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1. Introduction

Life is a non-equilibrium process involving the handling of information, both internal

(about the organism) and external (about the environment). It comes therefore

as no surprise that the mechanisms of information processing in living beings are

highly sophisticated. About four decades ago it was recognized by both Jacques

Ninio [1] and J.J. Hopfield [2] that nucleic acid transcription and translation could

achieve unexpected fidelity by inserting a strongly irreversible step in the process,

a mechanism that was given the name of kinetic proofreading. The necessity of

an irreversible step in error correction is in agreement with the principle stated by

Rolf Landauer [3], that any logically irreversible manipulation of information must

be accompanied by a corresponding entropy increase either in the system itself or

in the environment (cf. [4]). The validity of this principle far from equilibrium has

been recently confirmed by M. Esposito and C. van den Broeck [5] on the basis of

stochastic thermodynamics. Hopfield and collaborators were able to collect evidence of

kinetic proofreading mechanisms in tRNA aminoacylation [6, 7]. A different scheme in

which high fidelity can be achieved in these fundamental molecular processes was later

suggested by C. Bennett [8]. One may therefore argue that one of the fundamental

requirements of living processes—the need for an enhanced fidelity—necessarily implies

that these processes take place far from thermodynamical equilibrium. The subtle

thermodynamics involved in copying a biopolymer on a template has been more recently

investigated by D. Andrieux and P. Gaspard [9, 10, 11] as well as by J. R. Arias-

Gonzalez [12]. Detailed kinetic models of the DNA transcription process have been

analyzed, from the point of view of both their thermodynamic efficiency and their

fidelity, by M. Voliotis and collaborators [13]. A more general model, involving

several reaction loops, has been thoroughly investigated by A. Murugan, D. Huse

and S. Leibler [14]. This work has pointed out that the Hopfield model can work

with high accuracy and speed in a special regime which had remained unnoticed in the

original work. This analysis has led to identify some rather general design principle for

proofreading networks and to point out that a network with a given architecture (with

given reaction constants) can work in several regimes, switching from one to another

by just changing the distance from equilibrium (e.g., by manipulating the ATP/ADP

imbalance) [15].

Our understanding of the features which determine the performance of proofreading

networks has been improved by the work of P. Sartori and S. Pigolotti [16]. These

authors emphasize the difference between energetic and kinetic discrimination regimes,

according to the mechanism which leads the enzyme to discriminate between substrates.

Energetic discrimination relies on a difference in substrate-enzyme affinity, while

kinetic discrimination relies on a difference in the base reaction rate. In the simple

copolymerization scheme introduced by C. Bennett in [8], the former becomes more

precise when the reaction takes place closer to equilibrium, while the latter becomes

more precise when the reaction takes place faster. Thus the difference between the
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Ninio and Hopfield scheme on the one side, and the Bennett one on the other side,

appears to be mainly due to the fact that the first one works in the energetic regime,

and the other in the kinetic one.

The insights gained by recent progress in non-equilibrium statistical physics and

stochastic thermodynamics on the thermodynamics of information have been recently

reviewed in [17]. In [18] the thermodynamics of information has been exploited to set

limits to the amount of information that can be stored in the memory of a stochastic

measurement device given an energy budget. An efficiency measure for information

handling in cellular sensing was proposed in [19], and the analogy between sensing and

kinetic proofreading has been pointed out and discussed in [20].

In the present work we introduce a thermodynamic description for enzyme-assisted

assembly processes embedding kinetic proofreading. We thus reconsider a number of

simple proofreading schemes in the light of these recent developments, and especially

of the classification of discrimination regimes proposed by Sartori and Pigolotti. We

are able to introduce a measure of the efficiency of the process, which is related to the

entropy production, and discuss how the error rate, the reaction speed and the efficiency

vary, for a given architecture, as a function of one another. We also consider in a simple

setting the effects of error correlations in polymer synthesis on a template.

The general reaction scheme for enzyme-assisted assembly with proofreading is

described in sec. 2. In the same section we provide the kinetic and thermodynamic

description, and all the relevant quantities are defined. The simplest reaction scheme,

the Michaelis-Menten (MM) model (without proofreading), is defined and discussed in

sec. 3. The ground-breaking model introduced by Ninio and Hopfield is discussed in

sec. 4. The more general scheme introduced by Murugan, Huse and Leibler is taken

into account in sec. 5. In all these models, the enzyme assisted reaction is treated

as a renewal process, in that when the product is released, the enzyme goes back to

its neutral, “bare”, state. In order to make a first step in understanding the role of

correlations in this kind of process, we introduce and discuss in sec. 6 a simple model in

which the effect of a correct or wrong incorporation affects the rate constant of the next

reaction. We close the work with some conclusions and hints for further investigations.

2. Description

Enzyme-catalyzed chemical reaction networks involving competing substrates represent

the typical scheme appearing in transcription processes. In this framework, the enzyme

catalyzes the transcription reactions for one of the competing substrates, e.g., for one

activated nucleotide in DNA replication or transcription. More generally, one can

consider an enzyme-catalyzed assembly reaction like, e.g., tRNA aminoacylation, in

which the tRNA-enzyme complex captures an activated amino acid in the cytoplasm

and either binds it to the tRNA or rejects it. However, only one of the substrate

carries on the correct information and leads to the correct final product. The question

which thus arises is how the enzyme can reduce the rate of errors for a given energy
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Figure 1. General scheme of an enzyme-assisted assembly process.

consumption.

The general scheme of an enzyme-catalyzed assembly is described in fig. 1. The

enzyme, in its free state &, reacts with one of the competing substrates si, thus forming

an activated complex. The chemical enzyme-substrate complex then undergoes a series

of chemical reactions, which represent the intermediate stages needed to complete the

assembly process. During these stages the enzyme performs the proofreading, i.e., it

can dissociate from the substrate by means of the proofreading pathway. This is more

likely to happen if the substrate is the wrong one. Otherwise, the catalysis transition

terminates the step, leading the system to the final product state Si (corresponding

to the substrate si), and restoring the free enzyme state &. Let us remark that the

intermediate reactions could also involve further chemical species, denoted in fig. 1

by {ai} and {bi}. They can either be part of the final product state or provide the

system with the chemical energy needed to carry on the processes (one example is ATP

hydrolysis [21, p. 80-87]). In our framework, we treat these species as chemicals whose

concentrations are kept constant by the environment. This assumption simplifies the

description, in that the only species whose concentration varies in time is the enzyme-

substrate complex. Also, the chemical network can thus be correctly represented by a

graph—the proper way to represent generic chemical networks is by means of hyper-

graphs [22, 23]. In this way, the nodes of the graph represent the metastable states of

the complex, and the reactions the oriented arcs which connect these states [24, 25].

We shall call internal all the reaction steps of the process (including the

proofreading one), except the final catalysis step. Internal reactions are assumed to

be reversible and their rates can be expressed in the Kramers form:

k = Ωe−∆, (1)

where Ω is a constant characterizing the reaction pathway (i.e., it is equal for the

inverse reaction), while ∆ takes into account both the reaction activation energy and

the concentrations of the external chemical species. (We assume that all reactions take

place in an environment with a constant absolute temperature T , and we set kBT ≡ 1

from now on.) In this way, the rates determine the non-equilibrium conditions and local
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detailed balance is preserved.

The final catalysis transition terminates the assembly process. Biologically, it

corresponds to the stage beyond of which the enzyme does not process that substrate

anymore. Thus, the final product states Si can be regarded as absorption states of the

process, where the free-enzyme state is restored and a new assembly process can start

again. We can thus describe the occurrence of many instances of the process, one after

the other, by disregarding their final product state and by considering this reaction as

leading irreversibly to the free-enzyme state (cf. [24, § 8]).

This description is tacitly based on the assumption that the steps are similar and

independent, and that there is no correlation between successive steps. This is not

always the case. For example, in transcription processes involving a template strand,

like DNA replication and RNA transcription, the secondary structure of the strands

imposes specific correlations between the monomers [26]. These correlations, in turn,

imply that the strand configuration plays a (fundamental) role in both the individuation

and the proofreading of errors [27].

We can take into account these correlations in two ways:

• By considering multiple assembly processes, each of which depends on the result

of the previous step. The sequentiality is obtained by means of the final catalysis

transitions. An example is provided in sec. 6.

• By considering an internal chemical network in which the enzyme reacts with

multiple substrates. This means that the internal network encompasses several

assembly stages. In this case, the final catalysis basically corresponds to the

assembly of the first substrate in the queue, while the following ones are still being

processed. The correlations between successive assembly stages are thus embedded

in the internal chemical network.

The second kind of correlations appears to be similar to that introduced by

J.J. Hopfield in [28]. In this scheme, when the enzyme proofreads the substrate,

it accesses to a lower free-energy enzyme state. From this lower energy state, the

reaction continues without proofreading, but when the enzyme catalyses the final

reaction, the high-energy state is restored. Indeed, the final reaction is supposed to

provide the enzyme with the energy required by this restoration (hence the name “relay

proofreading”). Finally, an effective reduction of the error rate can be achieved without

increasing the energetic discrimination constant by properly tuning the rate constants.

Once formalized the basic assumptions about the kinetics of our system, we need

to describe how the enzyme can discriminate the substrates. Since it undergoes

the same kind of reactions with any substrate, the structure of reaction network

leading from the free enzyme state to the final product state will be the same. In

other words, the network topology does not discriminate. According to [16], the

substrates discrimination is embedded in the rate constants. Indeed, the substrates

are distinguished either because of differences of chemical complex binding energies

(the typical example is DNA replication and RNA transcription, in which there is an
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affinity difference between matching and mismatching nucleotide pairs), or because the

activation energies related to the reaction involving the right substrate are lower than for

the other ones (figure 2(left), describing the energy landscape of the Michaelis-Menten

reaction scheme, can help in visualizing these ideas). Following [16], we will refer to

the first type of discrimination as energetic while the second one as kinetic. It is worth

noting that all of these differences appear in the rate constants.

The rates of the final catalysis transitions will not be written in Kramers form, due

to their irreversible nature. We shall however assume that these rates are the same for all

the substrates, since there is no substrate discrimination in this step. This assumption

relies on the fact that most often the region of the enzyme involved in the discrimination

is located far from that involved in the final binding, cf. [29, p. 224].

The stochastic description of the process is described by a Master Equation [25],

[30, Ch. 5]. Denoting by pi(t) the probability of finding the chemical complex in the

state i at time t, we can write it as

ṗi(t) =
∑

j (6=i)

[kijpj(t)− kjipi(t)] , (2)

where kij denotes the rate constant regulating the probability rate of the reaction leading

from the state j to the state i.

As shown in [25] and [30, Ch. 5], this kind of processes evolves towards a unique

steady state in which the probabilities are constant. Since we are not interested in

the complete time evolution of these processes, but only in the steady-state regime of

operation, we shall not describe in the following the transient initial stochastic dynamics.

We shall instead directly focus on the steady state, which can be evaluated by either

solving the linear set of equation related to the master equation (2) or by means

of graphical methods [24, § 6], [25, §III]. Given the steady-state probabilities (p̄i),

which are functions of the rate constants, we can evaluate all the relevant kinetic

and thermodynamic quantities. Specifically, for any given reaction scheme, the kinetic

quantities we are interested in are described below, while the thermodynamic ones are

discussed in the next paragraph.

The error rate:

ξ ≡
rate of wrong catalysis: Jw

total rate of catalysis: Jw + Jr

, (3)

which describes the average rate of wrong outcome observed;

The mean step time:

τ ≡
1

total rate of catalysis: Jw + Jr

, (4)

describing the average time needed to complete a step (this definition follows from

that of mean first passage time of absorption in the final product state [24, Ch. 8]

[31];
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Thermodynamic description

At a first glance, the thermodynamic description of proofreading processes as described

so far is complicated by the presence of the irreversible catalysis. However, it is clear

that these transitions merely describe the succession of the enzymatic assembly steps

and do not take part in the discrimination itself. Thus we shall not take into account

these steps in the expression of the entropy production and entropy flow. Following

[24, 25, 32] the entropy production and entropy flow in the process are respectively

given by

Ṡi ≡
1

2

∑

i,j

′
[kijpj − kjipi]
︸ ︷︷ ︸

probability flux

ln
kijpj

kjipi
︸ ︷︷ ︸

affinity

, (5)

Ṡe ≡ −
1

2

∑

i,j

′
[kijpj − kjipi] ln

kij

kji
. (6)

The primed sums run over all pairs of states, but exclude the final catalysis transition.

Note that we consider the entropy flow as positive if it enters the system. The time

derivative of the system’s Gibbs entropy is given by

−
d

dt

∑

i

pi(t) ln pi(t) = Ṡi + Ṡe − Ṡc, (7)

where the last term takes into account the contribution to the entropy change due to

the catalysis transitions. More precisely, Ṡc can be viewed as the entropy change in

the environment (hence the minus sign) due to the completion of the assembly. At the

steady state, the expression on the left-hand side vanishes, but the single terms on the

right-hand side do not vanish in general. By multiplying the entropy rates in the steady

state by the mean-step time τ (4) we obtain respectively:

The entropy production per step:

∆iS ≡ τṠi (8)

which is proportional to the amount of free energy irreversibly lost during a step;

The entropy flow per step:

∆eS ≡ τṠe (9)

which is the entropy reversibly exchanged with the reservoirs during a step. Let us

highlight that in all the reaction schemes we describe, the process evolves from the

free-enzyme state to lower-energy bound-substrate states. Thus these processes are

exothermic and ∆eS is negative.

The entropy change per step:

∆cS ≡ τṠc (10)

which is the entropy change in the environment due to the completion of just one

step. Since assembly mechanisms bind free monomers into W and R final products,
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thus decreasing their available phase space, ∆cS is negative. Furthermore, the

fewer errors occur, the more ordered is the final state, and the smaller is ∆cS. The

explicit expression of this term depends on the chemical network topology. In sec. 3,

we provide it for assembly processes devoid of correlations and with two competing

substrates (eq. 18).

The above-described quantities suggest us to define the efficiency of the

proofreading process in the following way

η ≡
∆cS

∆eS
= 1 +

∆iS

∆eS
. (11)

Since both ∆cS and ∆eS are negative and ∆iS is positive, this expression yields a value

lying between 0 and 1. (An analogous definition of efficiency can be found in [33],

applied to the process of information erasing in fermionic bits.)

We shall exploit this thermodynamic description in the following sections. In

particular, we will recover the thermodynamic trade-offs obtained in copolymerization

models [8, 10, 34, 16], and we will evaluate the corresponding efficiency. Finally,

we highlight the following two points: (i) the splitting of the network into internal

and external steps resembles the splitting into observable and masked steps, whose

thermodynamics has been analysed in [35]; (ii) even if we had taken into account the

irreversible catalysis path in the thermodynamic description, its contribution to the

entropy production would have been finite [36].

3. The Michaelis-Menten model

Here we summarize the minimal reaction scheme describing assembly mechanisms, which

follows the Michaelis-Menten (MM) enzymatic kinetics [29, sec. 4.5] [2], fig. 2(left).

In this simple reaction scheme, the enzyme, in its free enzyme state &, reacts

with one of the two substrates, r or w, thus forming the activated complex, &r or &w,

respectively. Subsequently, it concludes the assembly step by means of the final catalysis

transition. The MM reaction scheme provides us with a starting point for introducing

the kinetic and thermodynamic description of the discrimination process. The present

analysis essentially reproduces that of [16], in a form that can be easily extended to

more complicated networks.

Together with the reaction scheme shown in fig. 2(left), we consider the free-energy

landscape in fig. 2(right). Given this energetic scheme and using the Kramers form of

the rate constants we can write the reaction rates in the following form

k+
r
= ωeδ+ǫ, k−

r
= ωeδ,

k+
w
= ωeǫ, k−

w
= ωeγ,

(12)

where ω is the overall time scale of the reaction pathway and ǫ denotes the driving force

acting on it. The discrimination constants, γ and δ, quantify the difference of binding

free energy between the correct and the wrong activated complex and the difference of
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Figure 2. Michaelis-Menten (MM) reaction scheme (left) and enthalpy landscape

(right) for enzyme-assisted assembly processes involving two competing substrates. As

mentioned in sec. 2, the catalysis transitions are directly and irreversibly connected to

the free-enzyme state. The driving energy, ǫ, represents the enthalpy difference between

the free enzyme state and the right product. The difference in binding energies between

the wrong and right activated complex, γ, provides the energetic discrimination,

whereas the difference of activation energies, δ, provides the kinetic discrimination. Let

us emphasize that our representations of the free enthalpy landscapes simply provide a

visual aid for understanding the models, and are not to be interpreted as experimentally

reproducible curves.

activation free energy between the correct and wrong free-enzyme-to-activated-complex

reaction, respectively.

The master equation for this system reads

ṗ& =
(
F + k−

w

)
pw +

(
F + k−

r

)
pr −

(
k+
w
+ k+

r

)
p&,

ṗw = k+
w
p& −

(
F + k−

w

)
pw,

ṗr = k+
r
p& −

(
F + k−

r

)
pr,

(13)

which, solved in the steady-state regime, leads to the following expressions for the

probabilities:

p̄& =
1

Σ

[
F 2 + F

(
k−
r
+ k−

w

)
+ k−

r
k−
w

]
,

p̄w =
1

Σ
k+
w

(
F + k−

r

)
,

p̄r =
1

Σ
k+
r

(
F + k−

w

)
.

(14)

Here we have defined the normalization factor Σ by

Σ ≡ F 2 + F (k−
r
+ k+

r
+ k−

w
+ k+

w
) + k−

r
(k−

w
+ k+

w
) + k+

r
k−
w
. (15)

Following the definition given in (3), and the Kramers form for the rate

constants (12), we express the error rate as follows:

ξ ≡
F p̄w

F p̄w + F p̄r
=

eδω + F

(eγ + 1) eδω + (eδ + 1)F
. (16)

Analogously, the mean step time defined in (4) as

τ ≡
1

F p̄w + F p̄r
, (17)
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while the entropy production per step and the efficiency are obtained by a simple

application of (8) and (11). Finally, the entropy change per step is expressed by

∆cS = −
1

p̄r + p̄w

[

p̄r ln
p̄r

p̄&
+ p̄w ln

p̄w

p̄&

]

. (18)

In order to determine the trade-offs between the error rate and the other kinetic and

thermodynamic quantities, we observe that the former (eq. 16) is a monotonic function

of the catalytic rate, F . We can thus invert ξ(F ) and substitute the result into the

expression of the mean step time, entropy production per step and efficiency. In this

way, all the thermodynamic quantities are expressed in terms of the error rate, which

becomes an independent variable. The time-error, dissipation-error and efficiency-error

trade-offs are shown in fig. 3.

In the energetic discrimination regime [16] (γ > δ), ξ monotonically increases for

increasing catalytic rate. The minimum error rate is thus achieved in a quasistatic

condition, i.e., vanishing catalysis, F → 0. In this limit, the mean step time diverges,

the dissipation vanishes and the efficiency reaches unity. The green curves in fig. 3

describe the trade-offs in the purely energetic discrimination regime and exhibits the

above-described behavior close to the minimum error rate. On the contrary, in the

kinetic discrimination regime [16] (δ > γ), ξ is monotonically decreasing with increasing

F . In this case, the faster the process, the more discriminating it becomes, but this is

accompanied by a larger dissipation needed to keep the process out of equilibrium. This

discrimination regime is described by the blue curves in fig. 3. The smallest achievable

error rate depends on the discrimination regime and has the following expression:

ξmin =
1

emax{δ,γ} + 1
≃ e−max{δ,γ}. (19)

Since only the maximum between the γ and δ contributes to the minimum error rate,

there is no way of enhancing the discriminatory power of the model by combining the

discrimination factors.

The time-error and dissipation-error trade-offs are the same of those obtained

by copolymerization models [16]. However, the definition of efficiency allows us to

shed new light on this processes. Indeed, the efficiency-error trade-off in the kinetic

discrimination regime exhibits a maximum in correspondence to the relative minimum

of the dissipation. As the kinetic discrimination constant increases this maximum tends

to one, as shown in fig. 3(d).

4. The Ninio-Hopfield model

In the simple MM scheme, all the dissipated energy is spent to drive the process faster

and not to proofread the outcome. However, this acceleration enhances the accuracy of

the assembly only in the kinetic discrimination regime. In order to overstep the error

rate thresholds obtained with the MM one needs a chemical mechanism in which the

chemical energy provided by the environment is exploited to proofread the outcome,

enhancing the pre-existing discrimination.
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Figure 3. Mean step time (a), dissipation per step (b) and efficiency (c) versus

the error rate in the MM model for different discrimination regimes. The reported

graphs correspond to the following values for the coefficients: γ = 3, ǫ = 10, ω = 1

and δ = 0 (green, purely energetic discrimination), δ = 6 (light blue, mainly kinetic

discrimination), δ = 12 (dark blue, mainly kinetic discrimination). (d) Efficiency-

error trade-off in the purely kinetic regime of discrimination. The coefficients values

are: γ = 3, ǫ = 10, ω = 1 and δ = 6 (light purple), δ = 8 (purple), δ = 10 (dark

purple). Interestingly, the efficiency exhibits a relative maximum in kinetic regime of

discrimination and the maximum value tends to one as δ increases.

This can be realized by properly coupling the internal network directly with a

chemical force. The first reaction scheme embedding this idea was independently

proposed by J. Ninio [1] and by J. J. Hopfield [2]. We shall describe this model in the

version proposed by Hopfield and shown in fig. 5. Two forces are coupled to the cycles of

the network (one for each substrate) and drive the chemical complex preferentially in the

direction & → &s∗ → &s → &. Indeed, with reference to the energy landscape shown

in fig. 4(bottom) the system energy drops of an amount equal to A ≡ ǫ+ ǫi+ ǫp when a

cycle is performed. We are assuming that the chemical forces are equal for any substrate

and the related affinity A is the same. The above-mentioned energy scheme traces the

original Hopfield idea, but it is also provided with the kinetic discrimination scheme

introduced in [8] and successively developed in [16]. According to Hopfield’s idea, the

first and the proofreading reactions discriminate. On the one hand, the discrimination

can be kinetic with discrimination constants denoted by δ and δp, for the first and
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Figure 4. (top) Hopfield model reaction scheme; s denotes the generic substrate,

i.e., s ∈ {r,w}. (bottom) Free-energy diagram for the Hopfield model. The thick

continuous line in (b) represents the Gibbs free energy potential along the reaction

coordinate relative to the first two reactions: & ⇋ &s∗ and &s∗ ⇋ &s. The dashed

line corresponds to the proofreading pathway. The energy difference between two

consecutive free-enzyme states (A ≡ ǫ + ǫi + ǫp) is the free energy consumed when

a cycle & → &s∗ → &s → & is performed. The discrimination is performed along

the first and/or the proofreading reaction, where γ, δ and δp are the discrimination

constants.

the proofreading reaction, respectively. On the other hand the discrimination can also

be energetic if, e.g., the binding energy of the wrong pre-catalysis state, &w, is larger

than the corresponding one for the right pre-catalysis state—here γ again denotes the

difference of these energies. In this way, the wrong substrate is more likely to be rejected

through the proofreading pathway.

This picture can be represented by the rate constants, which are given by

equation (12) for the first reaction, and by

h+
r
= ωie

ǫi, h−
r
= ωi,

h+
w
= ωie

ǫi, h−
w
= ωi,

K+
r
= ωpe

−δp, K−
r
= ωpe

ǫp−δp,

K+
w
= ωp, K−

w
= ωpe

ǫp+γ.
(20)

for the second and the proofreading reactions. The related steady state can be evaluated,

and the relevant kinetic and thermodynamic quantities derived. Finally, inverting the

error rate as a function of the catalytic rate we obtain the trade-offs, shown in fig. 5.

In our thermodynamic description, the relevant parameters are the discrimination

constants (γ, δ, δp), since they determine the operation regime of the proofreading

mechanisms (a detailed discussion on the role of the other constants is discussed
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Figure 5. Mean step time (a), dissipation per step (b), and efficiency (c) versus

the error-rate for the Hopfield model. We have chosen the following values for the

coefficients: ǫ = 10, ω = 1, γ = 3 and (δ, δp) = (0, 0) (green curve: purely

energetic discrimination), (δ, δp) = (6, 0) (light blue curve: kinetic discrimination

on the first chemical pathway), (δ, δp) = (0, 6) (blue curve: kinetic discrimination

on the proofreading chemical pathway), (δ, δp) = (6, 6) (dark blue curve: kinetic

discrimination on both chemical pathways). The other constant, namely ωi, ωp, ǫi,

ǫp, are those which minimize the error-rate function ξ. In this way, the minimum

achievable error rate is recovered by the trade-offs. They have been obtained by

numerically minimizing the error-rate function given the discrimination constants and

the driving energy ǫ, and are consistent with the values predicted by Hopfield in [2]

The dashed orange curve refers to the equilibrium error rate for γ = 3. Therefore,

in the Hopfield model one consistently obtains smaller error rates than in the MM

model for equal values of the discrimination constants. The light blue and blue curves

highlight that kinetic and energetic discrimination regimes yield a resulting lower error

rate only when they cooperate in the proofreading pathway. Remarkably, when the

kinetic discrimination predominates on the first pathway the process becomes faster,

more dissipative and more efficient. Finally, it is worth noting that high efficiency

at lower error rates appears as a general trait of the kinetic discrimination for simple

models, like the MM and the Hopfield ones.
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in [2]). With respect to the MM scheme, the working regimes of the Hopfield model

are characterized by lower error rates on equal values of the discrimination constants.

As already discussed by Hopfield, in the purely energetic discrimination regime the

minimum achievable error rate equals the square of that obtained by the MM model

(i.e., the equilibrium value) for the same values of the discrimination constants. When

also the kinetic discrimination is taken into account the lowest achievable error rate

becomes

ξmin ≃ e−(max{γ,δ}+γ+δp). (21)

It is worth noting that thanks to the proofreading reaction pathway, the discrimination

regimes can be partially mixed to further reduce the error rate, fig. 5. Indeed, although

the discrimination factors of the first reaction pathway do not mix to reduce the error

rate, those of the proofreading reaction do (blue curves in fig. 5). The apparent

contradiction with the results of [16] is due to a different design of the free enthalpy

landscape. The presence of the kinetic factor also speeds up the assembly at the price of

a larger free-energy consumption (light blue curve in fig. 5). Interestingly, the process

becomes more efficient, too (fig. 5c).

Let us point out that the minimum error rate is always achieved in the vanishing

catalysis rate limit. In this regime all the free energy provided to the system is spent

to proofread at the expense of the process speed. Hence, both the mean step time and

the dissipation diverge approaching the minimum error rate.

5. The Murugan-Huse-Leibler (MHL) Model

The idea of embedding the network with more forces in order to reduce the error rate

has been pursued in [14], where a general scheme involving many reaction cycles was

introduced. The authors of this work were able to show that the minimal error rate (with

given value of the energetic discrimination constant γ) depends on the network topology,

i.e., on the number of cycles appearing in the reaction graph. This class of models was

further explored in a more general setting in [15]. In particular, the “railroad” scheme

shown in fig. 6 was introduced, as the most efficient one among a large class of reactions.

We shall refer to this model as the MHL (Murugan-Huse-Leibler) model. Any substrate

chemical network is coupled with N chemical forces of equal affinity A. These forces

act on the N cycles of type ysn → xsn → xsn+1
→ ysn+1

→ ysn and drive the chemical

complex towards the final product state on the x-chain of reactions and towards the

free enzyme state on the y-chain of reactions. The xsi
⇋ ysi reactions discriminate the

substrates either kinetically or energetically. The discrimination constants, denoted by

γ and δ, and will be taken to be for any of the N + 1 pathways xsi
⇋ ysi.

We will focus our analysis to the behavior of the chemical network for varying

number of independent forces, and thus of cycles. For this purpose we neglect the

discrimination performed on the first stage & ⇋ ys1 and assume that the related rate

constants are the same for both substrates: k+
r
= k+

w
= ωeǫ and k−

r
= k−

w
= ω.
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Figure 6. MHL (“railroad”) model reaction scheme for the generic substrate s.

Thus the rate constants related to the ladder part of the network are expressed by

ur = ωue
ǫU+δ, dr = ωue

δ,

uw = ωue
ǫu , dw = ωue

γ ,

f+ = ωf , f− = ωfe
−ǫf ,

b+ = ωb, b− = ωbe
−ǫb.

(22)

We can evaluate the error rate, the mean step rate and the efficiency by solving the

steady-state dynamics, inverting the related error-rate function, and substituting the

result in the relevant expressions, obtaining the results shown in fig. 7.

The relevant parameters are again the discrimination constants. In order to simplify

the analysis, we discuss the energetic and kinetic discrimination regimes separately. The

trade-offs in the energetic regime, taking into account different numbers of cycles, are

shown in the figures 7 (a) and (b). In agreement with [14], the minimum error rate

decreases exponentially as the number of cycles increases (ξmin ∼ e−(N+1)γ). However,

when the number of cycles increases, both the mean step time and the dissipation per

step increase, for equal values of the discrimination constants and error rate. This also

plays a role on the efficiency, which accordingly decreases, fig. 7(c).

An analogous scenario appears in kinetic discrimination regime, whose dissipation-

error trade-off is shown in fig. 7(d). The network needs at least two cycles to achieve error

rates lower than that of the MM model, for equal values of the constants (ξmin ∼ e−Nδ).

We thus infer that the most effective proofreading action is thus the result of the optimal

combination of the network topology and discrimination regime.

6. Michaelis-Menten model with correlations between consecutive steps

As mentioned in sec. 2, in all the enzyme-assisted assembly schemes described so far

all steps are similar to and independent from one another. In this section we take into

account a simple scheme in which consecutive steps are correlated.

We assume that a wrong step affects the system discriminatory power, i.e., that

when the last step produces the wrong outcome, the discrimination constants decrease.

We introduce this simple correlation scheme in the MM model and obtain the chemical

network shown in fig. 8. Here, we consider two parallel reaction schemes: the first

describes the steps following an error (denoted by the label w on the enzyme state,

&w), while the second describes the steps following a correctly terminated step (denoted

by the label r on the enzyme state, &r). Finally, the connection between these two
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Figure 7. Mean step time (a), dissipation per step (b), and efficiency (c) versus the

error rate for the MHL model in the purely energetic discrimination regime (γ = 3 and

δ = 0). The plot (d), instead, shows the dissipation per step for the same model in the

purely kinetic discrimination regime (γ = 0 and δ = 3). The curves are distinguished

by the number of cycles in the network: light green and light purple curves, N = 1;

green and purple curves, N = 2; dark green and dark purple curves, N = 3. The curves

in (a–c) correspond to the following values of the parameters: γ = 3, ǫu = 8, ǫf = 8

and ǫb = 8, which represent the driving energy related to the reactions xsi
→ ysi ,

xsi
→ xsi+1

and ysi+1
→ ysi , respectively. The other constant, ωu, ωf , ωb, are those

which minimize the minimal error rate ξmin, when the other parameters are kept fixed.

The first two plots in (a) and (b) highlight the lowering of the error rate as the number

of forces increase. However, both the mean step time and the entropy production

increase and the system exhibits a progressively lower efficiency (c). Interestingly, in

the kinetic regime (d), the system needs at least two forces in order to reduce the

error rate. Let us observe that the model embedding just one cycle is very similar

to Hopfield scheme, except for the non-discriminating pathways & ⇋ ys0 . We thus

suppose that these last pathways, detaching the free enzyme state from the part of the

network performing the proofreading, spoil the discrimination in the kinetic regime.

Finally, for the plot (d) the numeric constants chosen are: ω = 1, ǫ = 10, δ = 3. The

values of the other coefficients are those which minimize the minimal error rate ξmin,

and are given by ǫu = 8, ǫf = 9, ǫb = 9, ωu = 0.1, ωf = 10, ωb = 10).

reaction networks is realized by the catalysis transitions. In this way, when the enzyme

catalyzes the final reaction of the wrong substrate, the system comes back to the “wrong”

free enzyme state. Instead, when the enzyme catalyzes the final reaction of the right
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Figure 8. Michaelis-Menten (MM) model with correlations between consecutive

steps.

substrate, the system comes back to the “right” free enzyme state. As for the MM

model, we assume that the catalysis transition does not discriminate and thus that the

catalytic rate F is the same for the four possible outcomes.

The type of correlation described above is implemented in the rate constants. For

both networks they have the same expressions as in (12) but with different discrimination

constants. Following our hypothesis, the discrimination constants related to the wrong

network, γw and δw, are smaller than those for the right network, γr and δr.

We can solve the master equation in the steady-state regime and evaluate all the

relevant quantities. The error rate and the mean step time are expressed by

ξ ≡
p̄(w)w + p̄(r)w

p̄(w)w + p̄(w)r + p̄(r)w + p̄(r)r
,

τ ≡
1

F
(
p̄(w)w + p̄(w)r + p̄(r)w + p̄(r)r

)
.

(23)

The thermodynamic quantities can be expressed as in (8) and (11), taking care of

excluding the catalysis transitions from the sums. However, we cannot express the error

rate as a function of the catalytic rate in the general case (with four discrimination

parameters). We will thus limit our analysis to the cases of purely energetic and purely

kinetic discrimination, in which this expression is possible.

Typical trade-offs are plotted in fig. 9 together with the trade-offs obtained by the

MM with discrimination constants equal to γw and γr, and with δw and δr. While the

expression for the minimum achievable error rates, are given by

ξmin =
eγw + 1

eγr+γw + 2eγw + 1
≃

(
1 + eγw

eγw

)

e−γr ,

ξmin =
eδw + 1

eδr+δw + 2eδw + 1
≃

(
1 + eδw

eδw

)

e−δr ,

(24)

in the energetic and kinetic regimes, respectively.
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Figure 9. The light green and light purple lines represent the mean step time (a,

c), and entropy production (b, d), as a function of the error rate for the MM model

with correlations between consecutive steps. (a) and (b) correspond to the energetic

discrimination regime γw = 2, γr = 5, while (c) and (d) correspond to the kinetic one

δw = 2, δr = 5. The curves are compared with the trade-offs obtained with the MM

model (darker lines) for the same values of ǫ and ω, but taking into account separately

the discrimination constants used for the model with correlations. We have chosen the

following values for the driving force and the overall rate scale: ǫ = 10 and ω = 1 (let

us remind that these values are by assumption common for both the “right” and the

“wrong” network). Remarkably, the reduction of the network discriminatory power is

small. Indeed, the trade-offs we obtain are close to those obtained in the MM model

by considering just the discrimination constants on the “right” pathway, namely the

darkest curves (with γ = γr and δ = δr).

It is clear from this result that the discrimination loss due to a wrong outcome

only slightly influences the global behavior of the kinetics. Indeed, for high values of γr
and δr the difference between the nearest-neighbor and the simple MM model becomes

negligible.

Let us observe that when proofreading mechanisms are taken into account, like in

Hopfield model, the probability that the step ends with a wrong incorporation decreases

with respect to the MM model. Thus we expect that in the Hopfield model with nearest-

neighbor interactions, the discrimination loss due to a wrong monomer incorporation

would influence its global behavior even less than in the MM model. We conclude by

remarking that these results are not in contradiction with the effective role of correlations
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in biological systems. As already mentioned, in template-assisted assembly processes,

correlations play a role in the individuation and proofreading of error, i.e., they can

influence the internal rate constants when interaction with multiple substrates is taken

into account.

7. Conclusions

Natural biological processes, like the enzyme assisted assembly processes that we have

considered, must satisfy several, sometimes contradictory, requirements. The error rate

should be lower than a threshold, the average duration of the process should not be

too long, and the free-energy consumption should not be too large. It is likely that

the detailed mechanisms of naturally occurring processes have evolved to optimize some

combination of these quantities, whose expression depends on the requirements of the

process itself. The method discussed in the present work, and the measure of efficiency

that we have derived, can be useful in the evaluation of the performance of these

mechanisms.

We have been able to investigate a situation in which successive completed processes

are not fully independent. In our situation, we have found that the correlations do not

significantly modify the performance of the mechanism. We can however envisage more

general situations, in which hidden correlations show up in the system performance.

We have studied in a simple case the interplay of kinetic and energetic discrimination

in many-cycle proofreading mechanisms, generalizing the results of [14, 15]. We have

identified a regime in simple proofreading models in which the introduction of a kinetic

discrimination step improves both the speed and the efficiency of the process for a given

discrimination rate. We can speculate that naturally occurring mechanisms work in a

regime that optimizes some combination of these quantities—the particular combination

depending on the details of the role of the process in the global cellular biochemical

network.

We can envisage extending the research to more general models, in which also

the external chemical species can occur with varying concentration, driving the system

out of equilibrium in several modes, as suggested, e.g., in [23]. This may lead to the

understanding of more complex proofreading mechanisms, like those that take place in

metabolic processes (cf. [37]). Indeed, the recent advances in the theory of the interplay

of information and thermodynamics in non-equilibrium processes can help us in reaching

a more precise understanding on the constraint obeyed by these fundamental processes

in living systems.
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