UNIVERSITE DU

LUXEMBOURG

PhD-FSTC-2015-2

The Faculty of Science, Universitd di Torino
Technology and Communication Dipartimento di Informatica

DISSERTATION

Defense held on 15/01/2015 in Luxembourg
to obtain the degree of

DOCTEUR DE L'UNIVERSITE DU LUXEMBOURG
EN INFORMATIQUE

AND

DOTTORE DELL'UNIVERSITA DI TORINO
IN INFORMATICA

PROVING REGULATORY COMPLIANCE:
Business Processes, Logic, Complexity
by
Silvano Colombo Tosatto
Born on 27/04/1984 in Torino (Italy)

Dissertation defense committee

Dr Leendert van der Torre, Dissertation Supervisor
Professor, Université du Lurembourg

Dr Guido Boella, Dissertation Supervisor

Professor, Universita di Torino

Dr Stefanie Rinderle-Ma, Chairman

Universitat Wien

Dr Marco Montali, Vice-Chairman

Senior Researcher, Free University of Bolzen-Bolzano

Dr Guido Governatori, Member
Senior Principal Researcher, Australias Information and Communication Technology Re-
search Center of Fxcellence (NICTA) and Queensland University of Technology



ii



Acknowledgements

This thesis is the result of research conducted during my period as a PhD candidate, and
would not have been possible without the help of many others whom I would like to thank
here. First of all, my two supervisors Prof. Guido Boella and Prof. Leendert van der Torre,
have my sincerest gratitude for their support, especially during my initial years as a PhD
student.

Two additional important people that have greatly helped me during my PhD studies
are Prof. Pierre Kelsen and Dr. Guido Governatori, with whom I have had the pleasure
of working several times. On those occasions, their technical expertise was invaluable and
gave me the opportunity to learn a great deal from them.

Finally, I wish to thank all the people of Torino and Luxembourg I have had the chance
to interact and work with during all these years, both within and outside the academic
environment.

i



iv

Abstract. The problem of proving requlatory compliance of a business process model is
composed of two main elements. One of these elements is the business process model, which
provides a formal compact description of the available executions capable of achieving a given
business objective. The other element is the requlatory framework that the business process
must follow, describing the compliance requirements given by the law or by a company’s
own internal requlations. The problem consists of verifying whether a given business process
model is compliant with the regulatory framework, which is carried out by verifying whether
the executions of the model comply with the requirements of the regulatory framework.

Solutions to prove the requlatory compliance of business processes have been already
proposed in the past. Some solutions disregard the computational complexity aspect of the
problem, while other solutions either solve a simplified version of the problem efficiently
or provide approximate solutions for the general one. However, none of these solutions
have formally studied the computational complexity of the problem of proving regulatory
compliance. This thesis addresses that issue, showing in addition why efficient solutions of
the general problem are not possible. In particular I study the computational complexity
of a problem of proving requlatory compliance whose requlatory framework is defined using
conditional obligations. The approach I adopt to represent the compliance requirement is
semantically similar to some of the existing solutions proposed by other researchers, such
as van der Aalst and many others, who adopts linear temporal logic over finite traces,
or different variants of such temporal logic, to define the compliance requirements. More
precisely, the approach used in the present thesis adopts propositional logic as base logic, and
defines the semantics of the regulatory framework in a similar way as Process Compliance
Logic introduced by Governatori and Rotolo.

The study of the computational complezity of the problem is approached by dividing it in
sub-classes and then combining their analysis to obtain the result for the target problem.
The division is done according to three features of the requlatory framework. These features
define whether the framework is composed of a single or a set of obligations, whether the
obligations are conditional and whether violations can be compensated. These features can
be omitted to identify simpler sub-classes of the problem. After having identified the different
sub-classes of the problem, I study the computational complexity of some of these sub-classes
and combine the results obtained to identify the computational complexity of the general
problem tackled in the present thesis, where each of the three features identified are used to
describe the compliance requirements.

The results of the computational complezity analysis show that proving the existence of an
execution of a business process compliant with the requlatory framework is an NP-complete
problem. Differently proving that for all of the executions of a business process model, they
are either compliant or not with the regulatory framework, is a coNP-complete problem. The
results show that combining the two elements composing the problem of proving regqulatory
compliance, the process model and the regulatory framework, which are tractable when
considered individually, leads to an intractable problem. In addition to the computational
complexity results, the analysis provided in the thesis has also shown that tractable sub-



classes of the problem, where the computational complexity is at most polynomial with respect
to the size of the input, can be obtained by trivialising the expressivity of either one of the
elements composing the problem. However the expressivity of these sub-classes is limited.
Thus I identify a different tractable sub-class of the problem by weakening the expressivity
of both elements composing the problem, but where each element is not trivialised as for the
other sub-classes. Whether the sub-class identified can be considered expressive is arquable,
however it represents a first step towards identifying a sub-class of the problem being both
tractable and expressive, taking into account the limitation of employing propositional logic
as base logic.
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0.1. TABLES OF NOTATION

0.1 Tables of Notation

xi

The following tables provide a summarised description of the notation appearing in the

present thesis and referencing to the corresponding definition when possible or where they

first appear.

Name Symbol

Description

Reference

Process Block B

A process block is the building block
constituting the processes.

Definition

Process P

A structured process model com-
posed of a main process block B.

Definition

Annotated Process | (P, ann)

A structured process model with as-
sociated an annotation function ann
describing the effects of executing its
tasks

Definition

Execution €

An execution of a business process
model corresponding to one of its
possible serialisations. The set of fi-
nite serialisations of a process model
is denoted as X(P).

Definition

Process State o

The process state describes the state
of affairs at a given point in time of
the execution of a business process
and is represented as a consistent set
of literals.

Definition EI

Trace 0

A trace of a business process model,
describing the evolution of the pro-
cess’ state in correspondence of the
tasks being executed. The set of
traces of an annotated process is de-
noted as ©(P,ann). For each exe-
cution there exists a corresponding
trace.

Definition




xii

CONTENTS

Name Symbol Description Reference
Obligation Q) An obligation, either local or global, | Definition [12]
describes a compliance requirement | Definition
of a regulatory framework.
Global Obligation O{p) A global obligation, which activation | Definition

period spans for the entirety of a
process execution, where t defines its
type and ¢ describes the requirement
through a propositional formula

Local Obligation

O1, pd, Pe)

A local obligation, which activation
period is determined by both lifeline
condition (¢;) and deadline condi-
tion (¢q), where t defines its type
and . describes the requirement.
w1, pq and . are described using
propositional formulae.

Definition

Set of Obligations

A set of obligations, either local or
global.

Definition

State Fulfilment

This boolean binary operator, deter-
mines whether either a literal or a
propositional formula is fulfilled by
a process state.

Definition [13]
Definition

Compensation Operator

The compensation operator is a bi-
nary operator defining when an obli-
gation can be used to compensate
the violation of another one as fol-
lows: Q1 ® Oy. In this case Oy is
used to provide a compensatory ac-
tion for the violations of ©;.

Definition

Compensation Chain

A compensation chain refers to a se-
quence of obligations joined by the
compensation operator.

Definition




Chapter 1

Introduction

1.1 The Problem of Proving Regulatory Compliance

The term regulatory compliance describes the effort of organisations and business companies
to comply with the regulations and laws governing their business sector. The effort of
proving that a company complies with the regulations and laws presents different challenges.
Among these challenges, as pointed out by Boella et al. [15], one consists of the fact that
regulations are designed to be as general as possible in order to be able to cover a wide
range of possible scenarios. By contrast the processes of companies, describing how they
handle their business, are tailored to deal with specific situations. Therefore it becomes
necessary to interpret the laws and regulations before verifying whether the processes of
a company comply with them. Another challenge derives from the fact that regulatory
compliance involves experts from different disciplines, such as compliance officers, legal
experts, process designers, etc.

In the present thesis I narrow down the scope and tackle a subset of the whole problem
of proving regulatory compliance. More precisely, I tackle the problem of proving regulatory
compliance adopting a computer science approach. The business processes of a company
are represented using the Business Process Modelling and Notation 2.0 (. BPMNQ.OE and
the laws and regulations are formally represented as a regulatory framework composed of
obligations based on conditional rules.

By narrowing the scope, many of the challenges pointed out by Boella et al. [15]
are not addressed or tackled in the present thesis. The interpretation of the laws and
regulations is given, and it is assumed that it corresponds to the rule-based obligations
composing the regulatory framework. The problem is tackled from a computer science
perspective, disregarding in this thesis the other points of view, such as for instance the
one of compliance officers. One of the challenges pointed out by Boella et al. consists of
the fact that compliance management takes place in a dynamic environment, where both

! http://www.omg.org/spec/ BPMN/2.0



2 CHAPTER 1. INTRODUCTION

elements composing the problem, the law and the processes of a company, can evolve over
time. Thus dealing with this dynamic aspect is also an important part of the problem. In
the present work the problem is studied in a static environment where the regulations and
process models do not evolve during the analysis.

This thesis focuses on the problem of formally proving whether a business process model
is compliant with a regulatory framework specifying the compliance requirements. This
problem, known as the problem of proving regulatory compliance, is composed of two
components, the business process model describing the procedures available to a business
company for achieving a business objective, where each of these procedure is represented as
a possible execution of the model, and the regulatory framework representing the compliance
requirements that the company must follow while pursuing its business objective, which are
reflected as constraints that must be respected by the possible executions of the business
process model, corresponding to the company’s processes.

Example 1 (Car Company). Consider an automotive company whose business objective
1s to build cars. The processes of this company consist of its possible ways of building a
car. However the company may not be free to build a car in every possible way but it may
be constrained by regulations, like for instance safety regulations issued by the state and
aiming at ensuring some safety protocols for the cars, or even requlations internal to the
company itself aiming at minimising production costs.

Example [1] illustrates an instance of the regulatory compliance problem. In this case an
automotive company has to prove to be following the governing regulations while building
cars. The two components of the problem appear in the example as the processes of the
company, which can be modelled in a business process model and the regulations, both
internal of the company and external from the state, composing the regulatory framework.

1.1.1 Business Process Models

To represent the business process models I use in the present thesis a notation similar to
Business Process Modelling and Notation 2.0 (BPMNZ2.0). This notation is capable of
representing business processes as well as workflows, and has some similarities with Petri
nets, which are mathematical modelling languages for the description of distributed systems.
Petri nets are directed bipartite graphs where the nodes belonging to the two partitions
have different functions. A partition of these nodes represents the places, which are the
states in which the net can be, and the other partition represents the transitions, the events
that can occur between the states. Petri nets use tokens that travel between the states
passing through the transitions. The notation I use to model business processes in this
thesis borrows the graphical notation from BPMNZ2.0, which I use to represent the activities
composing the processes. In addition to the graphical notation I adopt a subset of the flow
operators used by BPMN2.0 to identify the possible executions of a model, to which I refer
as coordinators in the present thesis. More precisely I use three types of coordinators: one
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to define a strict order between the activities, one to define when activities are mutually
exclusive and one to represent the absence of ordering constraints between activities. An
additional restriction is that the processes need to be block-structured. Thus process blocks,
identified by activities contained between two coordinators of the same type, require to be
nested properly, meaning that a block that starts inside another must also end inside it.
Another restriction of the formalism used in the present thesis with respect to BPMN2.0 is
that additional features, such as resources and events, are not represented.

The business process models I am using can be seen as simplified petri nets where the
places correspond to the activities, the transitions correspond to the coordinators and a
single token is used to navigate the model. Such restrictions do not allow a concurrent
execution of the activities included in the model, for instance even when no ordering
constraints are given for a set of activities, a valid execution corresponds to a linear order of
such activities. A similar approach has been also adopted by van der Aalst [79], studying
the problem of interorganisational workflows, where petri nets are used to model the
workflows of the individual organisations. Another similar approach has been adopted by
Governatori [32], proposing the Regorous architecture, a tool to provide support to prove
regulatory compliance of business processes, which are expressed using a similar notation
to the one used here.

Example 2 (Car Company, continued). Considering Example |1, we can represent the
various processes of how an automotive company could build a car using a business process
model. This model would include the different activities, like for instance building the
chassis, building the engine and assembling the whole car. Some of these activities are
independent like building the chassis and the engine, in the sense that it does not matter
which one is executed first. However, some activities require that others have been already
executed, like assembling the car requires that activities like building the chassis and the
engine have been done already. Finally some of these activities are mutually exclusive, like
building a fuel or a diesel engine, since a car requires only one engine.

This example abstractly describes the elements composing a business process model that
can be later proven to be compliant with a set of legal requirements. This model requires to
include the different activities that can be executed to achieve the business objectives and
the coordinators constraining the executability of such activities. The models presented in
this thesis deal with three types of constraints: independence when the order of execution
of some activities does not matter, temporal dependence when it does and mutual exclusive
activities when executing a set of activities excludes the execution of another set of them.

1.1.2 Regulatory Framework

The regulatory framework is the second component of the problem of proving regulatory
compliance, it describes the regulation that must be followed by the company pursuing
its business objectives. These regulations define the acceptable ways of achieving these
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objectives and are expressed in the regulatory framework through obligations. The obliga-
tions determine which are the acceptable executions of a process model by defining which
activities must be executed and which instead must be avoided. These conditions are
determined dependently on the state of the process, which is in turn determined by the
activities already executed.

To represent the obligations in the regulatory framework I am using propositional logic
as object language to represent the elements of an obligation, which are in turn defined
using a language and semantics similar to the one defined by Governatori and Rotolo [36].
The formalism proposed by Governatori and Rotolo allows to express the desired features
for the regulatory framework, such as identifying when an obligation is active and define
possible compensations. The formalism’s semantics uses a set of conditions to define the
obligations that one needs to comply with. These conditions include lifelines and deadlines,
described as propositional formulae, to specify when these obligations need to be complied
with. The obligations can be of different types and each type has its specific semantics.
Another feature used in the regulatory framework in the present thesis are compensations,
which provide a way of coping with compliance breaches. In other words if it is not possible
to comply with an obligation, the compensation provides an additional obligation to which
the processes must comply in order to be considered compliant.

Example 3 (Car Company, continued). Considering again Eacample the set of obligations
can be composed of both the internal requlations of the company and the state regulations.
For instance, assuming that the activities that can be done have a cost, an internal requlation
could try to minimise the costs of building a car by setting a threshold. Differently a state
requlation could for instance try to requlate COy emissions by prohibiting certain types of
engines.

When proving the regulatory compliance of a business process model, regulations similar
to the ones illustrated in Example [3| must be complied with. Therefore it may be the case
that even if certain processes are available to a company to achieve their business objectives,
they should not be adopted since they may violate some of the obligations describing the
regulations. Considering again the example, we can assume that an automotive company
may have the possibility of using old engines to produce its cars in order to save on the costs.
However, assuming also that these old engines are not up to par with the environmental
standards imposed by the regulations, these processes involving these old engines are not
compliant with the regulations and should not be used to achieve the business objective of
building a car.

1.1.3 Proving Compliance

The problem of proving regulatory compliance consists of verifying whether a business
process model of a company, which contains the processes able to achieve a given business
objective, is compliant with the obligations describing the governing regulations. In order
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to formally prove the compliance of a business process model, both the model and the
obligations need to be formally defined.

The business process models are formally defined using a subset of the BPMNZ2.0
language, where the semantics of the tasks, representing the activities, and the semantics
of the coordinators are able to identify which company’s processes are embedded in the
model. I opted for using a subset of BPMNZ2.0, where I can represent the presence and
absence of ordering constraints between the activities and their mutual exclusion. These
features allow to models some of the aspects of real problems, such as the one illustrated in
Example [2| However, I am not claiming that the representation used is capable to represent
every relevant feature of a problem, in fact the representation used avoids more complex
features like for instance resource constraints and parallel executions of the activities. The
representation used allows to focus on a sub-class of the problem of proving compliance
where some of the possible constraints are disregarded. Even though the problem studied is
a simplified version, I show in the present thesis that it is already computationally complex.

Therefore the starting point of the analysis of proving compliance is always a business
process model, from which the single processes can be identified as possible executions of it.
An execution of a process model consists of a sequence of some of the available activities.
The effects of executing these activities are represented by propositions, which are collected
in a set when an activity is executed, constituting the state of the process.

Example 4 (Car Company, continued). Considering again Example|1] and more precisely:
Ezample [ for the business process model and Ezample [3 for the regulatory framework.
Recalling that among the obligations describing the regulatory framework there is one
prohibiting to use old engines due to requlations on COsy emissions. Assuming now that the
business process model of the company includes in its choice among which engine to use
also old engines, then each of the processes using these old engines does not belong to the
set of compliant processes.

However if we assume that the company does not include in their processes the possibility
to use old engines for their cars, then the whole process model containing the processes of
the company would be compliant with the regulatory framework.

The example illustrates that a business process model can be compliant in different
ways with a regulatory framework, partially in the case where only part of the processes
modelled are compliant with the obligations, fully when each of the processes contained in
the model are compliant. The example does not illustrate the third possibility, consisting
of a process model containing only processes not compliant with the regulatory framework;
in this case the whole process model is considered not compliant. In this thesis I focus on
proving which of the three classes of compliance a business process model belongs to.

The obligations composing the regulatory framework impose conditions on the possible
process’ state obtainable by executing activities of the process model. Meaning that the
execution of certain activities may be required or prohibited depending on the conditions
imposed on the process’ state. The object language used in this thesis to represent these
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conditions and the process’ state is propositional logic. This logic allows to represent the
conditions of the obligations forming the regulatory framework and verifying them over the
process’s states identified by the possible executions of the process model. By choosing
such a simple logic, I avoid to deal with the complexities that would be brought along by
using more complex and expressive logics, such as for instance temporal logic and dynamic
deontic logic. Despite of the simplicity of the logic adopted to study the problem, it is
expressive enough to define the obligations composing the regulatory framework and to use
them to identify whether a business process model is compliant with it.

More precisely, propositional logic is used to define the conditions identifying which
states of a process needs to comply with the conditions specified by the obligations. In
general not each state describing a process needs to comply with the specifications of every
obligation. The states which need to comply with the specification of the obligation are
identified using two additional conditions, expressed through propositional logic formulae,
which identify a subsequence of the process where the specification has to be complied
with. I refer to the condition identifying the beginning of these subsequences as lifelines,
and to the conditions identifying the end of these subsequences as deadlines. Therefore
an obligation is generally composed of these three elements: a lifeline, a deadline and a
fulfilment condition.

Example 5 (Car Company, continued). Considering the previous examples used to illustrate
the problem of proving requlatory compliance, I illustrate in this example how propositional
logic can be used to describe the problem through its relevant elements. Assume that the
propositional formula o represents the property ecologically friendly of a car. Depending
on the type of engine used, therefore on the process used to build it, a car can either be o
or not. Therefore constructing a car not ecologically friendly would be represented in the
process state as the negation of the proposition, written —c.

Considering now the requlatory framework, the regulations on COs emissions can be
represented by obligations requiring that a process whose objective is to build a car, builds it
i such a way that « is true. More complex requlations stating disjunct conditions, such
that a car must be ecologically friendly or being a suburban vehicle (SUV), can be expressed
as aV B, where B is a proposition representing the property being a suburban vehicle.

Example [o|illustrates how propositional formulae can be used to represent the conditions
of the obligations that verify the states of the processes being evaluated. Additionally these
formulae are also used to represent in exactly which states of a process the condition of an
obligation must be evaluated. For instance considering a business process model containing
processes describing how to build waterproof watches, the property waterproof needs to be
evaluated only at the end of the processes.

Despite the fact that using propositional logic allows a simpler representation of the
states of the processes, hence simplifying the complexity of verifying properties on the
states, a drawback of this approach is the limited expressivity of the problem resulting from
the simpler language adopted. For instance using a temporal logic it would be possible to
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express temporal relations among the various properties being introduced in the process
state by the execution of a single activity. However using propositional logic does not allow
this and these temporal relations can only be inferred from the ordering execution of the
activities themselves. Therefore using propositional logic leads to a more coarse grained
representation of the problem, but avoids the complexities derivable from more expressive
logics, such as temporal logics.

1.1.4 Complexity of the Problem

Proving the compliance of a single process is in general not a complex task, especially
considering the scope of the thesis where propositional logic is used to represent the process’
states and the obligations. As I will show in more detail in the later chapters, this is not
a time consuming task since it requires to analyse the process states, expressed through
a set of propositional literals, in order and check them against the different obligations
composing the regulatory framework. The computational complexity in this case is low
since a process’ state identifies a truth assignment for the propositional literals. This truth
assignment is then used to evaluate the truth value of a propositional formula.

Differently, proving the compliance of a business process model can be instead a time
consuming problem. The source of the complexity is that a single business process model
can be executed in an exponential number of different ways, with respect to the size of the
model, due to the possible interleaving between the activities contained and the different
mutually exclusive activities. Because of this a brute force approach to the problem would
not be able to solve it efficiently. Therefore, as other researchers in this area have tried, I
approach the problem directly by analysing the process model.

In general, the current literature about solving the problem of proving regulatory compli-
ance of business process models has neglected the complexity of the problem. This has led
to a number of solutions whose worst case computational complexity is prohibitive. Never-
theless some of the current works on the subject have taken into account the computational
complexity and proposed some feasible solutions. For instance Ghose and Koliadis [30]
propose a computationally acceptable solution by not considering each possible interleaving
of the activities. In this way Ghose and Koliadis can only prove the compliance of business
process models where the interleaving between the activities is not allowed. Another
computationally acceptable solution has been proposed by Hoffman et al. [44], who propose
a polynomial time approximate solution to the problem of proving regulatory compliance of
business processes. This approach is based on the technique of I-propagation. Similarly to
Ghose and Koliadis [30] they avoid considering the interleaving of the activities. Moreover
Hoffman et al. to improve their efficiency of their computation they approximate the results
of executing mutually exclusive sets of activities.
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1.2 Research Question

Proving the regulatory compliance of business process models is a key issue of business
companies adopting them to guide the work of their employees or to describe their processes.
Example [0] illustrates some of the different aspects that must be considered while proving
regulatory compliance.

Example 6 (A Difficult Problem). A banking company must follow a variety of regulations
while performing the financial operations requested by its clients. Some of these operations
may involve opening an account for a new client, performing a transaction from an account
to another, allowing a client to take a loan from the bank and many more. Some instances
of the regulations that a bank may have to follow while performing these operations are the
following: the bank must verify the identity of a new customer willing to open an account
and must handle the information collected according to privacy regulations, the bank must
verify that financial transactions between accounts are not made for illegal purposes, etc.

Additionally some of these operations may be requested to be executed sequentially, like
for instance a new client asking for an account and a loan. These sequences of operations
are recorded by the bank through logs and each of these logs is required to comply with the
regulations.

The complexity of ensuring that the series of operations performed comply with the
regqulations is increased since a bank may be required to identify and handle exceptional
situations which should not follow the standard procedures. These exceptional cases also
include situations where one or more violations of the requlations have been detected and
compensatory measures are required.

Finally a banking company can adopt models to streamline the way these operations
have to be handled, providing in such a way guidelines for its employees. However, while
producing these guiding models, a company must also ensure that the outcomes of using
such models are compliant with the governing requlations.

From the instance of the problem illustrated in Example [6] it emerges that the problem
is complex. Nevertheless the computational complexity of the problem of proving regulatory
compliance has not yet received much attention. Most of the research effort has been
focused on finding automated solutions and effectively representing the problem. Moreover,
the lack of efficient solutions, apart from the ones proposing approximated results or the
ones working on very restricted sub-classes of the problem, suggests that the complexity of
the problem itself is most likely to be hard.

Therefore the main research question I am answering in the present thesis concerns
identifying the computational complexity of the general problem of proving regulatory
compliance described by the framework adopted in this thesis. More precisely:

RQ What is the computational complexity of the general problem of proving the regulatory
compliance of a business process model?
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The answer to the research question can be both seen as computational complexity
upper bound of the compliance framework adopted in the thesis, and as a computational
complexity lower bound for more expressive compliance frameworks.

When studying complex problems such as the one of proving regulatory compliance, it
is usually good practice to analyse simpler versions of the problem and reuse the results to
compute the one for the general problem. This consists of dividing the general problem into
smaller sub-classes and tackle them individually. Adopting this strategy allows to define
additional research subquestions supporting the original one of studying the complexity of
the general problem.

RSQ1 What is the computational complexity of the sub-classes of the problem of proving
regulatory compliance?

RSQ2 Which are the sub-classes of the problem of proving regulatory compliance that are
non-trivial and tractable?

Once the problem has been divided into sub-classes, then each of its sub-classes can
be studied independently. Thus the first research subquestion arises: which are the
computational complexities of these sub-classes of the problem, and how does studying
them help us understanding the computational complexity of the general problem.

The second research subquestion derives from the first one, aiming at identifying the
computational complexity of the sub-classes of the problem. Answering the first research
subquestion may identify a tractable subset of the sub-classes of the problem. However the
second research subquestion aims also at finding non-trivial sub-classes of the problem. The
term non-trivial has to be understood in this context as a sub-class of the problem which
retain enough expressivity to be able to represent and reason about relatively complex real
world problems.

1.2.1 Scope

I restrict the study of the complexity of the problem of proving regulatory compliance
of structured business process models. This restricted family of business process models
includes the ones where their components are be properly nested. Moreover, proving
the correctness of structured process models is tractable, as it has been shown by Kie-
puszewski et al. [49] for structured workflows. Structured workflows are models comparable
to the ones used in this thesis. A property of these structured business process models is
that their correctness, meaning that each of their execution terminates with the absence of
lifelock and deadlock, is verifiable in time polynomial with respect to the size of the model.
A lifelock represents a state of a process in which even though it can execute activities,
it cannot terminate. Differently, a deadlock represent a state of a process in which it
cannot execute any activity and therefore it cannot terminate. Structured process models
are often used to model real life processes as Keller and Teufel [47] point out; indeed a
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relevant part of the 406 of the 604 processes in the SAP reference models are structured,
corresponding of about two thirds of the reference models. An additional restriction I
am adopting over the ones adopted in the structured workflows by Kiepuszewski et al., is
that the models in this thesis are further constrained by the fact that they do not allow
cycles. This further restriction present the advantage that the activities contained in the
business process model can be each executed at most once. Which in turn it means that
each execution of such a restricted structured process model is bound to be finite, since the
longest possible execution would execute each of the activities exactly once. The drawback
of such restriction is that repeatable activities cannot be properly represented, except for
the fact that such activities may be repeated within the model, representing in such a
way a bounded cycle. However cycles containing activities that can in theory be executed
countless times cannot be expressed due to the restriction.

The second restriction concerns the object language used to represent the states of the
processes and the elements of the obligations. I limit the scope in this case to the use of
propositional logic since it allows enough expressivity to model the different conditions
necessary to describe the obligations and verify them against the states of the processes.
However by restricting the scope to propositional logic I do not allow the use of more
expressive logics like for instance temporal logics and epistemic logics which would have
increased the expressivity of the framework describing the problem and its complexity. As a
consequence, even though the expressivity of the language used is restricted when compared
to more complex ones, the language adopted to represent one of the elements of the problem
of proving regulatory compliance is tractable.

The third and last restriction concerns the obligations. Obligations are often understood
as conditionals in normative reasoning, as discussed by Hansson [42]. The field of research
concerned about representing and reasoning about normative concepts such as obligations.
For an obligation to be conditional it means that it needs to be fulfilled in case a condition
is met. These conditions that activate an obligation can refer to the context or even to
other obligations that need to be fulfilled already. Some of the sub-classes of the problem
analysed in the present thesis assume that the active obligations are given, by doing so these
sub-classes avoid to deal with the complexity layer of calculating whether an obligation’s
condition has been triggered or not. Although conditional obligations are used in some of
the sub-classes analysed in this thesis, the conditional obligations used are an abstraction
since their activation can only depend on the context, but not on other conditions such
as other active obligations. Avoiding conditional obligations basing their activation on
other active obligations reduces the complexity of calculating which obligations are active,
however the tradeoff reduces the expressivity of the problem studied.

The scope of the present thesis restricts the expressivity of the individual elements,
the business process model and the regulatory framework, composing the problem of
proving regulatory compliance. The restriction ensures that considered individually both
elements are tractable. However, as I show in this thesis, the problem of proving regulatory
compliance resulting by combining these tractable elements is intractable instead.
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1.3 Methodology

I describe in this section how I approach the main research question about how to study the
computational complexity of the problem of proving regulatory compliance. I first describe
how the problem of proving regulatory compliance is divided in sub-classes, which are then
studied to answer the two research subquestions concerning the sub-classes.

The division into sub-classes I use to study the problem focuses on simplifying the
regulatory framework describing the obligations that a business process model needs to
comply with. I identify three orthogonal binary features, meaning that each of these features
has an easier and a more difficult option from which to chose. Using these features I can
define the different sub-classes of the problem depending on which option is used for each
feature, where the most general problem is defined by using the most difficult option in
each of the features. Each other combination of the binary features identified defines one of
the sub-classes of the problem of proving regulatory compliance.

1.3.1 Sub-Classes

The three orthogonal features I use to define the sub-classes of the problem determine how
many obligations compose the regulatory framework, whether these obligations are always
active or the activation period is subject to some conditions, and whether violations of the
obligations can be compensated or not.

The following list summarises the three binary features.

1. e Regulatory control constituted by a single obligation

Regulatory control constituted by a set of obligations

o
.

Only global obligations

Allowing local obligations

i
°

Obligations without compensations

e Obligations that can have compensations

The first feature determines how many obligations can be included in the regulatory
framework. Verifying whether a business process complies with a single obligation is
simpler than verifying whether it complies with a set of them. To be compliant with a set
of obligations, the processes contained in a model need to comply with each one of the
obligations belonging to the set. Meaning that these processes must be checked against
each obligation.

The second feature determines whether the obligations allow the use of conditionals to
determine when they are active. These conditionals are referred to as lifelines and deadlines,
the first one defining the activation condition and the second one the deactivation condition.
I refer to an obligation not allowing these features as a global obligation, otherwise it
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is a local obligation. In the simplest case, where these conditions are not allowed, the
obligations are active for the whole duration of the processes in the model. Differently, in
the difficult case, the obligations are initially considered inactive and the periods in which
they are active need to be calculated, introducing a computational overhead for each of the
obligation composing in the regulatory framework.

Example 7 (Global and Local Obligations). “The production cost of a car must not exceed
one third of its selling price” is an instance of a global obligation. This can be classified as
a global obligation since it does not require any condition to be applied but is enforced for
the whole duration of a process of building a car.

Differently if we consider the following obligation: “If a car is a suburban vehicle, then
1t must have four-wheel drive”, then such obligation is a local one since it applies only in
the case when the car being built is of a specific type.

The last feature determines whether the obligations in the regulatory framework allow
compensations. The simplest case, where compensations are not allowed, does not require
additional analysis when an obligation is not complied with. This is not the case when
compensations are used since additional analysis is then required when a obligation is not
complied with to verify whether it is at least compliant with the associated compensation.
Notice that a compensation is considered inactive until the associated obligation is violated,
hence a compensation become satisfiable only in the presence of a violation of the associated
obligation.

Example 8 (Compensable Obligations). “Students must enrol to the semester before the
deadline, otherwise they must pay an additional fee”. This obligation is compensable since
it provides an additional obligation, paying an additional fee, that has to be fulfilled in case
the first one, enrolling before the deadline, is not. A requlatory framework not allowing
compensable obligation would be able to capture only the first part of the obligation: “Students
must enrol to the semester before the deadline”.

By considering each of these feature as a vector, it is possible to describe the general
problem and its sub-classes using a visual representation. In the remainder of this thesis I
refer to these features as difficulty vectors, since by moving on them it is possible to alter
the complexity of the problem.

In Figure the 8 sub-classes of the problem are represented graphically. Each feature
of the regulatory controls belongs to one of the three dimensions as shown on the left side of
the picture. The single-multiple vector refers to whether a business process has to be checked
against a single obligation or a set of them. The global-local vector refers to whether the
obligations used contain lifelines and deadlines identifying their activation periods or they
are assumed to hold for the entirety of each execution. Finally the atomic-compensation
vector refers to whether the obligations used allow compensations in case they are violated
or not (written as atomic).
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multiple
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atomic

single

local

Basic Problem

Figure 1.1: Sub-Classes of the Problem

On the righthand side of the picture, the sub-classes are represented as a cube. The
foremost bottom left vertex represents the most basic sub-class of the problem, where the
compliance of a business process model has to be verified with a single obligation with no
compensation associated and with a global activation period.

Figure represents the different sub-classes in a lattice where the problems are ordered
from the simplest (bottom) to the most difficult (top) according to the amount of features
considered. The figure also introduce the naming structure of the sub-classes, the problems
are divided in four families named Cz, where = identifies the amount of difficult features
from the difficulty vectors included in the problem. For instance the sub-class C0 does not
include any of the difficult features, meaning that the regulatory framework considered in
this case is composed of a single global atomic obligation. Differently a sub-class labeled
C'1 has its regulatory framework containing exactly one of the difficult features generated
by the difficulty vectors.

To distinguish the different sub-classes including the same number of difficulty features 1
include as a subscript a string composed of three characters identifying exactly the features
included in the sub-class. The first character can be either 1 or n and distinguishes where the
problem lies on the difficulty vector determining whether the regulatory framework contains
a single obligation (1) or multiple obligations (n). The second character considers the
difficulty vector determining whether the obligations composing the framework are global
(g) or local (I). The third and last character considers the difficulty vector determining



14 CHAPTER 1. INTRODUCTION

Clnga Cllla

Figure 1.2: Lattice of the Sub-Classes of the Problem

whether the obligations composing the framework are atomic (a) or compensable (c).

For instance both sub-classes Cly;, and C1,,4, contain a single difficult feature each,
belonging both to the family C'1. However they are different since the first one increases
the difficulty by moving on the vector global-local and the second moves on the vector
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single-multiple.

Using these features it is possible to identify eight sub-classes, however I am considering
one additional binary feature that brings the amount of sub-classes to sixteen. This last
feature concerns how the elements, namely the lifelines, the deadlines and the fulfilment
conditions of the obligations are represented. The two options composing this feature are
whether to represent these elements using propositional formulae or propositional literals.
The first set of sub-classes of the problem, where propositional formulae are used to represent
the elements of an obligation, is indeed more expressive and potentially more difficult. In the
second set of sub-classes, where the elements of an obligation are restricted to propositional
literals, it is sufficient to verify whether the literal used belongs or not to a process’ state.
However, when propositional formulae are involved, the process state is used to provide an
evaluation of a formula, which can lead to a more complex problem of proving regulatory
compliance, especially when considering the set of possible executions of a business process
model.

Introducing this additional feature allows to create a second lattice of sub-classes of
problems, where the elements are restricted to propositional literals. In Figure [1.3] are
shown these sub-classes of the problems, named Cz~ to distinguish them from the problems
illustrated in Figure [I.2] where the elements composing an obligation can be represented
using propositional formulae. Given that each of the problems contained in this second
lattice (Figure have the elements describing their obligations composed of only literals.
Therefore each problem Cz~ is at most as difficult to the corresponding problem Cz (Figure
, where by corresponding it means that it uses the three features identified by the
difficulty vectors.

By dividing the problem of proving regulatory compliance in this way the computational
complexity can be studied in the different sub-classes of the problem individually and
the results can be used to identify the complexity of other sub-classes by taking into
consideration the complexity relations as expressed in the lattices.

1.4 Relevance

On the 30 July 2002, when the “Public Company Accounting Reform and Investor Protection
Act” and “Corporate and Auditing Accountability and Responsibility Act”, usually known
as SarbanesOzxley Act of 2002 (SOX) [1], has been approved to react to a number of major
corporate and accounting scandals including those affecting Enron, Tyco International,
Adelphia, Peregrine Systems and WorldCom.

The Sarbanes-Ozxley act is just an example of these regulatory acts. In response to it
and to the perception that stricter enterprise regulations are needed, similar laws have been
subsequently enacted in different countries. These laws impose on enterprises that they
need to show their compliance with the requirements defined by the state’s laws.

As a consequence of the proliferation of these laws, the study of information technology
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Figure 1.3: Alternative Lattice of the Sub-Classes of the Problem

techniques supporting compliance initiatives is growing. It has been estimated that the IT
financial compliance management will rise between 10 and 15 percent per year [I1]. The
problem of automating the procedures of proving that the processes used by a company are
compliant with the governing regulations has become quite popular in computer science as
can be seen from various approaches proposed in the current literature concerning regulatory
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compliance.

More recently, in response to the 2008 financial crisis, the BCBS (Basel Committee on
Banking Supervision) proposed the BASEL III guidelines [I12]. These guidelines are aimed
at strengthening Individual Financial Institutions as well as the overall Financial System
by eliminating the weaknesses which were present in BASEL II and were revealed during
the crisis.

In general implementing the guidelines proposed by BASEL III consists of analysing the
existing models describing the processes of a financial institution and verifying whether they
are compliant with the regulatory guidelines provided. The problem which the guidelines
proposed by BASEL III aim at solving is the problem of proving regulatory compliance,
which is the one being studied in this thesis.

Another approach aimed at ensuring compliance is auditing. This approach aims at
analysing executed processes, also referred to as logs, of companies to identify whether
the regulatory requirements have been fulfilled. A classification of this approaches to
ensure compliance is provided by Sadiq and Governatori [64], in which they divide them in
preventive, approaches analysing the models in order to avoid executing faulty processes;
and detective, approaches like auditing which focus on identifying compliance breaches
when they arise.

A question that arises at this point is: why do companies not tailor their processes
to be compliant with the regulations? Unfortunately, as pointed out by Sadiq et al. [65],
the life cycles of the companies’ procedures and the law are not aligned in terms of time,
governance and stakeholders. Therefore tailoring the procedures according to the regulations
is not always possible, especially in scenarios where a multi-national company uses some
standardised processes which have to be used in different countries with different laws.

1.4.1 Some Existing Approaches

Many approaches have been provided in the past years capable of automatically verifying
the compliance of companies’ business process models. El Kharbili [48] carried out a survey
and a comparative analysis of compliance solutions proposed in research on regulatory
compliance management from the perspective of enterprise modelling.

Initiatives tailored to check compliance can be classified in two categories: detective and
preventive. The first category includes the approaches that analyse existing executions of
processes, such as logs, and verifies whether violations of the compliance requirements have
occurred. The second approach includes the approaches that analyse the process model and
verifies whether the possible executions of the model are going to violate the compliance
requirements. In the present thesis I focus on preventive approaches.

One of these preventive approaches is proposed by Governatori and Sadiq [38] and
involves a methodology based on the use of business process models to describe the activities
of an enterprise and to couple them with formal specifications of the regulatory frameworks
regulating the business. Wynn et al. [83] investigate the requirements for evaluating
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running business process models and propose an architecture addressing these requirements.
Governatori and Sadiq represent the business process models using BPMN 2.0. However
this is not the only business modelling tool available as we can see from other existing
approaches. Some of these approaches are based on workflow modelling, such as the one
proposed by Rito Silva [62] and the one proposed by van der Aalst et al. [78]. An additional
approach, proposed by Grigori et al. [39], presents a set of integrated tools that supports
the management of business process execution quality.

The approaches proposed are based on different logical formalisms and propose solutions
either for the general problem or for fragments of it. Some of these solutions have been
provided by van der Aalst and Pesic [76], Goedertier and Vanthienen [31], Awad et al. [9],
Hoffmann et al. [44], Roman and Kifer [63], and many others. Some of the logical formalisms
that have been used to study the problem are deontic logic, used for instance by Governatori
et al. [35], linear temporal logic over finite traces, used for instance by van der Aalst
and Pesic [78], clause based logic/logic programming, used for instance by Ghose and
Koliadis [30] and by Governatori et al.[33]. Some of the approaches have also focused on

extending the BPMN language to increase its expressivity, as has been done by Awad et
al. [9].

1.5 Interdisciplinary Aspects

The problem of proving regulatory compliance involves research areas from different disci-
plines. Designing the process models is mostly a problem of knowledge engineering, while
designing the regulatory framework is mostly a problem of normative reasoning.

1.5.1 Business Process Models

Constructing the models representing the processes of a company is a problem of knowledge
representation, acquisition and management. Many researchers have already studied this
particular problem, proposing various kinds of solutions that companies can use to represent
their procedures. The solution proposed by van der Aalst [T9] shows how Petri nets can be
used to represent procedures, also known as workflows, of individual companies. In this
particular work van der Aalst also describes how messages can be used to describe the
interaction between different models, being from different companies or different models
from the same one. Another solution has been proposed by Ankolekar et al. [6], where they
use an ontology to describe the properties and capabilities of Web Services. An additional
solution proposed by Lutz and Sattler [52] uses description logic to describe actions, which
in turn can be used to describe Web Services. The two latter instances of proposals deal
with Web Services instead of business companies. While there is a difference between the
two, it can be seen that describing how a Web Service provides its services is a similar
problem to describe how a company provides its.
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1.5.2 Regulatory Framework

The regulatory framework is based on guidelines and laws, which are usually written in
natural language. Therefore a necessary first step to automatise the process of verifying
whether a model describing the procedures of a company is compliant with the laws, is to
model these laws in a format easier for machines to understand and handle. This side of
the problem is also a problem of knowledge representation which has been mostly been
studied in the field of normative reasoning. The normative reasoning field is concerned
about representing and reasoning about obligations using formal methods. These systems
dealing with laws, usually referred to as norms in computer science, are known as normative
systems. According to Jones and Sergot [46] a normative systems can be used to describe
various kinds of organisational structures as can be seen in the following quote:

...law, computer systems, and many other kinds of organisational structure
may be viewed as instances of normative systems. ..

Another prolific area in normative reasoning is the one of normative multi-agent systems.
These systems are populated by autonomous entities, the agents, whose behaviour is
restricted by the normative system in place, as described by Lopez et al.[84]. A similarity
can be seen between agents and companies, being both autonomous entities whose behaviours
(ways of achieving their objectives in case of the companies) are constrained by the governing
normative system. Much work has been already done in this specific topic, some of which
has been surveyed by Hollander and Wu [45], and Criado et al. [25].

Within the field of normative multi agent systems, researchers have focused their efforts
on different aspects relevant in the field. For instance Aucher et al. [7] define a language,
based on dynamic epistemic logic, capable of verifying whether a given situation is compliant
with the enforced privacy policies. While other researchers, like Telang and Singh [72]
develop cross-organisational models based on commitments, which are constructs extending
the semantics of obligations to perform certain actions by including who (which agent) is
committed towards who in doing so. Another approach by Boella and van der Torre [17]
proposes a game theoretic approach to normative multi-agent systems.

The regulatory framework adopted in the compliance framework in the present thesis to
study the problem of proving regulatory compliance focuses on regulating the control flow
of business process models, in other words the order in which the activities composing them
can be executed. Due to the chosen focus, other aspects, such as data-centric approaches,
aimed at analysing the data produced by executing the activities, are left out of the scope
of the present thesis.

1.6 Related Publications

Some of the material discussed in the present thesis has already appeared in the proceedings
of some conferences and workshops, as well as some journals. The basic problem, discussed
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in Chapter |3, has been introduced and discussed [24] and coauthored with Marwane el
Kharbili, Guido Governatori, Qin Ma, Pierre Kelsen and Leendert van der Torre. The
characterisation of conflicting obligations in dynamic settings discussed in Chapter [4] such
as executions of business process models, has been originally introduced in [23] and has
been coauthored with Guido Governatori and Pierre Kelsen. The complexity proof of one
of the sub-classes of the problem of proving regulatory compliance, discussed in Chapter
has already appeared in [74] and has been coauthored with Guido Governatori and Pierre
Kelsen.

1.7 Outline of the Thesis

The remainder of the present thesis is structured as follows: Chapter [2] discusses some
related works in deeper details and points out their differences and similarities. Chapter
introduces the abstract framework used to define the problem of proving regulatory
compliance, in particular this chapter discusses the most basic sub-class, for which some low
order complexity solutions are proposed. Chapter [4] formally introduces the difficulty vectors
defining the features of the regulatory framework that identify the different sub-classes.
The fourth chapter pays also particular attention to the case where multiple obligations are
used to define a regulatory framework, characterising in this case conflicting obligations and
proposing conditions to identify them. Chapter [5| analyses the computational complexity
of two sub-classes, where in both cases the regulatory frameworks are composed of a set
of local obligations, but in one case the obligations allow propositional formulae and in
the other are restricted to propositional literals. Chapter [6] reuses the results obtained by
Chapter [5| to obtain the computational complexities of other sub-classes, among which
also for the sub-class equivalent to the general problem of proving compliance. Chapter
[7] investigates an alternative route with the goal to identify tractable sub-classes of the
problem. Differently from the previous chapters, the seventh one analyses a sub-class
obtained by wakening the expressivity of both the regulatory framework and the business
process model, the results show that such sub-class of the problem is tractable. Finally
Chapter [§] concludes the thesis by summarising the results and highlighting the research
questions still open as a direction for future research.
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Related Work

In the present chapter I discuss some of the existing work related to the problem of
proving regulatory compliance of business process models. The work I am discussing in this
chapter can be classified in three categories: comparative frameworks, aiming at providing a
framework to evaluate and compare existing approaches other than identifying the desirable
functionalities. The second class includes the approaches adopting structural patterns to
represent and verify the compliance requirements that the business process models must
follow. Finally, the third class includes the approaches adopting logic oriented solutions,
such as temporal logics, to represent and verify the compliance requirements.

A common element among the related work I discuss in the present chapter concerns the
computational complexity of the problem of proving regulatory compliance. In general these
approaches do not consider the computational complexity of the problem when tackling it.
However, the approaches that do consider it, often tackle a subset of the general problem
or provide approximate solutions in order to keep the complexity of their approaches to
a tractable level. Nevertheless, in general researchers studying the problem of proving
regulatory compliance acknowledge the difficulty of the problem, but a formal study of its
computational complexity has not been done yet.

This chapter is structured in three sections. The first section discusses the comparative
framework, the second section discusses the approaches adopting structural patterns and
the third section the approaches adopting logic oriented solutions.

2.1 Comparison Framework

The first part of the present chapter discusses the work of Thao Ly et al. [54], presenting
a framework for comparing existing compliance monitoring approaches. Thao Ly et al.
distinguish and classify existing approaches through the use of ten desirable functionalities
that they identify.

After discussing the comparative framework introduced by Thao Ly et al. T analyse how
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many of the ten typical functionalities are covered by the approach adopted in the present
thesis.

2.1.1 A Framework for the Systematic Comparison and Evaluation of
Compliance Monitoring Approaches

The first related work I discuss in the present chapter is the comparative framework
developed by Thao Ly et al. [54]. The comparative frameworks aims at comparing existing
approaches towards tackling the problem of proving regulatory compliance through the use
of ten desirable functionalities identified by the authors. Additionally the functionalities
can also be used as guidelines while designing new approaches to tackle the problem.

The discussion of the present related work follows closely the ten typical functionalities
identified by the authors and is structured according to the one being described.

1st Functionality

The first functionality pointed out by Thao Ly et al. concerns constraints referring to
time. These time constraints determine temporal conditions that must be respected when
executing the activities of a process. They distinguish two types of temporal constraints:
qualitative, which determines typical temporal patterns obtainable by imposing orderings
using “before” and “after”, and quantitative, which determines the time distance required
between two activities. The authors mention some approaches that can be used to verify
this functionality while proving compliance, like temporal logics such as Linear Temporal
Logic (LTL) and Computational Tree Logic (CTL).

2nd Functionality

The second functionality concerns constraints referring to data. These constraints describe
the expectations concerning the data and their values. Again the authors differentiate
this functionality in two types: unary data conditions, governing a single data object, and
extended conditions, defining constraints involving and relating multiple data objects. To
implement this functionality the authors underline that the approach must be able to
evaluate the truth of the data conditions, which requires the ability to access the data
sources in the process environment.

3rd Functionality

The third functionality concerns constraints referring to resources. These constraints
describe the requirements and expectations concerning the usage of resources associated to
activities and events in a process. In a very similar way to data constraints, the authors
distinguish two types of resource constraints analogous to the two types identified for data
constraints: unary conditions involving a single resource and extended conditions when
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relating multiple resources. The implementation of these constraints is described in a similar
way as the constraints concerning data, which requires access to the resource information
during the process execution.

4th and 5th Functionalities

The fourth and fifth functionality concern the use of non atomic activities and their lifecycle.
Differently from atomic activities, whose duration is associated to a single event, a non
atomic activity is associated to multiple events and can therefore be suspended, resumed
and aborted when necessary. Compliance approaches can either be explicit, which means
by regulating the atomic events composing these activities, or implicit, which considers
this activities as a whole without taking into account its components. In case of explicit
compliance checking, it becomes relevant to monitor and verify that the executions of the
atomic events composing a non atomic activity follow some given constraints. The authors
point out that a way to implement non atomic activities consists of using point-based algebra.
This algebra allows to represent the execution time of the various activities and relate them.
On the other side, the lifecycle of these non atomic activities can be implemented by using
the notion of states to monitor their execution and eventually identify deviations from the
expected lifecycle.

6th Functionality

The sixth functionality concerns constraints that can be instantiated multiple times. With
this functionality the authors aim at capturing these constraints which can be instantiated
multiple times and additionally they depend on the context in which they are applied,
in other words where they are instanced. The authors point out that implementing this
functionality requires to precisely characterise the information defining the context in which
a constraint is applied and when separate instances are created.

7th Functionality

The seventh functionality concerns reacting to compliance violations. Additionally to
identifying violations of the constraints, a monitoring systems should propose also procedures
to compensate the violations identified as well as being capable to continue the monitoring
process once a violation has been detected. The authors suggest that to implement such
feature, a system may require an event to identify compliance violations and the introduction
of an operator expressing which compensatory actions are required when a violation is
identified.
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8th Functionality

The eight functionality concerns proactively detecting and managing violations. Since a
violation cannot be undone, other than compensated, the authors propose as a relevant
functionality the one to be able to anticipate future violation and adopt preventive procedures
to avoid them. The authors propose to proactively identify violations to analyse whether
the constraints in place conflict with each other, forcing in such a way a violation.

9th Functionality

The ninth functionality concerns explaining the causes of a violation. This functionality
focuses on identifying the events causing a violation of the constraints. This feature can
become very useful when a constraint may be violated in multiple ways. The authors point
out that finding the root cause of a violation is far from being a trivial task and is in general
impossible. Implementing the feature should be realised using diagnostic approaches.

10th Functionality

The tenth and last functionality concerns the ability of quantifying the degree of compliance.
The aim of this functionality is the ability to provide a feedback to the users concerning the
compliance constraints. The authors propose to identify additional degrees of compliance
than the simpler compliant and not compliant. Thao Ly et al. propose as a possibility to
implement such fuzzy compliance to characterise the degree of compliance according to the
number of violations occurring.

2.1.2 Thesis’ Approach

The approach adopted in the present thesis to tackle the problem of proving regulatory
compliance of a business process model partially covers the functionalities identified by Thao
Ly et al. More precisely the approach adopted fully supports two of the ten functionalities
identified by Thao Ly et al. It supports the verification of temporal constraints and ordering
executions of the tasks through the use of conditional obligations. Moreover violations
can be detected and compensatory actions can be allowed through the use of additional
obligations.

Three of the other functionalities identified by Thao Ly et al. are partially supported
by the approach adopted in this thesis. The first one concerns data constraints verification
which is partially supported through the use of semantic annotations associated to the
activities being executed. This simplified representation allows to verify some properties of
the data, but not the most complex ones such as for instance relations between different
data. The second one concerns the proactive detection of compliance breaches, which
is done by preemptively studying the business process models. The third one concerns
identifying different levels of compliance, which is is supported by the adopted approach



2.2. STRUCTURAL PATTERNS 25

by distinguishing three levels of compliance of a business process model: one where each
of the possible executions is compliant with the requirements, one where there exists an
execution compliant with the requirements and one where none of the executions of the
model is compliant with the requirements.

Despite the restricted number of functionalities supported by the approach adopted in
the thesis, one should not forget the goal of the current thesis: studying the computational
complexity of the problem. As I show, the computational complexity of an approach
supporting less than half of the functionalities identified by Thao Ly et al. is already hard.

2.2 Structural Patterns

The second part of the present chapter discusses some of the existing approaches adopting
structural patterns to represent the compliance requirements and verify them. These
patterns can be represented using structures like state automata and petri nets. The state
of the structures adopted to represent the compliance requirements changes in accordance to
the execution of the processes and allows to identify whether a violation occurs depending
on their state. The related work discussed in this part of the chapter are the following: [53,
28, 1611, [3].

2.2.1 SeaFlows Toolset - Compliance Verification Made Easy

Thao Ly et al. [53] propose the SeaFlows Toolset as a user-friendly formalism for modelling
compliance rules. The toolset proposed allows for both structural compliance checking
as well as for data-aware compliance. The compliance rules are modelled using a graph-
based specification language. The models used by the authors allow in addition to express
temporal constraints, such as delays between the activities being executed, by using temporal
annotations. Additionally these annotations can be also used to express conditions on
the data handled by the activities being executed. The whole rule modelling language is
additionally supported by a graphical interface to provide a user friendly environment.

The structural compliance of a business process model is checked first by deriving
process’ structure criteria from the compliance rules and second by verifying whether the
model satisfies them. In the case a derived process’ structure criteria is not satisfied by the
model, additionally than identifying the compliance breach, the criteria can also be used to
provide diagnostic feedback and identify where the process model failed to comply with the
compliance rules.

While dealing with data-aware compliance, the authors acknowledge the complexity
of dealing with data constraints since it can lead to a state explosion when exploring the
data dimension, hence leading to the intractability of verifying these data constraints.
The authors address the computational complexity of proving data-aware compliance of
a business process model by applying a context-sensitive abstraction to the model. This
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allows to derive a more compact model to be checked, whose state space representation
does not explode.

The compliance verification toolset proposed by Thao Ly et al. allows to check both
structural and data-aware compliance of a business process model. The authors finally point
out some ways of extending the present approach, such as by including online compliance
checking as well as by extending the visual interface to provide advanced feedback for the
users.

2.2.2 Root-Cause Analysis of Design-time Compliance Violations on the
basis of Property Patterns

Elgammal et al. [28] propose in their work an approach capable of verifying regulatory
compliance and identifying root-causes of compliance violations identified in the business
process models being checked. With the term root-cause it is understood the initial cause
that triggered the chain of events that finally led to the compliance violation. Compliance
requirements are modelled using property patterns and temporal logic. These patterns
are then checked against the business process model, allowing to identify compliance
breaches and their root-causes. As the authors point out, identifying the root-causes of
these compliance is a key step to first identify which part of the model is responsible and
eventually resolve these design-time compliance violations.

The focus of the work of Elgammal et al. is on preemptive compliance, which considers
the compliance requirements at the process design time and thus allow more sustainable
business process models since they are already tailored to be compliant with the requirements.
The compliance requirements are expressed using Dwyers property specification patterns [27]
and Linear Temporal Logic (LTL) [58]. The authors, using these two formalisms, present
additional pattern extensions and introduce new ones that are frequently used to specify
compliance constraints. The pattern-based expressions are automatically transformed into
LTL formulae, based on the mapping rules between the patterns and LTL. The advantage
of such translation is that the automatic verification can be performed by model-checkers.
Some of the patterns used in the work of Elgammal et al. include when the execution of an
activity later requires the execution of another later, when activities are mutually exclusive
and many other.

Given that a compliance violation may occur due to a variety of reasons, identifying
the root-cause of these violations helps in resolving these violations and preventing future
ones. Elgammal et al. adapted the Current Reality Tree technique from Goldratts Theory
of Constraints [26], where a current reality tree represents a problem and the possible
symptoms arising from it. It maps a sequence of causes and effects from the problem. The
root of the tree is associated to a compliance violation and the branches of the tree represent
the possible causes. The authors define reality trees to be used to identify root-causes for
each individual compliance pattern as well as for composite patterns.
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2.2.3 Where Did I Misbehave? Diagnostic Information in Compliance
Checking

Ramezani et al. [6I] list in their work the five types of compliance related activities:
compliance elicitation, consisting in determining the compliance requirements to be satisfied;
compliance formalisation, consisting in precisely formulating the compliance requirements;
compliance implementation, consisting of configuring the processes to comply with the
requirements; compliance checking, investigating whether the requirements will be met by
the processes or have been met; and compliance improvement, consisting of refactoring the
processes to avoid further violations identified by the compliance checking activity.

In this paper, the Ramezani et al. focus on the compliance checking activity, in particular
whether the processes have been compliant with the requirements, which is also referred to
as backward compliance and auditing. Ramezani et al. propose a collection of control flow
compliance rules formalised in terms of petri-net patterns to check backward compliance
using process logs. These logs are aligned with the processes, meaning that a violation
identified in the log allows to identify the root cause in the process model.

Using petri net patterns the authors are capable of representing compliance requirements
constraining the bounded existence of a task, in other words the number of time it is
executed, ordering constraints like the direct precedence of a task with respect to another
and simultaneous execution of tasks. These patterns can be also combined in order to check
requirements like bounded existence sequences of tasks.

Two other problems tackled by the approach proposed by Ramezani et al. concern
complying with data flow constraints and organisational constraints. The first problem
is tackled by parametrising the events occurring in the logs to be able to identify and
verify the constraints between the data contained and handled by these events. The second
problem is tackled by extending the representation of the event to include information
about the actor executing it; in this way it is then possible to verify whether the correct
actor executed the activity.

Ramezani et al. point out that their current approach can be improved in different
ways, such as by introducing additional compliance requirements involving resources and
concerning the processing time. In this way the authors plan as future research to broaden
the compliance coverage of their current approach.

2.2.4 Automated Certification for Compliant Cloud-based Business Pro-
cesses

Accorsi et al. [3] propose a compliance monitoring approach named Comcert, which is tailored
for the automated analysis and certification of business processes. Comcert uses Petri nets to
specify the compliance requirements through patterns, which are then used to automatically
verify whether a business process is compliant with the compliance requirements. The
authors focus their approach on validating business processes aimed to be used in cloud
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computing, where the automatic verification proposed by Accorsi et al. allows to foster a
wider deployment of said business processes.

The regulatory requirements considered by Accorsi et al. are obtained by surveying
various guidelines and directives involving regulations about how to handle personal and
medical data. These requirements concern in most of the cases the execution ordering of
the activities composing the business processes being evaluated. Comcert evaluates whether
the business processes are compliant with the requirements by considering each of their
possible executions. While evaluating an execution of a business process, the transitions
in the Petri nets corresponding to the requirements are triggered accordingly to activities
being executed. The final state of the Petri nets would then identify whether the execution
complied with the requirements. Finally the compliance of a business process is assessed
according to the compliance results of the executions composing it.

In addition to the execution orderings between the activities, Comcert is capable of
assessing the compliance of a business process by analysing additional requirements that can
involve constraints concerning the data, location, time limits and resources. Considering
the setting of cloud-based business processes, multiple locations can be active at a given
time, especially when services are outsourced. These types of constraints are dealt with by
using predicates to describe the relevant details to assess the compliance of the business
process.

The contribution of Accorsi et al. in the paper being analysed is twofold: they first
propose a classification of compliance rules and second propose Comcert, as an automated
approach for the certification of business process compliance. The experiments carried
out in the paper analysed show that the approach proposed effectively detects compliance
breaches in the business processes.

2.3 Logic Based

The third part of this chapter discusses some of the existing approaches for monitoring
and verifying regulatory compliance of business processes using logics to represent the
compliance requirements and verify them. Different types of logics can be combined in these
approaches to capture the necessary features to represent the compliance requirements.
Some of the logics commonly used are temporal logics, allowing to express and verify
temporal relations between the activities being executed, and deontic logics, allowing to
characterise violations and eventually react to them. The works discussed in this last part
of the chapter are the following: [57, [10, [36].

2.3.1 Verification of Data-Aware Commitment-Based Multiagent Sys-
tem

Montali et al. [57] tackle in their paper discussed here the problem of verifying data-aware
commitments in a multiagent setting. A multiagent system is a system where multiple
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agents, which are entities capable of proactive behaviours according to their goals, interact
with one another. The social commitments used by Montali et al. in this setting represent
the interaction protocols that the agents must follow while interacting among each other.
Commitments are used to express the responsibility of an agent towards another to bring
about something in case a given situation is met. One can see these commitments as
conditional obligations with the additional information concerning who is responsible for
fulfilling the obligation.

In the framework the authors introduce, the agents interact with each other exchanging
messages containing events and some data. The data contained in these messages exchanged
by the agents is expressed using a first-order formalism to allow an increased expressivity.
This added expressivity also allows to create instances of commitments, which as also
pointed out by Thao Ly et al. [64] is one of the desired functionalities of compliance
monitoring approaches.

The regulations, or contractual specifications as Montali et al. call them, are defined
using a set of commitment rules. Each of the commitments used contains a precondition,
which activates it when verified and a discharge condition which instead is used to deactivate
it. In the present thesis these two elements are mirrored by the lifelines, activating an
obligation, and the deadlines, deactivating it. The lifecycle of the commitments is handled
by a commitment machine, inspired by the work of Singh [68], which is also capable of
determining whether a commitment becomes violated instead of being discharged.

The execution semantics of the framework described by Montali et al. is defined in
terms of a transition systems, which is comparable to the business process models which are
being studied in the present thesis. The properties to be verified in the framework, defined
by the commitments, are expressed using a first order version of the u-calculus [69], which
is capable to express both linear temporal logics and branching time logics.

Montali et al. point out the intractability of the general problem approached in
such way given the number of possible states, which does not allow to decide even for
simple propositional temporal formulae. Additionally they show that the problem becomes
decidable if the size of the states of the agents that requires checking against the specification
is bounded.

2.3.2 Visually Specifying Compliance Rules and Explaining Their Viola-
tions for Business Processes

Awad et al. [I0] propose in their work a language to prove the compliance of business
process models. The compliance requirements are expressed using a visual language,
BPM-Q [§], whose semantics is formalised using computational temporal logic (CTL). Using
this combination the authors are capable of expressing the requirements through patterns.

The language BPM-Q allows to express constraints between the activities that can be
executed in a process model. These constraints allow to define conditional constraints, such
as that certain activities must be executed when others are executed and in which cases the
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execution of an activity should prevent the execution of others. The language also allows to
express data dependencies between the activities. Awad et al. show that the requirements
expressed using BPM-Q can be formally represented using CTL. The authors point out
that when formally representing the semantics of data-aware compliance requirements using
CTL is not as straightforward as for the other constraints, since additional knowledge is
required to properly express them.

The temporal logic formulae corresponding to the compliance rules can be verified
against the business process model using some model checking machinery. At this stage of
the compliance checking procedure, it is also relevant to be able to provide feedback to the
process analysts when a process model is not compliant in order to allow to identify and
repair the compliance breach. To do so the authors use anti-patterns generated from the
requirements expressed using BMP-Q which are capable of describing potential violations
directly on the structure of the model being analysed. In general, these anti-patterns are are
derived by negating the CTL formula describing the semantics of the original compliance
pattern. Concerning these anti-patterns, the authors point out that using them directly
to verify compliance can produce some false-negative results, meaning that it can identify
compliance breaches where there are none. Therefore they use these anti-pattern as a
complementary technique to model checking to better explain where compliance breaches
occur in a process model.

The approach proposed by Awad et al. is validated using a case study in a financial
domain. In such domain the particular business process models being verified concern
opening a bank account. The compliance requirements used in the case study refers to
anti-money laundering regulations, which are translated in the BPM-Q formalism and
checked on the business process model. The authors conclude their paper by promising a
more thorough analysis of their approach to study whether the expressivity of the proposed
approach suffices to study real problems and eventually extending the approach when this
is not the case.

2.3.3 Norm Compliance in Business Process Modelling

Governatori and Rotolo [36] propose a logic for proving regulatory compliance of business
processes called Process Compliance Logic. Such logic is an extension of formal contract
logic derived as a combination of defeasible logic and a deontic logic of violations. The
logic used by Governatori and Rotolo is capable of capturing both semantic and structural
compliance requirements.

In their work the authors point out three complexity sources of the problem of proving
compliance. The first resides in the compensatory actions required when violating the
regulations in certain cases, which in turn can require additional compensatory actions.
These compensatory action may give rise to very complex rule dependencies. The second
complexity source concerns the fact that a process can be governed by many kinds of
regulations, some required to be fulfilled for the whole duration, while other only for some
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fragment of the process. This means that in the latter case the fulfilment period of a
requirement needs also to be computed. The third complexity source is related to the
different types of conditions that can be imposed on business processes: the regulations can
impose conditions over the activities that can be performed, their order of execution and so
on.

The logic proposed by Governatori and Rotolo allows to distinguish the different types
of conditions, which the authors refer to as obligations, imposed by the regulations. They
distinguish maintenance obligations, which require to maintain a condition for given period,
achievement obligations which require to achieve a condition once during a given period
and punctual which requires to achieve a condition at an exact point in time. Additionally
the logic allows to handle other features of these obligations like persistence, which allows
an obligation to be still active if not achieved while the deadline is reached, and finally
preemptiveness, which allows obligations to be fulfilled by events occurring before they are
activated. A similar semantics, capable of requiring the achievement or the maintenance of
a condition, has been also proposed by Chesani et al. [I§] in the context of commitments
and event calculus.

Process Compliance Logic represents the regulations through the use of conditional
rules consisting of an antecedent, representing the activation condition of a regulation,
and a conclusion, representing the obligation active when the antecedent is satisfied by
a process’ state. The logic based approach adopted by Governatori and Rotolo allows
to remove redundancies between the regulations by merging the corresponding rules and
solving eventual conflicts by using superiority relations.

The business process models introduced in the work of Governatori and Rotolo, in
addition to the standard elements, make use of semantic annotations for the activities to
represent which effects they have on the process’ state. The compliance of these processes
is computed by considering each of their possible executions, where in turn for each activity
composing it is checked whether an obligation is activated or an active one is discharged,
and finally for each of the activities being verified, each active obligation is checked to
determine whether the current tasks fulfils it, violates it or the same obligation needs to be
checked on the following activities.

2.4 Summary

In the present chapter I discussed some of the existing works related to the problem of proving
regulatory compliance of business process models. The differences between the approaches
discussed allowed me to distinguish them in three categories. The first one, containing only
the work of Thao Ly et al. [54], where no approaches to prove regulatory compliance are
proposed, but a framework listing ten desirable functionalities that a compliance monitoring
system should include and that can be used to compare existing approaches by measuring the
number of features covered. The other two categories distinguished both involve approaches
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to verify the compliance of a process model. The two categories differ according to the
method used to do so: one of them adopts structural patterns [53] 28, 611 [3], while the
second prefers a more logic oriented approach [57, [10, [36]. The approach used in this thesis
is closer to the logic oriented category.

Despite the differences between each of the approaches discussed in this chapter, there is
a common element shared among these works. This common element is that none of them
thoroughly analysed the complexity of the problem of proving regulatory compliance. In
some cases the authors hinted that proving regulatory compliance is hard and adopted some
approximate solutions to reduce the computational complexity of the problem being tackled.
In other cases, such as BPM-Q [§], it has been show that the upper bound computational
complexity is equivalent to the one of model checking using linear temporal logic [19],
which is PSPACE. Therefore formally analysing the computational complexity of proving
regulatory compliance is indeed an open problem which I am tackling in the present thesis.
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The Abstract Framework

In this chapter I introduce the abstract framework to study the problem of proving regulatory
compliance of a business process. The framework is composed of two distinct elements, the
first one is the model describing the processes we want to prove to be compliant and the
second is the regulatory framework describing the obligations that must be fulfilled by the
process model.

The proposed framework is abstract. The reason to do so is to keep the framework as
simple as possible to be able to focus on the main problem tackled in the thesis: the study
of the computational complexity of proving regulatory compliance.

This chapter is divided in three main parts, the first one introduces the syntax used
to represent the business process models as well as describing their semantics and some
of their properties. The second part of the chapter introduces the regulatory framework
which defines, through the use of obligations, which are the constraints that the business
process model must follow in order to be considered compliant. The third and last part of
the chapter analyses the complexity of proving the compliance of the problem represented
in such abstract framework.

The framework introduced in this chapter does not describe the general problem of
proving regulatory compliance, but it presents its most basic sub-class. This sub-class of
the problem is obtained by using a regulatory framework which does not contain any of the
difficult features. This means that the regulatory framework used by the basic problem
contains a single global atomic obligation, which is an obligation whose activation is fixed to
hold for the whole duration of the processes described in the model being analysed and no
compensations are allowed in case the obligation is violated by the processes. Additionally
the elements composing the obligation are expressed using only propositional literals and
not formulae. This problem corresponds to the sub-class of the problem C’Ol_ga in Figure
described in Section In Chapter [] T describe how the regulatory framework can
be extended using the difficult features and I will gradually study more difficult problems
by increasing the number of difficult features included in the regulatory framework. The
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work being discussed in the present chapter has already been published [24] and has been
coauthored with Marwane el Kharbili, Guido Governatori, Qin Ma, Pierre Kelsen and
Leendert van der Torre.

3.1 The Business Process Models

In this first part of the chapter I introduce the semantics and the graphical representation of
the Business Process Models. Business process models represent a collection of procedures
capable of achieving a given goal. Therefore a company can use business process models
to represent its possible ways of achieving one of its business objectives. For instance an
automotive company can use a business process model to represent its ways of building a car.
In this case, each plan contained in the business process model represents the sequence of
activities necessary to build a car. These activities represent the basic operations available
to an automotive company to achieve their business objective to build a car.

3.1.1 Structured Business Processes

In this thesis I limit the scope to a particular class of business processes: structured
processes. Such class of business processes is similar to the structured workflows defined
by Kiepuszewski et al. [49], which is limited in its expressivity with respect to other
types of workflows because it only allows properly nested components. The structured
business process I am introducing in this section have an additional constraints over the
structured workflows of Kiepuszewski et al., which is being acyclic. From this follows that
each component belonging to a structured business process can be executed at most once.

An advantage of using structured processes is that their soundness can be verified in
polynomial time. A structured process model is sound, as defined by van der Aalst [2] [77],
if it avoids livelocks and deadlocks, in other words a model whose computation cannot get
stuck and terminates in a finite amount of steps. It is shown by van der Aalst et al. [75]
that in general the soundness of structured workflows is not decidable if these workflows
include inhibitor or reset transitions.

The models used in the present thesis are both structured and acyclic. This means that
an execution of a process model cannot get stuck indefinitely in one of these cycles. Finally,
concerning the limitation of not allowing cycles in the models, assuming that a process
model involving cycles does not end up in livelocks, thanks for instance to specifying the
maximum number of times that a cycle can be executed, it is then possible to approximate
theses processes using models without cycles by explicitly representing in the model the
various possible executions depending on the number of iterations of the cycle.

While not all business processes are structured, the structured processes are a substantial
class of real-life processes. According to Polyvanyy et al. [59], 406 of the 604 processes in
the SAP reference models [47] are structured. In addition Polyvanyy et al. [59] identify
conditions under which unstructured processes can be transformed into structured ones,
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and proposes an algorithm for the transformation. They also report that seventy-eight of
the unstructured processes in the SAP reference models can be converted into behaviourally
equivalent structured process models.

The structured processes defined here follow the semantics used by Business Process
Model and Notation 2. 0E| I define them by first defining the basic blocks constituting a
structured process. The most basic element is the task; it abstractly represents an atomic
operation that can be executed to help towards the achievement of the business objectives
purposed by the business process model. The tasks can be then combined in more complex
structures, like sequences, and blocks and zor blocks. In turn such structures can be used
by nesting them to build more complex structures.

Definition 1 (Process Block). A process block B is a directed graph: the nodes are called
elements and the edges are called transitions. The set of elements of a process block are
identified by the function V(B) and the set of transitions by the function E(B). The set of
elements is composed of tasks and coordinators. The coordinators are of 4 types: and_split,
and_join, xor_split and xor_join. Each process block B has two distinguished nodes called the
initial and final element. The initial element has no incoming transition from other elements
in B and is denoted by b(B). Similarly the final element has no outgoing transitions to
other elements in B and is denoted by f(B).
A directed graph composing a process block is defined inductively as follows:

o A single task constitutes a process block. The task is both initial and final element of
the block.

e Let By,...,By, be process blocks with n > 1:

— SEQ(BA4, ..., By) denotes the process block with node set V(B;) and edge set
E(B;)) U{(f(B;),b(B;i+1)) : 1 <i < n}. The initial element of SEQ(Bu, ..., By)
is b(B1) and its final element is f(By).

— XOR(By, ..., By,) denotes the block with vertex set UV (B;) U {xsplit,xjoin} and
edge set UE(B;) U {(xsplit,b(B;)), (f(B;),xjoin) : 1 <i < n} where xzsplit and
xjoin denote an xor_split coordinator and an xor_join coordinator, respectively.
The initial element of XOR(By, ..., By) is zsplit and its final element is xjoin.

— AND(By, ..., By) denotes the block with vertex set UV (B;) U{asplit,ajoin} and
edge set UE(B;) U {(asplit,b(B;)), (f(B;),ajoin) : 1 <i < n} where asplit and
ajoin denote an and_split and an and_join coordinator, respectively. The initial
element of AND(By, ..., By) is asplit and its final element is ajoin.

Using the process blocks introduced in Definition [1] it is then possible to define the
structured business processes. These type of processes are defined by enclosing a process

! http://www.omg.org/spec/BPMN/2.0
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block within two specific pseudo-tasks: the start and end, which are respectively placed
before and after a process block to construct a structured business process.

Definition 2 (Structured Process Model). The pseudo-tasks start and end are used respec-
tively to identify the beginning of a structured process model and when it terminates. A
structured process model P is a directed graph composed of a process block B called the
main process block. The vertex set of P is V(P) = V(B) U {start;end} and its edge set
is E(P) = E(B) U{(start,b(B)), (f(B),end)}. The initial element of a structured process
model is the pseudo-task start and its final element is the pseudo-task end.

The processes used are graphically represented using the same notation as Business
Process Model and Notation 2.0. We use () to represent the start coordinator and (@) to
represent the end coordinator. The and_split and and_join coordinators are represented both
by @®. The and_split is identified by a single incoming transition and multiple outgoing
transitions. The opposite is true for the and_join, which is identified by multiple incoming
transitions and a single outgoing transition. In the same way, the operator & identifies
both xor_split and xor_join coordinators.

In a structured process model XOR blocks and AND blocks have to be properly nested,
meaning that if the block A starts inside the block B, A has to end within B. An example
of a structured process model is shown in Fig.

Example 9 (Structured Process Model). Fig. shows a structured business process
containing four tasks labelled t1,...,t4. The structured process contains an XOR block
delimited by the xor_split and the xor_join. The XOR block contains the tasks t1 and to. The
XOR block is itself nested inside an AND block with the task t3. The AND block is preceded
by the start and followed by task t4 which in turn is followed by the end.

i

O—~® =¥ (@

3

90 ¢

Figure 3.1: A structured business process
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Considering the structured process in Fig. as a sequence block, we can represent it
as follows:

P = SEQ(start, SEQ(AND(XOR(t1, t2),t3),t4), end)

The class of structured processes considered in the present thesis exclude business
processes containing badly nested blocks (Fig. [3.4 (a)) and business processes with loops

(Fig. 33 (b)).

=
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(a)

(b)
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v

Figure 3.2: Examples of non-structured processes

An execution of a structured process model is a sequence of a subset of the tasks
belonging to the model and it represents one of the processes that a company can use to
achieve one of their business objectives. In a structured process model a valid execution
identifies a path from the pseudo-task start to the pseudo-task end. A path is constructed
by following the transitions between the elements in the model and following the semantics
of the coordinators being traversed. The tasks traversed by a path are the ones being
executed in the execution identified by that path.
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I define the executions of the business process models using partial ordered sets. Before
proceeding to define how an execution of a structured business process is created from the
model, I recall the definition of partial ordered set which is used as an auxiliary concept in
defining a serialisation of a process block, which corresponds to a possible execution, in
other words to a process belonging to the model. In addition to recalling the definition of
partial ordered set, I introduce some operations for this type of sets that are used to define
the serialisations.

Definition 3 (Partial Ordered Set). A partial order set P = (S, <;) is a tuple where S is
a set of elements and < is a set of ordering relations between two elements of S such that
<sC S x S and for which transitivity and antisymmetryﬂ hold.

Two special cases of a partial ordered set are the set and the sequence:

e Set: a set is a partial ordered set where no ordering relations have been defined between
its elements, formally: (S,0).

e Sequence: a sequence is a particular partial ordered set, called total order, where an
ordering relation is defined between each pair of elements belonging to the set, formally
(S, <s) where Vz,y € S such that x # y,x <y €<5 ory < r €=<;.

Let Py = (S1,<s,) and Py = (S2, <s,) be partial ordered sets, we define the following
four operations:

e Union: Py Up Py = (81 USa, <5, U <s,), where U is the disjoint union.

o Intersection: Py Np Py = (S1 N Say <5, N <)

e Concatenation: Py +p Py = (81 U Sa, <5, U <5, U{s1 < 52|51 € S1 and s2 € Sa}).

o Linear Extensions: T(P1) = {(S, <s)|S = 81, (S, <s) is a sequence and <5, C<s}.
The associative property holds for Union, Intersection and Concatenation.

A serialisation of a process block is a sequence of a subset of the tasks, also known as a
totally ordered set, contained in such process block. The sequence of tasks representing
the serialisation has to follow the semantics of the coordinators contained in the process
block. A serialisation of a main process block of a business process is also an execution of
the business process itself.

Definition 4 (Process Block Serialisations). Given a process block B, the set of serialisations
of B, written ¥(B) = {¢|e is a sequence and is a serialisation of B}. The function ¥(B)
is defined as follows:

2Antisymmetry: if a <5 b and b <5 a, then a = b.
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1. If B is a task t, then X(B) = {({t},0)}

2. if B is a composite block with subblocks B1,..., B, let €; be the projection of € on
block B; (obtained by ignoring all tasks which do not belong to B;)

(a) If B=SEQ(Bs,...,By), then 3(B) = {e1 +p ... +p enle; € X(B;)}
(b) If B=XOR(By,...,By), then £(B) = (B1) U ... US(By)
(¢c) If B=AND(Bu,...,By), then U, . Z(e1Up...Upen|Ve; € X(B;))

Notice that the semantics of the serialisation of an AND block corresponds to the
standard interleaving semantics for parallelism.

Corollary 1 (Process Block Serialisation). Given a process block B, t is a task in B, if
and only if e € ¥(B) such that t € e.

Proof (Process Block Serialisation). Proven by structural induction on the process block
(definition [4).
O]

Corollary 2. Given a process block B, each serialisation € such that ¢ € ¥(B) is a finite
sequence of tasks.

Proof. Let B be a process block and € € ¥(B) be a serialisation of B. By construction of
B we know that it contains a finite number of tasks. Thus it follows from Definition [4] that
each task in B can appear at most once in €. Therefore the amount of tasks in € is bounded
by the number of tasks in B which by construction is always finite. O

Given a structured process model, I can now define its possible executions in terms of
the serialisations of its main process block. Each execution of a process model corresponds
to one of the serialisations of its main process block to which are attached the pseudo-tasks
start and end.

Definition 5 (Execution). Given a structured process P whose main process block is B, an
execution of P corresponds to a serialisation of B. To help distinguishing executions from
serialisations, I represent the former including the pseudo-tasks start and end as follows
Y(P) = {Pstart +p € +p Pendle € 3(B)}. However for compliance verification purposes, the
executions are always considered without the pseudo-tasks start and end.

According to Definition [5] each execution corresponds to a serialisation but the opposite
is not true. Because only the serialisations of the main process block are considered as
the executions of the process. The pseudo blocks Start and end are not considered while
verifying the compliance of the process, since their main purpose is to identify the main
process block and they do not contribute on describing how the state of the process evolves,
representing the situation of executing the process at a given point in time.
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Example 10 (Execution). The executions of the structured process illustrated in Fig.
are shown in the first column of Table[3.1]

I refer with the term universe to the set of literals that can be used during the execution
of a process to represent its states, and that can represent the effects of executing an
activity.

Definition 6 (Universe £). Given a finite set of atomic elements E, the universe L is
EU{-ele€E}. Forec E,leta=—e iffa=e anda=e iff a = —e.

The state of a process is represented using a set of literals which describe the situation
depending on the meaning associated to the literals belonging to the set. Given that usually
a process to complete takes time, it is often the case that its state changes multiple times
during its execution. During the execution of a process the states are measured each time a
task is executed to measure whether and how the state of the process has changed.

I assume in this thesis that the changes in the process state are not influenced by
factors external to the process but depend on the tasks being executed during the process.
How tasks influence the state is described using annotations [33] which are represented as
states of literals associated to the tasks. An annotated process is a process whose tasks are
associated with consistent sets of literals.

Both the state of a process and the annotations of the tasks are represented by sets of
literals. These sets are required to be consistent, meaning that a particular literal cannot
be both true and false in the same set. These literals describe the features of the state, a
feature being present using a true literal and a feature missing using a false literal. Since it
would not make sense for a feature to be both present and not, I restrict these sets to be
consistent sets of literals.

Definition 7 (Consistent literal set). A set of literals L is consistent if and only if it does
not contain both | and its complement | for each literal | € L, where l = a if |l = —a, or
l=-aifl =a.

Definition 8 (Annotated process). Let P be a structured process and let T be the set of
tasks contained in P. An annotated process is a pair: (P,ann), where ann is a function
associating to each task in T a consistent set of literals: ann : T +— 2. The function ann is
constrained to the consistent literals sets in 2%.

The case where a task is annotated with an empty set of literals is covered by the fact
that the power set of literals includes the empty set.

Example 11 (Annotated Process Model). Fig. shows a structured process containing
four tasks labeled t1,ta,t3 and t4 and their annotations. The process contains an AND block
followed by a task and an XOR block nested within the AND block. The annotations indicate
what has to hold after a task is executed. If t1 is executed, then the literal a has to hold in
the state of the process.
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{a}

{b,c} 0 {-a}

Figure 3.3: An annotated process

The state of the process is measured at some points in time corresponding to the
executions of the tasks. Thus these states are represented by pairs, where one of the
elements is a set of literals describing the state and the second the task after whose
execution the state holds.

Definition 9 (State). Let T = {t1,t2,...} be a set of tasks and L is a consistent literal set
such that L C L.
A state is a tuple o = (t;, L).

How the state of the process is updated by an execution of a task is described through an
update operator. This operator has been inspired by the AGM belief revision operator [4]
and is used in the context of business processes to define the transitions between states
which in turn are used to define the traces.

Definition 10 (Literal set update). Given two consistent sets of literals L1 and Lo, the
update of Ly with Lo, denoted by L1 ® Lo is a set of literals defined as follows:

L1 ®Lo=IL1\{l|l€ Ly} ULy

Finally, having defined how the state of a process is modelled and how the execution of
a task can alter it, I can define the trace, which represents the evolution of the state of a
process during one of its executions. It is represented by a sequence of states, holding at
the different stages of an execution.

Definition 11 (Trace). Given an annotated process (P,ann) and an execution sequence
€ = (t1,...,tn) such that e € 3(P). A trace 0 is a finite sequence of states: (o1,...,0p).
Each state of o; € 6 contains a set of literals L; capturing what holds after the execution of
a task t;. Fach L; is a set of literals such that:
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X(P) | ©(P,ann)
(start, i1, 3, t4,end) ((start, ), (t1,{a}), (t3, {a, c,d}), (ts, {—a,c,d}), (end, {—a,c,d}))
(start, to, t3, t4end) ((start, 0), (t2, {b, c}), (t3,{b, ¢, d}), (ts, {—a, b, c,d}), (end,{—a, b, c,d}))
(start, t3,t1, tsend) ((start, 0), (ts,{c, d}), (t1,{a,c,d}), (ts,{—a,c,d}), (end,{—a,c,d}))
(start, t3, to2, t4end) ((start, 0), (¢s, {c, d}), (t2,{b,c,d}), (tsa.{—a,b,c,d}), (end,{—a,b,c,d}))

Table 3.1: Executions and Traces of the annotated process in Fig.

1. Ly = ann(ty);
2. Liszi=L; & ann(tiH), for1<i<n.

To denote the set of possible traces resulting from an annotated process block (B,ann),
where B is a process block and ann is an annotation function, I use ©(B,ann).

Example 12. Table shows the traces of the annotated process (P,ann) illustrated in
Fig. [3.3 The traces are shown in the second column and each of them is associated to an
execution of the process P. It is possible to notice that the the order in which the tasks are
executed in a trace is the same as the one appearing in the corresponding execution.

From Table in particular the column showing the traces we can see that the states
of the process corresponding to the pseudo tasks start and end do not contribute to the
information contained in the traces since the state associated to the pseudo task start is
always the empty set and the state associated to end is always the same as the one holding
when the previous task is executed. Therefore when verifying compliance considering the
traces of a process, the states corresponding to the pseudo tasks start and end are not
considered.

3.2 Regulatory Framework

In this second part of the chapter I introduce the regulatory framework. A regulatory
framework describes through the use of obligations, which are the conditions that a process
model needs to fulfil in order to be compliant with it. The regulatory framework introduced
in this chapter captures the most basic compliance problem by adopting only the simple
features available to define the obligations. The different sub-classes of the problem of
proving regulatory compliance can be represented as the vertices of a cube where the
different dimensions represent the available features for the obligations as shown in Figure
Moreover the figure highlights in which vertex the basic problem is situated according the
the difficulty vectors describing the features and associated to the three spacial dimensions.

The most basic compliance problem focuses on proving whether a process is compliant
with a single global atomic obligation and is named C0144. An obligation is said to be
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global

atomic

Basic Problem

Figure 3.4: Basic Compliance Problem

global when its validity spans for the whole length of the traces belonging to the process
being analysed. From now on I refer to the validity of an obligation as its activation interval,
since it measures the intervals of a trace where the obligation is active.

The sub-class C014, is the simplest of the problems since in this case we do not have to
deal with identifying the activation interval of the obligation using lifelines (a description of
the states which activate an obligation) and deadlines (a description of the states which
deactivate an active obligation), since the activation interval of global obligations is fixed
to hold from the beginning to the end. Additionally it is easier to prove compliance with a
single obligation rather than having to prove that the possible traces of a process model are
compliant with multiple obligations. Finally by not considering compensations for violated
obligations it is easier to prove or disprove compliance since there is no need of additional
analysis in case a violation is detected.

In general the regulatory framework is composed by a set of obligations and is defined
according to their semantics. In the case of the basic problem of proving regulatory
compliance, the regulatory framework is defined by the semantics of the only global
obligation contained in the set. Even though the framework is composed of a single
obligation in this case, this obligation can be of different types with different semantics.
Therefore I will introduce the syntax and the semantics of the different types of obligations
used to define the framework.

After having defined the regulatory framework I define the problem of proving regulatory
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compliance of a business process model (introduced in the first part of this chapter), which
consists in verifying whether the possible traces of a process fulfil the obligations contained
in the regulatory framework. This chapter concludes by providing algorithms of polynomial
complexity with respect to the size of the business process model and the regulatory
framework, capable of proving the compliance of a business process model with respect to a
regulatory framework containing a single global obligation.

Before proceeding in introducing the framework I briefly discuss why Standard Deontic
Logic would not be suited to deal with the problem at hand. Moreover, although Dynamic
Deontic Logic would have been able to study the problem of proving the compliance of
traces, I decided to adopt a simpler semantics to avoid to deal with the other features of
dynamic deontic logic not necessary to handle the problem of proving regulatory compliance,
such as for instance permissions and prohibitions.

3.2.1 Dealing with Traces

Normative reasoning is a field which focuses on representing and reasoning about obligations
and regulations in general. One of the most popular logics used to represent the obligations
and their semantics is standard deontic logic. Unfortunately this logic in its most basic
form is used to evaluate obligations considering a single state, which does not fit well in the
setting of proving regulatory compliance since the obligations used need to be evaluated
over sequences of states, the traces (Definition .

Standard Deontic Logic

It is fair to say that deontic logic has been firstly introduced in 1951 by von Wright [81] as
a system for reasoning about what is necessary or allowed. Standard Deontic Logic is one of
the successors of the system introduced by von Wright. This branch of symbolic logic has
been mostly concerned with reasoning about what is permitted and obligatory in a given
context.

The syntax of this logic is composed by an infinite set of propositional variables, the
classical logical operators: negation (—), logical and (A), logical or (V), and material
implication (—). In addition to these operators, two modal operators O and P are used
respectively to identify what is obligatory and what is permitted.

The semantics of Standard Deontic Logic is usually defined using Kripke’s semantics,
also known as possible worlds. Informally, such semantics can be described using a tree
where the root represents the current world and the children of the root are the possible
worlds accessible from the current one. A world describes the state holding in that moment.
If something is obligatory in the current world wg, written O(«), then Vw; : w; is a world
accessible from wy, w; = «. In a similar way, when something is permitted in the current
world, written P(«), then Jw; : w; is a world accessible from wg, w; = a.

One can notice from the semantics of standard deontic logic that obligations and
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permissions are evaluated in a single world or state describing a possible instant in the
future. However as it is true in many real world scenarios, considering a single time instant
is often not enough to decide whether an obligation has been fulfilled or violated. The
following example illustrates one of these scenarios.

Example 13. The authors of a paper want to submit it to a conference, hence they have to
submit it before the submission deadline. This also means that the paper has to be finished
before being submitted.

The scenario contained in Example [13] illustrates a situation comprising an obligation
for which considering a single state to evaluate it is often not sufficient. A state represent
the situation of the world in a given time instant, like describing whether the paper has
been submitted or not and whether the deadline has already passed or not. Analysing
a single state is not always sufficient to verify whether the obligation of submitting the
paper in time is fulfilled. For instance the state can contain both that the paper has been
submitted and the deadline has passed, however in this case the information contained in
the state is not sufficient since it does not tell whether the submission has been done before
or after the deadline.

The traces used in the process of proving the compliance of processes in this thesis are
very similar to the proposed example. The traces use states to define situations at a given
point in time and the temporal relations between these states is given by the order in which
they appear in the trace itself.

Dynamic Deontic Logic

To be able to handle cases like the one illustrated in Example [13]it is necessary to extend
standard deontic logic. A variant of it has been introduced by Segerberg [67], capable of
dealing with these scenarios and is known by the name of dynamic deontic logic.

Segerberg’s dynamic deontic logic evaluates the obligation on structures very similar to
the traces used in this thesis. These structures are called histories by Segerberg. In these
histories ramifications are allowed in order to represent different possible future scenarios.
Due to the ramifications representing these possible futures, these models resemble trees
rather than the sequences used in this thesis. Segerberg’s histories resemble Kripke models
used in deontic logic.

The transitions between the states in the histories are described as a set of contributions
changing a state to the following one in the model. These contributions are made by
some agents and Segerberg uses different operators to distinguish whether one of these
contributions is about to be done or has been done. In addition to the operators on the
agent’s actions, Segerberg uses deontic operators to define obligations, permissions and
prohibitions, which in addition to temporal operators like until and always in the future,
are expressive enough to be able to represent and verify properly situations like the one
described in Example
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Dynamic deontic logic is subject to some limitations such as the agent’s actions bringing
a state to the following one in the histories cannot be simultaneous, meaning that the
agents must act one at a time. These actions are considered to be atomic and cannot be
interrupted. Epistemic concepts such as knowledge and beliefs are not used by the agents.
Finally, no analysis is made to identify which agent contributed to the changes from a state
to another, so it is not possible to identify which agent is responsible for a particular change
in a history.

In this thesis I adopt a simpler semantics to describe and reason about the obligations.
First of all the models used to represent the context, the trace of a business process model,
are linear and not branching, meaning that we do not have to deal with multiple possible
future states. Since the goal of the present thesis is to study the compliance problem, the
semantics used focuses on obligations and leaves permissions out because they do not add
information to the compliance checking process. Finally the approach used in this thesis
does not take into account multiple agents contributing to the evolution of the context and,
considering the model of the process as an agent, its actions (represented by the tasks in
the model) are considered to be deterministic.

3.2.2 Obligations’ Semantics

Since I am studying the problem of proving regulatory compliance, I will leave permissions
out of the picture and focus on defining the semantics of the obligations. To specify them
I use a subset of Process Compliance Logic (PCL) [36], introduced by Governatori and
Rotolo.

Given that this chapter focuses on defining the abstract framework capturing the
problem of proving regulatory compliance in the most basic case, I introduce in this
section only the semantics of global obligations, which are obligations whose activation
period is predetermined and holds for the entire duration of a process. Mind that the
following definitions use literals to define the obligations, while in the more general setting
propositional formulae can be used.

Definition 12 (Global Obligation). A global obligation © is a structure (t,1), where
t € {a,m} and represents the type of the obligation. The element [ is a literal belonging to
L and represents the condition of the obligation.

I use © = OX(l) to represent a global obligation.

As mentioned previously, I distinguish two types of obligations: achievement (O%), which
captures the semantics of the obligations like to the one in Example and maintenance
(O™), which captures the semantics of obligations similar to the one in Example

Evaluating the Obligations

Whether an obligation is fulfilled or violated is determined by the trace being analysed.
In particular the states composing the trace are analysed. As they have been defined in
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Definition [9] the states composing a trace are not necessarily complete, meaning that given
a literal [ constituting the fulfilment condition of a global obligation, a state can either
contain such literal, its negation (—l) or neither of them. Whether a state satisfies the
condition of an obligation is represented through membership. In other words a state
satisfies the condition of an obligation composed by a literal if and only if the state contains
that particular literal.

Definition 13 (Literal Entailment). Given a state o = (t,L) and a literal I, o =1 if and
only if l € L.

The following examples illustrate the two different types of obligations, achievement
obligations which require to achieve a condition and maintenance obligations which require
to maintain a condition.

Example 14 (Achievement Obligation). In a scenario where a customer dines in a restau-
rant, there is the obligation that the bill has to be payed before leaving. In this case we can
picture the dining at a restaurant as a process and paying the bill as a global achievement
obligation that has to be fulfilled once.

To comply with a global achievement obligation, the condition has to be verified in at
least one state of the trace. Consequently an achievement obligation is violated if no state
of the trace satisfies the condition.

Example 15 (Maintenance Obligation). While accessing secure data there is the obligation
to have the proper credentials for the whole period. In this case we can see the process as the
operations being done on the secured data, terminating with the end of the access. Keeping
the proper credential for the whole access can be seen as a global maintenance obligation.

To comply with a global maintenance obligation, the condition of the obligation has
to be verified in every state belonging to the trace. Consequently a global maintenance
obligation is violated if a trace contains a state where the condition is not satisfied.

How to comply with the different types of obligation is formally described in the following
definitions.

Definition 14 (Comply with Global Achievement). Given a global achievement obligation
Q = O0%l) and a trace 6, 6 is compliant with O, written 0 + Q, if and only if:
do € 0 such that o = 1.

Recalling the obligation expressed in Example it can be expressed using a global
achievement obligation whose condition is represented by “paying the bill”.

Definition 15 (Comply with Global Maintenance). Given a global maintenance obligation
Q = O0™(l) and a trace 0, 0 is compliant with ©, written 0 + O, if and only if:
Vo €0, it is true that o =1

The obligation presented in Example can be expressed as a global maintenance
obligation whose condition is represented by “having the proper credentials”.
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Process Compliance

The procedure of proving whether a process is compliant with a regulatory framework can
return different answers. A process is said to be fully compliant if every trace of the process
is compliant with the regulatory framework. The regulatory framework is at the moment
composed of a single obligation, hence complying with the obligation is equivalent to comply
with the framework[ﬂ A process is partially compliant if there exists a trace compliant with
the obligation. If none of the traces of a process are compliant with the obligation, then
the process is not compliant.

Definition 16 (Process Compliance). Given a process (P,ann) and a global obligation
O = OYl), the compliance of (P,ann) with respect to O is determined as follows:

e Full compliance (P,ann) H © if and only if
V8 € O[(P,ann)],0 F O.

e Partial compliance (P,ann) F © if and only if
30 € ©[(P,ann)],0 + O.

e Not compliant (P,ann) t/ O if and only if
—30 € ©[(P,ann)],0 - O.

According to Definition [l the minimal process block is composed of a single task.
Thus, because a process contains at least a process block (Definition [2) and following from
Definition [5], each process model contains at least one execution, hence at least one trace.
Since the set of traces of a process model is never empty, it follows from the definition just
provided that full compliance implies partial compliance. This means that if a process is
fully compliant with an obligation, then such process is also partially compliant with the
same obligation. These relations among the different compliance results are represented in
Fig. 3.5 using Venn Diagrams.

3.3 Algorithms and Complexity

In this last part of the chapter I show that the problem COfga, namely the problem of
proving the compliance of a process with respect to a regulatory framework composed
of a single global obligation which does not allow compensations and whose obligation is
composed of a single literal, can be solved in polynomial time with respect to the size of
the problem.

To do so I present here the algorithms to prove the compliance of a process with respect
to a global obligation. Two different algorithms are designed to deal with the two different

3Later on I will introduce regulative frameworks composed of a set of obligations. In those cases being
compliant with the framework is equivalent to being compliant with the set.
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Figure 3.5: Relations between the compliance results (Definition

types of obligations. For each of the two algorithms I show their correctness by proving
that they are both sound and complete, and I furthermore show that their complexity is in
time polynomial with respect to the size of the input, which is composed of the process
model and the global obligation.

3.3.1 Algorithm for Global Achievement Obligations

The algorithms I am going to present in this part of the chapter use procedures to both
keep their length under control and to decouple the different functions. This decoupling
allows a better understanding of the purpose of these procedures and allows them to be
reused in other algorithms when necessary.

The algorithm for achievement obligations uses the procedure Task Removal. This
procedure is used to remove a set of tasks from a process block. By doing so the executions
that contain these tasks are no longer allowed. In some cases by removing one or more
tasks from a block it is possible that no executions remain possible. If this is the case the
function does not return a process block but L. Notice that L is not a process block but
the process uses it as a pseudo-block, similarly as start and end are used as pseudo-tasks.

Procedure 1 (Task Removal). Given a process block B and a set of tasks T = {t|t €
V(B) and t is a task}, task removal R(B,T) returns either a new process block B' or L as
follows:

1: if B is a task t then

2: ifteT then

3: return _L
4:  else
5: return B
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6: endif

7: end if

8: if B=SEQ(By,...,By) then

9:  if 3B;,1 <i <k such that R(B;,T) = L then
10: return L
11:  else

12: return SEQ(R(Bi1,T),...,R(Bx,T))
13:  end if

14: end if

15: if B = XOR(By,...,B) then
16:  ifVB;,1 <i <k, R(B;,T)= 1 then

17: return L

18:  else

19: if A'B;, 1 < i <k such that R(B;,T) # L then

20: return R(B;,T)

21: else

22: return XOR(R(Bp,,,T),...,R(Bm,,T))
where By, € {By,..., B} and R(By,,,T) # L

23: end if

24:  end if

25: end if

26: if B= AND(B,...,By) then
27 4f AB;,1 < i < k such that R(B;,T) = L then

28: return L

29: else

30: return AND(R(B1,T),...,R(Bk,T))
31:  end if

32: end if

Depending on the type of process block being processed by the procedure, the procedure
analyses it differently and returns either the block itself, part of it or L. The result
depends of the result of some recursive calls of the procedure itself on some of the subblocks
composing the block being analysed. The decision is driven by the presence of subblocks
returning L. In the basic case, when the procedure is applied to a block composed of a
single task, task removal returns L if and only if the task belongs to the set T.

Lemma 1 (Task Removal). Given a process block B and a set T of tasks {t|t € V(B) and t is a task}:

1. IfVe € X(B),3t € € such that t € T, then R(B,T) = L

2. If 3e € ¥(B), 3t € € such thatt € T, then R(B,T) = B’ and Ve’ € X(B'),—~3t' € ¢
such that t' € T
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3. If 3e € ¥(B),~3t € € such that t € T, then Ve € ¥(B),—3t € ¢,3¢ € B(R(B,T))
such that e = €

The lemma just introduced highlights the properties of the process block returned by
the procedure task removal. These properties describe that the resulting process block
allows exactly the serialisations of the original block that do not contain tasks belonging to
the set 7. In case all the serialisations of the initial block contain at least a task belonging
to T, then the procedure returns 1.

The following example illustrates how the procedure is used to remove a set of tasks
from a process model. The example illustrates two cases resulting from processing the main
process block of the process. The first shows a case where the procedure returns a process
block containing a subset of the serialisations that were possible in the main process block
and the second a case where the result is L.

Example 16 (Applying Procedure . Let P be the process represented in Fig.
whose main process block is B = SEQ(AND(XOR(t1,t2),t3),ts) and let T = {ta}. The
result of applying the procedure task removal R(B,T) is the following process block: B’ =
SEQ(AND(XOR(t1),t3),t4). In the result we can drop the XOR block identifier since it
contains only the task ti, hence its behaviour is the same as the one of a single task.
Therefore we can rewrite the block as B' = SEQ(AND(t1,t3),t4).

The rewritten version of B’ is shown in Fig. [3.6. The available executions of the
resulting process block are only (t1,ts,ts) and (ts,t1,ts), which are exactly the executions of
B that are not containing ta as we can see from Table|[3.1]

Figure 3.6: Resulting Process of applying Task Removal (Example

If we consider the set of tasks T = {t4} to be removed from the process block B using
task removal. The result returned by the procedure is L. As we can see from Table
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ty belongs to each of the possible executions, hence if we remove it from the process block,
no executions are possible anymore. The procedure recognises this by substituting L to
ta, obtaining the process block SEQ(AND(XOR(t1,t2),t3), L), which in turn results in L
according to line 9 of the algorithm describing the procedure.

Algorithm 1. Given an annotated process (P,ann) and a global achievement obligation
O%(l), this algorithm returns whether (P, ann) is compliant with O*(1).

1: Suppose P = start B end

2: if Vt in B,l &€ ann(t) then

3 return (P,ann) I/ O%1)

4: else

5. if R(B,{t|tis atask in B andl € ann(t)}) = L then
6: return (P,ann) F O%1)

7. else

8: return (P,ann) F 0%(1)

9: endif
10: end if

Following from the semantics in Definition an achievement obligation O%(l) is
satisfied when a task containing [ in its annotation is executed. Therefore if an annotated
process does not contain tasks having [ in its annotation, then none of its possible traces
is able to comply with obligation, hence the process is not compliant with respect to that
obligation. However if the process contains at least a task having [ in its annotation, then
Algorithm [T] can decide whether the process is fully or partially compliant through the use
of the procedure task removal. The procedure returns either a process block containing a
subset of the original serialisations of the main process block of P or | depending on the
set of tasks used by the procedure. The algorithm feeds the procedure with a set of tasks
containing every task that has [ in its annotation. Therefore if the procedure returns L it
means that every execution of P contains at least one of those tasks, hence the process is
fully compliant. Otherwise it means that some of the possible executions of the process do
not contain these tasks and the algorithm classifies the process as partially compliant since
some of its traces are compliant and some are not.

Notice that Algorithm 1 classifies a process to be partially compliant with a global
achievement obligation in the case where the process is not also fully compliant with the
same obligation. I opted for this choice in order to distinguish when a process is exactly
partially compliant from when a process is partially compliant because of being fully
compliant as it follows from Definition [L6| and can be clearly seen in Figure 3.5

Example 17 (Applying Algorithm . Let (P,ann) be the process shown in Fig. .
Algorithm 1 is capable of proving whether the process is compliant with a single atomic
global achievement obligation. Lets assume now that we want to prove whether (P,ann) is
compliant with O%(e). We can see that the condition at line 2 of the algorithm is satisfied
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since none of the tasks of P contain the literal e in their annotations. Thus line 3 of the
algorithm is executed and the result (P,ann) t/ O%e) is returned. We can immediately see
that the returned solution is correct since the process has no possible execution capable to
achieve the condition of the obligation.

Lets assume now that we want to prove whether (P,ann) is compliant with O*(a). In
this case Algorithm 1 returns full compliance, (P,ann) H O%@). Because ty is the only
task containing @ in its annotation, the procedure Task Removal applied at line 5 is the
following: R(E,{t4}). The result of the procedure is L because there are no executions
of B which do not contain ty as can be seen in Table |3.1. Thus the algorithm returns
(P,ann) ' O%a) according to line 6.

Finally, assuming that we want to prove the compliance of (P,ann) with respect to the
achievement obligation O%(a). In the case the conditions at lines 2 and 5 of the algorithm are
not satisfied: the condition at line 2 is not satisfied because t1 contains a in its annotation;
the condition at line 5 is also not satisfied because P contains some executions without t1
as can be seen in Table[3.1], hence applying the procedure task removal does not return L.
Thus line 8 of the algorithm is executed and the returned result is (P,ann) F O%a).

To show that solving this particular sub-class of proving regulatory compliance is in P,
I have to show that the complexity of Algorithm 1 is in time polynomial with respect to the
size of the input, which consists of the process model and the atomic global achievement
obligation.

Complexity of Algorithm 1

The block structure of a process can be represented by a tree, which I will refer to as process
tree. The root of a process tree consists of the process’ main block. The children nodes of a
node in the process tree correspond to the subblocks of the block represented by the parent
node. Finally the leaves of a process tree represent the tasks of the process.

Notice that the complexity of the Algorithm 1 is dominated by the complexity of the
procedure task removal. Each call of the procedure task removal can be associated to a
node in the process tree. By the recursive definition of the procedure task removal, the
time required for combining the results of the calls for the subblocks is at most proportional
to the number of children subblocks. Since the complexity of the calls at the level of the
leaf nodes of the process tree is O(1), the overall complexity of task removal is at most
proportional to the size of the process tree, which is linear in the size of the process. Overall
I conclude that the complexity of Algorithm 1 is at most linear in the size of the process
(including the annotations).

3.3.2 Algorithm for Global Maintenance Obligations

The algorithm for proving whether a process is compliant with an atomic global maintenance
obligation uses some additional procedure besides task removal already introduced and
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used by the algorithm to prove compliance with an achievement obligation.

Therefore before introducing the algorithm itself I am introducing the various procedures
used by it. These procedures are First, used to identify which are the tasks that can be
executed as first ones in at least one of the possible executions, and Task Rooting, that
allows to consider subsets of the possible executions depending on the first task being
executed

I first introduce the procedure First. The objective of this procedure is to identify which
are the tasks that have the possibility of being executed as first ones in one of the possible
executions of the process.

Procedure 2 (First). Given a process block B, First(B) returns a set of tasks as fol-

lows:

:if E =1t then
return {t}

end if

if E =SEQ(By,...,By) then
return First(B;)

end if

if E = AND(Bu, ..., By) then
return |JI_, First(B;)

end if

if E = XOR(By,...,By) then
return Ule First(B;)

: end if

~
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Since a global maintenance obligation’s activation spans for the whole length of a trace,
identifying the first tasks being executed becomes relevant because it must already update
the state in such a way to comply with the condition of the obligation. Otherwise the trace
is surely not compliant with the obligation.

Lemma 2 (First). Let the function f(€) return the first task of the sequence corresponding
to the serialisation €. The set returned by the procedure First Tasks fulfils the following
condition: t € First(B) if and only if 3e € X(B)|f(e) = t.

Example 18 (Applying Procedure . Let P be the process in Fig. and B =
SEQ(AND(XOR(t1,t2),t3),ts) be the main process block contained in P.

The procedure in its first step, since B is a sequence block, recursively recalls itself with
the following input: AND(XOR(t1,t2),t3). In the second step the process block is an and
block, hence the block is split in XOR(t1,t2) and ts. The procedure is then called again on
both subblocks and since t3 is a single task we can consider it as part of the final result. In
the third step we consider the block XOR(t1,t2), which in the same way as an and block is
split. The resulting subblocks, in this case two tasks are processed by the procedure again
and become part of the solution which for B is {t1,to,t3}.
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Therefore applying the procedure First to B returns the set {t1,t2,t3} which, as can be
seen from Table[3.1], contains all the tasks that appear as the first one in the executions of
B.

The second procedure used by the algorithm is Task Rooting. This procedure, given
a block B and a task t € First(B), identifies the subset of serialisations in ¥(B) which
have t as the first task being executed by returning a modified version of the block B
whose serialisations are those starting with ¢t. The process block returned by procedure
task rooting does not always contain every execution from the original block starting with
t. However I show with the help of Lemma [3| that the approximation does not affect the
result of checking compliance for maintenance obligations.

Procedure 3 (Task Rooting). Given a process block B and a task t € First(B), task rooting
F(B,t) returns a new process block as follows:

1: if B=1 then

2:  return B

3: end if

4: if B=SEQ(Bj,...,B) then

5:  return SEQ(F(Bi,t),Bo,...,Bx)

6: end if

7: if B =XOR(B4y,...,By) then

8 return F(B,,t) where B, € {B1,...,By} andt € B,

9: end if

10: if B = AND(By, ..., By) then
11:  if k=2 then

12: return SEQ(F(B,,t), By), where {p,q} = {1,2} and t € B,
13:  end if

14: return SEQ(F(B,,t),AND(B;,,..., B, ,)), where {i1,...,ix—1,p} = {1,...,k}

and t € B,

15: end if

Lemma 3 (Task Rooting). Let B be a process block, t be a task such that t € First(B),
Y:(B) be the set of executions of B that start with t and ©(B,ann) be the set of traces
associated to X¢(B) given an annotation function ann. The procedure task rooting, F(B,t),
1s subject to the following properties:

1. X(F(B,t)) C %(B)
2. Ve € 3(B), 3¢ € X(F(B,t)) such that:

(a) f(€) = f(e) =t
(b) The task set of € = the task set of €
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The term “task set” used in Lemma [3] refers to set of tasks appearing in an execution.
Thus the condition 2.(b) of the lemma states that the two executions execute the same
tasks but the execution order may be different.

Lemma 4 (Task Rooting Approximation). Let €1 and €3 be two executions containing
the same task set and f(e1) = f(e2). Let 61 and 09 be the traces corresponding to the two
executions. Given a maintenance obligation O™(1), 61 = O™ (1) iff 62 = O™(1).

The intuition behind this lemma follows from the properties expressed in Lemma
These properties state that even if the approximation does not consider some of the possible
executions, for each possible execution, there exists one execution among the approximated
set that executes exactly the same set of tasks. Therefore, assuming that we fix with task
rooting a starting task that makes the condition of a global maintenance obligation true,
then the execution order of the other tasks is not relevant since if one would invalid the
condition it does not matter when it is executed.

Example 19 (Applying Procedure . Let P be the process in Fig. and B =
SEQ(AND(XOR(t1,t2),t3),t4) be its main process block. Considering the set of tasks
{t1,ta,t3} resulting from Example 11 I show how the procedure Task Rooting defines
the resulting process block for the two following cases: F(B,t1) and F(B,t3).

For F(B,t1), since B is a sequence, then line 5 is executed returning the following:
SEQ(F'(AND(XOR(t1,t2),t3),t1),ts). I underline t1 to mark it as part of the input of F
and distinguish it from the tasks of B. The block given in input to F' is now an and block,
hence the procedure returns SEQ(F (XOR(t1,t2),t1),t3) because t1 € XOR(t1,t2). At this
step the block given in input to F is an zor block, hence the procedure returns F(ti,t1),
which returns t1 since the input is a block composed of a single task. The result of the
recursive calls is the following process block: SEQ(ty,ts,ts), which is shown as a process in

Fig. 3.7

O—C ) — =)@

Figure 3.7: Resulting Process of applying Task Rooting with ¢; (Example

For F(B,t3) the first step is the same as for F(B,t1), the main difference appears in
the second step where the procedure returns SEQ(F(ts,t3), XOR(t1,t2)). Since F takes now
as input a process block containing a single task, then t3 is returned. The result for F/(B,t3)
is the process block: SEQ(ts, XOR(t1,t2),t4), shown as a process in Fig. .
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Figure 3.8: Resulting Process of applying Task Rooting with t3 (Example

Having introduced the auxiliary procedures first and task rooting, I now introduce
Algorithm which is capable of proving whether a process is fully, partially or not
compliant with an atomic global maintenance obligation.

Algorithm 2. Given a process (P,ann) and a global maintenance obligation O™(l), this
algorithm returns whether (P,ann) is compliant with O™ (1).

1: Suppose P = start B end
Tr = First(B)
T; = {t|t is a task in B and | € ann(t)}
if Vt in Tp,l € ann(t) and T; =0 then
return (P,ann) F O™(I)
else
for each t € Tr such that | € ann(t) do
if R(F'(B,t),T;) # L then
return (P,ann) F O™(l)
end if
end for each
return (P,ann) I/ O™(l)
. end if

~N N N

Algorithm [2] first identifies the set of tasks that can appear at first in the possible
executions of the process by using the procedure first. The algorithm later identifies, using
the procedure task rooting, which executions have the possibility to be compliant by starting
with a task having [ annotated. Finally the algorithm analyses these executions using the
procedure task removal to verify whether existing tasks with [ annotated would affect the
compliance of these executions.

Notice that also for this algorithm, as for Algorithm it returns (P,ann) F O™(l) only
in the case the process is partially compliant with the obligation but not fully compliant
with it.
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Example 20 (Applying Algorithm . Let P be the process shown in Fig. . Lets prove
the compliance of P with respect to the maintenance obligation O™ (c) using Algorithm 2.
At line 2 Tp = {t1,t2,t3} (as explained in Example @) At line 3 T; = 0 because none of
the tasks of P have annotated ¢. The condition at line 4 is not satisfied because t1 € Tp
does not contain c in its annotation. The for each cycle at line 7 is executed for to and
t3. However because T; is empty, then line 8 is always satisfied and the algorithm returns
(P,ann) F O™(c). The result can be verified from Table where it is possible to see
that every trace contains c in its states (excluding the states associated to the pseudo tasks),
except for the first one.

Differently, if we try to prove the compliance of P with the maintenance obligation
O™ (a), then the set at line 2 is still Tp = {t1,t2,t3} because the structure of the process
analysed is the same. However in this case we have that T; = {t4} because ann(ty) = {—a}.
Line 4 is again not satisfied in this case, because both T; is not empty and t2,t3 € Tp do not
contain a in their annotation. The for each cycle at line 7 is executed only for t1. However,
because ty, having @ in its annotation, belongs to each execution of P and belongs to T;, it
follows that R(F(B,t1),{ts}) = L, hence line 9 is never executed and the algorithm reaches
line 12 returning (P,ann) t/ O™(a). Again the result can be verified from Table 3.1, where
it is possible to see that there is no trace where a holds in each of its states.

Complexity of Algorithm 2

The procedures First, R and F' can be computed in time O(n) where n is the number of
tasks in B. This has already been shown for task removal R in the complexity proof for
Algorithm 1; the same can be shown for First and F' using a similar argumentation based
on the process tree (see complexity proof of Algorithm 1). Thus the call to R on line 8 can
also be computed in time O(n). Assuming each annotation has size O(1) we then see that
the overall complexity is O(n?).

3.3.3 Applying the Algorithms

In this chapter I propose two algorithms capable of verifying in polynomial time whether an
annotated structured process is compliant with a global obligation. Despite the restricting
characteristics of this kind of obligation, we show in this section how some of the regulations
used in real world scenarios can be modelled as global obligations.

In particular I show how two regulations extracted from the Telecommunications Con-
sumer Protections Coddﬂ of 2012 can be translated into global obligations. The aim of
the regulations contained in this code is to ensure good service and fair outcomes for all
consumers of telecommunications products in Australia.

4Telecommunications Consumer Protections Code: http://www.acma.gov.au/Industry/Telco/
Reconnecting-the-customer/TCP-code/the-tcp-code-telecommunications-consumer-protections-code-acma


http://www.acma.gov.au/Industry/Telco/Reconnecting-the-customer/TCP-code/the-tcp-code-telecommunications-consumer-protections-code-acma
http://www.acma.gov.au/Industry/Telco/Reconnecting-the-customer/TCP-code/the-tcp-code-telecommunications-consumer-protections-code-acma

3.3. ALGORITHMS AND COMPLEXITY 99

3.3.4 Global Achievement Obligation

We consider now a regulation extracted from the Telecommunications Consumer Protections
Code describing how complaints should be handled. We do not quote the entire regulation
but only the fragment we focus on.

8.1 Provision of a Complaint handling process that is accessible, trans-
parent and free of charge Suppliers must provide Consumers with a Com-
plaint handling process that:

(a) is accessible, transparent and easily understood by Consumers and former
Customers;

(b) is free of charge, other than as expressly provided for in this chapter; and

(c) provides for the courteous, timely and fair Resolution of Complaints.

8.1.1 A Supplier must take the following actions to enable this outcome:

[..]

(d) Monitor and report: formally monitor and report

(i) at least annually to the Chief Executive Officer (or equivalent) re-
garding their compliance with their Complaint handling process and
opportunities for improvement; and

(i) ...

In this case let me focus on clause (d).(i) of 8.1.1. This clause prescribes the monitoring
of the complaint handling procedures and reporting to the executive officer at least once
a year. This clause can be seen as a global achievement obligation where the condition,
reporting to the executive officer, has to be achieved at least once. We can formally write
the global obligation as O%(rep) where rep represents a report being sent to the executive
officer, again assuming that the execution of the process spans the time of a year..

Let (P, ann) be an annotated structured process model describing the complaint handling
monitoring process over a year. We can use the global achievement obligation O%(rep)
and verify whether (P, ann) is compliant with it. To do so, according to the semantics of
achievement obligations, Definition [14] we require that an execution € € X(P) executes
a task of P whose annotation contains rep in order to fulfil the obligation. Moreover,
given the assumption that the process model represents the complaint handling procedure
spanning a year, we are verifying the compliance with respect to the regulation in clause
(d).(7) of 8.1.1.

Algorithm 1 makes use of Procedure 1 to verify whether the process is fully, partially or
not compliant with the global achievement obligation. The procedure removes from the
process model any task ¢ where rep € ann(t). In other terms it removes the tasks that would
fulfil the obligation O%(rep). The algorithm then verifies whether the resulting process
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model still contains some valid executions, that it executions not including any of the tasks
removed, which in turn would not fulfil the obligation. Therefore the algorithm is able to
classify the process as fully compliant if no valid executions are available, not compliant if
no tasks were removed by Procedure 1, and partially compliant otherwise, namely in the
case where some task were removed but there were still some possible executions of P not
containing them.

3.3.5 Global Maintenance Obligation

We consider now a fragment of another regulation tailored to deal with the complaint
handling process. The fragment considered here aims at ensuring that the customers
complaints are handled properly and efficiently.

8.4 Resourcing of Complaint handling processes Suppliers must ensure
that their Complaint handling processes are resourced to ensure that they will
meet their obligations under this Code.

8.4.1 A Supplier must take the following actions to enable this outcome:

[..]

(c) Skilled staff: ensure staff with Complaints management responsibilities are
trained and supervised, have the authority to Resolve Complaints and have
the necessary interpersonal and communication skills, to ensure that the
Supplier’s obligations under this chapter are met;

@) ...

In this case, let me focus on clause (c) of 8.4.1 which requires that the complaints are
handled by competent staff. This requirement can be seen as a maintenance obligation
stating that complaints must not be handled by unskilled personnel. This global obligation
can be written as O™ (skill) where skill represents that a skilled employee handles the
complaint being processed.

Let (P, ann) be an annotated structured process model describing the procedures adopted
by a company to handle complaints. Our framework can verify whether the process is
compliant with the global maintenance obligation O™ (skill). According to the semantics of
a maintenance obligation described in Definition a trace of the annotated process model
(P, ann) must contain the proposition skill in each of the states composing it in order to
fulfil the obligation. This requirement captures the fact that a complaint must be handled
by a skilled worker as requested by the regulation.

Algorithm 2 can be used to verify whether the business process model (P,ann) is
compliant with the global maintenance obligation O™ (skill) and to which extent. The
algorithm uses some auxiliary procedures. The first being used is Procedure 2 which
identifies what are the tasks that can appear as first task in the possible serialisations of P.
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Since the obligation requires that each state of a trace resulting from the model contains
the condition, in this case skill, and because we assume that the state describing the state
of a process before it starts is always the empty state, it is then necessary that the first task
being executed contains skill for a trace to have a possibility to fulfil the obligation. The
algorithm verifies at this stage which of the tasks returned by Procedure 2 are annotated
with skill, if each of these tasks is annotated with skill and tasks in (P,ann) annotated
with —skill do not exist, then the algorithm returns full compliance since it is guaranteed
that every state of every trace of the model contains the required proposition to fulfil the
obligation.

However, if this is not the case, then the algorithm needs to verify whether for each
trace where skill holds in the first state, skill is not removed in the following states. This
analysis is done by firstly applying Procedure 3 which considers only the executions starting
with one of the tasks identified in the previous step, in this case one of the initial tasks
annotated by the proposition skill. At this stage Procedure 1 is applied and every task
containing —skill is removed from the model. Then the algorithm verifies whether there
possible executions after the removal of the task still exist. If this is the case, then the
algorithm returns partial compliance since there exists at least a trace where skill holds in
each of its states. Otherwise if no execution is available then the algorithm analyses a new
configuration of the model, where another task whose annotation contains skill is forced to
appear as first in every execution.

Finally the algorithm returns non compliance in case everything else failed, meaning
that none of the possible traces of (P, ann) contain skill in each of their states.

3.4 Summary

In this chapter I firstly introduced the syntax and the semantics of the annotated business
process models used in the thesis to represent the processes. These models are represented
using a simplified version of Business Process Model and Notation 2.0 and follow the
construction rules of structured workflow models, which means that the blocks composing
these models must be properly nested.

In the second part of this chapter I introduce the regulatory framework, which along
with the process model describes the basic problem of proving regulatory compliance. This
problem consists in proving the compliance of process models with respect to a single atomic
global obligation whose condition is expressed using a literal.

In the last part of the chapter I introduce two algorithms, one for each type of global
obligation: achievement and maintenance, which are capable of proving the compliance of
a process in the context of the basic problem in time polynomial with respect to the size
of the problem. Therefore I can now claim that the problem C’Ofga is tractable, meaning
that the computational complexity of the problem does not risk to explode by increasing
the size of it. Finally in this last part I also show some real world scenarios where global
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obligations are actually present and I show how the algorithms introduced can be used to
verify the compliance of processes with respect to these obligations.



Chapter 4

Difficulty Vectors and Conflicting
Obligations

In this chapter I discuss in more details the features of the regulatory framework that
allows to define the different sub-classes of the problem of proving regulatory compliance.
Recalling these features, they regulate the amount of obligations that can be contained in
the regulatory framework, whether the obligations are conditionally activated and whether
compensations are allowed in case of violations. I formally describe the difficult options of
the difficulty vectors in the first part of this chapter.

By introducing the option of using multiple obligations in the regulatory framework, it
becomes important to avoid having conflicting obligations belonging to the same framework.
With conflicting obligations I refer to pairs of obligations where complying with one of
them necessarily implies violating the other one. Thus a regulatory framework containing
conflicting obligations cannot be complied with. Therefore I am discussing in the second
part of this chapter about how to identify whether two obligations are in conflict. This is
done by specifying the sufficient and necessary conditions, which can be then used while
designing a regulatory framework to avoid conflicting obligations. The second part of the
present chapter is based on an existing work coauthored with Guido Governatori and Pierre
Kelsen [23].

4.1 Difficulty Vectors

The first part of this chapter discusses the difficulty vectors by introducing their difficult
options. These features can be used to identify non basic problems by extending the basic
problem introduced in Chapter

In Figure 4.1| are shown the problems reachable by employing exactly one of the difficult
features. These problems are referred to as C1, where the digit refers to the amount of
difficult features used. Recalling the difficulty vectors, these are: global-local, single-multiple
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Multiple
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Figure 4.1: The three Non-Basic Compliance Problems

and atomic-compensable which, starting from the basic problem COl_ga, respectively lead to
the sub problems C1y;,, C1,, and C1y,.

I describe in this section the semantics of the different regulatory frameworks obtainable
by increasing the complexity of the obligations navigating exactly one of the difficulty
vectors at a time. More complex frameworks can be obtained by combining multiple difficult

features and will be discussed and analysed in the following chapters of this thesis.

4.1.1 Fulfilling Local Obligations

The first difficulty vector I consider is the global-local vector. By starting from the sub-class
C’Ol_ga of the problem and moving from global obligations to local obligations we obtain the
sub-class C'1;, of the problem by introducing two elements into the obligations, defining
the activation periods of each obligation. This differs from global obligations, where the
activation period is given and equal for each global obligation, in other words the activation
period of a global obligation always spans for the entirety of each execution. In local
obligations the activation periods over an execution are a subset of disjoint subsequences
of that execution. These subsequences are identified by the two new elements introduced:
the lifeline defining when an activation period of a local obligation begins and the deadline
defining when an activation period terminates.

Definition 17 (Local Obligation). A local obligation © is a structure (t,c,l,d), where t €
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{s,a,m} and represents the type of the obligation. The elements c,l and d are propositional
literals in L. c is the content of the obligation, l is the trigger (lifeline) of the obligation
and d is the deadline of the obligation.

I use the notation © = O%c,1,d) to represent a local obligation.

A local obligations can be of three types, two of these types, achievement and mainte-
nance, are the same types used by global obligations. The additional type introduced is
the standard, which aims at replicating the semantics of obligations expressed in standard
deontic logic. This last type requires that the condition of a local obligation is satisfied in
exactly one state, which corresponds to the duration of its activation periods.

Definition 18 (Deadline). Let O%(c,l,d) be a local obligation and 0 a trace where oepq is
the last state of 0. Regardless of the literals holding in oepd, Oend = d always.

This definition presents an exception concerning the fulfilling of deadlines. The exception
consists in that the last state of a trace always fulfils a deadline independently from which
literals hold in the state. This exception is necessary since in some cases to evaluate an
obligation its activation period needs to terminate. These cases are the following: evaluating
when an achievement obligation is violated and when a maintenance obligation is fulfilled.

Standard Obligations

Obligations in standard deontic logic are evaluated in a single state. This semantics can be
mirrored by forcing the activation periods to hold for exactly one state. I refer to this type
of local obligations as standard, since their semantics has been mirrored from the semantics
of standard deontic logic obligations.

A standard obligation is represented as follows: O%(c,l, T). I use the tautology T to
represent the deadline, hence the deadline is satisfied independently on the state, making
this type of obligation always active for exactly one state.

Definition 19 (Comply with Standard). Given a standard obligation © = O*(c,l, T) and a
trace 0, 6 is compliant with O, written 6 + O, if and only if: Vo, € 0, if 0; =1, then o; E ¢

Standard obligations can be used to represent obligations in the real world that must
be fulfilled as soon as they are triggered. The following example illustrates a case where
such type of obligation can be used to describe an existing regulation.

Example 21 (Standard Obligation). Privacy regulations aim at protecting personal infor-
mation by forbidding its collection without consent. Any collection of personal information
without consent is considered illegal and whenever personal information is collected illegally,
then such information must be destroyed immediately.

The last part of the example: “whenever personal information is collected illegally, then
such information must be destroyed immediately” can be represented as an obligation of
type standard where the triggering condition consists of the illegal collection, the fulfilling
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condition consists of the destruction of such information, which should be done immediately,
in other words the deadline is set as now.

Non-Standard Obligations

The semantics of the two remaining types of local obligations is defined similarly as the
respective global obligations introduced in Section [3.:2] A similar semantics has already
been introduced by Governatori et al. [34].

Example 22 (Achievement Obligation). A customer going to a bar to get a coffee has
the obligation to pay for it. This obligation can be considered as a local obligation of type
achievement with the following elements: the lifeline is constituted by ordering the coffee,
the deadline by leaving the bar and the fulfilling condition by paying for the coffee.

As it has been pointed out by Example a local achievement obligation requires that
at least a state included in each of its activation periods satisfies the fulfilment condition.

Definition 20 (Comply with Local Achievement). Given a local achievement obligation
Q = 0%c,l,d) and a trace 0, 0 is compliant with O, written § + O, if and only
if: Yo; € 0 such that o; |= [ then 3o; € 0 such that o = c and 0 = o4, and =30, €
6 such that oy, = d and 0; = oy, < 0

Example 23 (Maintenance Obligation). While using public transportation, like busses or
trains, it is obligatory to always have with yourself a valid ticket. This kind of obligation
can be modelled as a local maintenance obligation with the following elements: the lifeline
is constituted by getting on a public transport, the deadline by getting out and the fulfilment
condition by having a valid ticket.

Similarly to an achievement obligation, a maintenance obligation also requires to verify
the condition between the lifeline and the deadline. However as we can see from Example
23] each state belonging to the activation periods, defined by the lifeline and the deadline,
needs to satisfy the obligations’ fulfilment condition.

Definition 21 (Comply with Local Maintenance). Given a local maintenance obligation
Q = 0"{c,l,d) and a trace 0, 0 is compliant with ©, written 0 + Q, if and only if:

Vo; € 6 such that o; = 1 then 3oy, € 6 such that oy, = d and VYo, € 6 such that o; <
gj 2op:ojEcC

Activation Periods

The activation period of a local obligation identifies the subsequences of a trace where the
obligation needs to be fulfilled. In other words, given an activation period for an obligation
of type achievement, this obligation is satisfied by an activation period if there exists a
state in such period that entails the fulfilment condition. Similarly, given an activation
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period for an obligation of type maintenance, this obligation is satisfied if all the states
belonging to the period entail the fulfilment condition.

An activation period is generally identified by a subtrace where the first state entails the
lifeline and the last one entails the deadline. However, an activation period can be terminated
prematurely. For obligations of type achievement, the activation period terminates when
the obligation is fulfilled in that period, this means that an activation period for this type
of obligation can terminate either when the deadline is reached or when the obligation
is fulfilled by finding a state entailing the fulfilment condition. For obligations of type
maintenance, their activation periods can prematurely terminate in case the obligation
is violated, namely when a state belonging to the activation period does not entail the
fulfilment condition.

The activation periods of a local obligation can be represented by using a finite state
automaton. Fig. (a) shows the automaton modelling the activation period of an
achievement obligation. Fig. [4.2/(b) represents the automaton modelling the activation
period of a maintenance obligation. It can be noticed that in both cases, an obligation
becomes active only if is inactive and a state triggering the lifeline is found. Finding such
state while the obligation is already active has no impact on the activation period of the
obligation. Similarly, when an obligation is inactive, states triggering the deadline or the
condition of an obligation do not influence its state.

The activation period always terminates when a state fulfilling the deadline is found.
Moreover for achievement obligations, the activation period can terminate if a state fulfilling
the condition is found. Differently for a maintenance obligation, an active obligation
becomes not fulfilled and inactive when a state not fulfilling the condition is found.

The two automata are consistent with the semantics of Definitions 0] and 21l Notice
that for the sake of clarity I avoid representing explicitly in the figure the transitions which
would not have changed the state of the automaton, transitions starting and ending in the
same state. For instance a state o of a trace, where o |= ¢, reading o does not change
the state of the automaton if the automaton is in the Active state. Also notice that the
€ in the automata mean that from the states Fulfilled and Not Fulfilled, the state of the
automata becomes Inactive without reading and consuming a state of a trace.

Given a trace and an obligation, the automaton in Fig. [£.2] can be used to determine
whether an obligation is active or inactive with respect to the states of the given trace. For
this reason I avoid to represent any final state in the automaton.

Notice that, within a single activation period, local and global obligation behave the
same. Obligations of the type achievement need to be fulfilled in at least one state belonging
to the activation period, while obligations of type maintenance need to be fulfilled in all
states belonging to the activation period.

When a trace does not activate a local obligation in any of its states, then such trace is
considered to fulfil that obligation.

Lemma 5. Given a 6 and a local obligation © = O c,l,d). If =3o € 6 such that o =1,
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Figure 4.2: Activation Periods using Finite State Automaton

then 0 F O.

Due to the possibility of having either global and local obligations belonging to a set
of obligations, a way of abstracting from having to determine the activation periods of a
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local obligation using the lifeline and the deadline is by using the function Force which
determines, given a state of a trace, the set of obligations holding in that state.

Definition 22 (Obligation in force). Given a state o composed of a taskt € T and a set
of literals L € L. I define a function

Force : T x 25— 2@

where © is a set of obligations.

Given a trace, this function returns for each state belonging to the trace the set of
obligations which include that state in one of their activation periods. Due to the possibility
that a state does belong to none of the activation periods of the obligations.

Using the function Force I redefine the semantics of both global (Definitions and
and local (Definitions and non-standard obligations. The new semantics is
obtained by removing the elements defining the lifeline and the deadline from the structures
representing the obligations, since the activation periods of an obligation can be now given
by the function Force.

Definition 23 (Comply with Achievement). Given an achievement obligation O%(c) and a
trace 6, 6 is compliant with O%{c) if and only if:

V(0i,...,on) € 8 such that Vo, € (04,...,05),0%c) € Force(oj) and
(0iy...,0n) is maximal , 3oy € (04, ...,0p) such that oy |= c.

Definition 24 (Comply with Maintenance). Given a maintenance obligation O™ (c) and a
trace 6, 6 is compliant with O™ (c) if and only if:
Vo, € 0 such that O™ (c) € Force(o;),0; |= c.

Assuming that the activation periods of an obligation in a trace identified by the
function Force are the same as the ones that would be identified by checking the lifelines
and deadlines, then the newly defined semantics are equivalent to the original ones. The
advantage of adopting the new semantics relies in the fact that the representation is less
cluttered by avoiding to explicitly represent the lifelines and deadlines within the obligations.
I define now another function, Interval, which by relying on Force is able to identify the
activation periods of an obligation in a given trace.

Definition 25 (Interval). Given a trace 8, let 0, be the complete set of the subintervals of
0. Given an obligation O, the partial function Interval is defined as follows:

Interval : 29 % 8 — 2% such that Vo € Interval(Q,0),Vo € ¢, Q € Force(o)

The function Force returns all the intervals of a trace in which an obligation is active.
Force is defined as a partial function since it can be the case that an obligation is never
activated in a trace, hence the set of intervals determining the activation period would be
represented by the empty set.
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Relations with Standard Obligations

I show now that standard obligations are a particular case of both achievement and
maintenance obligations. If we constrain the activation period of an achievement obligation
to a single state, then such state must satisfy the condition. The same applies to maintenance
obligations, if the activation period is limited to only one state, then such state has to fulfil
the condition. Therefore if the activation is limited to a single state, then the semantics
of both achievement and maintenance obligations collapse in the semantics of standard
obligations.

4.1.2 Fulfilling Multiple Obligations

The second difficulty vector being considered is the single-multiple vector. By moving
forward on this difficulty vector, the computational complexity of verifying compliance with
the regulatory framework increases because instead of having to complying with a single
obligation, the process needs now to comply with a set of obligations. The sub-class of the
problem obtainable by moving from C07,, using this difficulty vector is C'1;,,.

A trace is compliant with a set of local obligations if it fulfils all the local obligations
belonging to the set. Note that according to Definitions and [21] a local obligation
never activated by a trace is considered to be fulfilled by such trace.

Definition 26 (Set Fulfilment). Given a trace 6 and a set of obligations © = {O1,..., 0O},
0+ o, iff:
VO; € @,(0 F O;)

Otherwise 0 ¥ ©.

4.1.3 Fulfilling Compensable Obligations

The third difficulty vector considered in this section is the atomic-compensable vector. By
moving forward on this difficulty vector, obligations become compensable. This means that
a compensation is associated to the primary obligation and allows to cope with violations of
it if the compensation, composed of another obligation which I call secondary to distinguish
it from the primary one, is fulfilled. The sub-class of the problem obtained in this case is
the last belonging to the C1~ class: legc

The case in which an obligation is not fulfilled is also referred as an occurring violation.
For an achievement obligation, a violation can only be detected at the end of its in force
period because before reaching that point, there is always chance for the content literal
to hold once. Differently, a violation of a maintenance obligation is detected at the first
moment when the content literal stops holding.

Introducing compensable obligations allows some flexibility while dealing with complex
systems, where the possibility that regulations may not be followed has to be taken into
account. Lomuscio and Sergot [51] studied this in the context of multi-agent systems.
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Compensable obligations define what needs to be done when they are violated through
secondary obligations as defined by Governatori and Rotolo [37]. Secondary obligations are
a particular type of obligation whose lifeline is the violation of the obligation they try to
compensate.

Definition 27 (Violations). Given a trace 6 and an obligation ©, if 0 is not compliant
with O, then a violation is raised for each activation of © which cannot be fulfilled by 6.

Let V' be a function returning the violations raised by a 6 with respect to ©. FEach
element of V (0, 0) is identified in the earliest state of 0 which makes an activation of ©
not fulfillable and the activation period terminates.

Notice that according to the semantics of the different types of obligations and how
a violation is defined, namely in the first state where it becomes clear that an obligation
cannot be fulfilled, a violation of a local achievement obligation is always identified in
correspondence of a deadline and a violation of both global and local maintenance obligation
is identified by the earliest state within the activation period which does not fulfil the
condition. Also notice that for standard obligations, a violation is identified the state
corresponding to the deadline, which is also the first state non fulfilling the condition.
This condition is also in line with the fact that standard obligations are special cases of
both achievement and maintenance, hence identifying a violation in an obligation of type
standard can be done by using either one of the methods that can be used for achievement
or maintenance obligations. Violations for achievement and maintenance obligations are
illustrated in Example

Example 24 (Violations). Considering an achievement obligation stating the following
“The bill must be payed before leaving the table”, aiming at governing customers’ behaviour
in a restaurant. A violation of such obligation is identified in a state where the customer
leaves the table without having paid the bill, which corresponds to the state terminating the
activation period of the obligation according to its deadline.

Considering a maintenance obligation stating the following: “Personal information
must not be collected without consent”, tailored for privacy protection. A wviolation of such
obligation is detected in the first occurring state within the activation period of the obligation
where personal information is collected without consent, corresponding to the first occurring
state not fulfilling the condition of the obligation.

Definition 28 (Compensable Obligation). A compensable obligation, written 4 = QO ® O,
is composed of a primary obligation © and a compensation Q..

The relations between the activation periods of © and O, are the following: VI €
Interval(Qe,0),3v € V(Q,0) : min(I) = v. Moreover Yv € V(0O,0),3I € Interval(©O,0) :
maz(l) = v.

The compensation Q. can be as well a compensable obligation.

Compensable obligations are written as sequences of obligations connected using the
operator ®. The semantics of the operator ® states that the obligation on its right must
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be fulfilled if the obligations on the left is violated. More precisely for each violation of
the obligation on the left of ®, an activation period of the obligation on the right of the
operator is triggered.

Definition 29 (Comply with Compensable Obligations). Given a trace 6 and a compensable
obligation 5 = Q ® O,. 0 is compliant with % if and only if 6 is compliant with Q..

A trace is compliant with a compensable obligation if it is compliant with its secondary
obligation. This follows from Definitions and where a trace 0 is always
considered to be compliant with an obligation © if the set of activation periods of © is
empty. This means in this case that either the primary obligation is not violated or if it is
violated, then each violation has been compensated.

Similarly for atomic obligations, also for compensable obligations a single instance of
the obligation can be active at a given time. Moreover when a compensable obligation
4=01®...0 0, is active, exactly one of the obligations belonging to the chain is
considered to be active at a given time. This means that as soon as a compensable
obligation is activated, the first obligation of the chain becomes active. When the active
obligation belonging to the chain is violated, it is then deactivated and the following one
is activated. The whole compensable obligation is then deactivated in two cases: first if
one of the obligations composing its chain is fulfilled, meaning that the whole compensable
obligation is fulfilled in this activation; second if the last obligation in the chain is violated,
meaning that the compensable obligation is violated in this activation. This semantics
can be represented using an automaton as shown in Figure The automaton analyses
in order the states o of a trace 8. We can see that an arbitrary compensable obligation

4=0100:®...® O, is activated when the lifeline of the first obligation, written lbo toof
the chain is satisfied by the state being analysed. The compensable obligation is deactivated
if one of the obligations belonging to the chain are fulfilled or when all the obligations
belonging to the chain are not fulfilled. The different obligations belonging to the chain are
fulfilled or not fulfilled according to the semantics illustrated by the automata in Figure

The deliberately simple syntax and semantics chosen to represent and reason about
the obligations does not allow to activate more than a single instance for each obligation.
However this approach allows to study the problem while avoiding being overwhelmed by
the excessive complexities of more expressive syntaxes and semantics. Also in the case of
the limitation concerning having a single instance of an obligation active at a single time,
this particular limitation can be overcome by using an approach similar to first order logic,
as it has been used by Montali et al. [57] to reason about commitments in an instance
based way. Using this approach, each trigger of an obligation activates an instance of it
which is handled separately from other instances of the same obligation.

Example 25. An example of compensable obligations is the following: When you dine at a
restaurant you have to pay for your meal. If you don’t, then you have to wash the dishes.
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Figure 4.3: Activation Periods of Compensable Obligations

This compensable obligation shown in Example can be formalised using a global
compensable obligation as follows: O%(a) ® O%(3), where « represents “paying the bill”
and [ represents “washing the dishes”. Following from the semantics it occurs that having
to wash the dishes becomes obligatory only in the case a customer fails to pay its bill, which
is what the proposed formalisation aims at representing.

4.2 Conflicting Obligations

In the previous part of this chapter I have introduced the semantics of more complex
regulatory frameworks. In this second part of the chapter I am analysing the problem of
conflicting obligations that can arise when dealing with multiple obligations. This problem
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arises when a set of obligations contains an obligation stating that something is obligatory
and another obligation stating that the opposite is obligatory. It is clear in this case that
a business process model could never be compliant with such set since it is required to
do something and its opposite which is not allowed. We will see later that in order for a
conflict to arise, these conflicting obligations need to be activated together.

The same problem addressed in the setting of desirable behaviours and moral dilemmas
has been already studied by Lemmon [50], where he shows that if a moral dilemma arise,
then an individual cannot identify which behaviour is the most desirable, leading to the
impossibility to decide which is best to adopt. Therefore I claim that a clear understanding
about how obligations interact is imperative to avoid situations where it is necessary to
fulfil obligation that contradict each other.

Example 26. The “working week” defines that workers have to work from Monday to
Friday. However, Islam defines that Friday is an holy day and it is forbidden to work.

The example describes a conflicting situation resulting from merging different regulations,
religious and business. The issue of conflicting regulations has been already studied in
normative reasoning, like by Elhag et al. [29], Beirlaen and StraBer [13], and Sartor [66]. In
particular, since regulations define what is obligatory, prohibited and permitted, deontic
logic [43] and its variants have been extensively used to reason about them. For instance
Hansen [40] studies the conflicts between obligations using dyadic deontic logic.

The deficiency of standard deontic logic to deal with conflicts has been already studied
by Beirlaen et al. [14]. Whereas Beirlaen et al. focus on identifying conflicts between both
permissions and obligations in single time instants, in this section I study the conflicts
between obligations in scenarios involving traces. I first show that the consistency measure
used in standard deontic logic appears to be too restrictive while reasoning about normative
conflicts in this setting. Therefore I propose an alternative definition of consistency more
suited to detect conflicts in settings involving traces.

Second I show how the new definition of conflicting obligations can be used to identify
the sufficient and necessary conditions that the obligations belonging to a set must follow in
order to avoid conflicting obligations. This analysis allows to avoid conflicting obligations
in the sub-classes containing multiple obligations. The simplest of these sub-classes of
the problem are Cl,4, and the corresponding C'1,,, which is restricted to literals in its
possibility of expressing the elements of the obligations used.

4.2.1 Consistency

In standard deontic logic the axioms: PT and Oa — -O—-a, and the equivalence Oa =
—P-ca hold. The equivalence expresses a relation between obligations and permissions, in
other words it states that if something is obligatory, then the opposite is not permitted.
The first axiom: PT, states that tautologies are always permitted and the second axiom:
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Oa — —0O-a, states that if something is obligatory then its complement must not be
obligatory.

The two consistency measures: internal consistency and external consistency can be
defined using the two axioms and the equivalence. Internal consistency expresses the fact
that something contradictory, like a proposition and its negation, cannot be obligatory.

Definition 30 (Internal Consistency). A set of norms is internally consistent iff there is
no formula such that O(a A —a) is entailed by the set of norms.

Accordingly internal consistency corresponds to axiom PT:
“O(aN-a)=-0L=PT

External consistency expresses that two contradictory obligations cannot coexist, like
for instance the obligation of performing an action along with the prohibition of performing
it.

Definition 31 (External Consistency). A set of norms is externally consistent iff there
are no formulae such that Oa N O—« is entailed by the set of norms.

Accordingly internal consistency corresponds to axiom Oa — —~O-a:
—(Oa N O-a) = O0a - -0O-a = Oa — Pa

In standard deontic logic the two axioms PT and Oa — —O-a are equivalent. The
two consistency measures defined in the present section are used in standard deontic logic
to identify inconsistencies. Although inconsistencies involving permissions are also possible,
I focus in this thesis on inconsistencies among obligations, which are the relevant ones
involved in the problem of proving regulatory compliance as it has been described in this
thesis.

Notice that even if the consistency measures are expressed over formulae, they can apply
to the obligations defined in Section and by considering as the fulfilment conditions
of these obligations as formulae composed of a single literal. This means that I analyse
conflicting obligations in the set of problems belonging to the C' class shown in Figure (1.2
Being the class of problem C'~ a particular case of the class C, it means that the analysis
of conflicting obligations for the class C is also applicable to the problems belonging to the
class C~.

4.2.2 Consistency of Standard Obligations

It is natural to expect that both internal and external consistency measures (Definitions
and still apply to standard obligations, since their semantics mirrors the semantics of
the obligations expressed using standard deontic logic. I introduce now two propositions
reflecting that the consistency measures apply to standard obligations and prove them.
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Proposition 1. =36|60 complies with O°(a A —~a).

Sketch. If we assume an obligation O(a A =) to be possible, then the translated standard
obligation would be the following: O*(a A —a).

From Definition [19|it follows that a trace must contain a state o; such that o; = a A -«
in order to comply with the standard obligation. However such state could not exist
according to Definition [J] since each state must be consistent. Thus a standard obligation
whose condition is a contradiction would never be complied by any trace.

Therefore internal consistency applies to standard obligations.

Proposition 2. —30|0 complies with O%(«) and 6 complies with O%(—a).

Sketch. Assume a trace containing the state o;, where {O%(a), O°(—a)} € Force(o;).

From Definition Oa A O—a is translated in standard obligations as follows: O%(«)
and O°(—a). According to Definition (19} since both standard obligations are in force in o,
then both conditions have to be verified in the same state.

A state oy, in order to fulfil both obligations, needs to contain in its state both « and —«,
however this is in contradiction with Definition [0} stating that a state has to be consistent.
Thus it follows that a state o; satisfying both a and —« cannot exist.

Therefore a trace compliant with both standard obligations O*(«) and O*(—a) cannot

exist. Thus no solution can exist when such pair of obligations is considered.
O

4.2.3 SDL Consistency is too restrictive

I show here that the external consistency measure expressed in standard deontic logic is
too restrictive when used in a dynamic setting involving traces. As one can expect, the
unsuitability follows from the fact that SDL’s consistency measure do not take into account
the temporal relations between the states composing a trace. This is shown in the following
example extending Example

Example 27. The authors of a paper must submit it to the conference Aeon before the
deadline, which is set on Sunday. This also means that the paper has to be finished before
the submission deadline. However, as usual on the weekends, the authors must go to the
pub to meet their friends on Saturday or Sunday.

Example [27| contains two obligations: submitting the paper and going to the pub. Lets
assume that the authors cannot finish and submit the paper while at the pub, hence we
consider these obligations to be complementary. Thus if the proposition « represents
“finishing and submitting the paper”, then we can use -« to represent “going to the pub”.

To formalise the example I discretise time in days, which in turn represent the states. 1
use the propositions sat and sun to represent Saturday and Sunday respectively. Lastly 1



4.2. CONFLICTING OBLIGATIONS 77

use the proposition aut to represent being an author of a paper and formalise the obligation
of going to the pub: O%(—«) and the obligation of submitting the paper as: O%(«).

Both obligations are of type achievement. Despite the conditions of the obligations
being complementary, it is still possible to provide a trace complying both obligations.

0=1(..,(t,{aut}),..., (t;,{sat,~a}), (tg, {sun,a}))

Assuming that O%(—a) is in force in both (¢;, {sat, ~a}) and (tx, {sun, a}) and O%(«a) is in
force from (¢;, {aut}) till the end.

Example [27] describes a situation where two complementary obligations coexist during
the weekend, but can be both fulfilled. According to the consistency measures provided by
standard deontic logic, this situation would result in a conflict since it violates the external
consistency measure. From the present analysis it follows that standard deontic logic is
ill suited to reason about traces, more precisely the external consistency measure is too
restrictive, which is not surprising since it is not a dynamic logic.

Redefining Conflicts

I now propose a new definition of inconsistent obligations, better suited to be used in
dynamic settings involving traces, I refer to this as dynamic conflict.

Definition 32 (Dynamic Conflict). A set of obligations, written ®, is conflicting if and
only if it is not possible to construct a trace in such a way that it is compliant with each
obligation belonging to the set. =30|0 compliant with Q,VO € ©®

The necessary conditions for two obligations to be conflicting is that their fulfilment
conditions are complementary and their activation periods need to overlap. Depending
on the type of obligations considered, the necessary condition may not be sufficient to
determine whether they are conflicting.

Pair-wise Conflicts

In Definition [32] conflicts are defined between sets of obligations. The following example
illustrates a case where a conflict arises from a set of obligations and, when any proper
subset of the obligations is considered a conflict does not arise.

Example 28 (Conflicting Set). Assume a trace 6 and a set of obligations composed
of a single achievement obligation O%(«) and k standard obligations O%(—a) such that
Interval(O%(a),0) = JI € Interval(O*(—a),0) and (I € Interval(O*(-a),0) = 0. In
other words the activation periods of the standard obligations are all distinct and entirely
cover the activation period of the achievement obligation.

From Example we can see that a trace compliant with all the obligations belonging
to the set proposed cannot exist because it would require a state containing both o and —«a.
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The behaviour of the standard obligations in Example can be simulated using a
single maintenance obligation. The behaviour required from a trace to be compliant with
the set of standard obligations is that in such trace —« holds for the interval determined by
the obligations. The same result can be obtained by using a single maintenance obligation
requiring —« to hold for the same interval. Thus the set of standard obligations can be
substituted with a single maintenance obligation satisfying the following condition on the
activation period:

U ¢ € Interval(O°(—a), 0) = Interval (O™ (—a), 0)

Therefore I focus from now on into analysing pair-wise conflicts between obligations.

4.2.4 Conflict Detection

The two necessary conditions to detect conflicting obligations are the following:

1. Their fulfilment conditions have to be complementary: ©;(«) and O2(3), such that
alNp— L.

2. The intersection of their activation periods must be not empty: 3z, y|z € Interval(Q1{a), ),y €
Interval(Q2(B(,0) and z Ny # (.

I identify here the sufficient conditions to decide whether two obligations are conflicting.
Being standard obligations a special case of both achievement and maintenance, it is
sufficient to analyse the three combinations involving these types (O™ — O™, O™ — O and
0% — O%). To do so I introduce two auxiliary functions, which applied to an interval or a
trace, returns the first state belonging to them: min, or the last state: max.

Maintenance - Maintenance

I define now the sufficient condition to detect whether two maintenance obligations are
conflicting.

Definition 33 (O™ — O™ Conflict). Let O™ () and O™(S) be two complementary main-
tenance obligations. O™ (a) and O™(B) are conflicting if and only if:

I € Interval(O™(a), 0) and 3I" € Interval(O™(B),0) : INT" #

Proposition 3 (0™ — O™ Conflict). Let O™ = («) and O™ = () be conflicting mainte-
nance obligations, then does not exist a trace complying with both obligations.

Two maintenance obligations are conflicting as soon as they are complementary and
their activation periods overlap. In this case the sufficient condition is also the necessary
condition previously introduced.
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4.2.5 Maintenance - Achievement

I define now the sufficient condition to detect whether a maintenance and an achievement
obligation are conflicting.

Definition 34 (O™ — O Conflict). Let O™(a) be a maintenance obligation and O%(3) be
a complementary achievement obligation. O™ () and O%(B) are conflicting if and only if:

I € Interval(O*(B),0) and 3I' € Interval (O™ (a),0) : I C I'

The sufficient condition captures the fact that an achievement obligation requires be
fulfilled in a single state, hence a conflict arise only if the activation period of the maintenance
obligation is a superset of the activation period of the achievement obligation.

4.2.6 Achievement - Achievement

I define now the sufficient condition to detect whether two achievement obligations are
conflicting.

Definition 35 (0% — O® Conflict). Let O%(a) and O%(B) be two conflicting achievement
obligations. O%(a) and O%(B) are conflicting if and only if:

3I € Interval(O% (), 0) : I € Interval(O%(B),0) and ||I|| =1

The sufficient condition requires that there exists an activation period common to the
two complementary achievement obligations and that such activation period is of length
one. These restrictive conditions are necessary due to the flexibility allowed to comply with
achievement obligations. Two achievement obligations are actually conflicting if and only if
both behave as standard obligations in at least a shared activation period.

In the present section I have not reported the abstract semantics of standard obligations,
however to identify conflicting standard obligations (Definition , the following sufficient
condition is enough:

I € Interval(O°(w),0) : I € Interval(O*(5),0)

As it is expected, this sufficient condition is a particular case of all the other conditions
identified in the present section.

4.2.7 Conflicts involving Compensable Obligations

One of the difficulty vectors introduces compensable obligations. In case the complexity of
the regulatory compliance checking problem is increased through multiple difficulty vectors,
meaning that the problem may involve checking the compliance of a process against a
set of compensable obligations, it also become important to identify when compensable
obligations are conflicting.
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4.2.8 Conlflicts for Compensable Obligations

I define now the sufficient conditions to identify pair-wise conflicts involving compensable
obligations. A compensable obligation is not a new type of obligation, but rather a way of
structuring the existing types of obligations. We can consider an atomic obligation to be a
special case of compensable which compensation obligation cannot be fulfilled if triggered
(i.e: 4 = Q@ ® L). Therefore I analyse the more general case of deciding which are the
sufficient conditions to determine whether two compensable obligations are conflicting.

Definition 36 (O - ©@ Conflict). Let 4 = QO ® Q. and ¥ = Q' ® O, be two compensable
obligations. 5 and % are conflicting if and only if:

Q. is conflicting with O,

To determine whether two obligation “conflict” I reuse the sufficient conditions from
Definitions and The sufficient condition expressed in Definition [36] requires that
the compensations of the two compensable obligations are conflicting. A compensation O, is
triggered by a violation of the primary obligation O, hence ||Interval(Q, 8)|| = ||V (O, 0)]|.
If the two secondary obligation are conflicting, it means that both V(©,6) and V(Q', )
are not empty due to existing conflicts between © and an obligation in %’ and vice versa.

4.3 Summary

In this chapter I first introduce a three additional regulatory frameworks obtainable by
increasing the complexity of the obligations involved by moving on exactly one of the
difficulty vectors defining one of the families of the sub-classes of the problem. The
frameworks introduced in this chapter are a step more difficult than the basic problem. The
semantics of the frameworks obtained can be combined to identify more complex sub-classes
of the problem of proving regulatory compliance.

The second part of this chapter focuses on analysing conflicting obligations. While
trying to prove the compliance of a business process, it is very important that the regulatory
framework does not contain conflicting obligations, otherwise a model has no possibility
of complying with it. Therefore I first provided an alternative semantics more suited to
reason about obligations in such a setting and second I define the sufficient and necessary
conditions for identifying conflicting obligations. The conditions provided can be also used
to detect conflicts in existing systems and then resolving them using methodologies like the
the one developed by Prakken and Sartor [60] or by Vasconcelos et al. [80].

It is worth mentioning that another important element in normative reasoning is
constituted by permissions, which, as described by Boella and van der Torre [16], and
Makinson and van der Torre [55], can be used as a mean to limit the applicability of
obligations and prohibitions, as already has been studied by Stolpe [70] where the semantics
is defined using AGM belief revision [5] and Input/Output logic [56]. Conflict detection
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involving permission has already been studied by Hansen [41], however I did not discussed
them in the present setting since it falls outside the scope of this thesis.
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Chapter 5

Some Complexity Results

This chapter answers part of the first research subquestion that the present thesis asks:
What is the computational complexity of the sub-classes of the problem of proving requlatory
compliance? In particular in this chapter I answer the following questions: what is the
computational complexity of the sub-classes C2 , and C2,, of the problem of proving
regulatory compliance.

I answer to the first part of the research question in the first part of the present chapter,
concerning the complexity of the sub-class C2 ), , consisting of verifying the compliance
of a business process against a set of local obligations. The second part of the chapter
provides an answer about the computational complexity of the problem C2,,, a sub-class
of the problem similar to the previous one, but where the elements of the obligations can be
expressed using propositional formulae and are not limited to propositional literals. Part
of the results discussed in the present chapter have already been published and have been
coauthored with Guido Governatori and Pierre Kelsen [74].

5.1 Computational Complexity of C2

In this first section of the chapter I analyse one of the more complex sub-classes of the
problem obtainable by combining two of the three features discussed in Section More
precisely I analyse here the sub-class C2_, , highlighted in Figure I opted to analyse
directly the sub-class €2 and not the easier sub-classes C'l};, and C1,,,, obtainable
by adding a difficult feature to the basic problem, because such sub-class of the problem
is expressive enough to allow the reductions used in the present chapter to prove its

computational complexity.

5.1.1 Regulatory Framework

The regulatory framework of a problem C2 , is composed of multiple local obligations.
The semantics of the different types of local obligations used in this section is the same as

83
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A

multiple

Figure 5.1: Multiple Local Obligations Compliance Problem

defined in Definitions and where are respectively defined standard, achievement
and maintenance obligations. These semantics are used along with Definition describing
how a trace fulfils a set of obligations, to obtain the following definition which describes
when and how a process is compliant with a regulatory framework composed of a set of
local obligations.

Definition 37 (Process Set Compliance). Given a process (P,ann) and a set of obligations
©.

e Full Compliance: (P,ann) H ®
iff VO € ©(P,ann),f  ©.

e Partial Compliance: (P,ann) F ©
iff 30 € ©(P,ann),d  ©.

e Non Compliance: (P,ann) I/ ©®
iff -30 € ©(P,ann),0 + ©.

The remainder of this first part of the chapter, differently than Section does not
introduce new algorithms to solve the sub-class C02_, , instead it provides an analysis of
the complexity of the sub-class. This section is divided into three subsections: the first
analyses the complexity of proving that a process is partially compliant, the second analyses
the complexity of proving that a process is not compliant and the last one analyses the
complexity of proving that a process is fully compliant.



5.1. COMPUTATIONAL COMPLEXITY OF C2j, , 85

5.1.2 Proving Partial Compliance is NP-complete
I first show that proving partial compliance of a problem €2, is an NP-complete problem.

Definition 38 (NP-complete). A decision problem is NP-complete if it is in the set of
NP problems and if every problem in NP is polynomial-time many-one reducible to it.

To prove the NP-completeness of C'2,,, I first show that the problem is in NP and
second that another NP-hard problem, in this case the problem to find whether a graph
possesses an hamiltonian path, is polynomial-time many-one reducible to it.

NP Membership

To prove membership in NP, I need to show that a process is partially compliant with a set
of obligations if and only if there is a certificate whose size is at most polynomial in terms
of the length of the input (comprising the process and the set of obligations) with which we
can check whether it fulfils the regulatory framework in polynomial time. As a certificate 1
choose a particular trace satisfying the obligations composing the regulatory framework.

The size of any proper traces is always polynomial with respect to the process considered
and the set of literals, because the type of processes considered in this thesis are structured,
meaning that cycles are not allowed and a task belonging to this type of processes can be
executed at most once. Thus given a structured process, the maximum length of a proper
trace is finite and is not greater than the number of the tasks contained in such process.
Additionally the size of the states contained in a trace is at most as big as the set of literals
used in the process. Before verifying the compliance of such a trace, we first need to check
that the trace is indeed a valid trace for the process (done by Algorithm [3) and that the
trace does indeed satisfy the obligations (done by Algorithm . I will further show that
the time complexity of both algorithms is at most polynomial in the size of the input, thus
concluding that verifying partial compliance is in NP.

Claim 1. Proving partial compliance for the sub-class C2,, is in NP.

Verifying the Validity

I hereby describe Algorithm [3] which checks whether a certificate is a valid trace of a
process. In other words, given a process model and a trace, the algorithm verifies whether
the sequences of states and tasks composing the trace is a possible trace of the given model.

Algorithm 3. Given a trace 0 = (0start, 01, -, On, Oend) Where ogqre = (start, Lg) and
Oend = (end, Lyp41), the corresponding execution € = (ty,...,t,), and process (P,ann) where
B is the main process block of P, the following algorithm As(6,¢€, (P,ann), B) decides if 0 is
a valid trace of (P, ann).
Algorithm As
1: if Pi(e, B) and Py(0, (P,ann)) then
2:  return 6 € ©O(P,ann)
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3: else
4:  return 6 ¢ O(P,ann)
5: end if
Py (e, B) verifies wether € is a correct serialisation of B. Pj returns true or false
accordingly to the result and uses the following recursive procedure:

Procedure 4. P(¢, B)
1. if B =t, then € is valid if € = (t)

2. if B is a composite block with subblocks By, ..., By, let €¢; be the projection of € on
block B; (obtained by ignoring all tasks which do not belong to B;)

(a) if B =SEQ(BAu,...,B,) then € is valid if it is the concatenation of €1,. .., €
and each €; is a valid serialisation for B;

(b) if B=XOR(Bj,...,By,), then € is valid if exactly one ¢; is non-empty and that
€; 1s valid for B;

(c) if B=AND(By,...,By,), then € is valid if the set of tasks in € is the disjoint

union of the sets of tasks in €; (for each i) and each €; is a valid serialisation for
B;

Py(0, (P,ann)) verifies wether the sequence of states in 0 is valid for (P,ann):
Procedure 5. P»(0, (P, ann))

e =10
e For each Ly € 0 and i > 0: L; = L;_1 & ann(t;)
® Ly, =Ln4

Py returns true if all of these properties hold and false otherwise.

Complexity:

To analyse the complexity of checking whether a trace is a valid serialisation of a
process whose main process block is B (procedure Py), consider the tree reflecting the
hierarchical structure of a process block. If B is a single task, the tree consists of a single
node representing a task. Otherwise the tree has a root corresponding to B and subtrees
representing the different subblocks B; of B. The recursive procedure spends polynomial
time (as a function of n, where n is the number of tasks in B) for each node of the tree for
pre-processing, launching the recursive calls and recombining the results. Since the size of
the tree itself is O(n) the overall time for the procedure is polynomial in n.

Procedure P35 can clearly be executed in time polynomial in n x k where k is the size of
the set of literals. Therefore the time complexity of Algorithm [3|is O(n x k).
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Verifying the Fulfilment

I describe now Algorithm [4, which verifies whether a certificate fulfils the obligations
contained in a regulatory framework. Given a trace and a set of obligations, this algorithm
verifies whether the trace is compliant with a regulatory framework composed of the given
set of obligations. Since the set of obligations contains local obligations, the algorithm
verifies whether the trace is compliant with the regulatory framework in the setting of a
C2,,, problem.

Algorithm 4. Given a set of obligations ©® and a trace 0 = (Ostart, 1, - On, Tend) Such
that ostart = (start, L) and 6 € ©(P,ann), the algorithm A4(0,®) is defined as follows (In
the following, Ob denotes the set of active obligations and we treat 6 as a vector):
Algorithm Ay
1: Ob =1

2: for each o in 0 do

8:  for each © = O, ly,1y) in ® do
4 if o =l then
5 Ob=0bUO©
6: end if
7 end for each
8:  for each © = O, 1,13) in Ob do
9: if t = a then
10: if o = 1. then
11: Ob=0b\ 0O
12: else
15: if o =14 then
14: return 6 t/ ©®
15: end if
16: end if
17: else
18: if t =m then
19: if o 1. then
20: return 6 I/ ©
21: end if
22: if o =14 then
23: Ob=0b\ O
24: end if
25: end if
26: end if

27:  end for each
28: end for each
29: return 6 F ©;

Algorithm[4 identifies wether a certificate fulfils a set of obligations. If the certificate is a
valid trace of a process, then following from Definition |37, the fact that the certificate fulfils
the set of obligations is a sufficient condition to say that the process is partially compliant
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with the requlatory framework containing such set of obligations.

Complexity:

The complexity of checking whether a trace is compliant with the set of obligations
using Algorithm [4]is at most polynomial in time O(n x o) where n is the number of tasks
in the process and o is the number of obligations. Since checking whether a state contains
a literal can be done in constant time, it does not affects the complexity of the algorithm.
The above asymptotic time bound is at most polynomial in the length of the input (which
includes the process and the set of obligations).

I conclude that given a yes-instance of the partial compliance problem, there is a
certificate of size polynomial in the length of the input (namely the trace that satisfies
the obligations) for which we can check compliance in time polynomial in the length of
the input. Following from Definition verifying that a single trace is compliant with a
regulatory framework is sufficient to infer that the process model containing that trace is
partially compliant with the same regulatory framework. Therefore I can conclude that
verifying Partial Compliance is indeed in NP.

NP-Hardness

After having proven the NP membership of the problem in Section to prove that the
problem is NP-complete we have to show that the problem is NP-Hard.

To prove the NP-hardness of Verifying Partial Compliance, I show that the problem of
deciding whether a directed graph contains an hamiltonian path (another NP-Complete
problem) is polynomial-time many-one reducible to it.

In graph theory, the hamiltonian path problem is the decision problem of determining
wether an hamiltonian path exists in a given directed graph. This problem is part of the
commonly known NP-complete problems.

In a directed graph G = (N, D) where N is a set of nodes and D is a set of directed
edges represented as a binary relation N x N, a hamiltonian path is a path in G that
visits each node exactly once. A path can travel from one node to another if there exists a
directed edge starting from a node and pointing to the one following it in the path.

Definition 39 (Hamiltonian Path). Let G = (N, D) be a directed graph where the size of
N isn. A hamiltonian path ham = (vy;...;vy,) satisfies the following properties:

1. N =A{vy,...,v,}
2. Vi, j((vi,v; € ham N j =i+ 1),((vi,v) € D)

Let <, denote polynomial time reduction. Using this I can express my current claim,
stating that the problem of proving partial compliance of a given process is at least as
difficult as the problem of finding an hamiltonian path in a given graph.
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Claim 2. Hamiltonian Path Problem <, Proving Partial Compliance in C2,,,

Given a directed graph G = (N, D), we reduce the problem of deciding whether G
contains a hamiltonian path to the decision problem of deciding whether a process (P, ann)
is partially compliant with a regulatory framework of a C2,,;, problem, where such process
is required to contain at least one trace fulfilling a set of local obligations.

Reduction

Given a hamiltonian path problem containing a directed graph G = (N, D), it can be
translated into a regulatory compliance problem involving a process (P, ann) and a set of
obligations © as follows:

1 Assuming that B is the main process block of P, B contains a task labeled Node; for
each vertex v; contained in N.

Figure 5.2: Hamiltonian path problem as verifying partial compliance.

The main process block B is structured as an AND block. The AND block con-
tains in each branch a single task Node; for each node in the given directed graph:
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AND(Nodey, ..., Nodey).

Intuitively a serialisation of the AND block represents a tentative hamiltonian path.
Annotations and obligations are used to verify that two adjacent nodes in the seri-
alisation can be indeed also adjacent in an hamiltonian path (explained in detail in
2).

2 In this reduction we use the annotations to identify which node is being selected in the
sequence constituting the tentative hamiltonian path. Thus we use for the annotations
a language containing a literal for each node in G. The annotation of each task in
(P, ann) is the following:

° V’L|1 <1< k,ann(Nodel-) = {—|l1, .. .,ﬁln} D {ll}

The obligations are used to represent the directed edges departing from a vertex, in
other words which vertices are the suitable successors in the hamiltonian path. The
set @ contains the following local maintenance obligations:

[ ] Vvi,vj|(vi,vj) Q D, 0 = Om<ﬂlj,li,—\li>

Reduction 1. Given a directed graph G and the problem of proving requlatory compliance
reduced from it, where the problem is composed by a process model (P,ann) and a set of
local obligations ®. There exists a trace € ©(P,ann) such that 0 F © if and only if G
has an hamiltonian path.

Complexity:

The complexity of reducing the input of an hamiltonian path problem to proving partial
compliance of a problem C2,;, is polynomial in terms of the size of the input. The time
complexity of constructing the process is O(n?), where n is the number of vertices in G.
The time complexity of constructing the process model is O(n), while the time complexity
of constructing the regulatory framework is O(e), where e is the number of edges in G.
Since e is at most n X n, we can conclude that the time complexity of the reduction is
dominated by the complexity of constructing the regulatory framework, which is O(n?).

5.1.3 Proving Non Compliance is coNP-complete

In this second part of the section I show that proving non compliance of a problem C2_, is
a coNP-complete problem.

Definition 40 (coNP-complete). A decision problem is coNP-complete if it is in coNP
and if every problem in coNP is polynomial-time many-one reducible to it. A decision
problem is in coNP if and only if its complement is in the complezity class NP.

I prove that this problem belongs to this complexity class by proving that the comple-
mentary problem is NP-complete.
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Not non compliance is in NP-complete

I define now the complementary problem proving non compliance of C2_; . Following from
Definition non compliance of a process (P, ann) with respect to a set of obligations ® is
defined as follows:

Non Compliance: (P,ann) t/ ©®
iff =30 € ©(P,ann), 0 F ©.

Therefore, I define the complement of non compliance, not non compliance, as follows:
Definition 41 (Not Non Compliance). Given a process (P,ann) and a set of obligations ®.

Not Non Compliance:
—(P,ann) ¥ @ iff 30 € ©(P,ann),0 F ®.

We can notice now that the condition to verify whether a process is not non compliant
is exactly the same required to verify whether a process is partially compliant with a set of
obligations. Thus in this case proving partial compliance of C2_, is the complementary
of proving not compliance of C2_, . Therefore having already shown in Section that
proving partial compliance in a sub problem C2_, is NP-complete, it follows that proving
non compliance in a sub problem C2_; 'is coNP-complete.

5.1.4 Proving Full Compliance is in coNP

In the last part of this section I show that proving full compliance of a sub-class C2, is
colNP. Differently than for the problem of verifying not compliance, in this case I am not
able to verify that the problem is also complete due to the lack of expressiveness given by
the restriction stating that the elements composing an obligation are literals. However,
I show in the next section that if we drop this restriction, the problem of verifying full
compliance can be proven to be coNP-complete.

Not full compliance is in NP

I define the complement of the problem of verifying full compliance as its negation. This
means verifying whether a process is not fully compliant with a given regulatory framework,
which is composed by a set of obligations.

According to Definition [37] full compliance with respect to a set of obligations ® is
defined as follows:

Full Compliance: (P,ann) F ©
iff Vo € ©(P,ann),0 F ©.

Therefore, I define the complement of full compliance, not full compliance, as follows:
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Definition 42 (Not Full Compliance). Given a process (P,ann) and a set of obligations ©.

Not Full Compliance: —(P,ann) F ©
iff 30 € ©(P,ann),0 I/ ©.

From Definition [£2]it follows that to verify not full compliance it is sufficient to show that
there exists a trace belonging to the process which does not fulfil the regulatory framework.

NP Membership

To prove membership in NP, I show that a process is not fully compliant with a set of
obligations if and only if there is a certificate whose size is at most polynomial in terms
of the length of the input and which can be verified in polynomial time. As a certificate 1
choose a particular trace. Moreover I need to show that verifying whether it is a valid trace
of the process and is not fully compliant can be done in polynomial time.

To verify whether a certificate is indeed a valid trace of the process we can reuse
Algorithm [3] introduced in Section [5.1.2

In the same way, we can reuse Algorithm [4] to verify the not full compliance of the
process. This can be done because Algorithm [ returns either § - ©® or 6 t# ©. Thus in
case the algorithm returns 6 / ®, according to Definition [42] the certificate proves the not
full compliance of a sub-class C2_,  of the problem.

In Section [5.1.2]it is proven that the complexity of both Algorithms [3]and [4]is polynomial
in the length of the input, hence the problem of proving not full compliance of a sub-class
C2,,, of the problem is indeed in NP.

Having shown that the complementary problem of proving full compliance in a sub-class
C2.,, s in NP, I can therefore conclude that proving full compliance of of a sub-class
€2, of the problem is in coNP.

Notice that in this last case, I have shown only that proving full compliance of a
sub-class C2_, is coNP without showing that it is complete like for proving partial and non
compliance. My intuition is that limiting the elements of the obligations to be composed
only of propositional literals limits the expressivity of the problem in such a way that is
computational complexity is only coNP. However this is only an intuition and whether
proving full compliance of a sub-class C2_; is coNP or coNP-complete is still an open
question.

a

5.2 Computational Complexity of C2,,,

In this second part of the chapter I analyse the complexity of proving regulatory compliance
of a sub-class C2,;, of the problem, highlighted in the lattice of the sub-classes of the
problem illustrated in Figure More precisely I show that by releasing the restriction of
limiting the elements composing the obligations to be composed of propositional literals does
not increase the complexity of the problem. I show in fact that the complexity of proving
both partial and non compliance of a sub-class C2,,, is the same as proving them in a
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sub-class C2_; . Moreover given the enhanced expressivity due to releasing the restriction, I
can show that the problem of proving full compliance of a sub-class C2,;;, is coNP-complete.

:6

Figure 5.3: Multiple Local Obligations Compliance Problem

Allowing propositional formulae as the elements composing the obligations does not
influence the processes, hence their semantics remains the same as the one defined in Section
B.1

The current sub-class uses obligations composed of propositional formulae, which I
redefine as follows.

Definition 43 (Local Obligation with formulae). A local obligation © is a structure
(t, e, 015 04), where t € {s,a, m} and represents the type of the obligation. The elements
Ve, 1 and g are propositional formulae composed by elements in L. @ is the content of
the obligation, y; is the trigger (lifeline) of the obligation and g is the deadline of the
obligation.

T use © = Op., 01, q) to represent a local obligation.
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Differently from the sub-class C2 ), , where propositional literals are verified through
inclusion in a state, in the sub-class C2,,;, the propositional formulae, used to represent the
lifeline, deadline and condition of an obligation, are satisfied in a state if and only if the
interpretation of the propositional variables given by such state makes the propositional
formulae true.

Definition 44 (Formula Entailment). Given a state o = (t,L) and a formula ¢, 0 = ¢ if
and only if \ z = o, where each x € L.

Similarly as the previous part of the chapter, the present part is divided in three parts:
the first part analyses the complexity of verifying partial compliance, the second part the
complexity of verifying not compliance and the third part the complexity of verifying full
compliance.

5.2.1 Proving Partial Compliance is NP-complete

By lifting the restriction limiting the elements composing the obligations to be composed
of simple literals, Algorithm []is not capable of handling the problems in this new setting.
Therefore I propose here a revised version that takes into account the fact that the elements
composing an obligation consists of a formula.

Algorithm 5. Given a set of obligations ©® and a trace 0 = (Ostart, 01, - - Ony Tend) Such
that ostare = (start, Lg) and 6 € O(P,ann), the algorithm As(6,®) is defined as follows (In
the following, Ob denotes the set of active obligations and we treat 6 as a vector):
Algorithm As;
1: Ob=10
2: for each o; in 6 do

3:  for each O p., vy, 04) in ® do
4 if o; |E v then
5: Ob = ObU O, ¥p, ©d)
6: end if
7 end for each
8:  for each O ., pp, pq) in Ob do
9: if t = a then
10: if 0; = . then
11: Ob = 0Ob\ O% (¢, @b, a)
12: else
13: if 0; = pq then
14: return 6 I/ ©
15: end if
16: end if
17: else
18: if t = m then
19: if o; £ p. then

20: return 6 t/ ©
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21: end if

22: if o; = pq then

23: Ob = Ob\ O™ (., ¢b, Pa)
24: end if

25: end if

26: end if

27:  end for each
28: end for each
29: return 0 F ©;

Algorithm [J] identifies wether a trace fulfils a set of local obligations without compensa-
tions.

We can immediately see that Algorithm [5| differs from Algorithm 4] only because of the
way the lifelines, deadlines and fulfilment conditions of the obligations are verified in the
states due to being composed of propositional formulae, which follows Definition

Verifying the entailment of a formula with respect to a set of literals is indeed more
difficult than simply checking whether a literal belongs to a set. However, as shown in the
following complexity analysis, Algorithm [5]is still capable of returning a result in polynomial
time.

Complexity:

The complexity of checking whether a trace is compliant with the set of obligations
using Algorithm |5 is at most polynomial in time O(n x o x T') where n is the number of
tasks in the process, o is the number of obligations and T is the maximum time to check
whether a state satisfies a formula. Since checking whether a state satisfies a propositional
formula can be done in time that is at most polynomial (in fact linear) in the length of the
formula, the above asymptotic time bound is at most polynomial in the length of the input
(which includes the process and the set of obligations, including the associated formulae).

Proving Partial Compliance is still in NP

As done in the previous part of the chapter, I prove now the complexity of proving partial
compliance of a process by considering as a certificate a trace of the process being evaluated.
If the certificate is a valid trace of a process and is compliant with the regulatory framework,
then from Definition [37] it follows that the process is partially compliant with the regulatory
framework.

Since introducing the formulae did not changed the way traces are constructed from a
process, to verify the validity of a certificate passed to Algorithm [5| we can reuse Algorithm
[ defined in Section [5.1.21

Therefore I can conclude that proving partial compliance of a C2,,;, problem is indeed
in NP, even after lifting the constraint of having the elements composing the obligations to
be single literals.
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Proving Partial Compliance is still NP-complete

The reduction proposed in Section is still valid for the problem involving obligations
which elements are composed of formulae. This is true since a formula can consists of a
single literal.

Therefore it follows that the problem of proving partial compliance of problem C2,,,
where the elements composing an obligation are composed of formulae is still NP-complete.

5.2.2 Proving Non Compliance is coNP-complete

The complexity of proving non compliance does not change after having lifted the restriction
of limiting the conditions to be composed only of literals.

Having already proven that the problem of proving partial compliance is NP-complete,
I can reuse the proof in Section [5.1.3] showing that the complementary problem of verifying
non compliance is verifying partial compliance. Therefore it follows that the complexity of
the problem at hand is still coNP-complete even after lifting the restrictions.

5.2.3 Proving Full Compliance is coNP-complete

I show that the problem of proving full compliance is still in coNP. Moreover thanks to the
added expressivity given by the releasing of the constraints over the obligations’ elements, 1
can now prove that this problem is coNP-complete.

To prove that a decision problem is coNP-complete I have to show that the complemen-
tary problem is in NP and that the another coNP-complete problem, in this case tautology,
can be reduced to the problem at hand.

Since the different types of compliance have not changed with the lifting of the constraints,
I can reuse the same proof as the one in Section to prove that the complementary
problem is in NP.

Therefore what is left to prove is that another coNP-complete problem is reducible to
the problem of verifying full compliance.

CoNP Hardness

To show that the problem of proving full compliance of a problem C2,;, is coNP-complete,
I reduce the tautology problem to it.

Definition 45 (Tautology). A formula of propositional logic is a tautology if the formula
itself is always true regardless of which evaluation is used for the propositional variables.

Reduction

Let ¢ be a propositional formula for which we want to verify whether it is a tautology or
not, and let L be the set of literals contained in . I include in L only the positive version
of a literal, for instance if [ or =/ are contained in ¢, then only [ is included in L.
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For each literal [ belonging to L we construct an XOR block containing two tasks, one
labeled and containing in its annotation the positive literal (i.e. [) and the other the negative
literal (i.e. —I). All the XOR blocks constructed from L are then included within a single
AND block. This AND block is in turn followed by a task labeled “test” and containing a
single literal in its annotation: /.. The sequence containing the AND block and the task
test is then enclosed within an start and a end, composing the process (P, ann), graphically
represented in Figure [5.4

The set of obligations, to which the constructed process has to be verified to be
fully compliant with, is composed of a single obligation constructed as follows from the
propositional formula ¢:

0 - OCL(@; ltestu J—>

Reduction 2. Given a propositional formula ¢ and the problem of proving regulatory
compliance reduced from it, where the problem is composed by a process model (P,ann) and
a set of local obligations ®. For all traces 8 € ©(P,ann) we have 0 + © if and only if ¢ is
a tautology.

Complexity:

The process P can be constructed in time proportional to |L| + |¢| where |¢| denotes
the length of formula ¢. Since |L| < |p| by construction, the time is at most polynomial in
the length of the formula ¢.

5.3 Summary

I show in the first part of this chapter that the sub-class C2; , namely verifying whether
a process is compliant with a set of local obligations, is already hard. More precisely 1
shown that proving partial compliance of a sub-class C2; is NP-complete, proving not
compliance in a sub-class C2_; is coNP-complete and proving full compliance of a sub-class
C2,,, is in coNP. Whether the sub-class €2, is in coNP-complete remains an open
question.

The preliminary results contained in this section help already to explain why existing
solutions for the general problem, like Governatori and Hoffmann [33], Ghose and Koliadis
[30], Governatori et al. [35] and van der Aalst et al. [78] are not efficient, or in case they
are, the solutions provided are either an approximation of the real ones or are provided for
a simplified version of the general problem of proving regulatory compliance.

In the second part of this chapter I show that even by releasing the constraint of having
only literals composing the elements of local obligations, the complexity of proving the
different types of compliance of a C2,,, does not increase. Moreover the added expressivity
allows to prove that proving full compliance of a C'2,,;, problem is coNP-complete.

Given that the goal of the present thesis is to identify the computational complexity of
the general problem of proving regulatory compliance, In the following chapters I focus on the
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sub-classes allowing to represent the elements composing the obligations using propositional
formulae. Moreover given that the computational complexity does not increase while getting
rid of the restriction over the elements composing the obligations. Even if it has been
proven only for proving partial and non compliance in the subclass C2,,,, is most likely
that the computational results obtained for the non restricted sub-classes of problems also
hold for the ones which only allow propositional literals to describe the elements of the
obligations.

The present chapter partially answers the research subquestion RSQ1 by studying the
computational complexity of two sub-classes of the problem: the sub-class C2,;, and the
sub-class C2, .
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Figure 5.4: Tautology problem as verifying full compliance.
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Chapter 6

Propagating the Results

In the previous chapter I have shown that for the sub-class C2,;, of the problem, the
computational complexity of proving either full or non compliance is coNP-complete, while
proving partial compliance is NP-complete. I have also shown that the same computational
complexity results apply to the sub-class C2_, , with the exception of proving full compliance,
which is proven to be coNP because of the limited expressivity following from limiting the
elements of the obligation to propositional literals.

The present chapter is divided into two main parts. The first part analyses the complexity
of the more general sub-class C3,,. of the problem, corresponding to the general problem
of proving regulatory compliance. In this part I reuse most of the complexity proof used to
prove the complexities for the sub-class C2,,;, with some differences in order to take into
account the introduction of the compensable obligations.

The second part of this chapter focuses on identifying the computational complexity of
other sub-classes of the problem by reusing the obtained results. In particular I analyse the
computational complexity of the sub-classes Cly;, and C2q;..

6.1 Computational Complexity of C'3,;.

I analyse in his section the computational complexity of the general problem or proving
regulatory compliance. The problem corresponds to the sub-class C3,;., highlighted in
the cube obtained by the difficulty vectors in Figure The general problem of proving
regulatory compliance is composed of a regulatory framework containing a set of local
compensable obligations. The obligations contained in the framework have dynamic
activation periods which depend on the trace where they are being evaluated and are
compensable, meaning that a trace violating an obligation can still be considered to be
compliant in case it complies with the obligation assigned to compensated the violated
obligation.

101
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Figure 6.1: Multiple Local Compensable Obligations Compliance Problem

6.1.1 Complexity of the Problem

To show the complexity of the general problem I reuse part of the proof used to prove the
complexity of the sub-class C2,,, discussed in Section The difference between the two
problems consists in the compensable obligations available in the general problem. Therefore
I first introduce an updated version of Algorithm [5| capable of dealing with compensable
obligations.

I show that the computational complexity of solving the general problem of proving
regulatory compliance is the same as the computational complexity of solving the sub-class
C2,1a- To show this I can reuse Algorithm [3] to verify whether a given certificate, a trace,
is a proper trace of a given process. I can reuse the same algorithm since the structure of
the process has not been altered. To complete the proof that the general problem belongs
in NP I also have to show that the computational complexity of the updated version of
Algorithm [5] is still polynomial.

As I discuss more in details later, to prove the NP-Hardness of the problem and therefore
its NP-Completeness for proving partial compliance and coNP-Completeness for proving
full and non compliance, I can reuse the reductions used for the sub-class C2,,, given that
it is a special case of the general problem.

Proving Partial Compliance is NP-Complete

Before proceeding to introduce the updated version of Algorithm [5] capable of dealing
with compensable obligations, I provide a slightly different definition for Compensable
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obligations, which provides a representation better suited to be handled by the updated
version of the verification algorithm.

Definition 46 (Compensable Obligation List). A compensable obligation 4 = O1®...Q,®
1 is a sequence of obligations, where the first is activated when a state satisfies its lifeline
and the following ones are activated when the preceding obligation is active and violated.
The last element of the sequence is L, which is not a proper obligation, but a symbol used
by the algorithm to identify that the compensation chain has ended.

From now on I am treating a compensable obligation as an ordered list, where each
element of the list corresponds to the relative obligation in the sequence. Notice that the
shortest sequence possible is composed by a compensable obligation where no compensations
are provided, represented as follows: 5 = Q1 ® L.

Given a compensable obligation 4, at most one of the obligations composing it can be
active at a time, and I use two methods to determine which one is active. The method first,
used as 4.first, activates the first obligations of the list and the method next, used as %.next
deactivates the currently active obligation in the list and activates the following one.

The semantics of compensable obligations is the same as the one defined by Definition
This means that only a single instance of each compensable obligation can be active in
a single moment. More precisely, in addition that only a single instance of a compensable
obligation can be active, only one obligation belonging to the chain can be active at a given
point in time.

Verifying whether a compensable obligation is fulfilled by a trace can be done by checking
whether the last obligation composing it, the one preceding the symbol | according to
Definition [46] is fulfilled by the trace. This is formalised by the following lemma.

Lemma 6. Given a compensable obligation 5 = Q1 ® ... Op_1 ® L composed of a chain
containing n — 1 obligations, 0 & % if and only if 6 + Op_1.

The correctness of Lemma [6] can be intuitively explained by considering two main points.
The first one is that independently of the type of the obligation, an obligation which is not
activated is considered to be fulfilled. The second point is that the activation period of the
last obligation composing a compensable obligation depends on the activation periods of
the previous ones, more precisely it depends on the violations of the previous obligations.
Therefore we can see now that either the obligation is activated and fulfilled or one of the
previous obligation is fulfilled, leading to the last obligation to not be activated and therefore
fulfilled, following from Definitions [23] and [24] about the semantics of local obligations.

Algorithm 6. Given a set of obligations © and a trace 0 = (Ostart, 1, -, On, Tend) Such
that ostart = (start, L) and 0 € ©(P,ann), the algorithm Ag(0,®) is defined as follows (In
the following, Ob denotes the set of active obligations and I treat 6 as a vector of states):
Algorithm Ag
1: Ob=10
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2: for each o in 0 do

3 for each % in ® do

4 if 4 not in ob then

5: Let =01 ®...0 L and let Q1 = O e, vb, ©d)
6: if o; = b then

7 Ob = Ob U 4.first

8: end if

9: end if
10:  end for each
11:  for each % in Ob do

12: w = true

13: while w do

14: w = false

15: Let the active obligation in % be O (o, pp, Pa)
16: if t = a then

17: if 0; |E v. then

18: Ob=0b\4%

19: else

20: if o; = w4 then

21: 4.next

22: w = true

23: if The active obligation in % is L then
24: return 6 / ©
25: end if

26: end if

27: end if

28: else

29: if t =m then

30: if o; = oo then

31: 4.next

32: w = true

38: if The active obligation in % is L then
34: return 6 I/ ©
35: end if

36: end if

37: if 0; E pq then

38: Ob =0b\ 4%

39: end if

40: end if

41: end if

42: end while

48:  end for each
44: end for each
45: return 0 F ©;
Algorithm [6 identifies wether a certificate, consisting of a trace 0, fulfils a set of local
compensable obligations.
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The first line of the algorithm Ag initialises the set of active compensable obligations,
which is empty at the beginning. The algorithm proceeds then to analyse the states of
the trace given in input, following the order in which they appear. For each state, the
algorithm verifies for each non active compensable obligation if it is activated by the state
being processed.

After, the algorithm proceeds for each active obligation to verify whether it is violated,
fulfilled or if this cannot be determined yet, meaning that in this last case the current active
obligation of a chain remains active for the following state of the trace.

Depending on the type of the obligation, the condition is checked against the state.
If the obligation is fulfilled, then the whole chain is removed from the set of active ones.
Otherwise, if the obligation is violated, then the obligation is deactivated and the following
one in the chain is activated and checked in the same state. In this case if a L obligation
becomes active, then the algorithm returns not compliance 6 t/ ®, because it means that
the trace violated every obligation belonging to a chain.

If none of the L obligations become active during the verification process, the algorithm
returns compliance § F ®, since each compensable obligation is either fulfilled or each of it
violations has been compensated.

Complexity:

The computational complexity of verifying whether a trace is compliant with a set of
compensable local obligation using Algorithm@ is at most polynomial in time O(nxoxT X z).
It can be noticed that the computational complexity is the same as the one for Algorithm
which is O(n x o x T'), multiplied by z which is the length of the longest compensation
chain in ®. As already stated, Algorithm [6] updates Algorithm [5] by analysing the chains of
obligations composing the compensable obligations. Therefore the computational complexity
is multiplied by the number of obligations composing the chains, for which I take the longest
as the worst case.

Given that the sub-class C'2,,, is a particular case of the general problem C'3,,. addressed
in this section. Because a sub-class C2,,, can be described as a sub-class C'3,,. where
each obligation O € © is translated as a compensation chain composed by the obligation
itself plus the symbol L as follows: 4 = O ® L. Therefore I can reuse the exact reduction
proposed for the sub-class to prove the NP-hardness of the general problem. Recalling
that the reduction reduces the problem of finding whether an hamiltonian path exists in
a directed graph to a problem of proving partial compliance as stated by Reduction[I] I
have therefore shown that the computational complexity of verifying partial compliance of
a business process model in the general case, where the process has to be verified against a
set of compensable local obligations, is NP-complete.

Proving Non Compliance is coNP-Complete

Since it has been already shown in in Section that the problem of proving partial
compliance is the complement of proving non compliance, the computational complexity
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of proving non compliance in the general problem does not increase with respect to the
sub-class C2,,, of the problem and remains coNP-complete.

Proving Full Compliance is coNP-Complete

Similarly as it has been shown in Section to prove that proving full compliance in a
sub-class C2_, - of the problem is coNP, I show now that the computational complexity of
proving full compliance in the general problem is coNP-complete.

To show this I reuse Definition stating that the complementary problem of showing
not full compliance consists of identifying whether a trace is non compliant with a regulatory
framework. By using the definition and Algorithm [6]it can be immediately seen that the
algorithm can be used to identify whether a trace is non compliant with a set of compensable
local obligations, from which it follows that of showing not full compliance in the general
problem is in NP. Therefore showing full compliance in the general problem is indeed in
coNP.

To show the coNP-hardness of this problem I reuse a previous reduction as it has been
done for the problem of proving partial compliance. In this case I can reuse Reduction
where the problem of verifying whether a propositional formula is a tautology is reduced to
verifying full compliance in a sub-class C'2,,;, of the problem. Since I have already shown
that a sub-class C'2,,, is a particular case of the general problem and the tautology problem
is a known coNP-complete problem, I can conclude that indeed proving full compliance
in the general problem is in coNP-complete, which is the same computational complexity
class as for the sub-class C2,,, of the problem.

6.2 Further Propagating the Results

In this second part of the present chapter I propagate the complexity results further through
the lattice illustrating the set of sub-classes where the elements of the obligations composing
the regulatory framework are defined using propositional formulae. In Figure shows
the lattice and highlights the two sub-classes for which I already provided the complexity
results, namely C2,,;, and C3,.

From the picture we can see that the sub-classes C2,;, and C3,;,. have the same
computational complexity. I show in this part of the chapter that also the sub-classes C'ly;,
and C2q;. have the same computational complexity.

6.2.1 Computational Complexity of C'1y,

To prove the computational complexity of this sub-class of the problem I reuse some of
the results contained in Section [5.2.3] Differently from the previous section where the
complexity analysis started by showing the complexity of proving partial compliance, for
this sub-class of the problem I start by showing the complexity of proving full compliance.
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o ~ Partial: NP-complete
\ Full: coNP-complete
\ Non: coNP-complete

\
\

Figure 6.2: Current Complexity Results

Proving Full Compliance is coNP-complete

To show that the computational complexity of proving full compliance in a sub-class C'ly,
of the problem is in coNP-complete I reuse Reduction [2, which reduces the tautology
problem to a problem of proving regulatory compliance.

We have already seen that the computational complexity of proving full compliance
in the sub-class C2,,,, where Reduction [2] is used, is coNP-complete. Recalling now the
procedure reducing a tautology problem to a problem of proving regulatory compliance,
the procedure constructs a process model containing the propositions appearing in the
propositional formula being evaluated and a single local obligation with the propositional
formula set as condition is constructed and needs to be fulfilled by every trace of the model
in order to prove full compliance and indirectly that the formula is a tautology.

We can see now that the reduction requires a single local obligation, meaning that
the reduction actually reduces the problem of proving that a propositional formula is a
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tautology to proving full compliance of a sub-class C'1y;, of the problem. Moreover we can
also see that the sub-class analysed now is a particular case of the sub-class C2,,, of the
problem studied in Section from which we can conclude that the sub-class C'ly, is in
coNP. Therefore I can conclude that proving full compliance of a sub-class C'1y;, of the
problem is indeed in coNP-complete.

Proving Non Compliance is coNP-complete

Because the sub-class Cly;, is a particular case of the sub-class C2,;, and proving non
compliance of the latter problem is in coNP, I can conclude that the proving non compliance
of C1y;, is at most as complex as the sub-class C2,,;,. Therefore to prove that proving non
compliance in a sub-class C'ly;, is in coNP-complete I have to show that a coNP-complete
problem is reducible to it.

I consider now a know coNP-complete problem similar to the tautology problem, the
contradiction problem, which consists of proving that a given propositional formula is not
satisfied by any of its propositional assignments. This means that no matter what truth
values are assumed by the propositions composing the formula, the truth value of the
formula is always false.

Definition 47 (Contradiction). A propositional logic formula is a contradiction if the for-
mula itself is always unsatisfiable regardless of which evaluation is used for the propositional
variables.

To prove the computational complexity of the sub-class I can reuse once more Reduction
Even if the reduction involves reducing a tautology problem, from the axioms of
propositional logic it follows the following lemma.

Lemma 7. Let a be a tautology and B be a contradiction. o = —f5.

The lemma states that the negation of a tautology is a contradiction and vice versa. The
statement follows from the semantics of the negation which flips the truth value, meaning
that a tautology negated is always false, which corresponds to a contradiction.

From Lemmal[7]it follows that a tautology problem can be transformed in a contradiction
problem by negating the formula. Therefore by reusing Reduction [2] and negating the
starting formula, what we are actually reducing is a contradiction problem. Therefore if the
formula being evaluated is indeed a contradiction, then none of the traces (corresponding
to every possible evaluation) of the process model would fulfil the obligation resulting from
the reduction, which is the following: O%(—p, liest, T) where ¢ is a tautology.

Therefore according to Definition [I6] I can conclude that the reduced problem returns
non compliance in case the negated starting obligation is a contradiction. Thus I can
conclude that proving non compliance of a sub-class C1y;, is indeed in coNP-complete.
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Proving Partial Compliance is NP-complete

Having shown that proving non compliance of a sub-class C'1y;, of the problem is coNP-
complete and knowing that proving partial compliance is the complement of proving non
compliance as shown in Definition I can conclude, since the complement of a coNP-
complete problem is NP-complete, that proving partial compliance of a sub-class Cly;,
of the problem is indeed in NP-complete, which is the same computational complexity
identified for the sub-classes C2,,;, and C3,,..

6.3 Computational Complexity of C2y,.

I show now the last complexity analysis of the chapter in this section, where I show that
the computational complexity of the sub-class C'2q;. is equivalent to the other sub-classes
already studied in the lattice shown in Figure [6.2l Differently from the other analysis
performed for the other sub-classes of the problem, I show the computational complexity of
the sub-class at hand using a comparative analysis with the results already obtained.

Before proceeding I formally discuss the relations between the sub-classes of the problem
contained in the lattice in Figure[6.2] The lattice shows the sub-classes by ordering them
from the simplest, at the bottom, to the most complex, at the top. The connections between
the sub-classes represent that a simpler problem is a particular case of the more complex
one to which it is connected. Meaning that the complexity of a simpler sub-class connected
to a more complex one is at most the complexity as the more complex sub-class.

Proposition 4 (Complexity Relations). Let Cxzx and Cyz be sub-classes of the problem
of proving compliance, where x and y enumerate the amount of difficult features in each of
the sub-classes and, F and F' are sets representing which difficult features are included in
each sub-class. The sub-class Cxx is at most as computationally complex as the sub-class
Cyz if and only if F C F'.

The proposition introduced can be shown graphically in the figure illustrating the lattice
by considering the directly connected sub-classes of the problem. A sub-class C'z is at most
as computationally complex as a sub-class Cy, if C'x is directly connected to C'y and x < y.
Notice that the complexity relations between the sub-classes are symmetric and transitive.
The correctness of the proposition shown immediately follows from the fact that solving a
restricted problem is at most as difficult as solving a more general related problem.

Using the proposition introduced and considering the complexity results already obtained,
we can see that the sub-class C'2q;. of the problem is at most as complex as the sub-class
C3,,1.. Moreover we also know that the sub-class C'1y;, is at most as complex as the sub-class
(C21. Since I have already shown that the complexity of the sub-class C'ly, is equivalent
to the complexity of the sub-class C3,,., I can then conclude that also the sub-class C2q;,
share the same computational complexity.
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Therefore I can conclude that also in a sub-class C2y;. of the problem of proving
regulatory compliance, proving partial compliance is NP-complete, proving full compliance
is coNP-complete and proving non compliance is coNP-complete.

6.4 Summary

In the present chapter I propagated the existing complexity results to some of the other
sub-classes of the problem of proving regulatory compliance, in particular I propagated the
complexity results obtained for the problem C2,;,. We can see in Figure the updated
complexity results, which now includes in the set of sub-classes where proving partial
compliance is NP-complete and proving both full and non compliance is coNP-complete
also the sub-classes Cly;,, C21;. and C3,..

Ve ~ Partial: NP-complete
(N Full: coNP-complete
N \Non: coNP-complete

Figure 6.3: Complexity Results Updated

From Figure we can see that each of the sub-classes of the problem for which I
prove their computational complexity, the sub-class contains among the difficult features
the local obligations, which I recall to be obligations whose activation periods are variable
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and depend on the traces being analysed.

From the present state of the analysis it is possible to see that local obligations appear
to be a source of the complexity. However I cannot claim them to be the source of the
complexity since I have not provided any complexity result for the sub-class C014q, therefore
I cannot exclude the case where such problem is as difficult as the ones analysed till now.
Especially since there is currently no proof that the complexity of this sub-class is polynomial
as is instead shown for the sub-class C07,.

Nevertheless the present chapter manages to answer partially to the research subquestion
RSQ1: “What is the computational complexity of the sub-classes of the problem of proving
regulatory compliance?” which, despite being a partial answer since manages to determine
the computational complexities only of the sub-classes C'ly;,, C2p10, C21;c and C3,, it
determines the complexity of the sub-class corresponding to the general problem analysed
in this thesis, which answer the main research question of the thesis: RQ “What is the
computational complexity of the general problem of proving the regulatory compliance
of a business process model?”. The results identified in the present chapter, also identify
the upper bound of the computational complexity of the problem studied in this thesis.
Additionally, the results obtained explain why no efficient solutions have been proposed
in the literal for complex enough problems of proving regulatory compliance, since such
efficient results do not existdll

Despite the present chapter answers to the main research question, the second sub-
question remains still unanswered RSQ2 “Which are the sub-classes of the problem of
proving regulatory compliance that are non-trivial and tractable?”. Despite having proven
that the sub-class C’Ol_ga of the problem is tractable and having shown that it is expressive
enough to handle some real case scenarios, such sub-class of the problem is far from being
non-trivial. Moreover other sub-classes of the problem may be still identified as tractable.
Thus I further analyse the problem in the following chapter looking to answer the second
research subquestion. The results obtained in this chapter suggest that the source of the
complexity is most likely not isolated in the regulatory framework, hence in the following
chapter, dedicated to finding a non-trivial tractable sub-class, I analyse a sub-class not yet
discussed but resulting from restricting the expressivity of the process model itself along
with the expressivity of the regulatory framework.

1Unless P = NP.
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Chapter 7

Towards a Tractable Sub-Class of
the Problem

The present chapter focus on the second research subquestion RSQ2: “Which are the
sub-classes of the problem of proving regulatory compliance that are non-trivial and
tractable?”. In the previous chapter I have shown that the computational complexity of
proving regulatory compliance of a business process is in the general case hard. This means
that polynomial time solutions with respect to the size of the problem are not possible.
Thus the time necessary to prove the compliance of a business process can be much higher
when compared with the size of the problem being evaluated.

By dividing the problem of proving regulatory compliance into sub-classes to analyse
its computational complexity, I have also shown that the expressivity of the regulatory
framework, one of the two elements composing the problem, is not the only source of
computational complexity. In fact I have shown in the previous two chapters that the
problem is still intractable even when considering regulatory frameworks restricted in their
expressivity.

The analysis of the computational complexity of the sub-classes of the problem performed
in the previous chapters suggests that tractable solutions for such sub-classes are not possible
when the elements composing the obligations are not restricted to propositional literals. Mind
that I cannot claim that such solutions do not exists, since the computational complexity of
each of the sub-classes of the problem involving obligations whose elements can be expressed
by propositional formulae is not exhaustive in the present thesis. Nevertheless propositional
formulae do not seem to be the only source of computational complexity since, as it has
been shown in Chapter 5 even sub-classes of the problem limiting the expressivity of the
elements composing the obligations to propositional literals, such as C2_, , can also be
hard.

When limiting the obligations to be expressed through propositional literals, the sub-
classes of the problem obtainable by limiting the expressivity of the regulatory framework

113
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does not seem to produce non trivial sub-classes of the problerrﬂ, where solutions in time
polynomial with respect to the size of the input are possible. Therefore in the present
chapter, starting from the sub-class C'1;;, of the problem, I propose a different sub-class,
which I refer to as C'1];,, obtainable by restricting the semantics of the business process
models and for which the computational complexity of proving its regulatory compliance is
linear in time with respect to the size of the input.

I conclude the present chapter by analysing why the restriction applied on the business
process model to obtain the sub-class C'17;, of the problem, do not allow to obtain tractable
sub-classes of the problem when applied to more complex sub-classes of the family of
problems C*.

7.1 An Existing Polynomial Solution

Before proceeding to introduce and discuss the sub-class C17],, of the problem and the
solution to prove its compliance in time linear with respect to the size of the problem, I
discuss Hoffmann et al. [44] polynomial time solution, which allows to identify approximate
solution when considering the generic problem of proving regulatory compliance and allows
exact solutions when considering one of its sub-classes. In this section I focus on discussing
the limitations adopted by Hoffmann et al. to provide an exact solution to the problem
efficiently. Part of the restrictions that they adopted to identify a tractable sub-class can
be reused to identify the sub-class of the problem that I efficiently tackle in the present. To
get rid of the limitations appearing in the approach adopted by Hoffmann et al. I adopt
additional restrictions to simplify the sub-class of the problem being tackled.

The solution proposed by Hoffmann et al. is based on the I-propagation algorithm
originally introduced by Weber et al. [82]. The I-propagation algorithm identifies for each
transition between the tasks of a process model which values can be expected to be true
when they are traversed. The algorithm calculates this information by considering the
annotations of the tasks and propagating them through the transitions according to their
direction and the semantics of the coordinators being traversed.

The approach adopted in the present chapter to solve the sub-class of the problem in
polynomial time uses a similar approach to the I-propagate algorithm of Weber et al. This
means that also the solution proposed here propagates the values annotated in the tasks
through the transitions and coordinators of the process model. However as we will see
later on, the two approaches differ since the sub-classes they aim to solve are different. For
instance one of these differences, and probably the most visible, is that the I-propagate
algorithm uses first-order logic while the solution I propose use propositional logic.

In order to provide a low-order polynomial time solution for the problem of proving

T have shown in Chapterthat for the most basic sub-class of the problem, when the elements composing
the obligations are limited to propositional literals, then polynomial solutions are possible. However due to
the limited expressivity of the sub-class only a small fragment of real problems can be captured.
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regulatory compliance, Hoffman et al. adopt the following list of restrictions to reduce the
generic problem, as defined in the present thesis as the sub-class C3,,., to a more tractable
one.

1. They restrict the regulatory framework to only be composed of obligations of type
maintenance. In other words the do not allow obligations of type achievement, while
obligations of type standard would be allowed since they are a particular case of
maintenance obligations. However as we see from the following restriction adopted by
Hoffmann et al., they are not allowed either.

2. The semantics of the obligations allowed is restricted since deadlines are not allowed.
The obligations allowed can still use lifelines to identify from when they must be
verified, however by not allowing a deadline, the obligation must be verified for the
whole remainder of the process once activated. Moreover since according to the
previous restriction only obligations of type maintenance are allowed, it means that if
an obligation become active, then its condition has to be kept true until the end of
the process.

3. The semantics of the regulatory framework is further reduced by not allowing com-
pensable obligations, meaning that only atomic obligations are allowed and a violation
of the obligation cannot be compensated by complying with an additional obligation.

4. The results provided for the sub-class of the problem tackled are partly exact and partly
approximated since they can guarantee only either the soundness or the completeness
of the solution provided. This derives from the fact that they approximate the results
of AND and XOR blocks, where by result it is meant which propositions can be
considered true after the block is executed.

Thanks to the restrictions adopted, Hoffmann et al. are capable of proving efficiently
whether a business process model is compliant with a regulatory framework. However
it is necessary to remember that the solutions provided are not free of approximations.
Therefore I will later propose a different sub-class of the problem, perhaps more restricting
than the one used by Hoffmann et al., but where the solutions provided are exact and the
soundness and completeness of the algorithms used to achieve them can be proven.

7.1.1 Structural Restrictions

One of the problematic components of the business process models that also forced Hoffmann
et al. to adopt an approximated approach are the AND blocks. In fact also the solution
proposed by Ghose and Koliadis [30] is tailored to prove the compliance of process models,
which do not contain such type of blocks.

Despite of the great deal of flexibility allowed by AND blocks, which allow to a business
process model designer to avoid to impose arbitrary orderings between tasks where such
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constraints do not naturally exist, these kind of structures may represent a problem due to
amount of the possibilities allowed. Remind that in an AND block each possible interleaving
of the tasks belonging to different branches of the block is possible. The amount of executions
allowed by such structure is exponential with respect to the number of task contained in the
process block. Thus one can see that the amount of possible executions obtainable by such
structure can lead to some computational difficulties. Especially in the worst case scenario,
where in order to prove the regulatory compliance of the model it may be necessary to
consider each of its possible executions, since it may be necessary to ensure that every
possible ordering resulting from an AND block does not produce executions not compliant
with the obligations composing the regulatory framework.

As a consequence of the complexity brought by AND blocks to the problem of verifying
regulatory compliance, I restrict the sub-class of the problem being tackled in the present
chapter to and-less process models. This particular class of business process models is the
one where and — join and and — split coordinators are not allowed.

A problem that may arise by having to chose a fixed ordering over tasks that in general
do not require a particular one, is that the possibilities are artificially restricted to the order
adopted. This can lead to cases where a model where an arbitrary ordering has been chosen
to approximate an AND block, can be for instance classified as fully compliant with the
regulatory framework. However due to the approximation, information about a particular
execution ordering of the tasks which would have been not compliant may have been lost,
which would have made the real process model to be classified as partially compliant instead.
The same case can apply to an approximated process classified as not compliant.

Therefore by limiting the processes to be and-less, there is the risk of constructing
process models which are not capable of expressing the actual possible executions of the
tasks but only a subset of them. To minimise the negative effects of removing AND blocks
from the process model, one can decide to represent multiple arbitrary possible orderings
of an AND block within a XOR block, representing in this way a less approximated model
which has an higher probability of capturing the features of the real problem.

Proposition 5. Given an AND block B4 = AND(BAy, ..., By), let Bx = XOR(BY, ..., B],) be
a XOR block where X(Ba) = J; X(B]). Therefore £(B4) = X(Bx).

Proof. Follows directly from Definition O

The proposition introduced above formalises the concept that an AND block can be
represented as a XOR block. In particular such translation requires that each branch of
the XOR block contains a subset of the possible executions of the AND block and their
union is equal to the whole set of possible executions. In case the second condition, that
the union is equal to the set of the executions of the AND block is ignored, then the XOR
block represents an approximation of the original AND block. Notice that the size of the
process block resulting from the transformation is exponential with respect to the size of
the original one.
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7.2 The Sub-Class (1],

I define in this section the limitations that starting from the sub-class C'1};, of the problem
lead to the sub-class C'1];,. We already saw in the Chapter [5|and Chapter @ that simplifying
the obligations composing the regulatory framework does not reduce the complexity of the
problem except in the most restricted case, consisting of the sub-class Cl_ga of the problem,
shown in Chapter |3} Therefore, starting from one of the easiest sub-classes of the problem
not proven to be solvable in time polynomial, I further restrict the semantics of the business
process models used by taking inspiration from the existing approach mentioned in the
present chapter: Hoffmann et al. [44].

The limitation applied to the general problem to obtain the tractable sub-class are the
following;:

1. The elements defining the obligations composing the regulatory framework are re-
stricted to propositional literals.

2. The business process model does not allow and_split and and_join coordinators, hence
AND blocks are not allowed.

3. The evolution of the states composing a trace is forced to be monotonic, in other
words when information, described as a propositional literal, becomes true and is
introduced in the process’ state, then it cannot become false and removed from the
state.

The following subsections describe each of the limitation adopted in detail and provide
the intuitive reasons why these limitations are necessary to achieve a tractable sub-class of
the problem.

7.2.1 Propositional Obligations

In Chapter (3| it has been proven that verifying regulatory compliance of a sub-class C’Ofga
of the problem can be solved in time polynomial with respect to the size of the input.
The elements composing the obligations of such sub-class of the problem are limited to
be expressed by propositional literals. Given that the sub-class C'17;, allows only positive
literals in its annotations, I further restrict the obligations of such the sub-class of the

problem to be composed only of positive literals.

7.2.2 AND-less Business Process Models

The second limitation, also adopted in other approaches, like for instance the approach
of Ghose and Koliadis [30], consists of restricting the expressivity of the business process
models by not allowing them to use AND blocks.
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Using AND blocks in the process models allows to represent tasks whose execution order
is irrelevant. The advantage of this construct is that all the possible executions of these
tasks, generated by the interleaving of these independent tasks, are represented in a compact
way using AND blocks. The disadvantage of these constructs arises when considering the
regulatory framework, in particular when the tasks supposed to be independent are not
with respect to the obligations composing the framework. If this is the case, then each
possible ordering of the problematic tasks needs to be verified, which given the compact
representation of the construct can lead to an exponential number of possible executions
with respect to the size of an AND block.

Assuming that the tasks belonging to an AND block are truly independent, then the
order in which they are executed should not influence whether the process model containing
them is compliant or not. Therefore given this assumption, to prove the compliance of a
process it is sufficient to consider the results of executing an AND block, independently on
the order in which the tasks composing it are executed, hence it can be approximated as a
single task, or a set of disjoint tasks in case different results are possible.

7.2.3 Monotonic Business Process Models

The third and last limitation concerns the semantics of the business process model. I restrict
the traces resulting from such limited models, which I refer to as monotonic business process
models, to have a monotonic evolution of the states composing them. In other words when
some information becomes true and is included in the state of the process, then it cannot
become false and retracted later on by the execution of other tasks.

Definition 48 (Monotonic Processes). A process (P,ann) is said to be monotonic if and
only Zf Vo € @(P,ann),Voi,aj S (9‘0’1 = Uj,Li - Lj where L; € o; and Lj €oj.

The definition describes these new class of business processes again in terms on their
possible traces. The monotonic evolution of the states composing the traces of these
monotonic processes is expressed by constraining a state to be a subset of each of its
following ones, which means that a state contains at least the same information included in
each of its predecessors.

A straightforward way to move from processes to monotonic processes without having to
redefine the semantics of the models, hence being able to reuse the definitions and properties
of the unrestricted processes, is to restrict the universe of the literals £ to a restricted one
where only positive literals can be expressed.

Definition 49 (Positive Universe Lp). Given a finite set of atomic elements E, the positive
universe Lp is E.

)

A consequence of using a positive universe to describe the annotations, obligations
elements and process’ states, is that the expressivity is reduced from three values to two.
The values originally available for each element of the universe was either one of the following
three:
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e The element is included in the process state.
e The negation of the element is included in the process state.

e Neither the element nor its negation are included in the process state.

The consequence of restricting the expressivity of the obligations and the business
process models to the positive universe, is that an element, described by a proposition, can
either belong to a process’ state or not belong to it. Assuming that in the restricted case
when an element does not belong to a process’ state, then it counts as false, like as defined
using negation as failure, then the value lost by the restriction is the one representing the
ignorance about the truth value of an element. Therefore a consequence of introducing such
restriction is that the models move from a setting where the information about the world is
partial to a setting where the information is complete, in other words given a proposition
in the restricted setting, the system always knows whether that proposition is true or false.

The following corollary formally shows the connection between adopting a positive
universe and obtaining a business process model behaving monotonically.

Corollary 3. If the annotation of the tasks of a process model (P, ann) is restricted to a
positive universe Lp, then (P,ann) is a monotonic process model.

Proof. The monotonic behaviour of the resulting process model, described in Definition
follows directly from Definitions and O

7.2.4 Resulting Differences

The restrictions adopted to obtain a tractable sub-class of the problem, in particular
restricting the the problem to monotonic process models and limiting the elements of
the obligations to be described by positive propositions, requires to redefine some of the
obligations used in the regulatory framework.

The limitation adopted over the obligations’ elements may not affect a system designer
since the meaning associated to a proposition can also be negative, for instance one can
associate to a positive proposition | the meaning “the light is off”. This limitation along
with limiting the process models to be monotonic reduces the semantics of maintenance
obligations to standard obligations. Since maintenance obligations require that a property
holds for a set of successive states, give the monotonicity of the evolution of the states,
it become sufficient to verify whether the property holds in the first of the states. This
verification procedure can be handled by an obligation of type standard, which is also
a special case of achievement obligations. Thus by restricting the scope on monotonic
processes, the semantics of maintenance obligations collapses in the semantics of achievement
obligations.

While maintenance obligations can be removed from the framework since they become
redundant, given that achievement obligations can now verify them, an additional type of
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obligation can be introduced to capture the requirement of avoiding that a given proposition
becomes true in the process’ state. Therefore I introduce a new type of obligation whose
goal is to verify whether a set of successive states do not contain a given proposition. The
semantics of this new type of obligation, which I refer to as prohibition, is formalised in the
following definition.

Definition 50 (Comply with Local Prohibition). Given a local prohibition © = OP(c,l,d)
and a trace 6, 0 is compliant with ©, written 8 + O, if and only if:

Vo; € 0 such that o; |= 1 then 3oy, € 6 such that oy, = d and Vo; € 6 such that o; <
ogj 2op:ojlEc

Notice that the requirement being verified by an obligation of type prohibition, would
be equivalent to verify the maintenance of the absence of a given proposition. However,
given the positive universe adopted to represent the elements composing the obligations, it
is not possible to express such requirement using an obligation of type maintenance.

Another consequence of limiting the elements composing the obligations to positive
propositions and the business process models to monotonic business processes, is that
verifying whether a trace fulfils an obligation of type achievement and of type prohibition
can be checked by considering exactly one of their activation periods. More precisely in the
current sub-class of the problem being studied, when an activation period of an achievement
obligation satisfies the fulfilling condition, then each following activation period also satisfies
the condition. Differently, considering obligations of type prohibition, when an activation
period does not satisfy the condition, then each following activation period also do not
satisfy the condition.

Lemma 8 (Achievement Monotonicity). Given a trace 8 and © an obligation of type
achievement. Let Iy < Iy be true if the activation period I; of © precedes the activation
period I in 0. If 31 € Interval(©,0) such that I satisfies O, then Vs € Interval(Q,0)
such that Iy < I, Is satisfies ©.

Proof. Follows directly from Definitions [20] and O

Lemma 9 (Prohibition Monotonicity). Given a trace 8 and © an obligation of type
prohibition. Let I7 < Iy be true if the activation period Iy of © precedes the activation period
Iy in 0. If 3, € Interval(©, 8) such that I does not satisfy ©, then VI € Interval(©,0)
such that Iy < I, Is does not satisfy O.

Proof. Follows directly from Definitions [50] and O

7.3 Proving Regulatory Compliance in C17,

Before introducing the algorithm capable of proving regulatory compliance in a sub-class
U173, of the problem in linear time I describe the auxiliary functions and procedures used
by it.
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During the analysis of a business process model, to determine whether it is compliant
with the regulatory framework, the algorithm uses labelings to identify relevant tasks in
the model. More precisely the tasks are labeled dependending on their annotation and
according to whether they can trigger the lifeline, the deadline or the fulfilment condition
of the obligation being analysed. Which means that a label is associated to a proposition
describing one of these elements. Two types of labelings are used by the algorithm: total and
conditional. Given a label «a, a task totally labeled in a business process model represents
that when executed, the proposition associated to such label is true in the resulting process
state. A task conditionally labelled in a business process model represents that when
executed, in some but not every case the proposition associated to such label is true in the
resulting process’ state. I use the notation a to represent the total labelling and «. the
conditional labelling.

9

7.3.1 Auxiliary Functions and Procedures

Before introducing the algorithm I introduce the two auxiliary functions used by it to prove
regulatory compliance in a sub-class C17;, of the problem.

The functions I describe represent computationally low cost steps for which I provide
the preconditions and the postconditions of applying them. An example of a function is
labelling a subset of the tasks belonging to a process model according to a given condition.
Notice that for this example verifying the condition must not be computationally costly.

Function: Conditional Labelling

The function conditional labelling converts some of the existing total labelings in a labeled
process block into conditional labels. More precisely the function converts to a conditional
label each of the total labels within a XOR block where at least a branch belonging to the
same block does not contain another task totally labeled with the same label.

Notice that a labeled task may be contained in more than a XOR block if they are
nested. In this case, whether the task should be conditionally labeled is checked for each of
the XOR blocks containing it. In this case to avoid to recompute whether a task should be
relabelled conditional it is sufficient to start from the most nested XOR block.

Function 1 (Conditional Labelling). Given a process block B labeled with o, 3 and vy, the
function conditional labelling, written C'L(B), returns a process block B where the following
holds:

An element e is conditionally labeled in B if and only if:
the element e is totally labeled in B
and the element s in an xor block

and exists a branch of the xor block not containing an element with the same label as e
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An element e is totally labeled in B if and only if:
the element e is totally labeled in B
and the element is not conditionally labeled in B

A conditionally labeled task ¢ in a XOR block X, where X is not nested in any additional
XOR blocks, represents that there exists a serialisation of X that does contain at least a
task with the same conditional label as t, note that this task is not necessarily ¢ since
there may exist other tasks with the same conditional label. However another task totally
labelled within the same XOR block cannot exists. Moreover if ¢ is conditionally labeled it
also means that there exists a serialisation of X which does not contain a task with the
same conditional label as t.

Example 29 (Conditional Labelling). I illustrate in the present example when a task
belonging to a XOR block and totally labeled is translated to a conditionally labeled block.
Considering first illustration (a) of Figure showing a XOR block composed of four tasks,
of which two of them are totally labeled, more precisely one for each of the two branches
of the process block. Therefore in this first case, after applying the function conditional
labelling, the two labelings remain unchanged, since each of the branches of the XOR block
contains at least a totally labeled task.

Considering now illustration (b) of of Figure showing a XOR block similar to the
one previously considered but with an additional branch composed of a single unlabelled task.
Differently, applying the function conditional labelling in this case would change the labels
of the tasks t1 and tq from their total label o to a conditional one a., because of the third
branch of the XOR block, composed by the task ts, which is not totally labelled.

Algorithmically the function conditional labelling can be computed by analysing the
XOR blocks individually and modifying the label to conditional when necessary. In the case
of XOR blocks nested within other XOR blocks, the analysis is required to start from the
inner most ones. By analysing nested XOR blocks in such order is ensured that the resulting
labelled process block follows the postconditions specified by Function Moreover the
computational complexity of carrying on such analysis is linear in terms of the size of the
model since each task of the model needs to be analysed at most once.

Function: Propagate Labelling

The function propagate labelling propagates the labels through the tasks in a process block
B according to the transitions in the block. The propagation simulates the evolution of the
state of the process. The propagated labels represent that the state of the process after
executing the task contains the propositions annotated in the task from which the label
originated in case the label is total, otherwise it may contain the annotated propositions
in case the label is conditional. For instance if an element e of B is labeled «, then all



7.3. PROVING REGULATORY COMPLIANCE IN C1%, , 123

8%
t t

SN o X>--->
.j

(@)

Figure 7.1: Conditional Labelling

elements reachable through the transitions from e become also labeled as a. This applies
for both conditional and total labels, however in the case where an element would end up
being both totally and conditionally labeled for the same label, then that element ends up
being totally labeled for that particular label and not conditionally.

Function 2 (Propagate Labelling). Given a process block B labeled with o, 5 and 7y the

function conditional labelling , written PL(B), returns a process block B where the following
holds:

An element e is totally labeled in B if and only if:
exists a path from an element totally labeled in B to e

An element e is conditionally labeled in B if and only if:
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exists a path from an element conditionally labeled in B to e
and does not exist a path from an element totally labeled in B to e

In a process block B where its labels have been propagated, the labels of a task are an
abstract representation of the state holding in a trace executing that task (as it is shown
in Algorithm @ Given that to each label it is associated a proposition, in the case a
task t is totally labeled as «, then in every possible trace of B, the state holding after
executing the task ¢ always contains the literal associated to the label «. Differently, if
a task t is conditionally labeled as «, then some but not all the traces of B contain the
literal associated to « in the state after ¢ is executed. More precisely, all the traces of B
executing the task from which the conditional label a has been propagated contains in the
state holding after the execution of ¢ the literal associated to a.

Example 30 (Propagate Labelling). Figure tllustrates a business process model com-
posed of six tasks of which one, task ts, is conditionally labeled o, and another, task ts, is
totally labeled .. Notice that according to the function conditional labelling, the task being
conditionally labeled belongs to a XOR block which contains an edge without such label.

O+<>i - rw V(@

Figure 7.2: Starting Labelling

The result of applying the function propagate labelling to the labelled process illustrated
in Figure is shown in Figure [7.5. From the result we can see that the conditional label
propagated from the task ts to the task ty. The conditional label would have also propagated
to the tasks ts and tg, however since these two tasks are also totally labelled, one originally
and one from the propagation, then the conditional label is removed.

A different result of applying the function propagate labelling would have been obtained
in case the task ts would have been conditionally labelled with a different label than task ts,
for instance B.. In this case the propagation of the total label o would remain the same,
while the propagation of the conditional label 8. would cover the following tasks in the
results: ts, ty, ts and tg. Which would have lead to having tasks t5 and tg labelled by both
and f..
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Figure 7.3: Propagated Labelling

To algorithmically compute the function propagate labelling, the tasks belonging to the
business process model can be analysed starting from the one directly connected to the
pseudo-task start. The other tasks belonging to the model are then analysed when each of
the preceding tasks have been. When a task is being analysed, its label is then propagated
to the tasks directly following it, in this case tasks separated by an xor coordinator are
considered as directly connected. During the propagation total labels can rewrite conditional
ones, while the opposite is not allowed. Computing the the function in such a way ensures
that the postconditions listed in Function [2] are satisfied. The computational complexity of
computing the function in such a way is linear in term of the size of the business process
model.

7.3.2 Main Algorithm

I introduce now the algorithm capable of proving regulatory compliance of a sub-class
C17,, of the problem in time linear with respect to the size of the input. The algorithm
uses labels to identify the tasks that when executed produce a process state satisfying at
least one of the elements of the obligation composing the regulatory framework. These
tasks are identified according to their annotation, if an annotation contains the proposition
which triggers one of the elements of the obligation, then the task is labeled with the label
associated to that element.

The algorithm uses the function conditional labelling to distinguish between the labeled
tasks which are the ones that belong to an XOR block which does not guarantee the
proposition associated to the label to hold in the process state independently on the branch
of the block being executed. After the algorithm uses the function propagate labelling
to propagate between the tasks the labels according to the transitions in the process
model. After the propagation, the algorithm proceeds to evaluate the labeled process model
depending on the type of the given obligation, and returns whether the process model and
to which extent it is compliant with the regulatory framework.

The idea behind the algorithm is that due to the forced monotonic behaviour of
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the process state, when a proposition is included then it stays true for the the whole
process. Because of this it is not required to check whether there are tasks that remove the
propositions from the state. Therefore, since the order in which the tasks can be executed
is governed by the transitions in the model, by propagating the labels according to the
transitions allows to identify which proposition considered relevant is true when when a
task is executed. Moreover in case the label propagated is conditional, then it means that
not every execution of the task contains the relevant proposition, but only when one of the
tasks from which the label has been propagated has been executed.

Therefore, depending on the type of obligation being analysed, the algorithm can check
the labeled process model to determine whether there exists a labelling ensuring that none
of the traces of the model fulfil the obligation or some of them. Given that only three
compliance results are available, in case that neither of the two conditions are verified, then
it means that the process is full compliant since each of its traces fulfil the obligation.

The conditions used by the algorithm to check the labelling of a task are expressed using
propositions, where the truth value associated to a single label is true if it is associated to
a task being checked and otherwise false.

Algorithm 7. Given a C17,, problem composed of a monotonic process (P,ann) and a
local atomic obligation ©, A7((P,ann), Q) returns whether (P, ann) is fully, partially or not
compliant with O.
Algorithm Ay
1: Let © = O%{(c,l,d)
2: Label « the tasks in P where | € ann(t);
3: Label B the tasks in P where d € ann(t) and the pseudo-task end;
4: Label v the tasks in P where ¢ € ann(t);
5: B=CL(B);
6: B = PL(B);
7: if x == a then
8: if 3 task € B labeled: a A BN —=(yV 7,.) then

9: return (P,ann) I/ O
10:  else
11: if (3 task € B labeled: (aV ac) A(BV Be) AN=(yV.) then
12: return (P ann) H O
13: else
14: return (P,ann) H O
15: end if
16:  end if
17: else
18:  if 3 task € B labeled: a AN —(BV B.) A~ then
19: return (P,ann) i/ O
20: else
21: if (3 task € B labeled: (aV ac) A=(BV Be) A (yVA.) then
22: return (P,ann) H O

23: else
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24: return (P,ann) ' O
25: end if

26: end if

27: end if

Complexity

The complexity of the functions used by the algorithm are both O(n) where n is the
number of tasks contained in the model. The process of labelling the tasks requires to
analyse the annotation of each of them, resulting again in a complexity of O(n). The
same applies for the two evaluating steps which I can assume that requires to analyse each
task again after the function propagate labelling propagated the labels in the model. The
complexity of checking membership of a literal in an annotation is O(A), where A is the
total size of the annotations. Therefore the general complexity of Algorithm [7]is O(n + A),
which is linear with respect to the size of the input.

7.4 Tackling More Difficult Sub-Classes of the Problem

After having shown that a sub-class C1];,, of the problem can be solved in time linear
with respect to the size of the input, I provide in the last part of this chapter an analysis
why the current restrictions are not sufficient to allow tractable solutions for more difficult
sub-classes like C27, or C27;..

7.4.1 (C2* is Still Intractable

nla

While considering a sub-class C27, of the problem, where a set of local obligations compose

the regulatory framework, the restrictions adopted are most likely to be insufficient to allow
tractable solutions.

Intuitively, I show why a tractable solution does not seem to be possible reusing
Algorithm [7} Since the difference between the sub-class C'17];, and the more complex C27,,
is that in the latter the regulatory framework is composed of multiple obligations, the
straightforward approach would be to iteratively apply the algorithm used to verify a single
obligation for each obligation composing the framework.

Blindly reiterating the algorithm would not be able to correctly determine whether a
process is partially compliant since according to Definition a trace needs to fulfil each
of the obligation of set set in order to comply with the set of obligations. However in
the current state the algorithm is not capable of determining whether the trace fulfilling
different obligation is the same or is different for each obligation.

However trying to keep track of which set of traces were actually fulfilling the obligations
composing the regulatory framework may lead in the worst case to have to consider each
separate trace individually, which is intractable since the amount of traces is exponential
with respect to the number of tasks. I show in Figure [7.4] an example where the structure
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of a process model and its labelings requires to consider different cases while proving the
compliance of a process.

Figure 7.4: Branching SubStructure

The picture shows a substructure of a process model where an XOR block follows another
and the tasks t; and ¢3 have been labeled with the label or. Assuming now that we want
to analyse the substructures ensuring at least a task labeled « to be executed, we have
to considered two substructures: SEQ(¢;, XOR(t3,t4)) and SEQ(t2,t3), which exclude the
execution composed by the tasks to and t4 which does not contain tasks labeled with a.

Assuming now that we want to continue our analysis to verify whether the two sub-
structures identified contains traces fulfilling the other obligations composing the regulatory
framework, we need to repeat the process for each of the obligation. However if we assume
the case where instead of having atomic tasks in the branches we have more branching
substructures and possibly more branches, it is straightforward to see that in the worst case
the algorithm divides the model in sequences where each sequence corresponds to a single
execution, which corresponds to a brute force analysis, which in turn is not tractable given
the exponential number of possible executions derivable from such structure of the process.

7.4.2 (2], is Still Intractable

Finally, considering a sub-class C'27;, of the problem, where a single local obligation which

allows compensations compose the regulatory framework, the restriction adopted in this
chapter seems not to be sufficient to allow tractable solutions. The analysis why also
this more complex sub-class does not allow tractable solution is analogous to the analysis
made for the sub-class C2y, of the problem. The difference in this case is that the
iterations are linked to the compensation chain associated and each iteration verifies one



7.5. SUMMARY 129

of the obligation composing the chain. Nevertheless also in this case when considering
the branching substructures, the analysis reduces itself in the worst case to a brute force
analysis of every possible execution. A thorough analysis of this sub-class of the problem of
proving regulatory compliance has been already provided by Colombo Tosatto et al. [22].

7.5 Summary

In this chapter I have shown that by simplifying a sub-class C'1];, of the problem to another
sub-class C'17;,, obtained by mostly restricting the expressivity of the business process
model being checked, allows to prove regulatory compliance in time linear with respect to
the size of the input.

The business process models are restricted to not contain AND blocks and to allow only
traces where the process’ state evolution is monotonic. Additionally the expressivity of
the obligation is also slightly restricted by allowing the elements to be represented only by
propositions, excluding in this way the possibility of using negative literals.

One may argue that the limitations imposed are too restrictive and a tractable sub-class
of the problem, for instance solvable in time polynomial with respect to the size of the
input, may be found using less harsh restrictions. However from the analysis of the two
more complex sub-classes C27, ~and C27,,, it results that such restrictions are not sufficient
to allow tractable solutions as soon as another difficult characteristic is included in the
regulatory framework.

Considering the second research subquestion concerned about finding a non-trivial
tractable sub-class of the problem of proving regulatory compliance, the current chapter
does not provide a definitive answer since the expressivity of the sub-class C'1];, of the
problem hardly makes it non-trivial. However the study performed in this chapter about
the tractability of sub-class C'17;, points out that tractable sub-classes of the problem may
be found while not extremely trivialising one of the two elements composing the problem.
However, whether tractable non-trivial sub-classes of the problem obtainable by simplifying
both elements composing it exists and which are these sub-classes, remains still an open
question.
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Chapter 8

Conclusion

In this thesis I presented a formal analysis of the computational complexity of the problem
of proving regulatory compliance of business process models. The problem of proving
regulatory compliance consists of verifying whether a given business process model conforms
with the given regulatory requirements. In this thesis I characterise the problem as composed
by two elements: the business process model being studied and the regulatory framework
describing the regulatory requirements through the use of obligations.

In the introduction I raised the main research question and two related research sub-
questions. The present thesis answers the three questions as follows:

RQ What is the computational complexity of the general problem of proving the regulatory
compliance of a business process model?

answer: The computational complexity of the general problem, corresponding to the sub-
class C3,., is NP-complete when proving partial compliance and coNP-complete
when proving either full or non compliance.

The main research question has then been followed by two research subquestions, aimed
at analysing in deeper details the problem of proving regulatory compliance. The two
research subquestions are the following.

RSQ1 What is the computational complexity of the sub-classes of the problem of proving
regulatory compliance?

answer: For the sub-classes: C3,., C2n14, C21;. and Cly;, verifying partial compliance is
NP-complete and verifying either full or non compliance is coNP-complete. For the
sub-class C2_; of the problem verifying partial compliance is NP-complete, verifying
non compliance is coNP-complete and verifying full compliance is coNP. Whether
verifying full compliance for the sub-class C2_, of the problem is coNP-complete is
still an open question. For the sub-class C'Ofga7 verifying either of full, partial and
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Sub-Class Partial Compliance | Full Compliance | Non Compliance
C3hic NP-complete coNP-complete coNP-complete
C2n14 NP-complete coNP-complete coNP-complete
C2q¢ NP-complete coNP-complete coNP-complete
Clyg NP-complete coNP-complete coNP-complete
2., NP-complete coNP coNP-complete
COyy, 0(n?) O(n?) O(n?)

C2,. O(n+ A) O(n+ A) O(n+ A)
Verifying a Trace OnxoxT xz) OnxoxTxz) | OmxoxTxz)

Table 8.1: Complexity Results

not compliance can be done in polynomial time. For the sub-class C27, . verifying

either of full, partial and not compliance can be done in time linear with respect to
the size of the problem.

RSQ2 Which are the sub-classes of the problem of proving regulatory compliance that are
non-trivial and tractable?

answer: This research subquestion is still open. Even though some tractable sub-classes
of the problem, such as C0;,, and C2, , have been identified, these sub-classes of

the problem can hardly be considered non-trivial.

Table summarises the complexity results for the sub-classes analysed in the present
thesis. Mind that in the table n is the number of tasks contained in the model, A is the
total size of the annotations, o is the number of obligations contained in the regulatory
framework and z is the length of the longest compensation chain. 7T is the maximum time
to check whether a state satisfies a formula.

In this final chapter of the thesis I recap the results obtained in the thesis. Additionally
to the results found I also discuss the limitations of the approach adopted and about which
part of the research questions has not yet been answered in the current thesis and which
other question arose while tackling the current ones, which then can be used as a guidance
for further research in the area of proving compliance.

8.1 Results

From the computational complexity analysis, it resulted that a set of the sub-classes of
the problem of proving regulatory compliance, including the general problem, belong to
the same complexity class, as it is illustrated in Figure in Chapter [6] More precisely
the results show that proving whether a business process model is partially compliant,
meaning that exists an execution of the business process model which is compliant with the
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regulations, is a NP-complete problem. Differently, proving either that a business process
model is fully compliant or it is not compliant, meaning that all executions of the business
process model or none of them are compliant with the regulations, are both coNP-complete
problems.

The computational complexity results obtained for the subset of sub-classes of the
problem identified in this thesis allow to answer the main research question RQ. The main
research question aims at identifying the computational complexity of the general problem
of proving regulatory compliance. The general problem, corresponding to the sub-class
(3, where a business process model is checked against a set of conditional obligations
where compensations for eventual violations are allowed, is among the sub-classes for which
proving partial compliance is NP-complete and proving either full or not compliance is
coNP-complete.

However, if we move the focus on the first research subquestion RSQ1, it has been
answered only partially by the present thesis. Some of the sub-classes of the problem have
been shown to have the same computational complexity of the general problem. While
other more restricted sub-classes, like the one discussed in Chapter 5] where the regulatory
framework is restricted to a set of local obligations and the obligations themselves are
restricted to be described using propositional literals and not formulae, has been shown
to have a similar complexity to the general problem, however in this particular case, the
restriction on the elements composing the obligations allowed only to show that proving full
compliance of such sub-class of the problem is coNP. In this case, whether this proving full
compliance of this particular sub-class of the problem is coNP-complete, is still an open
question.

An additional result provided in this thesis and concerning RSQ1 has been shown in
Chapter [3| In that chapter it has been shown that the sub-class of the problem, where the
expressivity of the regulatory framework is the most limited given the features identified,
can be solved in time polynomial with respect to the size of the input. This particular
sub-class of the problem is among one of the tractable ones, which the second research
subquestion RSQ2 aims at finding. However, given the extreme limitations applied on the
regulatory framework in this particular case, this sub-class of the problem does not classify
as non-trivial.

The second research subquestion is yet to be properly answered. The present thesis
pointed out three tractable sub-classes of the problem. The first one, introduced in Chapter
and obtained by verifying a business process model against a very limited regulatory
framework. The second one, implicitly introduced in Chapter [} and obtained by verifying
a very simple business process model against a regulatory framework. This sub-class has
not been introduced explicitly, however given that a trace can be considered as a very
simple business process model, whose executions correspond to exactly that trace, then the
computational complexity analysis of such sub-class of the problem is provided by Algorithm
[6], which complexity is in time polynomial with respect to the size of the input. The third
and last tractable sub-class of the problem investigated in the present thesis, discussed
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in Chapter [7] is obtained by limiting the expressivity of both regulatory framework and
business process model, however applying lighter limitations than the ones applied on the
individual elements by the two other tractable sub-classes.

Even though the third tractable sub-class of the problem studied in the thesis can be
solved efficiently, in fact in time linear with respect to the size of the input, the restriction
applied on both elements determining the sub-class would still not allow to classify it as non-
trivial. However I argue that the result, shown by studying the computational complexity
of such sub-class of the problem, represents a first step towards exploring the search space
where we are trying to maximise three parameters: expressivity of the requlatory framework,
expressivity of the business process model and tractability, as graphically illustrated in
Figure 8.1

Tractability

Expressive
Process
Model

Expressive
Regulatory
Framework

Figure 8.1: Non-Trivial Tractable Sub-Classes

8.2 Limitations of the Approach

The approach adopted in the present thesis to tackle the problem of proving regulatory
compliance is not free of limitations. Thao Ly et al. [54] introduce in their work ten
desirable functionalities that a compliance monitoring system should provide. As already
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discussed in Chapter [2| the approach adopted in the present thesis covers only a fraction
of the functionalities discussed by Thao Ly et al. More precisely the approach adopted
fully covers two of the functionalities and partially cover three of them. This is indeed a
limitation of the approach adopted to tackle the problem of proving compliance, since an
approach covering a higher number of the functionalities identified by Thao Ly et al. would
be a more effective approach, in other words it would be able to tackle a wider range of
problems.

An additional limitation of the approach adopted in this thesis concerns the computa-
tional complexity results more than the actual approach. Disregarding for the moment the
limitations of the approach adopted, I focus now on applying such methodology for proving
regulatory compliance in practical scenarios. Even though the results of the present thesis
confirm that the problem is in general hard and intractable, the study of the computational
complexity of the problem performed in the present thesis is purely theoretical and solving
practical cases may not be as complex as suggested by the results.

The computational complexity of solving practical cases is most likely to be difficult,
however it may not be as intractable as the current analysis points out. The computational
complexity hardness of the problem of proving regulatory compliance derives from the
necessity in the worst case scenarios to have to analyse independently different cases. The
branching generating these different cases can iteratively lead to an exponential number of
cases to be analysed, which in turn leads to the intractability of the problem. However,
the amount of branchings required to analyse a practical case is generally bounded to
a low number, leading to a low order exponential number of cases to analyse, which is
not intractable. One of these parameters, that may require to consider different cases
during the analysis, but is in general bounded to a low number in practical cases, consists
of compensations. Compensations define what becomes necessary to fulfil in case an
obligation is being violated. Compensations, being themselves obligations, can also be
violated and eventually compensated, leading to obligations being composed of sequences
of compensations. The different cases needed to be analysed can derive from the different
alternatives that would have violated an obligation. This branching can then occur for
each compensation in the sequence. In practical scenarios the amount of compensations
composing such sequence is generally limited to a low number, around three or four usually.
The designers of the regulations often think about what becomes necessary when a primary
obligation is violated, sometimes they provide compensatory measures for the compensation
itself, but seldom this process goes beyond the fourth step. Therefore we can see that the
computational complexity deriving from the sequences of obligations is in practice generally
bounded. Other sources of complexity involve the structure of the business process model.
One of those, illustrated in Figure[7.4]in Chapter [7] can again lead to an exponential amount
of cases that need to be studied independently. Again also in this case, practical cases may
not necessarily contain such structures that can lead to the intractability of the problem.
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8.3 Further research

Following from the previous section, where I discussed the limitations of the approach
adopted in this thesis to prove regulatory compliance of business process models, it results
that the approach can be improved to tackle a wider range of problems of proving regulatory
compliance.

8.3.1 Covering Additional Functionalities

The first way discussed in this section to improve the approach introduced by this thesis is to
extend it in order to cover each of the ten desirable functionalities pointed out by Thao Ly et
al. [54]. The approach proposed currently fully covers two of the functionalities and partially
cover three of them. The two functionalities fully covered are the temporal constraints
concerning the ordering executions of the activities and the possibility of handling violations
of the regulations. The three functionalities partially covered by this thesis’ approach are
the data constraints concerning the process’ state, the proactive detection of compliance
violations and the detection of different levels of compliance. Some preliminary investigations
about how to extend the current approach to cover additional functionalities have been
already done. For instance, concerning the inclusion of resource constraints when proving
regulatory compliance of a business process model, Colombo Tosatto et al. [73] propose
a richer variant of business process models where resource consumption and availability
can be monitored. Extending the current approach with the one proposed by Colombo
Tosatto et al. would allow to verify constraints concerning the resource consumption while
executing a business process.

In addition to extending the expressivity of the approach by including additional
functionalities, a further computational complexity analysis would be in order to study
whether by including additional functionalities, the computational complexity of the resulting
problem of proving regulatory compliance increases or remains the same. Moreover analysing
the computational complexity of introducing each of the functionalities discussed by Thao
Ly et al., allows to identify which of them can be freely included in the framework without
having to worry about an increase of the computational complexity.

8.3.2 Study Real Practical Cases

The second way discussed concerns analysing real world scenarios to identify whether there
exists a computational complexity gap between theoretical and practical problems. As
pointed out in the previous section, about the limitations of the approach adopted in the
present thesis, the worst case scenarios where the complexity of proving compliance explodes
may not happen while analysing real cases of proving regulatory compliance. Even though
the theoretical computational complexity analysis may not provide the exact computational
complexity of solving real problems of proving regulatory compliance, the theoretical
analysis of the complexity provided an upper bound for the computational complexity
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of the problem of proving regulatory compliance. However studying the computational
complexity of practical problems would help also to identify which of the features of the
problem would not contribute massively to the complexity of solving it. Additionally, by
identifying this distance between the practical and theoretical instances of the problems of
proving regulatory compliance, it may help to identify a sub-class of the problem simple
enough to be tractable, but expressive enough to be able to reason and solve a relevant
part of the practical problems analysed.

8.3.3 Extending the Regulatory Framework

The approach adopted in this thesis use an abstraction when dealing with the obligations
describing the compliance requirements that a business process model needs to fulfil. In
normative reasoning, the field of computer science specialised in reasoning about what
is necessary given the laws and regulations in a given context, the obligations are just
a fragment of the whole problem. Obligations are determined by regulatory norms in
normative reasoning, however there are other type of norms that interact in the system and
define what is allowed and necessary. As discussed in Colombo Tosatto et al. [20], different
types of norms, such as constitutive norms and permissive norms, can be used to determine
what is obligatory and permitted in a given context. Such approach can be integrated in
the current approach used in this thesis in order to capture the details behind reasoning
about the requirements that a business process model needs to fulfil, as well as what it is
allowed to do.

8.3.4 Adopting a Visual Approach

As already adopted in some of the existing approaches, such as Awad et al. [10], graphically
visualising the compliance requirements that needs to be fulfilled by a business process
model allows a more user-friendly interface that users not too involved in logic formalisms
can easily use. In the approach adopted in the present thesis the representation of the
obligations governing the processes does not include a graphical part. Such limitation can
be addressed by adopting a graph-like representation such the one introduced by Colombo
Tosatto et al. [21], to represent and reason about the normative concepts such as the
different type of norms that can compose the regulatory framework. Extending the current
approach in this direction would lead to a system where both elements can be represented
graphically, the business process models using BPMN 2.0 and the regulatory framework
using a graph-like representation similar to the one introduced by Colombo Tosatto et al. A
result of allowing to abstract from the technical details through a graphical representation
of the whole problem would create a more user-friendly framework that can be used without
having to deal with the logical machinery behind.
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8.3.5 Extending to Multiple Business Process Models

The approach proposed in the present thesis to study the problem of proving regulatory
compliance focused on a single business process model. However in practice it is not unusual
that processes interact with other ones while pursuing their goal. An instance of this
scenario can be found when some functionalities are outsourced to other providers, such as
in the case of cloud computing, as already pointed out by Accorsi et al. [3].

When dealing with multiple business process models interacting with each other it
becomes necessary to consider additional aspects while proving the regulatory compliance
of these process models. In some cases regulations may constrain the interaction between
different process models, such as for instance constraining the use of information originating
from another process. In this case it is not anymore sufficient to analyse the different models
individually but they must be considered as a whole.

Again, studying practical cases of proving regulatory compliance would be useful in
order to identify which interactions among the business process models are required to be
monitored and verified whether they are compliant with the regulatory framework or not.

8.4 Concluding Remarks

The analysis of the computational complexity of the problem of proving regulatory compli-
ance of business process models conducted in the present thesis, outlines that in general the
problem is intractable, since it belongs to either the class of NP-complete problems or to
the class of coNP-complete problems depending on the type of compliance being evaluated.
The general problem has been shown to be indeed theoretically difficult. In particular the
results provided in this thesis identify the upper bound computational complexity of every
sub-class of the problem of proving regulatory compliance adopted in the present thesis.
However different approaches to tackle the problem of proving regulatory compliance may
belong to different complexity classes. Therefore, to analyse the suitability of the approach
adopted to solve compliance problems, as future work has been pointed out that a study of
real practical scenarios should be done. This analysis of practical cases would also allow
to identify whether the worst case scenarios happening in these cases are the same as the
theoretical ones that determined the computational complexity resulting from the analysis
in the present thesis.

Finding a theoretically tractable subset of the sub-classes of the problem is also a
challenging task. However at the moment this remains an open question. Identifying such
subset, especially a subset containing sub-classes capable of handling non-trivial instances
of the problem, would allow to efficiently deal with some of the instances of the problem of
proving regulatory compliance. In this thesis I identified three theoretically tractable sub-
classes of the problem, two of them consisting of the borderline cases where the expressivity
of one of the elements composing the problem have been severely limited. However the
third sub-class, even if not non-trivial has been obtained by weakening the expressivity of
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both regulatory framework and the business process model, which can represent a first step
towards this theoretically tractable non-trivial sub-class.

However whether among the tractable sub-classes of the problem there exists one or
more capable of dealing with practical instances of the problem of proving regulatory
compliance is still an open question. Nevertheless, I argue that an answer for such question
may be found by thoroughly analysing the computational complexity of the sub-classes of
the problem, and verifying whether the tractable ones are capable of dealing with existing
practical problems. Moreover, the answer to the previous question may then be key in
driving further research in the area of proving regulatory compliance, more precisely in
deciding whether the focus of finding solutions to the problem should be on exact solutions
or on approximate ones, such as solutions using heuristics.
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Appendix A

The Abstract Framework

A.1 Procedure Task Removal

Procedure 1 (Task Removal). Given a process block B and a set of tasks T = {t|t €
V(B) and t is a task}, task removal R(B,T) returns either a new process block B or L as
follows:

1: if B is a task t then

2:  ifteT then

3: return |

4: else

5: return B

6: endif

7: end if

8: if B= SEQ(Bl, ceey Bk) then

9:  4f 3B;,1 < i < k such that R(B;,T) = L then
10: return |
11:  else

12: return SEQ(R(Bi1,T),...,R(By,T))
13:  end if

14: end if

15: if B =XOR(By,..., By) then
16:  ifVB;,1 <i <k, R(B;,T)= 1 then

17: return L

18:  else

19: if 3'B;, 1 <i <k such that R(B;,T) # L then
20: return R(B;,T)

21: else

22: return XOR(R(Bm,,T),...,R(Bm,,T))
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where By, € {B1,..., B} and R(By,,,T) # L

23: end if
24:  end if
25: end if

2: if B—= AND(B,, ..., By) then
27: 4f AB;,1 < i < k such that R(B;,T) = L then

28: return |

29: else

30: return AND(R(B1,T),...,R(Bk,T))
31:  endif

32: end if

Lemma 1 (Task Removal). Given a process block B and a set T of tasks {t|t € V(B) and t is a task}:

1. IfVe € ¥(B),3t € € such that t € T, then R(B,T) =1

2. If 3e € ¥(B), 3t € € such thatt € T, then R(B,T) = B' and Ve € 3(B'),-3t' € ¢
such that t' € T

3. If Je € B(F),~3t € € such thatt € T, then Ve € 3(E),~3t € ¢,3¢ € L(R(E,T))
such that e = ¢

The three statements of Lemma [l| are proven separately.

Proof. 1 first prove the following: If Ve € ¥(B), 3t € € such that ¢t € T, then R(B,T) = L
I use a proof by induction.
Base Case: B is a single task ¢.
I prove this case directly:

1. From the assumption that B = 2 and Definition [4)) it follows that 3(B) = {(x)},
where () is the only possible serialisation.

2. From the premise: Ve € X(B),3t € € such that ¢ € 7, and from 1 it follows that
zeT.

3. From 1 and 2 it follows that lines 1 and 2 of Procedure [1| are satisfied, hence R(B,T)
returns L in line 3.

Inductive Cases:

1. B=SEQ(By,...,By)

I prove this case by contradiction:

(a) Suppose that R(B,T) # L



A.1. PROCEDURE TASK REMOVAL 143

(b) From the assumption B = SEQ(B;, ..., Bg).

(c) From (a) and (b) it follows that line 10 of Procedure (1} returning L, is not
executed.

(d) From (a) and (c) it follows that in Procedure [1} since the condition at line 8 is
true, then the condition at line 9 must be false.

(e) From (d) it follows that =3B;,1 < ¢ < k such that R(B;,T) = L.

(f) From (e), Definition 4| and the induction hypothesis it follows that Je €
¥(B),—3t € e such that t € T.

(g) (f) contradicts the premise Ve € 3(B), 3t € € such that t € T.
(h) Therefore, if Ve € ¥(B),3t € € such that t € T, then R(B,T) = L.

2. B =XOR(B4,...,By)

I prove this case by contradiction:

(a) Suppose that R(B,T) # L
(b) From the assumption B = XOR(B4y, ..., By).

(c) From (a) and (b) it follows that line 17 of Procedure [I} returning L, is not
executed.

(d) From (a) and (c) it follows that in Procedure [1} since the condition at line 15 is
true, then the condition at line 16 must be false.

(e) From (d) it follows that 3B;,1 < i < k such that R(B;,T) # L.

(f) From (e), Definition 4| and the induction hypothesis it follows that Je €
¥(B),—3t € e such that t € T.

(g) (f) contradicts the premise Ve € 3(B), 3t € € such that t € T.
(h) Therefore, if Ve € ¥(B), 3t € € such that t € T, then R(B,T) = L.

3. B=AND(Bi,...,By)

I prove this case by contradiction:

(a) Suppose that R(B,T) # L
(b) From the assumption B = AND(By,..., Bg).

(c) From (a) and (b) it follows that line 28 of Procedure [I} returning L, is not
executed.

(d) From (a) and (c) it follows that in Procedure [1} since the condition at line 26 is
true, then the condition at line 27 must be false.

(e) From (d) it follows that —=9B;,1 < i < k such that R(B;,T) = L.



144 APPENDIX A. THE ABSTRACT FRAMEWORK

(f) From (e), Definition 4| and the induction hypothesis it follows that Je €
Y¥(B),—3t € e such that t € T.

(g) (f) contradicts the premise Ve € 3(B),3t € € such that t € T.
(h) Therefore, if Ve € ¥(B), 3t € € such that t € T, then R(B,T) = L.

In each of the possible inductive cases I have shown that: If Ve € ¥(B)3t € € such that

t € T, then R(B,T) = L. Thus the statement Ve € ¥(B)3t € € such that ¢t € T, then
R(B,T) = 1 holds for each B where B is a process block.

0

Proof. 1 now prove the second statement of Lemma : If e € X(B),~3t € € such that
t €T, then R(B,T) =B and V¢ € ¥(B’),-3t' € € such that t’ € T

I use a proof by induction.

Base Case: B is a single task x.

1. From the assumption that B = z and Definition {4)) it follows that %(B) = {(x)},
where (z) is the only possible serialisation.

2. From the premise: Je € X(B),dx € e such that x € T, and from 1 it follows that
x&T.

3. From 1 and 2 it follows that lines 1 of Procedure [1|is satisfied but line 2 is not, hence
R(B,T) returns B in line 5.

A process block containing a single task ¢ contains a single serialisation € which is
composed by t itself (Definition . From the hypothesis we know that ¢t € 7. Thus it
follows that the condition at line 2 of Procedure 1 is not satisfied and the procedure returns
B at line 5, containing all the serialisations of B not containing a task appearing in T,
which in this case are the same as the original process block.

Inductive Cases:

1. B=SEQ(By,...,By)

I prove this case directly:

) From the assumption it follows that B = SEQ(B4, ..., Bi).

) From the premise it follows that Je € ¥(B), -3t € € such that t € T.

(c) From (a), (b) and Definition 4] it follows that e € ¥(By) +p ... +p X(Bx).
)

From (b) and (c) it follows that for 1 < i < k,Je € ¥(B;),~3t € € such that
teT.

(e) From (d) and Induction Hypothesis it follows that for 1 <i < k, R(B;,T) # L.
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(f) From (a) it follows that line 8 of the procedure is satisfied and from (e) it
follows that line 9 of the procedure is not satisfied, hence the procedure returns

SEQ(R(B1,T), ..., R(By, T)).

(g) From (f) and Induction Hypothesis if follows that each serialisation of SEQ(R(B1,T), . . .

does not contain tasks belonging to 7.

2. B =XOR(B4,...,By)

I prove this case directly:

(a) From the assumption it follows that B = XOR(B4y, ..., By).

(b) From the premise it follows that Je € ¥(B), -3t € € such that t € T.

(¢) From (a), (b) and Definition [4] it follows that e € $(By) U ... U X(By).

(d) From (b) and (c) it follows that for 3B; € B,3e € ¥(B;), ~3t € e such that t € T.
)

(e) From (d) and Induction Hypothesis it follows that for 3B; € B such that
R(B;,T) # L.

(f) From (a) it follows that line 15 of the procedure is satisfied and from (e) it
follows that line 16 of the procedure is not satisfied.

(g) From (f) it follows that the procedure returns either R(B;, T) or XOR(R(B,,, T ), - - -,

(h) From (g) and Induction Hypothesis it follows that each serialisation of R(B;, T)
or XOR(R(Bm,,T),--.,R(Bm,,T)) does not contain tasks belonging to 7.

3. B=AND(By,...,By)

I prove this case directly:

(a) From the assumption it follows that B = AND(By, ..., By).

(b) From the premise it follows that Je € ¥(B), =3t € € such that t € T.

(¢) From (a), (b) and Definition [4] it follows that € € X(By) Up ... Up X(By).
)

(d) From (b) and (c) it follows that for 1 < i < k,Je € X(B;),~3t € € such that
teT.

(e) From (d) and Induction Hypothesis it follows that for 1 <i < k, R(B;,T) # L.

(f) From (a) it follows that line 26 of the procedure is satisfied and from (e) it

follows that line 27 of the procedure is not satisfied, hence the procedure returns
AND(R(B1,T),...,R(Bg,T)).

(g) From (f) and Induction Hypothesis if follows that each serialisation of AND(R(B1,T), ...

does not contain tasks belonging to 7.

aR(Bk’7 T))

R(Bm,,,T))-

, R(Bi,T))
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For each of the inductive cases I have shown that: If Je € 3(B),—3t € € such that t € T,
then R(B,T) = B’ and Ve’ € X(B’),-3t' € € such that t' € T.
O

Proof. 1 now prove the third an last statement of Lemma (I} If Je € 3(F), -3t € € such
that ¢t € T, then Ve € X(E), -3t € ¢,3¢' € X(R(E,T)) such that e = ¢
I use a proof by contradiction.

1. Assume that Je € ¥(F), 3t € e such that t € T and € ¢ X(R(E,T)).
2. From 1), it follows that € is removed by the procedure.

3. From 1), it follows that R(E,T) # L.

4. From 2) and 3), it follows that either line 20 or line 22 are executed.

5. From 4), it follows that the sub blocks of E removed are the ones where applying the
procedure returns L

6. From 5) and the first statement of Lemma [1} it follows that the procedure returns L
if every € in the block contains a task in 7.

7. From 5), 6) and Deﬁnition it follows that each execution eliminated by the procedure
contains a task in 7.

8. 7) and 2) are in contradiction.

Therefore it holds that: If Je € X(E), -3t € € such that ¢ € T, then Ve € X(F), -3t €
e,3¢ € X(R(E,T)) such that e = ¢'. O

A.2 Global Achievement Algorithm

Algorithm 1. Given an annotated process (P,ann) and a global achievement obligation
O%(1), this algorithm returns whether (P, ann) is compliant with O*(1).

1: Suppose P = start B end
2: if Vt in B,l ¢ ann(t) then
3 return (P,ann) I/ O%()
else
if R(B,{t|tis a task in B andl € ann(t)}) = L then
return (P,ann) F 0O%1)
else
return (P,ann) F O%)
end if
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10: end if

Correctness Proof of Algorithm 1. Given an annotated process (P, ann), where P = start B end,
and a global achievement obligation O%(l), I prove the correctness of Algorithm 1 by showing
both soundness and completeness.

Soundness Following from Definition a process can be either fully compliant, or
partially compliant, or not compliant with an atomic global achievement obligation. I prove
the soundness of Algorithm [I] by cases considering the three possible cases listed above, and
showing that the process given in input belongs to such compliance class.

1. Algorithm 1 returns (P,ann) t# O%(l)

(a) From the assumption, it follows that the condition at line 2 of the algorithm is
true.

(b) From (a),Definition [11] and Definition [L0} it follows that V6 € ©(P,ann), =30 € 6
such that o = 1.

(¢) From (b) and Definition [14] it follows that V6 € ©(P,ann),8 ¥ O%(l).
(d) From (c) and Definition [16] it follows that (P, ann) is not compliant with O%(1).
2. Algorithm 1 returns (P,ann) F 0%(l)
(a) From the assumption, it follows that the condition at line 2 of the algorithm is
false and the condition at line 5 is true.

(b) From (a) and Lemma (1} it follows that Ve € 3(P), 3t € € such that [ € ann(t).

(c) From (b), Definition |11 and Definition (L0} it follows that V6 € ©(P, ann),3o € 0
such that o = L.

(d) From (c¢) and Definition it follows that V0 € ©(P,ann),0 + O%(1).
(e) From (d) and Definition [16] it follows that (P, ann) is fully compliant with O%(l).

3. Algorithm 1 returns (P,ann) = O%(I)

(a) From the assumption, it follows that the condition at line 2 of the algorithm is
false and the condition at line 5 is false.

(b) From (a) and Lemma [1] it follows that —Ve € ¥(P), 3¢t € € such that [ € ann(t).

(¢) From (a),Definition (11| and Definition it follows that 30 € ©(P,ann),3o € 6
such that o = I.

(d) From (b) and Definition [14] it follows that 3¢ € ©(P,ann),8 + O%(1).
(e) From (c) and Definition it follows that 30 € ©(P,ann), 0 t/ O%(1).
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(f) From (d), (e) and Definition it follows that (P, ann) is partially compliant
with O%(1) but is not fully compliant with O%(I).

I have shown the soundness of Algorithm 1 by showing that in each of the three possible
cases, whether the algorithm returns fully, partially or not compliant, then the process
model given as input is correctly classified.

Completeness 1 prove by cases the completeness of Algorithm 1, by showing that for each
of the three compliance classes to which a process can belong, the result of the algorithm is
indeed corresponding to such class.

1. (P,ann) is fully compliant with O%(l)
(a) From the assumption and from Definition it follows that V6 € ©(P,ann),
6 F O*(1).
(b) From (a) and Definition |14} it follows that V6, 3o € 6 such that o = [.

(¢) From (b), Definition |11 and Definition it follows that 3t € P such that
[ € ann(t).

(d) From (c), it follows that the condition at line 2 of the algorithm is false and the
else case is executed.

(e) From (b) and Lemma [I} it follows that R(B,{t | tisataskin Band! €
ann(t)}) = L.

(f) From (e) and (d), it follows that the condition at line 5 of the algorithm is
reached and is true.

(g) From (f), it follows that the algorithm returns (P,ann) F O%) at line 6.
2. (P,ann) is partially compliant with O%(1) and is not fully compliant with O%(l)

(a) From the assumption and from Definition it follows that 30 € ©(P, ann),

6 F O%(1).
(b) From the assumption and from Definition |16} it follows that —=Vf € ©(P, ann),
0+ 0%(l).

(¢) From (a) and Definition it follows that 30, 30 € 6 such that o = [.
(d) From (b) and Definition |14} it follows that 36, =30 € 0 such that o |= [.

(e) From (c), Definition |11 and Definition it follows that 3t € P such that
[ € ann(t).

(f) From (e), it follows that the condition at line 2 of the algorithm is false and the
else case is executed.
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(g) From (d) and Lemma [l it follows that R(B,{t | tis ataskin Band! €
ann(t)}) # L.

(h) From (f) and (g), it follows that the condition at line 5 of the algorithm is
reached and is false.

(i) From (h), it follows that the algorithm returns (P,ann) = O%(1) at line 8.
3. (P, ann) is not compliant with O%(l)

(a) From the assumption and from Definition it follows that =36 € ©(P,ann),
0 = O0(1).
(b) From (a) and Definition it follows that V8, —30 € 0 such that o = [.

(¢) From (b), Definition [11] and Definition it follows that =3t € P such that
[ € ann(t).

(d) From (c), it follows that the condition at line 2 of the algorithm is true.
(e) From (d), it follows that the algorithm returns (P,ann) £/ O%(l) at line 3.

I thus have shown that the algorithm returns its outcome in accordance to the compliance
class to which the process given in input belongs to.

Having proven both soundness and completeness of Algorithm 1, I can conclude that
the algorithm is correct. O

A.3 Procedure First

Procedure 2 (First). Given a process block B, First(B) returns a set of tasks as fol-

lows:

cif E =t then
return {t}

end if

if E =SEQ(Bj,...,By) then
return First(By)

end if

if E = AND(By, ..., By) then
return Ule First(B;)

end if

if E = XOR(Bj,...,By) then
return Ule First(B;)

12: end if

~

~ o~
~ O

Lemma 2 (First). Let the function f(€) returns the first task of the sequence corresponding
to the serialisation €. The set returned by the procedure First Tasks fulfils the following
condition: t € First(B) if and only if 3e € X(B)|f(e) = t.
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Proof. The proof directly follows from Definition [4] The procedure analyses the possible
types of blocks and recursively selects the sub-blocks which can contain a task which can
appear first in one of the executions of B. O

A.4 Procedure Task Rooting

Procedure 3 (Task Rooting). Given a process block B and a task t € First(B), task rooting
F(B,t) returns a new process block as follows:

1: if B=1 then

2: return B

3: end if

4: if B=SEQ(By,...,Bx) then

5:  return SEQ(F(Bi,t),Ba,...,Bx)

6: end if

7. if B =XOR(B4y,...,By) then

8 return F(Bp,t) where B, € {B,...,B} andt € B,

9: end if
10: if B=AND(By,..., By) then

11:  if k=2 then
12: return SEQ(F(Bp,t), By), where {p,q} = {1,2} and t € B,
13:  end if

14:  return SEQ(F(B,,t),AND(B;,,...,Bi,_,)), where {i1,...,ix_1,p} = {1,...,k}

and t € B,
15: end if

Lemma 3 (Task Rooting). Let B be a process block, t be a task such that t € First(B),
Y:(B) be the set of executions of B that start with t and ©(B,ann) be the set of traces
associated to ¥4(B) given an annotation function ann. The procedure task rooting, R(B,t),
s subject to the following properties:

1. X(F(B,t)) C X¢(B)
2. Ve € ¥4(B),3€’ € X(F(B,t)) such that:

(a) f(e) = f(€) =t
(b) The task set of € = the task set of €

I prove the two statements of Lemma [3] separately.

Proof. T prove here the first statement of Lemma [3| by induction: X(F(B,t)) C ¥4(B)
Base Case: B is a single task t.
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1. From the assumption that B = ¢ and Definition |4} it follows that ¥(B) = {(¢)}.

2. From the assumption that ¢ € First(B) and 1, it follows that ¥;(B) = {(¢)}.

3. From the assumption that B = t, it follows that the procedure returns B at line 2.
4. From 3, 2 and 1, it follows that 3(F(B,t)) C ¥¢(B).

Inductive Cases:
1. B=SEQ(By,...,Bx)

(a) From the assumption, it follows that the procedure returns SEQ(F (B, t), Ba, ..., B)
at line 5.

(b) From (a) and Definition [4] it follows that (F(B,t)) = X(F(B,t)) +p S(B2) +p
oot p E(Bk).

(c¢) From (b) and induction hypothesis, it follows that 3(F(B1,t)) C X¢(B1).

(d) From (c) and (b), it follows S(F (B, 1)) +p X(Ba) 42 . .. +5 5(By) C Su(B1) +
Z(Bg) +p...4+p Z(Bk>

(e) From (d) and Definition [ it follows that X(F(B,t)) C ¥4(B).
2. B=XOR(By,...,B)

(a) From the assumption, it follows that the procedure returns F(B,,t) where
B, € {Bi,...,B;} and t € B, at line 8.

(b) From (a) and Definition {4} it follows that X(F'(B),t)) C X(B).

(c) From (b) and induction hypothesis, it follows that X(F'(B,t)) C £(Bp).
(d) From (c) and Definition {4} it follows that 3,(B,) C ¥(B).

(e) From (d), it follows that 3(F(B,t)) C £:(B).

(¢

3. B=AND(B,,...,By)

(a) From the assumption, it follows that the procedure either returns SEQ(F (B, t), By),
where B,,B; € {Bi,...,By},t € B, and p # ¢ at line 12 or it returns
SEQ(F(Byp,t),AND(B;,,...,B;, ,)), where {i1,...,ix_1,p} = {1,...,k} and
t € B, at line 14.

i. Assume that the procedure returns SEQ(F(B,,t), By), where B,, B, €
{Bi,...,B;},t € B, and p # ¢ at line 12.
ii. From ¢ and Definition 4} it follows that X(SEQ(F(By,t), By)).
ili. From 47 and induction hypothesis, it follows that X(F'(By,t)) C X(Bp).
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iv. From iii and Definition [d] it follows that 3¢(B,) C ¥:(B).
v. From iv, it follows that X(F(B,t)) C X¢(B).

i. Assume that the procedure returns SEQ(F(Bp,t), AND(B;,,...,B;, ,)),
where {i1,...,ix—1,p} ={1,...,k} and t € B, at line 14.
ii. From ¢ and Deﬁnitionit follows that X(SEQ(F(Bp,t), AND(B;,, ..., Bi, ,))).
ili. From ¢ and induction hypothesis, it follows that X(F'(By,t)) C X(B,).
iv. From iii and Definition {4} it follows that 3;(B,) C ¥¢(B).
v. From iv, it follows that X(F(B,t)) C ¥4(B).

(b) Therefore in both cases, it follows that X(F(B,t)) C 3(B).

Therefore it follows that for every process block B, the result of procedure is subject to
S(F(B,#)) C Su(B). 0

Proof. 1 prove here the second statement of Lemma |3| by induction: Ve € ¥;(B),3e’ €
Y(F(B,t)) such that:

L f(e) = f() =t
2. The task set of € = the task set of €

Base Case:
B is a single task.

1. From the assumption that B =t and Definition |4} it follows that X(B) = {(¢)}.

2. From the assumption that B = t, it follows that the procedure returns B at line 2.
3. From the assumption that ¢ € First(B) and 1, it follows that ¥;(B) = {(¢)}.

4. From 2 and 3, it follows that Ve € ¥(B), 3¢’ € X(F(B,t)) such that f(e) = f(') =t.

5. From 2 and 3, it follows that Ve € 3,(B), 3¢ € X(F(B,t)) such that the task set of €
= the task set of €.

Inductive Cases:
1. B=SEQ(By,...,Byx)

(a) From the assumption, it follows that the procedure returns SEQ(F(By, t), ..., B)
at line 5.

(b) From (a) and induction hypothesis, it follows that Ve € ¥;(B), 3¢’ € X(F(B,t))
such that f(e) = f(€') =t.
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(c) Let B’ be the sequence block B without B; and let B” be the sequence block
SEQ(F(Bjy,t),...,By) without F(B,t).

(d) From (c¢) and Definition 4] it follows that X(B’) = X(B”").

(e) From (c¢) and induction hypothesis, it follows that Ve € ¥4(By), 3¢ € X(F(B1,t))
such that the task set of € = the task set of €.

(f) From (d) and (e), it follows that Ve € ¥;(B), 3¢’ € X(F(B,t)) such that the task
set of € = the task set of €.

2. B=XOR(B,...,By)

(a) From the assumption, it follows that the procedure returns F(B;,t) at line 8,
where t € B;.

(b) From (a) and induction hypothesis, it follows that Ve € X4(B;), 3¢’ € X(F(B;,t))
such that f(e) = f(€') =¢.

(c) From (b) and Definition |4} it follows thatVe € ¥;(B), 3¢ € X(F(B,t)) such that
fle) = f(&) =1

(d) From (a) and induction hypothesis, it follows that Ve € ¥4(B;), 3¢’ € X(F(B;,t))
such that the task set of € = the task set of €.

(e) From the assumption and (d), it follows that Ve € ¥¢(B), 3¢’ € X(F(B,t)) such
that the task set of € = the task set of €.

3. B=AND(B,...,By)

(a) From the assumption, it follows that the procedure either returns SEQ(F (B, t), By),
where B,,B; € {Bi,...,By},t € B, and p # ¢ at line 12 or it returns
SEQ(F(BP, t), AND(B“, ey Bikfl))7 where {’L'l, ey ik—l,P} = {1, ey k‘} and
t € By at line 14.

i. Assume that the procedure returns SEQ(F'(B,,t), B;), where B,, B, €
{Bi1,...,Bi},t € By and p # ¢ at line 12.
ii. From ¢ and induction hypothesis, it follows that Ve € X¢(B,), 3¢’ € X(F(B,,t))
such that f(e) = f(€') =¢.
iii. From #i and Definition {4} it follows thatVe € ¥;(B), 3¢ € X(F(B,t)) such
that f(e) = f(¢') = f}
iv. From the assumption, 4, Definition [4| and the induction hypothesis, it follows

that Ve € X;(B), 3¢’ € X(F(B,t)) such that the task set of e = the task set
of €.

IThis follows because each task is unique.
2This follows because each task is unique.
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i. Assume that the procedure returns SEQ(F(Bp,t),AND(B;,,...,Bi. ,)),
where {i1,...,ig—1,p} ={1,...,k} and t € B, at line 14.

ii. From ¢ and induction hypothesis, it follows that Ve € X¢(B,), 3¢’ € X(F(B,,t))
such that f(e) = f(€') =¢.

iii. From #i and Definition {4} it follows thatVe € ¥;(B), 3¢’ € X(F(B,t)) such
that f(e) = f(¢') = ]

iv. From the assumption, 4, Definition [4] and the induction hypothesis, it follows
that Ve € X;(B), 3¢’ € X(F(B,t)) such that the task set of e = the task set
of €.

(b) Therefore in both cases, it follows that Ve € ¥;(Bp), 3¢’ € L(F(Bp,t)) such that
f(e) = f(€') =t and the task set of e = the task set of €.

Therefore it follows that for every process block B, the result of procedure is subject
to Ve € X4(B,), 3¢ € X(F(B,,t)) such that f(e) = f(¢) =t and the task set of € =
the task set of €.

O

Lemma 4 (Task Rooting Approximation). Let €; and ez be two executions containing
the same task set and f(e1) = f(e2). Let 61 and 0 be the traces corresponding to the two
executions. Given a maintenance obligation O™(1), 61 = O™ (1) iff 62 = O™(1).

Proof. Follows directly from Definitions and Lemma O

A.5 Global Maintenance Algorithm

Algorithm 2. Given a process (P,ann) and a global maintenance obligation O™(l), this
algorithm returns whether (P,ann) is compliant with O™ (1).

1: Suppose P = start B end
Tr = First(B)
T; = {t|t is a task in B and I cann(t)}
if Vt in Tp,l € ann(t) and T; = () then
return (P,ann) F O™(])
else
for each t € Tr such that | € ann(t) do
if R(F(B,t),T;) # L then
return (P,ann) F O™(])
end if
end for each

~ o~
~ O

3This follows because each task is unique.
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12:  return (P,ann) I O™(l)
13: end if

Correctness Proof of Algorithm 2. Given a process (P,ann), where P = start B end, and a
global maintenance obligation O™ (1), I prove the correctness of Algorithm [2| by showing
both soundness and completeness.

Soundness I prove by cases the soundness of Algorithm [2] by showing that for each possi-
ble result of the algorithm, the process being checked against an atomic global maintenance
obligation is indeed either fully, partially or not compliant according to the result.

1. Algorithm 2 returns (P,ann) ¥ O™(l):
(a) From the assumption, it follows that V¢ in 7p,l € ann(t) and =3¢ € P such that
[ € ann(t).
(b) From (a), Definition [4] and Definition[L0] it follows that V6 € ©(P),Vo € 6,0 = 1.
(¢) From (b) and Definition [17] it follows that V6§ € ©(P,ann),8 + O™(l).
(d) From (c) and Definition [L6] it follows that (P, ann) is fully compliant with O™ ().

2. Algorithm 2 returns (P,ann) F O™(1):

(a) From the assumption, it follows that 3t € First(B) such that [ € ann(t) and
R(F(B,t),T;) # L where T; is the set of tasks in B such that [ is in their
annotation.

(b) From (a) and Lemma [I} it follows that Je € 3(B) such that the first task
executed has [ annotated and does not execute any tasks having | annotated.

(¢) From (b) and Definition[10] it follows that 3¢ € (P, ann) such that Vo € 6,0 = 1.
(d) From (c) and Definition [15] it follows that 3¢ € ©(P,ann), 0 + O™(l).

(e) From the assumption, it follows that _condition at line 4 was false, hence
It in T, & ann(t) or It € B such that [ € ann(t).

(f) From (e), Definition [4| and Definition it follows that 30 € ©(P, Ann) such
that 3o € 0,0 [~ L.

(g) From (f) and Definition [15] it follows that 36 € ©(Pann),§ t# O™ ().
(h) From (d), (f) and Definition [16] it follows that (P, ann) is partially compliant
with O™ (1) but not fully compliant with O™(1).
3. Algorithm 2 returns (P,ann) ¥ O™(1):

(a) From the assumption, it follows that V¢ € First(B) such that [ € ann(t), R(F(B,t),T;) =
L, where 7} contains each task in B having [ in their annotation.
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(b) From (a) and Lemma [1} it follows that Ve where the first task executed contains
[ in their annotation, 3¢ € € such that [ € ann(t).

(¢) From (b) and Definition it follows that V6 € ©(P,ann),3o € 0 such that
o L.

(d) From (c¢) and Definition it follows that V8 € ©(P,ann),0 7 O™(l).

(e) From (d) and Definition |16} it follows that (P,ann) is not compliant with O™(1).

I thus have shown that for each of the three possible outcomes, the algorithm correctly
classifies a process according whether it is fully, partially or not compliant with an atomic
global achievement obligation.

Completeness Following from Definition 16| a process can be either fully compliant, or
partially compliant, or not compliant with an atomic global maintenance obligation. I prove
the completeness of Algorithm [2] by cases considering the three possible cases listed above,
and showing that for each case the algorithm returns the corresponding result.

1. (P,ann) is fully compliant with O™ (l):
(a) From the assumption and Definition it follows that V8 € ©(P,ann),0 F
o™(1).
(b) From (a) and Definition |15} it follows that V8§ € O(P,ann),Vo € 0,0 = 1.
(c) (b) and Lemma [2| it follows that V¢ € First(B),l € ann(t).
(d) From (b), Lemmaand Deﬁnition it follows that —3¢ € P such that [ € ann(t).
)

(e) From (c) and (d), it follows that the condition at line 4 of the algorithm is true,
hence the algorithm returns (P,ann) F O™(l) at line 5.

From

2. (P,ann) is partially compliant with O™([) and not fully compliant with the same
obligation:

(a) From the assumption and Definition[16] it follows that 3¢ € ©(P, ann),6 = O™(l)
and —V0 € O(P,ann), 8 + O™ (l).

(b) From (a) and Definition [15] it follows that 30 € ©(P,ann),Vo € 0,0 = 1.
(¢) From (a) and Definition [15] it follows that 30 € ©(P,ann),30 € 6,0 [~ L.
(d) From (b) and Lemmal, it follows that 3t € First(B),l € ann(t).

) )

(e) From (c), it follows that either 3t € First(B),l & ann(t) or 3t € B such that
[ €ann(t).

C

t
(f) From (e), it follows that condition at line 4 is false hence the cycle at line 7 is
entered.
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(g) From (f), (b) and Lemma |1} it follows that the condition at line 8 is true, hence
the algorithm returns (P,ann) F O™(l) at line 9.

3. (P,ann) is not compliant with O™(1):

(a) From the assumption and Definition it follows that V6 € ©(P,ann),0 |/
o™(1).
(b) From (a) and Definition [15] it follows that V8 € ©(P,ann), 30 € 0,0 t~ .

(c) From (b), Definition {4/ and Definition [10} it follows that either Vt € First(B),l €
ann(t), 3t € B such that [ € ann(t).

(d) From (d), it follows that the condition at line 4 is false and the cycle at line 7 is
entered.

(e) From (e), (d) and Lemmalemma.taskremoval, it follows that the condition at
line 8 is always false.

(f) From (f), it follows that the algorithm returns (P,ann) t# O™(l) at line 12.

From the premise and Definition [16|it follows that none of the traces of (P, ann) fulfills
O™(1). Thus from Definition [15|it follows that for each trace of (P, ann), there exists
a state not verifying [. Assuming that P = start B end, this state can be either a)
the first of a trace, meaning that some of the tasks of First(B) do not contain [ in
their annotation, or b) one of the other states, meaning that a task is executed which
contains [ in its annotations.

I thus have shown the soundness of Algorithm 2 by showing that in each of the three
possible cases, whether a process is fully, partially or not compliant, the algorithm returns
the correct answer.

Having proven both soundness and completeness of Algorithm 2, I can conclude that

the algorithm is correct.
O
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Appendix B

Difficulty Vectors and Conflicting
Obligations

B.1 Local Obligations

Lemma 5. Given a 0 and a local obligation © = O{(c,l,d). If =30 € 0 such that o =1,
then 6 + Q.

Proof. Follows directly from Definitions and O

B.2 Conflicting Maintenance Obligations

Definition 33 (O™ — O™ Conflict). Let O™(a) and O™ () be two complementary main-
tenance obligations. O™ (a) and O™(B) are conflicting if and only if:

I € Interval(O™(a), 0) and A" € Interval(O™(B),0) : INT" #

Proposition 3 (0™ — O™ Conflict). Let O™ = () and O™ = (8) be conflicting mainte-
nance obligations, then there not exists a trace complying with both obligations.

O™ — O™ Conflict. 1 prove that the condition provided in Definition is sufficient to
identify whether two maintenance obligations are conflicting.

1. Let O™ = (a) and O = () be two complementary maintenance obligations,
meaning that a A § — L.

2. From the hypothesis we know that 37, I’ such that I € Interval(O™,0),I' € Interval(O",6) and Jo such the
ITandoeI'.

3. From Definition [24| and 2. it follows that Vo € I,0 |= a and Vo' € I'o’ |= 5.
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4. Assume that there exists a trace 6 such that 6 is compliant with O™ and O

5. From 4. it follows that VI, I’ such that I € Interval(O™,0) and I' € Interval(O"™,0),1 C
6 and ' COand Vo € [,0 = a and Vo' € I' 0’ = 3.

6. From 2. and 5. it follows that 3o such that ¢ =« and o |= 5.
7. From Definition [13|and 6. it follows that Jo € 6 such that {a, 5} € 0.

8. From 1. we know that o A 8 — L, hence from 7. and Definition [J] it follows that a
state o is inconsistent and a trace containing such state cannot exists.

Therefore I have proven that the condition provided in Proposition [3|is sufficient to identify
to conflicting complementary maintenance obligations.
O O

I do not explicitly provide propositions and formal proves for the other definitions
concerning conflicting obligations since they are analogous of the one provided for Definition
[33] Which for each definition of conflicting obligations shows that a trace fulfilling both the
obligations involved given the condition identified would require to include an inconsistent
state which is not allowed according to Definition [9}



Appendix C

Some Complexity Results

c1 C2,

C.1.1 Partial Compliance

Algorithm 3. Given a trace 0 = (Ostarts 01, - -+, Ony Oend) Where ogary = (start, Lg) and
Oend = (end, Ly 11), the corresponding execution € = (t1,...,t,), and process (P,ann) where

B is the main process block of P, the following algorithm Ay(0,¢€, (P,ann), B) decides if 0 is
a valid trace of (P,ann).
Algorithm A
if Pi(e, B) and P2(0, (P,ann)) then
return 6 € O(P,ann)
else
return 0 ¢ O(P,ann)
end if

Py (e, B) wverifies wether € is a correct serialisation of B. Py returns true or false
accordingly to the result and uses the following recursive procedure:

Procedure 4. P (¢, B)

1. if B=t, then € is valid if € = (t)

2. if B is a composite block with sub-blocks By, ..., By let €; be the projection of € on
block B; (obtained by ignoring all tasks which do not belong to B;)

(a) if B = SEQ(By,...,By) then € is valid if it is the concatenation of €y, ..., €
and each €; is a valid serialisation for B;

(b) if B=XOR(Bj,...,By), then € is valid if exactly one €; is non-empty and that
€; 1s valid for B;
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(c) if B=AND(By,...,By,), then € is valid if the set of tasks in € is the disjoint
union of the sets of tasks in €; (for each i) and each €; is a valid serialisation for
B;

P5(0, (P, ann)) verifies wether the sequence of states in 0 is valid for (P,ann):

Procedure 5. P (0, (P, ann))

[ ] L0:®

e For each L; € 0 and i > 0: L; = L;—1 ® ann(t;)

o L, = Ln—l—l

Py returns true if all of these properties hold and false otherwise.

Correctness:

Proof. 1 prove the correctness directly.

1.

2.

The first part of procedure Py verifies the first property of Definition

The second part of the procedure Py verifies the three parts of the second property
of Definition [l

. The uniqueness of a task, required by Definition (1] is given by construction of the

trace.

. From 1, 2 and 3, it follows that Py is correct.
. The correctness of procedure Po follows directly from Definition

. From 4 and 5, it follows that algorithm A; is correct.

O

Algorithm 4. Given a set of obligations ©® and a trace 0 = (Gstart, 1, .., 0n, Oend) Such
that ostare = (start, L) and 6 € O(P,ann), the algorithm As(0,®) is defined as follows (In
the following, Ob denotes the set of active obligations and we treat 6 as a vector):
Algorithm A,
1: Ob=10
2: for each o in 0 do

for each © = O%(l.,1;,13) in ® do
if o =1, then
Ob=0bUO
end if
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end for each
for each © = O%(l.,1;,13) in Ob do
if t = a then
if o =1, then
Ob=0b\ ©
else
if o =14 then
return 0 I ©
end if
end if
else
if t = m then
if o = 1. then
return 0 t/ ©
end if
if o = lg then
Ob=0b\ O
end if
end if
end if
end for each
end for each
return 6 F ©;

Algorithm[] identifies wether a certificate fulfils a set of obligations. If the certificate is a

valid trace of a process, then following from Definition[37, the fact that the certificate fulfils

the

set of obligations is a sufficient condition to say that the process is partially compliant

with the requlatory framework containing such set of obligations.

Correctness:

Proof. Soundness: A3(0,0) =0 F©® =0 + ©.
I prove the soundness by contradiction:

1. Assume that 0 t/ ®

2. From 1, Definition [16{ and Definition it follows that exists an obligation © in ®

such that 6 t O.

3. From 2 and Lemma |5 it follows that © must be activated to be not fulfilled.

4. In the case the lifeline of an obligation is triggered, the obligation activated can be

either an achievement or a maintenance obligation. I analyse the two cases separately:

5. Let an © be an achievement obligation.
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(a) From 2, 3, 5 and Definition it follows that © is triggered in a state o,
and the following holds: Jo; € 6 such that o; = op and o; | g and —do; €
6 such that o; = [, and o}, < 0; < 0;.

(b) From 3 and 5, it follows that the lines between 9 and 16 of Algorithm [4| are
executed.

(c) From the fact that the algorithm analyses the states of a trace chronologically,
(a) and (b), it follows that the condition at line 9 is never fulfilled before the
condition in line 13.

(d) From (c), it follows that line 14 is executed and returns 6 I/ ©.
6. Let an O be a maintenance obligation.

(a) From 2, 3, 6 and Definition it follows that © has been triggered in a state
op, and the following holds: Jo; € 6 such that o; = o3, and 0; = ¢4 and Jo; €
6 such that o; - ¢. and oy, < 0j = 0;.

(b) From 3 and 6, it follows that the lines between 18 and 25 of Algorithm 4] are
executed.

(¢) From the fact that the algorithm analyses the states of a trace chronologically,
(a) and (b), it follows that the condition at line 22 is never fulfilled before the
condition in line 19.

(d) From (c), it follows that the obligation is never removed from the loop which
will end in fulfilling line 19 is and executing 20.

(e) From (d), it follows that the algorithm returns 6 F ®.

7. In both cases (5.(d) and 6.(e)) the result contradicts the premise that A2(6,©) =60 +
©.

8. Therefore from 7, it follows that if A3(6,©) =60 F ©, then § + © is true.

Proof. Completeness: § - © = A3(0,©) =0 F ©.
I prove the completeness directly:

1. From the hypothesis, Definition |16| and Definition it follows that VO € ®,6 + O.

2. From line 3 of the algorithm, Definition [20] and Definition [2I} it follows that if an
obligation is activated, it will be in Ob.

3. In the case the lifeline of an obligation is triggered, the obligation activated can be
either an achievement or a maintenance obligation. I analyse the two cases separately:
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4. Let an O € Ob be an achievement obligation.

(a) From 4 it follows that in this case the lines of the algorithm from 9 to 16 are
concerned.

(b) From (a) it follows that the only line of the algorithm returning not compliant is
14.

(c) From 1 and Definition it follows that Jo; € 6 such that o; = c and o >
oi, and —3oy, € 0 such that o, =d and 0; = 0}, < 0j.

(d) From (c) and because the algorithm analyses the states of a trace in chronological
order, it follows that the condition at line 13 of the algorithm is never satisfied,
because the condition of line 13 cannot be fulfilled before the condition at line
10.

(e) From (d), it follows that when the condition at line 10 is fulfilled, it removes the
obligation from the cycle, hence preventing the execution of line 14.

(f) From (b) and (e), it follows that the result not compliant is prevented while
analysing achievement obligations.

5. Let an © € Ob be a maintenance obligation.

(a) From 5 it follows that in this case the lines of the algorithm from 18 to 25 are
concerned.

(b) From (a), it follows that the only line of the algorithm returning not compliant
is 20.

(c) From 1 and Definition it follows that Joj, € 0 such that o}, |= d and Vo; €
6 such that o; < 0; <0}, : 05 = c.

(d) From (c) and because the algorithm analyses the states of a trace in chronological
order, it follows that the condition at line 19 is never satisfied in the same state
or in one preceding a state satisfying the condition at line 22.

(e) From (d), it follows that when the condition at line 22 is fulfilled, it removes the
obligation from the cycle, hence preventing the execution of line 20.

(f) From (b) and (e), it follows that the result not compliant is prevented while
analysing maintenance obligations.

6. I have thus shown that in both cases the algorithm cannot return not compliance.
Therefore Algorithm returns compliant, 6 + O, as result.

O

Reduction 1. Given a directed graph G and the problem of proving requlatory compliance
reduced from it, where the problem is composed by a process model (P,ann) and a set of
local obligations ®. There exists a trace 8 € O(P,ann) such that 0 + ® if and only if G
has an hamiltonian path (ham).



166

APPENDIX C. SOME COMPLEXITY RESULTS

Correctness:

Here I prove the soundness ((P,ann) F ©® = 3ham) and the completeness (Iham =
(P,ann) F ®) of our reduction. We refer to the two conditions stated in Definition [39 as
(1) and (2) respectively.

Proof. Soundness: (P,ann) F © = 3ham
I prove the soundness directly:

1.

2.

10.

11.

12.

13.

By construction each node is included in an AND block.

From 1 and Definition[d] it follows that each block in the AND block must be serialised.

. From 2, it follows that the condition (1) of Definition [39| is satisfied.

. From the hypothesis and Definition it follows that 30 € ©(P, ann) such that 6

©.

. From 4 and Definition it follows that VO € ©,60 + O.

. By construction each obligation © in ® is of type maintenance.

By construction and Definition [4] it follows that there exists a trace
0= ((Startv LO)’ (NOdeilaLl)a R (NOdeinv Ln)’ (end’ Ln+1))‘

. From 7 and 4, it follows that 6 + ©.

. From 8, it follows that no maintenance obligation (O™(—l;,_,),li,,"l;,) € © is

violated.

From 9 and by construction of the maintenance obligations, it follows that for each
(Node;, , L) and (Node;, , ,, Liy1) in 0, there exists (v;,,v;,,) € D.

From 10, it follows there exists and edge between v;, and v;,_, in G.
From 11, it follows that condition (2) of Definition [39|is fulfilled.

From 3 and 12, it follows that Jham in G.

Proof. Completeness: 3ham = (P,ann) F ©
I prove the completeness directly:

1.

From the hypothesis we know that Jham = (vy;...;v,) satisfying conditions (1) and
(2) of Definition
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2. By construction of the process model, it follows that each v; in ham corresponds to a
Node; in P.

3. From 2 and Definition |4} it follows that e = (Nodey, ..., Node,) is a valid execution
of P.

4. From 3 and Deﬁnition it follows that @ = ((start, Lg), (Nodei, L1), ..., (Nodey, L), (end, Ly,11))
is a valid trace of (P,ann).

5. From 1, it follows that for each v;,v;11 € ham there exists (v;,vi+1) € D.

6. From 5 and the construction of the maintenance obligations, it follows that there is
no obligation © = (O™ (=lit1), li, ~li).

7. By construction of the annotations Definition [I1] and Definition 2] it follows that for
each (Node;, L;) and (Node;t1, Li+1) in 0, only © would not be fulfilled in 6.

8. From 6, 7 and Definition it follows that 6 F ®.

9. From 8 and Definition [16} it follows that (P,ann) F ®.

O
C.2.1 Proving Partial Compliance is NP-complete
Algorithm 5. Given a set of obligations ©® and a trace 0 = (Ostart, 01, - - Ony Tend) Such

that osiare = (start, Lg) and 6 € O(P,ann), the algorithm As(6,®) is defined as follows (In
the following, Ob denotes the set of active obligations and we treat 0 as a vector):
Algorithm As
1: Ob =1
2: for each o; in 6 do

8:  for each O p., pp, 0q) in ® do
4 if 0; |E vp then
5: Ob = Ob U OYpe, ¢p, Pd)
6: end if
7 end for each
8:  for each O p., vy, q) in Ob do
9: if t = a then
10: if 0; = . then
11: Ob = Ob\ O%w¢, b, Pa)
12: else
13: if 0; |E wq then

14: return 6 t/ ©
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15: end if

16: end if

17: else

18: if t =m then

19: if 0; £ p. then
20: return 6 I/ ©
21: end if

22: if 0; = pq then
23: Ob = 0b\ O™ (¢, vb, Pd)
24: end if

25: end if

26: end if

27:  end for each
28: end for each
29: return 6 F ©;

Algorithm [J] identifies wether a trace fulfils a set of local obligations without compensa-
tions.

Correctness:

Proof. Because the semantics of verifying partial compliance (Definition and the seman-
tics of local obligations has not changed (Definitions and , the correctness proof
provided in Section for Algorithm [ holds also for Algorithm O

C.2.2 Proving Non Compliance is coNP-complete

Reduction 2. Given a propositional formula ¢ and the problem of proving regulatory
compliance reduced from it, where the problem is composed by a process model (P,ann) and
a set of local obligations ®@. For all traces 6 € O(P,ann) we have 0 = © if and only if ¢ is
a tautology.

Correctness:
Here I prove the soundness ((P,ann) F @ = ¢ = T) and the completeness (p = T =
(P,ann) F @®) of our reduction.

Proof. Soundness: (P,ann) F @ = p=T

1. From the hypothesis and Deﬁnition it follows that each trace of the process (P, ann)
fulfils the obligations in ®.

2. From the construction of the set of obligations, it follows that the only obligation
belonging to ® is © = O, liest, L).

3. From Definition [11] and the construction of the process, it follows that each trace of
P contains the task ljeq:.



C.2.

C2Nnra 169

. From 2, 3 and Definition it follows that the only state where © is active is always

the last of every trace of (P,ann), which are also the only one containing l4s;.

. From 4 and Definition it follows that the set of literals associated to the last state

corresponds to an interpretation of the propositions contained in .

. From 5 and the construction of the process, it follows that all the possible combinations

of interpreting the propositions belonging to ¢ are considered.

From 1 and 6, it follows that ¢ is satisfied by every interpretation.

. Therefore from Definition it follows that ¢ is indeed a tautology.

Proof. Completeness: ¢ = T = (P,ann) F ©

1.

From the construction of the set of obligations, it follows that the only obligation
contained in ® is O.

. From the construction of the obligation, it follows that the condition of @ is constituted

by ¢.

. From the hypothesis and Definition [44] it follows that ¢ is verified in every state.
. From 2, 3 and Definition it follows that V6,60 + O.
. From 4, 1 and Definition it follows that V60,0 + ©.

. From 5, it follows that V@ € (P,ann),0 + ©.

From 6 and Definition it follows that (P,ann) F ®.
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Appendix D

Propagating the Results

D.1 (3,

D.1.1 Proving Partial Compliance is NP-Complete

Lemma 6. Given a compensable obligation 4 = Q1 ® ... Op_1 ® L composed of a chain
containing n — 1 obligations, 0 &+ 4 if and only if 6 F Op_1.

Proof. The proof follows directly by induction on the sequential structure of the chain

composing a compensable obligation and Definition O
Algorithm 6. Given a set of obligations © and a trace 0 = (Ostart, 1, - - On, Tend) Such

that ostare = (start, Lg) and 6 € O(P,ann), the algorithm As(6,®) is defined as follows (In
the following, Ob denotes the set of active obligations and we treat 6 as a vector):
Algorithm Ay
1: Ob=10
2: for each o in 0 do
3 for each % in ® do
4 if 4 not in ob then
5: Let 5 =01 ®...® L and let ©O1 = Ope, @b, 0a)
6: if o; = b then
7 Ob = Ob U 4.first
8: end if
9: end if
10:  end for each
11:  for each 4 in Ob do

12: w = true

13: while w do

14: w = false

15: Let the active obligation in % be O ¢, pp, Pa)
16: if t = a then

17: if 0; |E wc then
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Ob=0b\ 4%
else
if o; = w4 then
4.next
w = true
if The active obligation in % is 1 then
return 6 F/ ©
end if
end if
end if
else
if t =m then
if o; = oo then
4.next
w = true
if The active obligation in % is 1 then
return 6 I/ ©
end if
end if
if 0i = pa then
Ob=0b\ 4%
end if
end if
end if
end while
end for each

44: end for each
45: return 0 F ©;

Algorithm [0 identifies wether a certificate, consisting of a trace 0, fulfils a set of local
compensable obligations.

Correctness:

Proof. Soundness: A3(0,0) =0 F©® =0 + ©.
I prove the soundness of Algorithm [6] directly:

1.

2.

From the hypothesis, it follows that line 45 of Algorithm [6] is executed.

From 1., it follows that the lines 24 and 34 of the algorithm are not executed.

. Given an obligation © being processed of an activated compensable obligation Co,

assuming that © is violated, from 2 it follows that 4.next # 1.

. Given that each 4 € ® is composed by a finite sequence of obligations.

From 3. and 4. and Definition it follows that V4 € ©, 30 € 4 such that § + O.
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. From 5. and Lemma it follows that V4 € ©,60 + ©,_1 where ©,,_1 is the obligation

preceding L in each %.

. From 6. and Lemma [6] it follows that V4 € ©,6 F 4.

. From 7. and efinition it follows that § F ®.

Proof. Completeness: 6 - © = A4(0,0) =0 + ®.
I prove the completeness of Algorithm [6] directly:

1.

2.

D.

From the hypothesis and Definition it follows that V4 € ©,0 F 4.

From 1. and Lemma |§|, it follows that if § F % then 0 + O,,_1.

. From line 11 and line 15 of the algorithm, it follows that each activated compensable

obligation is processed individually and the obligations composing it are processed in
the given order.

. Assume that the obligation being processed of an activated compensable obligation is

of type achievement, then the if block starting in line 16 is used.
(a) Assume the case where each previous obligation of a compensable obligation

have been violated and the processed obligation is O,_1.
(b) From 2. and Definition it follows that either line 17 is fulfilled or line 20 is

not.
(¢) From (b), it follows that the following obligation on the chain, 1, is not processed.
(d) From (c), it follows that the condition at line 23 is never fulfilled.
(e) From (d), it follows that the only line reachable returning 6 / © when processing

an obligation of type achievement is not reachable.

Assume that the obligation being processed of an activated compensable obligation is
of type maintenance, then the if block starting in line 29 is used.

(a) Assume the case where each previous obligation of a compensable obligation
have been violated and the processed obligation is O;_1.
(b) From 2. and Definition [20] it follows that line 30 is never fulfilled.
(¢) From (b), it follows that the following obligation on the chain, L, is not processed.
()
)

(e

From (c), it follows that the condition at line 33 is never fulfilled.

From (d), it follows that the only line reachable returning 6 t © when processing
an obligation of type achievement is not reachable.
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6. Thus it follows that for every type of obligation the algorithm does not return 6 t/ ®,
hence the algorithm returns § + © at line 45.



Appendix E

Towards a Tractable Sub-Class of
the Problem

E.l1 Clj,

Algorithm 7. Given a C17,, problem composed of a monotonic process (P,ann) and a
local atomic obligation ©, As((P,ann), Q) returns whether (P, ann) is fully, partially or not
compliant with ©.

Algorithm As

1: Let @ = O%{c,1,d)
2: Label o the tasks in P where I € ann(t);
3: Label B the tasks in P where d € ann(t) and the pseudo-task end;
4: Label v the tasks in P where ¢ € ann(t);
5: B =CL(B);
6: B = PL(B);
7: if x == a then
8: if 3 task € B labeled: a AN BN —(yV ~.) then
9: return (P,ann) t/ O
10:  else
11: if (3 task € B labeled: (aV ac) A (BYV Be) AN=(yV.) then
12: return (P,ann) H O
13: else
14: return (P,ann) K O
15: end if
16:  end if
17: else
18:  if 3 task € B labeled: a AN —(8V B.) N~ then
19: return (P,ann) I/ O
20: else
21: if (3 task € B labeled: (aV ac) A=(BV Bc) A (yV~.) then
22: return (P,ann) H O
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23: else

2/: return (P,ann) K O
25: end if

26:  end if

27: end if

Correctness

Correctness Proof of Algorithm[7 Given an annotated process (P, ann), where P = start B end,
and a global achievement obligation O%(l), I prove the correctness of Algorithm 1 by showing
both soundness and completeness.

Soundness I prove the soundness of Algorithm [7] by cases considering the three possible
compliance results that the algorithm can return, and showing that for each result, the
process given in input belongs to such compliance class.

1. Algorithm [7] returns (P, ann) t/ O

(a) Assume that O is an achievement obligation.
i. From the hypothesis and (a), it follows that the condition at line 8 of the
algorithm is true.

ii. From 7, Function 1 and Function 2, it follows that each execution of a task
with such labelling leads to a state containing {/,d} and not containing {c}.

iii. From 4¢ and Function 2, it follows that there are no traces avoiding a state
containing {/,d} and not containing {c}.
iv. From #ii and Definition 20} it follows that V6 € ©(P,ann),0 t/ O.
v. From ¢v and Definition it follows that (P, ann) is not compliant with O.
(b) Assume that O is a prohibition.
i. From the hypothesis and (b), it follows that the condition at line 18 of the
algorithm is true.

ii. From ¢, Function 1 and Function 2, it follows that each execution of a task
with such labelling leads to a state containing {l, ¢} and not containing {d}.

iii. From 47 and Function 2, it follows that there are no traces avoiding a state
containing {/, c} and not containing {d}.

iv. From 77 and Definition it follows that V0 € ©(P,ann),0 t/ O.
v. From 7v and Definition it follows that (P, ann) is not compliant with O.

2. Algorithmlﬂreturns (P,ann) F O

(a) Assume that O is an achievement obligation.
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i. From the hypothesis and (a), it follows that the condition at line 8 of the
algorithm is false and the one at line 11 is true.

ii. From ¢, Function 1 and Function 2, it follows that some executions of a task
with such labelling leads to a state containing {l,d} and not containing {c}.

iii. From 47 and Function 2, it follows that there are some traces with state
containing {/,d} and not containing {c}, and some which does not.

iv. From ¢ and Definition it follows that 30 € ©(P,ann),§ ¥ ©O and
30 € ©(P,ann), 0 + O.

v. From 4v and Definition it follows that (P,ann) is partially compliant
with O.
(b) Assume that O is a prohibition.
i. From the hypothesis and (b), it follows that the condition at line 18 of the
algorithm is false and the one at line 21 is true.

ii. From ¢, Function 1 and Function 2, it follows that some executions of a task
with such labelling leads to a state containing {/, ¢} and not containing {d}.

iii. From 47 and Function 2, it follows that there are some traces with state
containing {l, ¢} and not containing {d}, and some which does not.

iv. From i and Definition it follows that 30 € ©(P,ann),f ¥ © and
36 € ©(P,ann),0 + Q.

v. From iv and Definition it follows that (P, ann) is partially compliant
with O.

3. Algorithmlﬂreturns (P,ann) F O

(a) Assume that O is an achievement obligation.
i. From the hypothesis and (a), it follows that the conditions at line 8 and at
line 11 are both false.

ii. From ¢, Function 1 and Function 2, it follows that no execution of a task
with such labelling leads to a state containing {l,d} and not containing {c}.

iii. From 4¢ and Function 2, it follows that there are no traces with a state
containing {l,d} and not containing {c}.

iv. From ¢#¢ and Definition it follows that V8 € ©(P,ann),0 + O.
v. From iv and Definition |16} it follows that (P, ann) is fully compliant with O.
(b) Assume that © is a prohibition.
i. From the hypothesis and (b), it follows that the conditions at line 18 and at
line 21 are both false.

ii. From 4, Function 1 and Function 2, it follows that no execution of a task
with such labelling leads to a state containing {l, c} and not containing {d}.
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iii. From 47 and Function 2, it follows that there are no traces with a state
containing {/, c} and not containing {d}.

iv. From #i% and Definition it follows that V8 € ©(P,ann),0 + O.

v. From iv and Definition |16} it follows that (P, ann) is fully compliant with O.

I have shown the soundness of Algorithm [7] by showing that in each of the three possible
cases, whether the algorithm returns fully, partially or not compliant, then the process
model given as input is correctly classified.

Completeness 1 prove by cases the completeness of Algorithm 1, by showing that for each
of the three compliance classes to which a process can belong, the result of the algorithm is
indeed corresponding to such class.

1. (P,ann) is not compliant with O

(a) Assume that O is an achievement obligation.

i. From the hypothesis, it follows that V0 € ©(P,ann),0 I/ O.

ii. From (a), i, Definition[20]and Definition[48] it follows that V6 € ©(P,ann), 3o €
6 such that o = 1,0 = d and o [~ c.

iii. From i¢, Function 1 and Function 2, it follows that exists a task labeled
05/\6/\_'(7\/70)'

iv. From 4ii and (a), it follows that the condition at line 8 is satisfied.

v. From iv, it follows that the algorithm returns (P,ann) I/ O.

(b) Assume that © is a prohibition.

i. From the hypothesis, it follows that V8 € ©(P,ann),0 / O.

ii. From (b), i, Definition [50]and Definition 48] it follows that V8 € ©(P, ann), 3o €
6 such that o = 1,0 | c and o [~ d.

iii. From 47, Function 1 and Function 2, it follows that exists a task labeled
aA_‘(ﬂvﬁc)/\’Y'

iv. From 4ii and (b), it follows that the condition at line 18 is satisfied.

v. From v, it follows that the algorithm returns (P, ann) t/ O.

2. (P,ann) is partially compliant with O

(a) Assume that O is an achievement obligation.

i. From the hypothesis, it follows that 30 € ©(P,ann),0 + O.

ii. From (a), i, Definition [20]and Definition[48] it follows that 30 € ©(P,ann), =30 €
6 such that o = 1,0 = d and o [~ c.

iii. From the hypothesis, it follows that 30 € ©(P,ann), 0 t/ O.
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From (a), #4i, Definition[20]and Definition 48] it follows that 3¢ € ©(P,ann), 3o €
6 such that o = 1,0 = d and o [~ c.

From 4%, Function 1 and Function 2, it follows that does not exist a task
labeled a A B A (7 V 7).

From v and (a), it follows that the condition at line 8 is not satisfied.
From 47, iv, Function 1 and Function 2, it follows that exists a task labeled
(aVae) AN(BV Be) A=y V).

From vii, it follows that the condition at line 11 is satisfied.

From vi and viii, it follows that the algorithm returns (P,ann) F O.

(b) Assume that © is a prohibition.

i.

ii.

iii.

v.

vi.

vii.

viil.

1X.

From the hypothesis, it follows that 30 € ©(P,ann),0 + Q.

From (b), 4, Definition[50]and Definition [48] it follows that 3¢ € ©(P,ann), 3o €
6 such that o =1,0 =d and o }~ c.

From the hypothesis, it follows that 30 € ©(P,ann),0 t/ Q.

From (b), iii, Definition[50]and Definition[48] it follows that 36 € ©(P,ann), —3o €
6 such that o = 1l,0 = d and o [~ c.

From 4¢, Function 1 and Function 2, it follows that does not exist a task
labeled a A =(BV 5c) A 7.

From v and (b), it follows that the condition at line 18 is not satisfied.
From 44, iv, Function 1 and Function 2, it follows that exists a task labeled
(Oé \ ac) A _'(B v ﬁc) A ('7 \4 '70)'

From wvii, it follows that the condition at line 21 is satisfied.

From vi and viii, it follows that the algorithm returns (P,ann) = O.

3. (P,ann) is fully compliant with O

(a) Assume that O is an achievement obligation.

i.

il.

iii.

iv.

V.

From the hypothesis, it follows that V6 € ©(P,ann),0 + O.

From (a), i, Definition[20]and Definition[48] it follows that V6 € ©(P,ann),-3o €
6 such that o = 1,0 = d and o [~ c.

From i, Function 1 and Function 2, it follows that a task labeled (a0 V ) A
(BV Be) A=(v V) does not exist.

From iii and (a), it follows that the conditions at line 8 and line 11 are not
satisfied.

From v, it follows that the algorithm returns (P,ann) = O.

(b) Assume that O is a prohibition.

i.

From the hypothesis, it follows that V6 € ©(P,ann),0 + O.
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ii. From (b), i, Definition[50]and Definition[4§] it follows that V8 € ©(P,ann), =30 €
6 such that o = 1,0 = ¢ and o [~ d.

iii. From 7, Function 1 and Function 2, it follows that a task labeled (o V a;) A
=(BV Be) A (7 V) does not exist.

iv. From 4ii and (a), it follows that the conditions at line 18 and line 21 are not
satisfied.

v. From iv, it follows that the algorithm returns (P,ann) F O.

I thus have shown that the algorithm returns its outcome in accordance to the compliance
class to which the process given in input belongs to.

Having proven both soundness and completeness of Algorithm [7], I can conclude that
the algorithm is correct. O
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