimal model of the operad &,_,,, so we deduce that @._).’Q is also a model of Z,_,,, the quasi-
isomorphism P, e 0 — Pe_s. being given by the canonical projection onto the homology (there is a
canonical projection since the quasi-isomorphism statement ensures that the homology is concentrated in
degree zero ).

Let us consider the weight filtration of cobar complexes, that is the filtration by the number of internal
vertices of trees in free operads. For the first cobar complex, the differential dy of the associated spectral
sequence is zero, for the second one, it is given by the dual of the de Rham differential without any
decompositions coming from &7i. Therefore at the page E; of the corresponding spectral sequence, the map
induced by the morphism of cobar complexes is an isomorphism. Since the weight filtration is exhaustive
and bounded below, it follows from the mapping theorem for spectral sequences [36] that the two cobar
complexes have the same homology. U |

5.2. Convergent homotopy retracts: a toy example. Naively, it is natural to assume that the Cech chain
complex C, ([0, 1]) of the interval should play a crucial role in defining homotopies algebraically. However,
our constructions rather use the de Rham complex, or its linear dual. To repair this discrepancy, we shall
contract the graded dual of the de Rham complex Q" onto its subcomplex isomorphic to C,([0, 1]). The cost
of that is that some higher structures emerge. In [11], Cheng and Getzler performed the dual computation,
exhibiting a homotopy commutative algebra structure on the cochain complex. In [8, 9], Buijs and Murillo
compute the transferred coalgebra, working however with the full linear dual, not the graded one. As
a consequence, they have to invoke computations with formulae for which the end result makes perfect
sense, but intermediate computations go outside the universe of coalgebras, since they involve completions
of various coalgebras involved (those formulae are very close to duals of those in [11]). We shall aim to
make their computations completely rigorous, obtaining a “converging” sequence of homotopy retracts that
produce a hierarchy of transferred structures on various constructions involving the chain complex of the
interval, which “stabilize at «” and produce various meaningful higher structures. Let us be more precise
about it.

Let us denote by QE/N) the linear span of the elements «; with j > N and f8; with j > N —1. The
subspaces Q(VN) form a decreasing filtration of Q with Q(VN) =0, and are compatible with the coproduct
in the sense that

N
v v v v v
§(Qy)) C k;)sz(k) RQly_y CQ' QY.
Proposition 10. There exists a sequence of homotopy retracts

i (@ d) === (Cu([0,1]).)

ON

with idgv —n 0 = dKy + Knd, for which the map 0 vanishes on Q<V2), and for all s > 0 the images of the
maps Wy — Wy+s and Ky — Ky are contained in QE/N).

Proof. We define the map 6 so that it identifies the subcomplex spanned by 1V, ¢", dt" with (C([0,1]),d)
as follows:

0, i=0, 0L i—0
b l: b
(10) 0(a))=41-0, i=1, 6O6(B)= )
. 0, i>0.
0, i>1,
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We also put
N—1 N-2 B
(11) oy(0) =0, oy(l)=) a, oy01)= pl’
p=0 p=0 P+
and
0, i=0,
(12) Ky(o) = —xN2 B i=1, Kn(B)=0.
Bii—l , P> 1,
We have
0, i=0,
(dKy +Kyd)(oq) = dKn(0g) = § =XV aj, i=1,
Q;, i> 1)
and
_yN2 B i
(dKy +Knd)(Bi) = Knd(Bi) = Kn((i+1)011) = B =1 j:(,) ’
(2] l .

Comparing these with Formulae (11) and (10) above, we immediately conclude that
dKy + Kyd = idgv — N0,

as required. Also,

N+s—1 N+s—2 ﬁ
(oy—on) (1) =— Y 0y, (0y—oye)(01)=— ) pl,
p=N peN—1 Pt
and
0, i=0,
(Kn — Kyps)(o) = pN 2 B i= 1,
0, i>l,
and wy(0), Ky (B;) do not depend on N at all, which proves the second claim. O O

The main consequence of the result that we just proved is that we can use it to obtain higher structures
that are out of reach otherwise, making sense of computations with infinite sums that only exist in the
completion of QY with respect to filtration by subspaces Q(VN). As a toy model, let us recall how one can
recover (the universal enveloping algebra of) the Lawrence-Sullivan dg Lie algebra £;5 using this retract.

Proposition 11. The Aw-coalgebra structure of the algebra Ars (whose underlying chain complex (u,v,w)
is isomorphic to Co([0,1])) is precisely the limit of structures obtained from the dg coalgebra structure on
QV by homotopy transfer formulae along the homotopy retracts from Proposition 10.

Proof. A computation that uses homotopy transfer involving the completion of Q" is presented in [8, 9],
however, that proof has to invoke, at intermediate stages, infinite sums which are not well defined (mainly
because the contracting homotopy K = limy_... Ky does not restrict to the subspace of the completion of
QY with which the authors choose to work). Let us outline a way to fix that problem. We shall show that
for our sequence of retracts the transferred map 0 v obtained from the N™ retract does not depend on N
for k < N. Indeed, if we replace wy by wy+s and Ky by Ky, this would change results of intermediate

computations by elements from QE/N)' Iterations of less than N decompositions of those would produce a

tensor product where at least one factor belongs to Q(Vz), hence will be annihilated at the final step when

we apply the map 0 everywhere (this map vanishes on Q(Vz) by construction). This guarantees that the
computation in the spirit [8, 9], even though either transfers higher structures from a space which is not

a coalgebra or uses the contracting homotopy with the wrong codomain, nevertheless produces an honest
As-coalgebra. g O
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Remark 6. Of course, in this particular toy example, one could simply dualise the statement of Cheng and
Getzler [11] to obtain the same result. However, for our main computation, the strategy outlined seems a
much more straightforward way to proceed, hence the toy example introducing this strategy.

5.3. Higher structures arising from the concordance operad. We now are ready to relate the operadic
formulation of concordance to Markl’s approach to homotopy. The strategy for that is to use once again
homotopy transfer along a convergent sequence of homotopy retracts. Let us consider the dg S-module
7 5 i \Vi
Voo = Pieon) © Plyy) @sgz('x_m ®Q
which carries a homotopy cooperad structure. It is natural to try and transfer that homotopy cooperad
structure to

%:{.,m = ﬁ(x*)x)@ﬁ(y*}”@S@Ex%w@)c.([o,l])

For that, let us mimic the set-up of Proposition 10, and consider the filtration of 7,_,, o by subspaces
(7e—0.0)(n)> Where (74 560)(0) = Ye—se 0, and for N > 0

(AI/O—M,Q)(N) = ngé

Theorem 3. Let &2 be a Koszul operad. The homotopy hypothesis holds for 2. More precisely,

i\
)®Q(N)~

X—y

(1) There exists a sequence of homotopy retracts

iy (Ve d) === (Joczownd)
N
withidy, , , —inp = dHy+ Hyd, for which the map p vanishes on (”f/.ﬁﬂg)(z), and for each s >0
the images of the maps iy — in+s and Hy — Hy s are contained in (”f/.ﬁ._yg)w).
(2) The homotopy cooperad structure maps obtained by homotopy transfer along these homotopy
retracts stabilise as N — oo. The limiting homotopy cooperad structure on Vo= o has the leading
terms prescribed by the homotopy hypothesis.

Proof. Note that the differential of #,_,. o comes precisely from the dual of the de Rham differential on
QV. Thus, each homotopy retract

Ky C (Qv,d) <*9—> (C.([O, 1])’d)

ON

from Proposition 10 gives rise to a homotopy retract

i (CVara0:d) == (Vazsaiord)

PN
with
Hy(vi,va,5v3@ 1) = (0,0,sv3: @ Ky (1)),
in(vi,v2,8v3@c¢) = (v1,v2,5v3 @ Wy (c)),
p(vi,va,sv3 @A) = (vi,v2,513@0(1)).

Let us explain why the transferred structure maps converge to a limit as N — oo. First, let us note that the
filtration of 7, ., o by the subspaces (74 ¢ .0)(y) is compatible with the homotopy cooperad structure in
the following sense: for each decomposition map A, of this cooperad structure, the result lands in the space
of tree-shaped tensors
® (%HO,Q)(NV)
v a vertex of ¢

with Y, NV, = N. This compatibility property implies that for our sequence of homotopy retracts the trans-
ferred map A, y obtained from the N™ retract does not depend on N if the number of internal vertices of ¢
is less than N. Indeed, if we replace iy by iy+y and Hy by Hy., this would change results of intermediate
computations by elements from (74 s ) (). Iterated decompositions of those that result in less than N
parts would produce a tree shaped tensor where at least one factor belongs to (A//.*)._’_Q)(z), hence will be
annihilated at the final step when we apply the map p everywhere (this map vanishes on (7/._>.$Q)(2) by
construction).
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It follows that to compute the transferred structure, we may apply Formulae (1), and perform all com-
putations in the completion of #;_,, o with respect to the filtration (¥4 q)(y). Without worrying of any
convergence issues. In what follows, we denote by i and H the limits of the corresponding maps; they
now range in the completion of ¥,_,, o; the meaning of the notation @ and K is the same, with these maps
ranging in the completion of QV.

We first note that since maps of the homotopy retract do not interact with the components W(,Hx) and
@ﬁ(y _y) Of Ve se @, the transferred structure on these components coincides with the structure before
transfer. We also note that the elements ®(0) and ®(1) of Q" satisfy the conditions

5(0(0)) =8(a) = oty @ ap = ®(0) @ ®(0),

S(w(1) =3 (Za,) =Y Y aw®a=ol)ool),

i=0 i>0atbi
K(o(0)) = K(Oto) =0,

K(o(1)) =K <Zai> Y J+1

i>0

Zﬁz 1:

i>1
This implies that for both 9' ® 0 and 5” ® 1, the transferred homotopy cooperad structure also

comes exactly from the sub- cooperads ’@(‘x ) ® a)( ) and '@(‘x Ly © (1) of 74 .4 0. One concludes that

this part of the homotopy cooperad structure matches that of #4_ ., since both ¥, .. o and Ye_e c, by
their very construction, encode morphisms of bar complexes.

Note that the leading terms in Formula (6) come from the cooperations indexed by the only two trees
with n leaves that only have vertices with n inputs and vertices with one input, the trees

\/ N e o

o and \ /

i 7
For each of these trees, the contribution of nontrivial expansions of trees with at least two vertices is zero.
(Itis obvious for the first tree, and for the second tree follows from the fact that such a nontrivial substitution
(((t10j,12) 0j,13) -+ ) 0, tir-1 Would have a tree with inputs of both colours as 71, and each decomposition
map A;, for such a tree #; vanishes on the cooperad ¥,_,, o). This means that all the homotopy transfer
computations simplify drastically, and the corresponding transferred cooperad maps A, are given by the

naive formula A, = #(p) o A, oi. Let us show how the leading terms of (6) appear in this computation.
We wish to investigate the transferred homotopy cooperad decompositions A; evaluated on elements

M,y ®01 € Q'H) ®C.([0,1]).
We instantly recover the leading term
010, M(xﬁx) S (:@(ixﬂ,)(x) ®C.([O, 1])) o(1) ‘@(lx%x)
corresponding to the infinitesimal decomposition. However, for the leading term that lands in the space
gz(iyay) °© (gz(ixay) ()C) ®C'([O’ 1])) )
the computation is less obvious. The C, ([0, 1])-label of the corresponding leading term is precisely
(608" Tow)(01).

Let us compute that decoration explicitly. We have

(13) (0708 oo)(01) = (670 8"") <Z = ) _
ion‘l

-y

i>0

n

i1+ tip=i j=1
Let us concentrate on the term j = n in the third sum for the moment. Recalling the definition of 8, we
conclude that we must have i, = 0, and i, € {0, 1} for k < n. Together with the condition i} + -+ i, =1,
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this means that after applying 8 we end up with a sum over all i-element subsets of {1,...,n— 1}, and the

tensor product has 1 — 0 on the places indexed by the given subset, and 0 otherwise. Since the total sum
obviously lands in the subspace of tensors symmetric in the first n — 1 factors, we may rewrite it as

L (n=1\ on 1 o
Y (” )0&”"@(1—0)@@01:

iZOiJrl i
L n on—1—i oI 1 on—1—k ~ 10k
=Y (., .)0 ©1-0)"®01=-Y0 ©1%®01.
son i+1 n=
Here we used the formulae H%l ("71) = %(111) and
"i( n ) 1—ipi "il 1-k k
) a"” 't =) a7 M (a+b)k,
= it k=0

the latter valid in any commutative ring (and is proved in Z[a, b] by noticing that both the left hand side and

n_n
the right hand side are equal to the same expression W).

Now we recall the contributions of all individual j = 1,...,n from (13), and notice that the factor %
precisely contributes to creating from all these contributions the term

-1
nZ 0" 1 00101
j=0
This is exactly the same as the element
(1] = Sym (h©g”" ) 4 p@he "D 44 p2 o)
appearing in Formula (6), which completes the proof. U U

We denote by Pe—. .. the cobar complex of the homotopy cooperad #—. . that we just computed in
the proof of Proposition 3.

Theorem 4. The operad Pe—a o is a resolution of the operad P_;..

Proof. Since the homotopy cooperad structure on ¥—. . is obtained from that on %,_,. o by homotopy
transfer, we conclude, using Theorems 2 and 3 together with the general results on homotopy transfer [34,
Th. 10.3.1] and existence of inverses for homotopy quasi-isomorphisms [34, Th. 10.4.4], applied to homo-
topy (co)operads as (co)algebras over an appropriate coloured Koszul operad, that there exist homotopy
quasi-isomorphisms

qi/oﬁo,oo ’:’V“’ %%O,Q :“’ qf/o:{o.w'

The arising morphism of cobar complexes

@o%gw — @.:{.700
is a quasi-isomorphism for the same reason as in Theorem 2 (the weight filtration and the mapping theorem
for spectral sequences [36]), and that completes the proof. (] O
Corollary 2. The notion of operadic homotopy is homotopically equivalent to the notion of concordance.
More precisely, we have the equivalence of homotopy categories of algebras

HO(Pe=e w-alg) = Ho( P, e 0-alg).

Proof. By Theorems 2 and 4, we know that the operads 2,4 o and ., . are both resolutions of
P, _,e. Since we work in characteristic zero, all operads are split, and all quasi-isomorphisms of operads
are compatible with splittings. Therefore, by [27, Th. 4.7.4], we see that

Ho(Pe_se 0-2lg) = Ho(Pe_e-alg) = Ho(Pe=e »-alg).
O O
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6. FURTHER DIRECTIONS

One possible direction where our homotopy transfer approach might be useful for “de-mystifying” the
story is a conjecture made in the end of [39]. That conjecture suggests, for every operad &7 admitting a
minimal model (% (¥'),d) and every small category C with a chosen cofibrant replacement (F(W),d) of
kC, the existence of a cofibrant replacement

(Z (¥ @kOb(C)®W & s¥ @W),d)

for any coloured operad &5 5 describing &?-algebras and morphisms between them that form a diagram
of shape ©. The differential d of this replacement is conjectured to have a specific shape [39]. A special
case of this conjecture is proved in the case of a Koszul operad & with all generators of the same arity and
degree in [16]. We hope that homotopy transfer techniques might be the right tool to prove this conjecture
in full generality in the Koszul case.

Another natural question to address in future work is to apply homotopy transfer theorems for homo-
topy retracts from de Rham complexes to Cech complexes beyond the case of the interval. It would be
interesting already in the case of contractible spaces, for example for higher-dimensional simplexes and
higher-dimensional disks the corresponding computation would contain further information on the higher
dimensional categorification of algebras.

Further, while we concentrated on the case of a Koszul operad &2, it would be interesting to generalise
the relevant notions and result to the case of any operad admitting a minimal model (.% (¥),d), putting
P = s, and making necessary adjustments in the view of the fact that &7 is no longer an honest
cooperad but rather a homotopy cooperad.

Finally, using the results of the present paper, we are investigating, in works in progress, homotopies of
homotopy morphisms of homotopy Loday algebras [1], homotopies of morphisms of Lie n-algebroids [6]
and of Loday algebroids [24].
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