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We present a study of connectivity percolation in suspensions of hard spherocylinders by means of
Monte Carlo simulation and connectedness percolation theory. We focus attention on polydispersity
in the length, the diameter, and the connectedness criterion, and we invoke bimodal, Gaussian, and
Weibull distributions for these. The main finding from our simulations is that the percolation threshold
shows quasi universal behaviour, i.e., to a good approximation, it depends only on certain cumulants
of the full size and connectivity distribution. Our connectedness percolation theory hinges on a
Lee-Parsons type of closure recently put forward that improves upon the often-used second virial
approximation [T. Schilling, M. Miller, and P. van der Schoot, e-print arXiv:1505.07660 (2015)].
The theory predicts exact universality. Theory and simulation agree quantitatively for aspect ratios in
excess of 20, if we include the connectivity range in our definition of the aspect ratio of the particles.
We further discuss the mechanism of cluster growth that, remarkably, differs between systems that
are polydisperse in length and in width, and exhibits non-universal aspects. © 2015 AIP Publishing
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Percolation in suspensions of polydisperse hard rods: Quasi universality
and finite-size effects
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. INTRODUCTION

Composite nanomaterials have long attracted attention
because of their potential application, for instance, in elec-
tronics, display technology, and photovoltaics.” Of particular
interest in this context are their heat and charge transport prop-
erties.’ Adding a sufficient amount of electrically conductive
nanoparticles, such as carbon nanotubes or graphene, to an
insulating polymer matrix produces a conductive composite
the conductivity of which can be tuned by the choice of filler
type, filler loading, and processing.* For many technological
applications, the minimum filler loading required to reach a
conductive state, the so-called percolation threshold, is desired
to be as low as possible.” Rod-like particles are particularly
suitable for this kind of application since they present very low
percolation thresholds.® For the purpose of the rational design
of such materials, it is crucial to be able to describe and predict
the percolation threshold of assemblies of filler particles and
understand the underlying mechanisms of the buildup of the
system-spanning network required for effective conduction.

In experimental reality, the properties of the filler nanopar-
ticles are not always well controlled.” Indeed, they are usually
chemically and otherwise polydisperse, that is, consist of a
mixture of particles of different dimensions and conductive
properties. This complexity makes prediction of the percola-
tion threshold and of the network structure very difficult, not
least because of the huge parameter space. In this paper, we
present a simulation and theoretical study of percolation in
dispersions of polydisperse nanorods, specifically allowing for
hard core interactions and targeting aspect ratios that are of an
intermediate range, i.e., not in the scaling limit.3-'°
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Even though we find qualitative agreement with work
on polydisperse ideal (penetrable) rods'® and very long hard
rods®? (showing that the percolation threshold obeys laws that
within a good approximation depend only on a few moments of
the full distributions functions), quantitatively our results are
very different. In fact, we find strong deviations in the depen-
dence of the percolation threshold on the appropriate measures
for the mean aspect ratio and connectivity of the particles.
Finally, we find that the network connectivity properties are
affected differently by variabilities in length, diameter, and
connectivity criterion.

Itis important to point out that the model systems that have
been studied in the literature so far usually capture only one
or a few aspects relevant to experimental reality. A very large
focus is on the particle shape, attractive interactions, and aspect
ratio.!" While there is a huge body of the literature dealing with
monodisperse systems, relatively little attention has been paid
to polydisperse systems.'!>” Recently, Chatterjee?® and Otten
and Van der Schoot®’ have developed theories of continuum
percolation that take polydispersity into account and predict
universal scaling laws for the percolation threshold. These
predictions have only to a small extent been tested numerically.

Inarecent simulation study, Nigro and co-workers confirm
that for hard and penetrable rods that are polydisperse only in
length, the percolation threshold depends only weakly on the
exact shape of the length distribution.'? A similar finding was
obtained by Mutiso and collaborators for mutually penetrable
length and width polydisperse rods.?’ They also find that finite-
aspect-ratio corrections on the predictions of Otten and Van
der Schoot are quite significant up to aspect ratios of about
100.%?

©2015 AIP Publishing LLC
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Here, we go considerably beyond the scope of earlier
work and report on simulation results for three different
types of polydispersity that we investigate separately. The
coupling between different kinds of polydispersity, predicted
to be relevant for many experimental systems,” is post-
poned to future work. We show that the different kinds
of polydispersity exhibit non-trivial universal behaviour. We
invoke a treatment of connectedness percolation theory of
hard rods recently put forward by us,' which is aimed at
predicting finite-aspect-ratio corrections rather than obtaining
them phenomenologically from simulations, as was done in
Ref. 29.

The remainder of this paper is arranged as follows. We
present in Section II the methods implemented in the Monte-
Carlo simulations. Section III deals with the derivation of our
version of connectivity percolation theory for polydisperse
spherocylinders, including the Lee-Parsons approximation. Fi-
nally, we focus in Section I'V on both numerical and theoretical
results, first about the percolation thresholds and then about the
cluster mechanisms. We end the paper with conclusions and a
summary of the main findings in Section V.

Il. SIMULATION METHODS

We consider hard spherocylinders consisting of cylinders
of length L; and diameter D;, each capped by two hemispheres
of the same diameter. See Fig. 1. The particles are not allowed
to overlap but do not directly interact with each other when
they are not in contact. The corresponding interaction poten-
tial is therefore either zero or infinite, making their resulting
equilibrium properties temperature independent. We initialize
a simulation box in which around 10 000 spherocylinders are
perfectly aligned and regularly placed on square lattices spaced
from each other along the rod direction. At each simulation
step, the particles are then randomly rotated and translated.
Equilibration is monitored by computing the nematic order
parameter, which is expected to reach a constant value at the
equilibrium (0 in the isotropic phase). Once the system is
equilibrated, we generate ca. 5000 independent configurations
of the system and average all quantities of interest over those
configurations. In order to detect overlapping particles effi-
ciently, the box is divided into a fine grid,® where the unit
cell length is chosen equal to the greatest rod diameter in the

o

FIG. 1. Definition of the particle dimensions and connectivity range.
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system, so that the computational cost increases linearly with
the number of particles. This method is very fast but rather
expensive in terms of memory.

We take polydispersity into account by assigning to each
rod a length and a diameter according to a probability density
function P and Pp. To generate a finite number of rods
from a continuous distribution, we define an interval Ax where
x = L, D stands for length and width, and force the system to
contain NP,(x¢)Ax rods, whose dimension lies between xg
and x( + Ax. This method turns out to give much more accurate
results than simply drawing the rod dimensions directly from
the distribution under study. In this work, the mean aspect
ratio lies around L/D = 15 and the widest distributions we
considered spread up to an aspect ratio of approximatively L/D
= 80 for the very longest rods. In order to clearly distinguish
between the effects of length and diameter polydispersity, we
choose only uncorrelated distributions. As already advertised,
this assumption does not necessarily apply to all experimental
systems.

Connectedness percolation requires the definition of an
inter-particle connectedness criterion. We define for each rod
i a spherocylindrical shell of length L; and diameter D; + &;
that contains the particle, where the connectivity parameter
&; obeys some distribution function P(¢). Two particles are
then connected if their surrounding shells overlap. Clusters
are defined by contiguous pairwise connections. We define a
configuration percolating if one of its clusters is connected to
its image under periodic boundary conditions. To every config-
uration corresponds a percolation probability that is either 1
(it percolates) or O (it does not percolate), and averaging over
many configurations, we compute a global continuous perco-
lation probability for a particular system. A typical snapshot of
such a sample and of its corresponding largest cluster is shown
in Fig. 2.

In order to estimate the percolation threshold for a partic-
ular length, diameter, or connectivity distribution, we perform
simulations using this distribution for a range of rod volume
fractions. The volume fraction ¢ is defined with respect to
the hard core volume of the particles and does not take into
account the connectivity shell: ¢ = % %} v; where v; = %L,-Dl.2

i=
+ %D? is the volume of the particle i, and a is the simulation

box length. The percolation probability in a finite system is
a sigmoidal function of the volume fraction running from 0
to 1. Its transition steepness increases with the box size and
reaches a Heaviside step function in the limit of infinite box
volume. The curves that correspond to different box volumes
cross each other slightly below the concentration at which the
probability reaches the value of 0.5. As we are interested in the
scaling behaviour of the percolation threshold with the aspect
ratio and cumulants of the size distribution of the particles,
we do not need very accurate estimates. Hence, we ignore
finite size effects and assume that the percolation threshold is
the volume fraction corresponding to a percolation probability
of 0.5. We verify that our box is sufficiently large to ensure
that the percolation probability goes from 0.2 to 0.8 within a
maximal volume fraction range A¢,,,x = 0.005. We assume
this criterion to be restrictive enough for our results to achieve
a satisfactory accuracy.
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FIG. 2. Snapshot of an equilibrated configuration of diameter polydisperse spherocylinders at the critical volume fraction (left) and of the largest cluster within
-1 @
this particular configuration (right). Distribution is of the Weibull form P(D) (%)a e~ P/B) with @ =2.83 and B =1.16. Lengths and connectedness

distances are all fixed to L =15 and & =0.2, respectively.

The effects of polydispersity on the percolation behaviour
will also depend on the proximity of the system to phase transi-
tions. On increasing concentration, spherocylindrical particles
undergo a transition to the nematic phase, the orientational
order of which influences the connectivity in the system. It is
therefore a major concern to know if percolation is reached at a
lower or higher density than the isotropic-nematic phase tran-
sition. This phenomenon has, for instance, been shown to be
important in suspensions of percolating platelets.>! However,
& can be adjusted in order to lower or raise the percolation
threshold, since it plays a role in the connectedness properties
but not in the structure of the fluid. Our simulations were run
with values of ¢ that are in the order of the electron tunneling
length in metallic fibres in composite materials. For these
values, percolation always occurs in the isotropic phase.

lll. THEORY

Percolation of clusters of nanoparticles in a fluid back-
ground medium can be investigated theoretically invoking
what in essence is liquid state integral equation theory.’ The
theoretical framework is called connectedness percolation
theory and it has been applied to hard and soft rod-like parti-
cles.®*12 Here, we follow the same recipe, except that we will
not rely on the second virial approximation that becomes exact
in the limit of infinite aspect ratio. Instead, we opt for a closure
that was recently shown to provide an accurate description of
percolation of monodisperse, hard rods with an aspect ratio
larger than roughly 10.!

Within the framework of connectedness percolation the-
ory, the cluster size S can be expressed in terms of a function
T, averaged over all of the attributes of orientation vector u and
dimensions x = (L, D, &) of the particles,9

S =(T(x,w))y . ey

The function 7 itself is a pair connectedness function averaged
over its attributes and the solution of a generalised connected-

ness Ornstein-Zernike equation
T(x,u) - p (C*(0,x,x" ) T(x’,w)),, = 1. 2)

Here, p is the number density of particles and C* = C*(q,u,w’),
the spatial Fourier transform of the connectedness direct corre-
lation function, that is, the direct correlation function for parti-
cles that are part of the same cluster, and q the wave vector. To
average over the entire volume of the system, we have to take
the zero wave vector limit, ¢ — 0.

In the isotropic phase, the rods are randomly oriented,
implying that 7(x,u) = T(x), which in turn allows us to rede-
fine C* as its average over the possible orientations, producing
the simplified connectedness Ornstein-Zernike equation

T(x) - p (C*(0,x,x)T(x)),, = 1. 3)

This equation needs to be closed and we follow Schilling
et al." by invoking the following ansatz: C*(0,x,x’) = ['(¢) f*
(0,x,x’).! Here, fr= e Pu” is the connectedness Mayer func-
tion and £+, its spatial Fourier transform,’ with S8 the reciprocal
thermal energy and u* the so-called connectedness potential,
and I'(¢), a coeflicient that depends on the volume fraction ¢
of the particles. For hard spheres, we write C(r) = I'(¢) f(r)
where the Mayer function f(r) produces the second virial
excess free energy if we choose as the reference state the
zero density gas. I'(¢) is chosen such that we reproduce the
Carnahan-Starling equation of state. Therefore, the thermo-
dynamics is at the level of Carnhan-Starling but the struc-
ture is that of a second virial fluid. Then, we make use of
the identity C = C* + C*, with C* the connectedness direct
correlation function and C* the blocking or disconnectedness
direct correlation function. We furthermore have the identity f
= f* + f*, which completes our derivation, giving C* = I'(¢)
f*. The functional form of I" is obtained from the Lee-Parsons
expression for the excess free energy, interpolating between
the Percus-Yevick equation of state for hard spheres and the
Onsager equation of state for hard rods.*>” Similar closure
relations have recently been developed by Chatterjee for disk
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percolation.’® Within this ansatz, we have
1-3¢
(1-¢)3
Notice that in the limit ¢ — 0,I" — 1 and we obtain the second
virial theory that is valid in the Onsager limit of very slender
rods. As we demonstrated recently,' corrections to the Onsager
limit are significant for aspect ratios below a few hundreds.

For the case of hard rods, the connectedness Mayer func-
tion is 1 if the distance between two rods is between D and
A =D + ¢ and O otherwise. The zero-wave vector Fourier
transform of the connectedness Mayer function £*(0,x,x’) can
be separated into contributions from interactions between the
different portions of the spherocylindrical particles. We use
Onsager’s expression for the excluded volume of two hard
spherocylinders to obtain’

[(¢) =

“4)

A+ N
2
+(A+A’

2

F(0,x,x")=LL’ 3
D+ D’
2
2 3

D+ D’ D+ D’
2 )f10—( 5 )foo ®)

where A = D + ¢ and the coefficients foo = 47/3, fio =7,
and fj; = /2, respectively, indicate the cylinder-cylinder,
cylinder-hemisphere and hemisphere-hemisphere contribu-
tions. Note that because u* is infinite for particles with overlap-
ping hard cores and for those that are not connected, and zero
for connected ones, f* is essentially the difference between
the excluded volume of two particles with hard-core radius A
minus that of particles with hard-core radius D.

Let us first focus on length polydispersity alone, and set
D = D’ and A = A’. In this particular case, Eq. (5) becomes

FHL.L) = LL'w  fi1 + (L + Lwa fio + wsfoo,  (6)

where w, = A" — D" are differences between powers of the
interaction ranges A and D. Inserting this into Equation (3),
we find

N2
f11‘|r(L+L')(A+A ) fio

3
) foo— LL’ Jn

—(L+L’)(

T(L) - pI'(¢)(Lw1 f11 + w2 f10) (LT(L)) .
= pl(9)(Lwaf1o + w3 fooXT (L)), = 1. (7)

The two unknown coupled quantities are (T(L)); and (LT
(L)) ; therefore, we need two independent equations relating
them. The first one we obtain by averaging Equation (7),
whereas the second we derive by first multiplying Equation (7)
with L and averaging the resulting equation. As these relations
are linear, we can summarize them by defining two vectors X
and Y and a matrix M:

_[@an] [
= [Lrwy|t T K|’
1—k k ©
M:[_a] _’8‘}, MX =7,
— —kay 1- kﬁz - =

where we use the notation k = pI'(¢), a; = (L) w> f10 + w3 fo0,

@y = (L) wafi0 + (LY w3 foo, B1 = (LY wif11 + wafio, and B
= (L*) w1 f11 + (LY wafio. The cluster size S = (T (L)) is the

J. Chem. Phys. 143, 044901 (2015)

first element of X = M~'Y. Each element of the matrix M~
is a fraction whose dénominator is the determinant of M.”
Therefore, S can be written as _

2 Anpq (L") DPET
n.p.q

S = ; &)

det M

where A, are coeflicients which involve the quantities k
and f;;. However, their exact expressions are not important
for the remaining calculations, so we do not reproduce them
here. The percolation threshold is the volume fraction ¢, for
which § diverges, or, equivalently, that makes detM =1 -k
(a1 + B2) + k*(e1 82 — 2 81) vanish. Therefore, we determine
¢. by solving this simple second-order polynomial equation
for k and by then relating k and ¢, ¢I'(¢) = k (v), where (v)
= Z((L) D*+ 3$D%) is the average volume of a particle. The
polynomial equation yields two solutions k.. We define then
Y = ki (v).
The final equation that we have to solve is therefore

3
(n + Z) $o— (1 +2y.)¢c +7. =0, (10)
which has two solutions for ¢,

B L+2y. /T +7y.

3
2’yi+§

be (1D
We have four solutions for ¢, but we only keep the positive
solution below unity for obvious physical reasons.

The analysis of the cases of diameter and connectedness
polydispersity is completely analogous to that of length poly-
dispersity, that is, the same method is applied starting from
Eq. (5) setting L=L" and é¢ =¢’, and L=L" and D = D/,
respectively. M then turns into a 3 X 3 matrix for diameter
polydispersity and a 4 x 4 one for connectedness polydisper-
sity. This leads to third and fourth order polynomial equations
that need to be solved. It is important to note that the percola-
tion threshold will then explicitly depend on the higher order
moments (D") with n < 4 and (¢£™) with m < 6, respectively.
To derive a theory for a system polydisperse in length, diam-
eter, and connectedness simultaneously is possible, but it does
not simplify Equation (5). Such calculations would therefore
involve quantities of the form (L"DP¢&?) and could handle
correlated as well as uncorrelated distributions. However, for
clarity of exposition, we decided to keep this for future work.

IV. RESULTS
A. Percolation thresholds

If we invoke the second-virial approximation and neglect
the end-cylinder and end-end interactions, the percolation
threshold, ¢., becomes proportional to the reciprocal weight
average length (L);1 = (L)/(L?), the mean square width
(D?), and a measure for the mean reciprocal connectivity

-1
length 0[(5) + 4/ <§2>] , depending on the type of polydisper-
sity.3-10 Although this approximation produces results that are

not very accurate for aspect ratios that are not huge, it is useful
to take it as a reference because it shows what cumulants of
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the full distribution are expected to govern the percolation
threshold. We note in this context that the nature of length
and diameter polydispersity is fundamentally different from
that of connectedness distance polydispersity. The first two
relate to polydispersity in the particle dimensions and hence
in the interactions between particles, whilst the third one is a
polydispersity in the electrical connectivity length scale only,
which does not affect the structure of the liquid but only the
resulting cluster size distribution.

To separate these various effects, we define two new dim-

ensionless quantities, being y = (L), //(D?) and 1 = [(5)

+w’<§2>] /2 (D2>. The former, y, becomes equal to either

(L),/D or L/+J{D?) depending on the type of polydispersity
and is analogous to the aspect ratio, as we cannot define a
unique aspect ratio in polydisperse systems. The latter, A, be-
comes [(f )+ (§2>] /2D for rods with a monodisperse diam-
eter, and represents a characteristic connectedness shell thick-
ness compared to the particle diameter. In addition, we derive
an approximative expression of the percolation threshold as a
function of both y and 4,

-1

dc = g+2/l()(+8) 12)

This expression is obtained within the context of length poly-
dispersity, by first truncating the polynomial equation det M
= 0 at the first order in density in order to turn it into a trivial
linear equation. This yields an approximative solution of the
percolation threshold within the second virial approximation in
which we only keep the leading order terms. Finally, we insert
this expression into Equation (11) (in place of y.) in which we
Taylor expand the square root up to the first order. Since we
derived it from the context of length polydispersity, the final
formula only contains (L),,, D, and ¢£. However, we extrapolate
it to diameter and connectedness polydispersity by replacing
(L),/D by x and &/D by A, yielding Equation (12), which
includes simultaneously the three types of polydispersity.

We compare the percolation threshold obtained from our
simulations, predictions based on the theory presented in Sec.
IIT and those from the second-virial theory for whichT" = 1, as
afunction of y~! for length and diameter polydispersity and as
afunction of 17! for connectedness polydispersity. For all three
kinds of polydispersity, we tested bidisperse, Gaussian, and
Weibull distributions. The first describes binary mixtures, the
second seems relevant as Gaussian distributions are common
in many fields of physics, and the third has been experimentally
observed in polymer-fiber composites that are polydisperse in
length.**#! The simulation data is listed in Tables I-III.

Fig. 3 shows the percolation threshold for the case of
length polydispersity as a function of the inverse aspect ratio
x~!. Both theory and simulations display a remarkable uni-
versal behaviour of the percolation threshold as a function of
(L), The three different distributions that we tested are very
different in shape, but we find that the percolation threshold is
not sensitive to this if expressed in terms of the weight average
length (L),. This was also shown by Nigro et al.!” for pene-
trable particles and in a more limited fashion for hard particles.
‘We find that the Lee-Parsons theory and our simulation results

J. Chem. Phys. 143, 044901 (2015)
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FIG. 3. Percolation threshold ¢. for length polydispersity as a function
of the reciprocal aspect ratio y~!=D/(L),. Results are indicated from
simulations (green full dots), Lee-Parsons theory (blue empty dots) as well as
the second-virial approximation (red empty dots) for &/ D =0.2 and various
distributions (L) indicated by different symbols. A remarkable universal
scaling with y~! is observed in the three cases. Simulation data are almost
perfectly fit by Equation (12) (solid line). See also the main text.

quantitatively converge in the range y > 20 and are in qualita-
tive agreement below that, whereas the theoretical prediction
derived from the second virial approximation deviates notably
even for relatively large aspect ratios. For monodisperse rods,
the Lee-Parsons approach produces quantitative results already
for y > 10." Nevertheless, Equation (12) fits the simulation
data surprisingly well, given the high level of approximation
used to derive it. In polydisperse systems, the discrepancies
between theory and simulations extend to larger average aspect
ratios because of the shorter rods that are also present in the
system. Note that the simulation results are always below the
theoretical prediction. Hence, composite materials that contain
fibres of short aspect ratio do not need as high filler loadings
as theoretically expected in order to become conductive.

Also for diameter polydispersity, the second order cumu-
lant is expected to be the most relevant one according to the
second-virial theory, at least if we neglect end effects.® This
is confirmed in Fig. 4 by both our simulation results and the
more accurate predictions of Lee-Parsons theory albeit that
we do not observe strictly universal behaviour. This suggests
that higher order cumulants must be important too, at least
for aspect ratios below 25. Remarkably, even the second-virial
prediction yields results that are in almost quantitative agree-
ment with the simulations for y > 15. The Lee-Parsons theory
is in very good agreement with the simulation results even
for relatively short particles. We note that this theory under-
estimates the percolation threshold for diameter polydisperse
spherocylinders while it overestimates it for length polydis-
perse ones. Moreover, Equation (12) constitutes a very good
estimation of the percolation threshold. However, we have to
emphasize that this expression requires to be slightly rewritten
in this particular case of diameter polydispersity, since A is a
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FIG. 4. Percolation threshold ¢, for diameter polydispersity as a function

l:

of y~!'=,/(D2%)/L. Results are indicated from our simulations (green full

dots), Lee-Parsons theory (blue empty dots) as well as the second-virial
approximation (red empty dots) for L/& =75 and various distributions (D)
indicated by different symbols. The scaling with y ! is not anymore univer-
sal, higher order cumulants matter. However, Equation (12) provides a very
good approximation (solid line). See also the main text.

function of <D2> and therefore is not constant along the y-axis.
Indeed, one needs to replace A by y&/L. Thus, the solid line

vy + 8)]_1 where ¢ and

corresponds to the function [% +2%

L are fixed.
Finally, we focus on connectedness distance polydisper-
sity, illustrated in Fig. 5 for the case of an aspect ratio of

0.30 T
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FIG. 5. Percolation threshold ¢, for polydispersity in the connectedness
distance &, as a function of A1~'=2D/ [<§>+’/<§2>]. Results from sim-

ulations (green full dots), Lee-Parsons theory (blue empty dots) as well
as second-virial approximation (red empty dots) for L/D =15 and various
distributions P (&), indicated by different symbols. A universal scaling with
A~ is also obtained. Additionally, Equation (12) gives a almost quantitative
estimation of the percolation threshold (solid line). See also the main text.
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15. As explained above, this does not lead to variability in
the interactions between the particles, only in the definition
of which particles are part of the same cluster. Nevertheless,
it can be treated theoretically in the same way as the length
and the diameter polydispersity due to the definition of the
connectedness potential u*. This explains why we find similar
behaviour as for length and diameter polydispersity. Indeed,
there is quasi-universal scaling with respect to A, even though
the aspect ratio is not all that large and one would expect higher
order moments in the distribution of connectedness ranges
to show up. Indeed, our calculations show contributions up
to the sixth moment, (£°), for the cluster size. Apparently,
terms involving the first and second moments, (£) and (£2),
predominate the percolation threshold. Again, prediction from
the second-virial approximation disagrees significantly with
the simulations. The Lee-Parsons correction improves upon the
quality of the prediction but still overestimates the threshold.
Both theories improve for large values of 4, i.e., for globally
thick connectedness shells for which the percolation threshold
occurs at low volume fractions of particles. Our ansatz for the
connectedness direct correlation function has by construction
the spatial structure of a second virial theory, even though
that our Lee-Parsons extension does have the thermodynamics
that goes beyond it. Arguably, at higher densities, the actual
structure of the direct correlation function starts to deviate
from this. Note also that the Percus-Yevick prediction for the
percolation threshold of monodisperse hard spheres is anyway
in only qualitative agreement with simulations.** Neverthe-
less, Equation (12) provides again a satisfactory assessment of
the percolation threshold in such kind of polydispersity. The
quality of the fit is quite surprising since we derived it from
equations of length polydispersity and extrapolated it to other
type of polydispersities. In any event, it seems to be robust
enough to be used for practical purposes.

B. Cluster formation mechanisms

As we have seen, the sensitivity of the percolation thres-
hold to the higher order moments of the distribution function
depends on the type of polydispersity: length, diameter, or
connectedness range. It suggests that the mechanism by which
the particles cluster differs between the different types of poly-
dispersity. Indeed, hard particles of different size and/or shape
have for entropic reasons a tendency to phase separate, and
even if they do not actually phase separate this might give rise
to fractionation of particles in the transient clusters that form
in the mixtures.*>**

To investigate this, we compare in Fig. 6 the distribution
of lengths and diameters within the largest cluster Peys(x)
with that in the entire system #(x) with x = (L, D), for length
and width polydisperse rods, respectively. In both cases, the
larger particles are more abundant in the largest cluster than in
the whole system, explaining why relatively small amounts of
large particles have a large effect on the percolation threshold.®
On the other hand, the effect weakens with increasing volume
fraction of particles, at least for the length polydisperse ones.
The proportion of short particles within large clusters is more
and more important as packing fraction increases, making the
gap between Pjys(x) and P(x) smaller.
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FIG. 6. Difference between the length and diameter distribution P jys,(x) of
the largest cluster and the distribution P(x) of the whole system, normalized
by the value of the distribution at its peak, P(x,), as a function of the length
x =L or width x =D scaled to the peak value, for two volume fractions
in both cases. The length (triangles) and diameter (circles) distributions

of the entire system are of the Weibull form P(x)oc (% “_le‘(x/ B with
« =2.37 and B being such that the distribution peaks lie at L =15 and D = 1.
Larger and thicker particles cluster more easily. The difference between
the distributions within clusters and the global ones become smaller with
increasing volume fraction. Notice that length polydispersity has a much
stronger fractionation effect than diameter polydispersity.
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FIG. 7. Radius of gyration of clusters as a function of their size on a
logarithmic scale for hard rods. Compared are results for monodisperse and
for length and width polydisperse rods (see legend key). We set D =1 and
L =15 in the monodisperse system. Length and width distributions are of

_I s .
the Weibull form P(x)c (%)a e~ /B with @ =2 and B chosen such

that (L), =15 and <D2>: 1 in both other systems. ¢ ~¢. and £=0.2 in
all three cases. Monodisperse systems as well as systems polydisperse in
diameter superimpose and can be fitted by a power law exhibiting an exponent
around 0.35 (deviations from this scaling for very large clusters are finite-size
effects). This is not true for length polydispersity.

Another measure for the cluster structure is the fractal
dimension d; of the critical cluster. We obtain this by measur-
ing the radius of gyration Ry ~ Ncllijt{-, . of the clusters as a
function of the number of particles in it, Ncjuser, Se€ Fig. 7.
This quantity is sensitive to length polydispersity and less to
diameter polydispersity. The latter and that for monodisperse

rods collapse exactly on the same curve that seems to exhibit
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TABLE I. Percolation thresholds computed from MC simulations for sphe-
rocylinders polydisperse in length, with D =1 and &€ =0.2.

Gaussian Weibull
Bidisperse distribution distribution distribution
L, L, P be Lo (o b B a e

10 20 0 0.082 8 1 0136 2350 1.80 0.065
10 20 0.1 0.083 8 2 0133 2139 198 0.072
10 20 02 0.085 8 3 0129 1937 227 0.080
10 20 05  0.092 10 2 021  19.14 255 0.081
10 20 0.6 0.095 10 4 0114 1752 2.82 0.088
10 20 0.8 0.105 10 6 0.106 16.06 4.10 0.096
10 20 09 0.113 10 8 0.097

10 20 1.0 0.123 10 10  0.090

5 15 02 0.102 12 3 0.108

5 15 03 0104 12 4 0.105

5 15 04 0.106 15 1 0.098

5 15 05 0110 15 2 0.097

5 15 06 0114 15 3 0.09

5 15 07 0120 15 4 0.09%4

5 15 08 0.128 15 5 0.092

5 15 09 0.141

TABLE II. Percolation thresholds computed from MC simulations for sphe-
rocylinders polydisperse in diameter, with L =15 and &£ =0.2.

Gaussian
Bidisperse distribution distribution Weibull distribution
D, D; p b Dy o bc B a b

08 12 0 0.123 04 032 0.042 101 11.703 0.095
08 12 0.1 0.120 0.6 032 0.060 1.04 5.53 0.097
08 12 02 0.116 0.8 032 0.083 1.09 3.65 0.104
08 12 03 0.111 1.0 032 0.107 1.17 2.82 0.117
08 12 04 0.107 12 032 0130 1.26 2.37 0.132
08 12 05 01020 1.0 020 0.102 1.36 2.11 0.149
08 1.2 06 0.097 1.0 045 0.115

08 12 07 0.091 1.0 052 0.122

08 12 08 0.085 1.0 058 0.128

08 12 09 0.079

TABLE III. Percolation thresholds computed from MC simulations for sphe-
rocylinders polydisperse in connectedness range, with L =15 and D = 1.

Gaussian

Bidisperse distribution distribution Weibull distribution

Dy, Dy p P &o o b B a e

01 03 01 0077 01 003 0.155 0.201 11.703 0.100
0.1 03 02 0.081 0.5 0.045 0.118 0.234 2.82 0.094
01 03 03 008 02 006 0097 0292 193 0.078
01 03 04 0.09 025 0075 0.083 0356 1.64 0.067
01 03 05 009 03 009 0.073

0.1 03 0.6 0.102

0.1 03 07 0.111

01 03 08 0.121

01 03 09 0.136

a power law scaling and a fractal dimension of dy = 2.8. Note
that finite box-size effects cause deviations from pure power-
law behaviour. For length polydisperse rods, we also do not
find power law scaling but the trend seems to conform to the



044901-8 Meyer, van der Schoot, and Schilling

same fractal dimension but with a larger prefactor. The fractal
dimension of 2.8 is larger than the mean-field value of 2 we
expect to hold for very long rods*’ and that we obtain from the
second virial approximation, but close to the accepted value of
2.5 in three dimensions for standard percolation.*® We expect
that because in our simulations the aspect ratio of the particles
is not very large that we find a deviation from the mean-field
exponent.

We conclude that having varying lengths or diameters
within a collection of hard rods does not fundamentally change
the way percolation is reached. Still, the volume fraction at
the percolation threshold is different from that for monodis-
perse rods, even if the average diameters (or lengths) are
equal.

V. CONCLUSIONS

In summary, we have presented a theoretical and com-
puter simulation study on the effects of polydispersity on the
geometrical percolation in suspensions of hard spherocylin-
ders. We compare results for bidisperse, Gaussian, and Weibull
distributions and show that the percolation threshold is quite
insensitive to the precise distribution. In the case of length and
connectedness polydispersity, the thresholds superpose within

Gaussian distribution

J. Chem. Phys. 143, 044901 (2015)

numerical error when scaled with the appropriate second order
cumulant of the size distribution. For diameter polydispersity,
however, higher order moments seem to matter, as the super-
position of the different distributions is not quite perfect. To
analyse the simulation results, we also present a theoretical
treatment of the problem within connectedness percolation
theory that we find to quantitatively predict the percolation
threshold for hard rods of aspect ratios above 20.
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APPENDIX: DEFINITION OF SIZE DISTRIBUTIONS

We report in Tables I-III the percolation thresholds
computed from our simulations and plotted in this article.
All values admit an error bar of A¢ = 0.002. We recall the
three distributions used (the gaussian is effectively a truncated
gaussian distribution).
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