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Abstract

Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic
modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for
instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation sys-
tems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in
the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation mea-
surements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-
frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm
provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were gener-
ated assuming a 30 cm average error of water surface elevation (WSE) measurements. By assimilating the synthetic
observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy
of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good
agreement with the synthetic “truth”, exhibiting an RMSE of 27 cm.

Keywords: Global Navigation Satellite System (GNSS) - Global Positioning System (GPS), Water Surface
Elevation (WSE), effective bathymetry, hydrodynamic modeling, data assimilation

1. Introduction1

The cost of damage caused by flooding is highly de-2

pendent on the warning time given before an event,3

making the issuing of timely flood alerts critical for4

minimizing the cost of flood damage. Predicting floods5

therefore remains a key concern of our society. Flood6

inundation models play a central role in real-time flood7

forecasting. In advanced hydro-meteorological fore-8

casting systems, they provide information about expec-9

ted flood hazard and damages. The models are used10

to accurately predict the timing and magnitude of a11

flood. The utility of any given model is, however, de-12

pendent on the availability of the necessary input data.13

Uncertainties in flood inundation modeling tend to be14

very high (Pappenberger et al., 2007), despite the phys-15

ical laws that hydrodynamic models are generally based16

upon. This is partly a result of numerical approxima-17

tions within hydrodynamic models, but it mainly derives18
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from inadequate or lacking data on the geometry of the19

channel and the floodplain, the difficulty in estimating20

roughness coefficients and the uncertainty in initial and21

boundary conditions (Smith et al., 2009).22

Channel and floodplain topography are required for23

setting up a hydrodynamic model. While the floodplain24

geometry can be extracted from freely available topo-25

graphy databases, it is important to mention that there26

is no database for the world’s river bathymetries. The27

SRTM mission digital elevation model (DEM) for in-28

stance covers the Earth surface with a spatial resolution29

of 90 m. In addition, the Tandem-X mission DEM is ex-30

pected to provide, from 2014 on, a global surface cover-31

age with a spatial resolution of 12 m. However these32

data sources are known to have their inherent limita-33

tions, especially in narrow valleys and densely popu-34

lated areas. More accurate elevation data sources like35

DEMs derived from airborne Lidar techniques can be36

an alternative for providing floodplain topography, but37

they come at a cost.38

As a global database of river bathymetries does not39

exist, and because of the necessity to penetrate water40
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for a direct measurement of bathymetry, time and cost41

intensive field campaigns are generally required.42

In this context of lacking riverbed bathymetry data,43

Durand et al. (2008) and Yoon et al. (2012) showed that44

river Water Surface Elevation (WSE) measurements45

from the proposed Surface Water Ocean Topography46

(SWOT) satellite mission should be helpful for estim-47

ating bathymetries using assimilation techniques in hy-48

drodynamic models. Based on a Ka-band SAR interfer-49

ometer, SWOT will provide gridded WSE information50

for inland lakes and rivers wider than 50 m. The im-51

ages provided by SWOT will have a 50 m spatial resol-52

ution on 120 km wide swath and the WSE is expected to53

be measured with a centimeter vertical accuracy over a54

1 km2 area (Alsdorf et al., 2007). In the previously men-55

tioned proof-of-concept studies, synthetically generated56

SWOT observations of WSE were assimilated into the57

LISFLOOD-FP hydrodynamic model. Durand et al.58

(2008) were able to estimate bathymetry in five loc-59

ations along the Amazon river with an accuracy of60

56 cm using the ensemble Kalman filter. Yoon et al.61

(2012) made use of the local ensemble batch smoother62

(LEnBS) assimilation scheme and were able to estim-63

ate the bathymetry with a 52 cm reach average accuracy64

for the Ohio river after assimilating 8 virtual SWOT re-65

visit cycles. SWOT is foreseen to be launched in 2020.66

This paper introduces an alternative technique, based on67

GNSS.68

At present, only a limited number of research stu-69

dies have investigated the potential of GNSS like70

GPS for WSE measurements. GNSSs are currently71

mostly used for monitoring sea level (Hong et al., 2008;72

Watson et al., 2008; Bisnath et al., 2003). Bisnath et al.73

(2003) found that real time kinematic (RTK) car-74

rier phase is able to provide tide level estimates75

with a vertical accuracy of 10 cm. Moreover,76

Holtschlag and Aichele (2001) deployed drifting buoys77

equipped with GPS in order to investigate flow patterns78

and describe turbulent dispersion characteristics within79

river reaches. More recently in a case study on the80

river Mekong, Apel et al. (2012) showed that moored81

GNSS equipped buoys were able to provide WSE mea-82

surements with an accuracy of 2 cm.83

In the light of these encouraging results and with the84

advent of advanced GNSS, such as Galileo, and with85

correction information (Differential GNSS) from net-86

works of fixed stations becoming more readily available87

in near-real time, GNSS-supported measuring devices88

can be considered a promising alternative for obtaining89

WSE and flow velocities at a large number of locations.90

Furthermore, over the last years, there has been91

a significant progress with respect to the integration92

of distributed hydrometric data with hydrodynamic93

models (e.g. Neal et al., 2007; Andreadis et al.,94

2007; Matgen et al., 2010; Hostache et al., 2010;95

Giustarini et al., 2011; Biancamaria et al., 2011).96

In such data assimilation studies, modeled state vari-97

ables or model parameters are sequentially verified and98

updated via measurements. The idea behind this is to99

merge the high temporal and spatial resolution of gen-100

erally rather poor model predictions with more accurate101

but intermittent remote sensing observations to yield the102

best possible model simulations. Furthermore, if integ-103

rated with parameter estimation techniques, there is the104

potential to estimate uncertain model parameters, which105

may be used to increase the accuracy of the model106

(Montanari et al., 2009). Data assimilation techniques107

based on different versions of the Kalman filter have108

been used to assimilate ground gauge-based river level109

data at points along river reaches (Madsen and Skotner,110

2005; Neal et al., 2007) from which discharge can be111

estimated through state augmentation. Despite this po-112

tential, applications of assimilation techniques with dis-113

tributed stage data continue to be rare. In one of the few114

studies of this type, Andreadis et al. (2007) successfully115

used a square-root ensemble Kalman filter to assimilate116

synthetic WSE measurements from the proposed SWOT117

satellite mission with simulations from a hydrodynamic118

model for estimating river discharge. This study showed119

that the assimilation of 8 successive SWOT overpasses120

allowed a reduction of the relative error of discharge121

estimations from 23.2 % to 10 %. Lai and Monnier122

(2009) and Hostache et al. (2010) applied a variational123

data assimilation method using distributed WSE in or-124

der to combine in an optimal way measurement data125

and a 2D shallow water model. This assimilation pro-126

cess allowed (1) the identification of optimal Manning127

friction coefficients and (2) the identification of areas128

in the floodplain and the channel where frictions are129

homogeneous. Smith et al. (2009) assimilated distrib-130

uted data from wireless sensor networks in a parsimo-131

nious time series model to produce forecasts with re-132

duced uncertainty. Matgen et al. (2010), and later on133

Giustarini et al. (2011), demonstrated the usefulness of134

assimilating via a particle filter WSE derived from satel-135

lite SAR images to improve flood forecasts.136

In this general framework, the study aims at propos-137

ing a synthetic experiment to evaluate the benefit of assi-138

milating GNSS-derived WSE measurements into a hy-139

drodynamic 1D model for effective bathymetry retriev-140

als. It has to be noted here that we defined effective141

bathymetry in relation with a hydrodynamic model. In-142

deed we defined in this study the effective bathymetry as143

the river channel geometry allowing for correctly pre-144
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dicting flood propagation using a given model. As a145

matter of fact, an effective bathymetry is defined in re-146

lation to a given hydrodynamic model with given para-147

meters and simplifications, but the methodology presen-148

ted is this paper remains generic and can be applied us-149

ing other hydrodynamic models. Moreover, during this150

study we made use only of GPS, but the same method151

can be applied to any other kind of GNSS.152

2. Material and methods153

This section introduces the design of a GPS buoy and154

proposes an assimilation technique for effective bathy-155

metry retrievals. Moreover, it describes a synthetic156

experiment allowing to assess the usefulness of assi-157

milating WSE provided by the buoy into a hydraulic158

model. In the context of a proof-of-concept study, the159

main advantage of using synthetically generated data160

rather than actual measurements is to allow for con-161

trolling the errors and their structure. It is import-162

ant and necessary to demonstrate the efficiency of an163

assimilation scheme in a controlled environment before164

it can be applied to actual measurements. Moreover, a165

synthetic experiment, with known errors, facilitates the166

identification of advantages and drawbacks of the pro-167

cedure itself.168

2.1. Designing the GPS Buoy169

The aim of the GPS-equipped buoy is to provide170

WSE measurements with sufficient accuracy, in or-171

der to enable the retrieval of riverbed bathymetry172

through data assimilation. Based on the evaluations of173

Hostache et al. (2009) and more recently Matgen et al.174

(2010), we define an elevation measurement accuracy175

of 30 cm as a target value for GPS-derived WSE mea-176

surements. The system is composed of a water-proof177

canoe-box with a transparent hemispheric lid, filled178

with an integrated dual-frequency GPS, namely the179

Hemisphere A221T M Smart Antenna. The hemispheric180

lid is used to limit potential GPS signal perturbations.181

To protect it from strong shocks during deployment and182

to ensure its buoyancy and stability, the integrated sys-183

tem is surrounded by a tire (Figure 1). The two fre-184

quencies, L1/L2, of the GPS receiver allow correcting185

the major part of the positioning errors due to the iono-186

sphere (Kim and Tinin, 2009). In addition, a Post Pro-187

cessing Kinematic treatment is applied to the data in or-188

der to reduce bias and noise. For this post treatment189

we take advantage of the Luxembourg network of per-190

manent GNSS stations (SPSLux). These reference sta-191

tions, with accurately known coordinates and altitudes,192

enable the estimation of the correction parameters. The193

latter can be used to correct the error associated with a194

rover GPS receiver in differential mode, provided that195

the rover is not too distant from the reference station196

(Apel et al., 2012). In case a reference GPS station197

would not be available, an alternative would be to make198

use of OMNISTAR (Martinez et al., 2000), that offers a199

worldwide differential GPS service, based on reference200

stations, high power satellites and global network con-201

trol centers (www.omnistar.com).202

It is worth mentioning that a hydro-acoustic sensor,203

such as a sonar or Acoustic Doppler Current Profiler204

(ADCP) mounted on a buoy, can be considered as an205

alternative for obtaining riverbed bathymetry. These206

systems provide a means for directly measuring water207

depth. However, in this study we adopted an indirect re-208

trieval technique based on GPS data that is less sensitive209

to the stability of the buoy and that is not impacted by210

the sediment concentration in the water (due to bedload211

in particular). These two aspects are known to signific-212

antly increase the measurement errors associated with213

hydro-acoustic sensors.214

2.2. Assimilating GPS derived water surface elevation215

This section presents the general framework of the216

assimilation scheme. More specific details related to the217

hydrodynamic model and the synthetic experiment are218

presented in section 2.3.219

The aim of the assimilation technique is to exploit220

WSE recorded by a GPS in order to retrieve unknown221

bathymetry.222

The data assimilation scheme applied in this study223

is a modified version of the Particle Filter (PF). The224

particle filter is an ensemble-based assimilation tech-225

nique. This means that the prior probability of a state226

variable is estimated using a sample of model simula-227

tions (Smith et al., 2008). The PF computes posterior228

probabilities of state variables using a weighting pro-229

cedure. In the PF, there is no need to formulate restrict-230

ive hypotheses on the model and observation density231

functions (Moradkhani, 2007). This is a key advant-232

age of the PF with respect to the more widely used En-233

semble Kalman Filter EnKF (e.g. Burgers et al., 1998;234

Evensen, 1994).235

In this study, we use a variant of a PF that we pro-236

pose to call particle smoother (PS) hereafter. This vari-237

ant of the PF is comparable to the one proposed by238

Dunne and Entekhabi (2005) for the ensemble Kalman239

filter. This means that all observations distributed over240

time are assimilated at once to update the model state241

variables at any time step. According to Plaza et al.242
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(a) (b)

Figure 1: Photograph of the GPS buoy (a) outside the water and (b) drifting in the Alzette river stream.

(2012) this kind of smoother can be compared to vari-243

ational assimilation techniques.244

The implementation used in this study is based on245

the Sequential Importance Sampling (SIS) method. In246

our study, each particle consists of a possible state of247

the variables, namely the WSE simulated over time and248

space using one hydrodynamic model. Each hydro-249

dynamic model is based on one realization of the bathy-250

metry. In other words, one particle correspond to the251

WSE (distributed over space and time) simulated by one252

hydrodynamic model using one bathymetry realization.253

Section 2.3 explains how the ensemble of bathymetry254

realization is generated. The number of state variables255

for a given particle corresponds to the number of ele-256

ments in the geometry of the model domain multiplied257

by the number of time steps. In this study, we make258

use of a one-dimensional hydrodynamic model (see sec-259

tion 2.3.1). In such a model, the geometry is defined by260

cross sections perpendicular to the main flow direction.261

For simplifying the riverbed representation and facilit-262

ating the data assimilation process, it is assumed here263

that the targeted riverbed bathymetry is of rectangular264

shape (see Figure 2) with a known river width (RW).265

The riverbed is thus characterized by only one para-266

meter, the river depth (RD). Of course, real riverbeds267

are rarely of rectangular shape. However, we believe268

that this simplification is sensible for this study as it al-269

lows validating the new concept and, in the same time,270

does not prevent the model from generating realistic res-271

ults. It is also worth mentioning that the same assump-272

tion has been made in similar proof-of-concept studies273

(e.g. Durand et al., 2008; Yoon et al., 2012). Finally, the274

method introduced in this study can be extended to more275

complex geometries.276

In a PF, the filtering density is approximated by a dis-277

crete distribution, whose support is the set of particles.278

The probability mass assigned to each particle is propor-279

tional to that particle’s weight, which, in turn, is propor-280

tional to the likelihood of the observation at the assimi-281

lation time step (Fearnhead, 2002). The particles are282

sampled directly from the state-space to represent the283

posterior probability, and a local weight is computed for284

each particle at each cross section and at each time step,285

according to the information contained in the observa-286

tions: a local weight, wi, j,k, is assigned to an observed287

cross section j for a particle i, at an observation time step288

k. Note that the weighting procedure can be adapted289

to any kind of distribution function. When assimilating290

data stemming from the GPS buoy, a Gaussian likeli-291

hood was used, assuming the mean of recorded WSE to292

represent the mean of a normal distribution whose shape293

is defined by a pre-defined value of standard deviation.294

A local weight, wi, j,k, is therefore computed for a WSE295

xi, j,k simulated by particle i at cross section j and time296

step k, for which an observation is available:297

wi, j,k =
1

σ
√

2π
e

−(xi, j,k−µi, j)2

2(σi, j)2

(1)298

In Eq. 1, x is the matrix of the state variables (WSE at299

cross section j and time step k simulated by particle i),300

µ is the observation mean and σ is the standard devi-301

ation associated with the observations. The matrix of302

weights contains all local weights, wi, j,k. Subsequently,303

one global likelihood is computed for each particle and304

each cross section by applying the joint probability the-305
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ory for independent variables:306

ωi, j =

No∏
k=1

wi, j,k (2)307

where No is the number of observation time steps.308

The resulting global weights are then normalized using309

Eq. 3.310

W i, j =
ωi, j

Np∑
i=1

ωi, j

(3)311

In Eq. 3, Np is the number of particles. Next, the global312

weights allow for the computation of an expectation of313

the updated WSE:314

E(xi, j,k) = x j,k
exp =

Np∑
i=1

W i, jxi, j,k (4)315

To update the riverbed bathymetry, we propose to cor-316

rect each river bathymetry realization by shifting the317

corresponding riverbed bottom elevation using a dis-318

tance equal to the time-averaged deviation between the319

WSE simulated by this particle and the expected WSE:320

U pBOEi, j = BOEi, j +

No∑
k=1

xi, j,k − x j,k
exp

No
(5)321

In Eq. 5 BOEi, j and U pBOEi, j represent respectively322

the first guess and the updated bathymetry (for particle323

i at model cross section j) as shown in Figure 2. It is324

worth noting that each cross section bathymetry is up-325

dated with an independent δi, j =
∑No

k=1
xi, j,k−x j,k

exp

No
.326

Subsequently, new model simulations are performed327

using the updated bathymetry realizations, before a new328

assimilation process is carried out. This bathymetry up-329

date cycle is then repeated until a convergence of bathy-330

metry realizations is obtained (i.e. until a predefined331

tolerance criterion is satisfied).332

Figure 2 presents the flowchart of the assimilation333

scheme.334

2.3. Designing the synthetic experiment335

In this part of the paper we propose a synthetic ex-336

periment in order to evaluate the value of GPS-derived337

WSE measurements for retrieving riverbed bathymetry.338

This experiment makes use of a calibrated hydro-339

dynamic model. The next paragraph (see 2.3.1) intro-340

duces this model and its calibration. Paragraph 2.3.2341

explains how the synthetic observations have been gen-342

erated using this model. Finally, paragraph 2.3.3 pro-343

poses a method for generating the ensemble of model344

simulations.345

2.3.1. The hydrodynamic model346

The set up and calibration of the hydrodynamic347

model is described in Hostache et al. (2009). This348

model has been developed using the freely available349

Hec-RAS software (USACE, 2002). Hec-RAS per-350

forms unsteady simulations by solving the 1Dimen-351

sional de Saint-Venant equation using an implicit fi-352

nite difference approximation. Hostache et al. (2009)353

calibrated two Manning friction coefficients: one for354

the river channel (nc=.047) and one for the floodplain355

(n f lp=.182). During the calibration process, Monte-356

Carlo simulations within ranges of plausible Manning357

parameters were carried out. The upstream bound-358

ary condition was the observed discharge hydrograph.359

The parameter set providing the best performance with360

respect to both observed downstream discharge hy-361

drographs and remote sensing-derived WSE distrib-362

uted across the floodplain was selected as optimal (see363

Hostache et al., 2009, for more details). It has to be364

noted here that in spite of the necessity to carry out the365

experiment in a realistic set up, the calibration of the366

hydrodynamic model is not the main issue of the study.367

Indeed, the objective is to retrieve an effective bathy-368

metry that allows the model to yield correct predictions369

of flood wave propagation in terms of discharge and wa-370

ter surface elevation. Therefore, slightly different values371

of friction would most likely result in slightly different372

values of the retrieved effective bathymetry.373

2.3.2. The synthetic observations374

The method that was adopted for generating synthetic375

observations aims at creating a synthetic dataset that is376

representative of a dataset that could be obtained from377

the GPS buoy. To do so, we propose a two-step ap-378

proach, namely (i) to generate a so-called synthetic truth379

by a forward run of the calibrated hydrodynamic model,380

(ii) to perturb the so-called truth in order to generate381

synthetic observations with controlled errors.382

In the experiment, we assume that for several days a383

buoy is launched at the upstream end of the river reach.384

This is done every day at the same time. The buoy is left385

drifting freely in the river and is then recovered when386

it reaches the downstream end. This means that many387

free drifting cycles (one per day) of measurements are388

obtained from such an experiment.389

The one-dimensional hydrodynamic model (see390

2.3.1) provides as output the cross section-averaged391

flow velocity and the WSE at each cross section of the392

model for every time step of the simulation. We ob-393

tained the synthetic truth from a forward run of the394

calibrated hydraulic model. In our scenario, a buoy is395
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Figure 2: Flowchart of the assimilation method.

launched at the upstream boundary of the river. As-396

suming that the buoy velocity equals the cross section-397

averaged flow velocity provided by the model, it is pos-398

sible to predict the buoy position at every step, by se-399

quentially multiplying the velocity value by the time400

step duration. By repeating this computation for each401

time step, it is then possible to estimate the position of402

the synthetic buoy. As the model also provides WSE,403

the synthetic truth consists of the buoy location, namely404

the model cross section on which it is located, and the405

corresponding simulated WSE.406

Finally, synthetic WSE observations are derived by407

adding to the synthetic truth a normally distributed408

noise, whose mean and standard deviation are set to val-409

ues that are representative of the data that are expected410

to be obtained using the actual GPS. It is worth noting411

that, at each time step, only one value of WSE at a given412

position is provided by the synthetic GPS buoy.413

2.3.3. The particle ensemble set up414

Our experiment consists of assimilating synthetic415

WSE observations into an ensemble of hydraulic mo-416

dels, whose upstream boundary condition is a flow hy-417

drograph obtained by the means of continuous in situ418

WSE measurements and a rating curve.419

The truth and the ensemble of model predictions were420

generated separately: they share the same model struc-421

ture, parameters, forcings and initial conditions, how-422

ever the geometry components differ. In fact, to cre-423

ate the so-called truth, a hydraulic model run has been424

performed using the observed geometry composed of425

a floodplain Lidar DEM and a ground surveyed river-426

bed bathymetry (see section 2.3.2). For the bathymetry427

retrieval exercise, on the other hand, we removed the428

bathymetry information and we assumed the riverbed to429

be of rectangular shape (see Figure 2). To create the430

ensemble of model predictions, we randomly generate431

32 possible realizations, representing a first guess of the432

bathymetry. To do so, the unknown riverbed shape is433

assumed to be of rectangular type, with a given river434

depth (RD) and a given river width (RW) (see Figure 2).435

It is assumed here that the bank elevation (BAE, see Fi-436

gure 2) and the floodplain geometry are determined us-437

ing an available digital elevation model (e.g. the glob-438

ally available SRTM DEM with a spatial resolution of439

90 m). We also suppose that the river width RW can be440

obtained from optical satellite data or any other source441

of information. According to these two assumptions,442

the river bathymetry is defined by the river depth RD443

(Figure 2), with the river bottom elevation BOE being444

obtained by subtracting RD from BAE.445

For each cross section of the hydrodynamic model,446

random values of RD are generated in order to obtain447

a first guess of the bathymetry. To maintain a certain448

hydraulic consistency of the randomly generated river449

depth of each particle, we suggest the following two-450

step approach:451
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1. random generation of 32 plausible values of RD452

(one for each particles), that are subtracted from453

BAE values along the river reach to obtain the bed454

level for each particle,455

2. random perturbation at the cross section level (er-456

ror with uniform distribution centered on 0 and457

with a range equal to 25 % of the randomly gen-458

erated RD value for the specific particle).459

This two-step approach ensures a good computational460

stability of the hydrodynamic model, as non-plausible461

RD values could lead to more time-consuming and fail-462

ing computations. It has to be noted here that we expect463

the number of bathymetry realizations not to be of ma-464

jor importance. The number of realizations does have465

some influence on the time it takes for the assimilation466

algorithm to converge. However, our experiments show467

that the final bathymetry estimate is not significantly af-468

fected by the number of particles. As a matter of fact,469

the number of realizations has been set to 32 as this470

number was considered a good compromise between471

computational efficiency and convergence capability. In472

our opinion, the key point for efficiently retrieving the473

bathymetry is to ensure that the spread of the realiza-474

tions encompasses all the values that could a priori be475

expected for the real bathymetry. To evaluate the gen-476

erated ensemble, we computed two verification meas-477

ures proposed by De Lannoy et al. (2006), namely the478

ratio between the averaged ensemble skill and the aver-479

aged ensemble spread (called V M1 hereafter) and the ra-480

tio between the average squared ensemble skill and the481

averaged root mean squared error computed between482

simulation and observation (called V M2 hereafter). Ac-483

cording to De Lannoy et al. (2006), V M1 might be close484

to one to guaranty that the ensemble spread is of the or-485

der of magnitude of the model deviation to observation.486

A value of V M1 higher than 1 means that the ensemble487

spread is too small whereas a value of V M1 lower than488

one means that the ensemble spread could be further re-489

duced. According to De Lannoy et al. (2006), with 32490

particles, V M2 might be equal to 0.72 for the observa-491

tion and the ensemble to be statistically undistinguish-492

able.493

At this stage of the methodology, a first guess of the494

geometry has been defined via a set of 32 realizations of495

the river bathymetry. Each particle corresponds to a hy-496

drodynamic model making use of one bathymetry reali-497

zation. It is worth mentioning that for a given particle,498

the RD value is different at each cross-section. After499

the first guess of the bathymetry has been generated, the500

assimilation algorithm as defined in section 2.2 is ap-501

plied.502

3. Study area and available data503

The area of interest is located in the Grand Duchy of504

Luxembourg (see Figure 3).505

The basin area is about 356 km2 at the stream gauge506

located in Pfaffenthal where WSE is recorded every507

15 min. The corresponding discharge hydrograph has508

been estimated using the rating curve of this hydromet-509

ric station. It constitutes the upstream boundary con-510

dition of the hydrodynamic model, which simulates the511

19 km reach of the Alzette River between the hydromet-512

ric stations at Pfaffenthal and Mersch (Hostache et al.,513

2009). The river reach is described by 158 ground-514

surveyed channel cross sections whereas the floodplain515

topography has been extracted from a Lidar DEM of516

2 m pixel spacing and 15 cm vertical accuracy (see517

Hostache et al., 2009, for more details). Moreover,518

aerial photographs with 50 cm spatial resolution were519

available for the area of interest and used to determine520

river width.521

The synthetic experiment is grounded on a real storm522

event starting on January 2 2012 and ending on January523

6 2012. During these five days there were high vari-524

ations of discharge without overbank flooding. These525

characteristics of the event are rather important, as they526

imply that the buoy would have kept drifting inside527

the riverbed during the experiment and would have528

provided WSE observations associated with different529

flow conditions.530

4. Results and discussion531

This section first presents and discusses the results of532

“dry” tests (i.e.: carried out outside the water) of the533

GPS buoy. Next it focuses on the data assimilation ex-534

periment and discusses its outcome.535

4.1. Evaluating the vertical accuracy of the GPS buoy536

The “dry” tests that have been carried out provide537

some insights into the accuracy levels that can be538

achieved when deploying the buoy inside a river. The539

road and the parking lot around the research institute540

(Belvaux, Luxembourg) offer an appropriate test site for541

the system. With the “canyon” of surrounding buildings542

and their impact on the GPS signal, the study site shares543

some similarities with a river channel where double544

bounce effects caused by trees and the river banks cause545

also perturbations. Moreover, a loss of signal is possible546

due to the surrounding trees, banks or buildings, that547

also mask out part of the sky, thereby reducing the num-548

ber of available GPS satellites. For this study site, the549
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Figure 3: Study site in the Alzette River basin showing: (a) the drainage area down to Pfaffenthal and the 19 km river reach whose geo-
metry is represented by the cross sections, (b) the hydrometric stations along the river, c) the SPSLux refence GPS station map (source
http://www.act.public.lu).

closest SPSLUX reference station is located in Baschar-550

age at a distance of 16 km (see Figure 3c).551

To carry out the experiment in ”dry” conditions, the552

first step was to define a set of reference points with553

accurately-known geographic coordinates and altitudes.554

To do so, a theodolite was used, enabling the positioning555

with an associated planimetric and altimetric accuracy556

of less than 1 cm. 60 reference points have been marked557

on the ground and accurately located on the site. Next,558

by moving the GPS buoy along the pre-defined path and559

using a stopwatch as time recorder, it was possible to560

estimate the accuracy of the positioning. Each time the561

GPS receiver passed over a mark on the ground, the re-562

lative time from the beginning of the test was recorded563

using the stopwatch. This relative time was converted564

into absolute time using the GPS time at the beginning565

of each test. The known position of the marks was then566

compared with the position measured by the GPS at the567

time recorded by the stopwatch.568

The results of this test showed that the elevation in-569

formation provided by the system may be biased if spe-570

cific time steps are considered. However, over four test571

campaigns spread over two days and at various day-572

times, it appeared that the mean altimetric error equaled573

0 cm and its standard deviation 30 cm. Figure 4 presents574

the GPS altimetric measurement errors recorded during575

the experiment. These values were used as a basis for576

defining the observational errors in the synthetic exper-577

iment.578

It is worth mentioning here that other GNSS could be579

used in addition to GPS, like for instance Glonass and580

the upcoming Galileo, in order to increase the GNSS581

measurement accuracy and to avoid signal losses es-582

pecially when the number of visible satellites becomes583

critically low.584

4.2. Generating synthetic observation585

To create synthetic observations we followed the pro-586

cedure presented in paragraph 2.3.2. To do so, we587

performed a forward run of the calibrated hydraulic588

model using the measured geometry data. The upstream589

boundary condition used for this model run was the dis-590

charge hydrograph recorded by the Pfaffenthal stream591

gauge. During this model run (between January 2 and592

6 2012), with a simulation time step of one minute, the593

simulated WSE and the cross-section-averaged flow ve-594

locities at all the cross sections have been stored. As-595

suming that a buoy is launched every day at 7:00 AM596

and drifts freely at the cross-section-averaged flow ve-597

locity, the results of the hydrodynamic simulation allow598

calculating the position of the buoy and the correspond-599

ing WSE at each time step (see section 2.3.2). The posi-600

tion and the elevation of the buoy represent the so-called601

“truth”. Next, the “truth” has been perturbed using a602

normally distributed noise with a mean of 0 m and a603

standard deviation of 30 cm.604
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Figure 4: Summary of measurement error during the GPS dry condition test. The black line represent the measurement error whereas the gray
dotted vertical lines identify the four field campaigns.

4.3. Retrieving bathymetry via assimilation of synthetic605

observations606

The aim of the synthetic experiment is to evaluate the607

potential added value of WSE measurements provided608

by the developed GPS buoy for bathymetry retrievals.609

As introduced in section 2.2, the assimilation proced-610

ure is carried out iteratively using the full set of WSE611

observations.612

As proposed in paragraph 2.3.3, to create the en-613

semble of model predictions 32 realizations of the614

bathymetry were generated. Bank elevation (BAE, see615

Figure 2) and floodplain geometry were extracted for616

each cross-section from the available Lidar DEM. The617

river widths RW were determined by digitizing the river618

banks using the aerial photographs (see section 3). The619

river bathymetry is then created by randomly generating620

RD values following the two-step approach proposed in621

section 2.2:622

1. 32 plausible values of RD were drawn from a uni-623

form distribution ranging between 0 and 20 m (one624

for each particle) and subtracted from the BAE625

value along the river reach to obtain the bed level626

for each particle,627

2. a random noise was added to each cross-section628

riverbed (error with uniform distribution centered629

on 0 and with a range equal to 25 % of the630

randomly generated RD value for the specific631

particle).632

The first guess of the bathymetry is presented in Fi-633

gure 5a. In this figure, each light gray line corres-634

ponds to one particle of the ensemble, whereas the bold635

black and grey lines represent the observed bathymetry636

and the ensemble mean, respectively. It is worth spe-637

cifying that what we call observed bathymetry is ac-638

tually not the lowest point of the riverbed extracted639

from the ground surveyed cross sections. Instead, con-640

sidering that the ground-surveyed channel cross sec-641

tions do not have a rectangular shape, we computed642

an equivalent rectangle-shaped bathymetry, having hy-643

draulic properties equivalent those of the observed one.644

In other words, from each real cross-section we com-645

puted the “observed” RD so that the corresponding646

rectangle-shaped cross-section has, under the assump-647

tion of steady flow conditions, a rating curve (dis-648

charge/WSE relationship) as close as possible to that of649

the true riverbed cross-section. This computation has650

been carried out iteratively, based on the optimization651

of the Manning-Strickler formula. As a matter of fact,652

the so-called observed bathymetry corresponds to the653

rectangular-shaped equivalent of the true bathymetry.654

As proposed in section 2.3.3, to evaluate the gen-655

erated ensemble, we computed two verification meas-656

ures proposed by De Lannoy et al. (2006). In our study,657

computed on WSE, V M1 is equal to 0.62 which means658

that the ensemble spread could be further reduced but659

can however be correctly used. Furthermore, V M2 is660

equal to 0.61, which means that the ensemble and the661

observation are statically distinguishable, but similar.662

As a matter of fact, the two verification measures indic-663

ate that the 32 generated particles can be used correctly664

in an assimilation framework.665
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Figure 5b, c and d show, respectively, the results of666

the assimilation after iterations 1, 3 and 10. In Fi-667

gure 5a, it is worth noting that the spread of the en-668

semble first guess is rather large and that the ensemble669

mean is distant from the bathymetry observation. After670

the first iteration, Figure 5b shows that the spread of the671

particles is significantly reduced. After three iterations,672

the spread of the particles is more reduced (Figure 5c)673

and, after ten iterations (Figure 5d), the ensemble fully674

converges, i.e. all the particles overlap. In addition, Fi-675

gure 6 presents the water surface elevation lines (along676

the river reach) simulated by the model at a time step677

close to the flood peak, for various assimilation itera-678

tions. This figure demonstrates that the simulated water679

levels quickly converge toward the so-called synthetic680

truth.681

Figure 7 shows two performance criteria of the up-682

dated bathymetry and one performance criterion of the683

simulated WSE computed after each iteration of the684

assimilation algorithm. In Figure 7, the black line rep-685

resents the spread of the bathymetry ensemble. This line686

shows that the spread is almost reduced to zero after 8687

iterations. In the same figure, the light and middle grey688

lines correspond respectively to the root mean squared689

error (RMSE) and the mean error (ME) between the690

average of the bathymetry ensemble and the observed691

bathymetry. When analyzing the behaviour of the en-692

semble spread, the RMSE and the ME are quite similar,693

in the sense that they reach a plateau after several itera-694

tions. The lowest RMSE that is reached after several it-695

erations equals 36 cm, whereas the lowest obtained ME696

is close to 0 cm. These results are encouraging, as they697

demonstrate that the observed and the retrieved bathy-698

metries are in good agreement. An iterative repetition699

of the assimilation technique allows for an efficient re-700

trieval of the bathymetry.701

When having a closer look at Figure 5d, one can no-702

tice that the general trend of the observed bathymetry is703

well reproduced, despite the local topography not being704

described in all details. This indicates that the method705

enables the computation of the main characteristics of706

the bathymetry, but has its limitations for describing707

bathymetry changes at small scale. The retrieved bathy-708

metry indeed appears as a smoothened estimate of the709

true bathymetry. To understand the origin of this ef-710

fect, it is important to consider how the bathymetry in-711

fluences WSE. Only bathymetry features having a sig-712

nificant effect on the WSE have a chance of being re-713

trieved using the method. It can be argued that some714

of the small scale bathymetry features only have a lim-715

ited effect on the WSE. Consequently, given the WSE716

measurement uncertainty (30 cm in this study), these717

features are not detectable with the proposed method.718

In addition, Figure 7 shows the RMSE calculated719

between the mean of the simulated WSE ensemble and720

the truth. It is worth noting that after four iterations,721

the RMSE computed on WSE reaches a plateau at a722

value equalling 27 cm. This result is also encouraging723

as it shows that the WSE is correctly simulated des-724

pite the small scale bathymetry not being retrieved in725

all its details. Furthermore, this shows that the hypo-726

thesis of a rectangular shaped riverbed is acceptable as727

in spite of this simplification the model reaches a sat-728

isfying level of accuracy in terms of simulated water729

levels. Moreover, this 27 cm value must be mirrored730

with the error of 30 cm imposed to the synthetic GPS731

measurements. This demonstrates the reliability of the732

assimilation technique as the error of the simulated733

WSE is lower than the error of the synthetic observa-734

tions.735

5. Conclusions736

The study presented in this paper focused on the po-737

tential benefits deriving from assimilating WSE obser-738

vations provided by a drifting GNSS-equipped buoy739

into a hydrodynamic model for effective bathymetry re-740

trievals.741

A GPS buoy has been designed for measuring742

WSE. To reach a satisfactory accuracy level of WSE743

measurements, this buoy includes an integrated dual-744

frequency GPS, namely the Hemisphere A221T M Smart745

Antenna, used in differential mode. By testing this GPS746

in “dry” conditions we were able to estimate an ele-747

vation measurement accuracy of 30 cm. For the assimi-748

lation exercise, in order to keep control on the model749

and measurement errors we carried out synthetic exper-750

iments. This allowed us to analyze, in a controlled en-751

vironment, the added-value the GNSS-derived data sets752

may provide to hydraulic modeling and bathymetry re-753

trievals. In this paper, we only made use of GPS, but it754

is worth noting that the extension to other GNSS, such755

as the upcoming Galileo, is feasible and may improve756

the GPS measurement accuracy.757

The assimilation algorithm that was used is based on758

the Particle Filter, following the work of Giustarini et al.759

(2011). The proposed variant of the PF, termed in this760

paper particle smoother, is based on a global weighting761

procedure: a single particle contains, as state matrix,762

WSE at all cross sections and all time steps. The like-763

lihood of each particle is derived from its ability to cor-764

rectly predict WSE at the buoy’s locations. Next, these765

likelihoods are used to estimate an expectation of the766
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(a) (b)

(c) (d)

Figure 5: Bathymetry retrievals: first guess (a), and updated bathymetry after assimilation iterations 1 (b), 3 (c) and 10 (d).
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(a) (b)

(c) (d)

Figure 6: Simulated water surface elevation profiles (close to flood peak) after various assimilation iteration : open loop (a), and after assimilation
iterations 1 (b), 3 (c) and 10 (d).
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Figure 7: Bathymetry retrieval performance

WSE, that is later used to update the rectangular-shaped767

bathymetry associated with each particle.768

In the assimilation scenario proposed in this study,769

one buoy is launched once a day during five subsequent770

days, implying that at a given time a single buoy is771

drifting along the channel. The assimilation is per-772

formed iteratively, in order to get gradually closer to the773

true bathymetry. The results show that the method en-774

ables the retrieval of the bathymetry with an accuracy775

of 36 cm. This result is promising and slightly better776

than the 56 cm and 52 cm obtained in similar studies by777

Durand et al. (2008) and Yoon et al. (2012). The gen-778

eral trend of the observed bathymetry is well reproduced779

while some of the small scale bathymetry features were780

missed out. The simulated WSEs are also in good agree-781

ment with the synthetic truth as the computed root mean782

squared error is equal to 27 cm.783

The next step will be to carry out similar experiments784

with actual measurements. One further development of785

the assimilation and updating technique will be to ana-786

lyze the added value of considering more realistic cross-787

section shapes, like a trapezoidal shaped cross-section.788

Moreover, one key issue of such techniques will be789

the retrieval of Manning friction coefficients in addi-790

tion to bathymetry, as already proposed by Durand et al.791

(2008).792
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