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Abstract. In this paper, we present the outcome of vast computer cal-
culations, locating several of the very rare instances of level one cuspidal
Bianchi modular forms that are not lifts of elliptic modular forms.

Bianchi modular forms over an imaginary quadratic �eld K are auto-
morphic forms of cohomological type associated to the Q-algebraic group
ResK/Q(SL2). Even though modern studies of Bianchi modular forms go
back to the mid 1960's, most of the fundamental problems surrounding their
theory are still wide open. In this paper, we report on our remarkably ex-
tensive computations that show the paucity of genuine level one cuspidal
Bianchi modular forms.

Let Sk(1) denote the space of level one weight k + 2 cuspidal Bianchi
modular forms over K = Q(

√
−d). In their recent paper [FGT10], Finis,

Grunewald and Tirao computed the dimension of the subspace Lk(1) of
Sk(1) which is formed by (twists of) those forms which arise from elliptic
cuspidal modular forms via base-change or arise from a quadratic extension
of K via automorphic induction (see [FGT10] for these notions). In this
paper, we investigate numerically how much of Sk(1) is exhausted by Lk(1).
There have been previous reports, however of limited size, in the 2009 paper
[CM09] of Calegari and Mazur (the computations in this paper were carried
out by Pollack and Stein) and in the 2010 paper [FGT10] of Finis, Grunewald
and Tirao. While the computations in [CM09] were limited to the case d = 2,
the computations in [FGT10] covered ten imaginary quadratic �elds. The
precise scope of the computations in [FGT10] is given in Table 1 below.

d 1 2 3 7 11 19 5 6 10 14
k 6 104 141 116 132 153 60 60 60 60 60

Table 1. Finis-Grunewald-Tirao test range

It was observed in [CM09] that for 2k 6 96, one has L2k(1) = S2k(1).
The computations of [FGT10] extended those of [CM09]. An interesting
outcome of the data they collected is that except in two of the 946 spaces they
computed, one has Lk(1) = Sk(1). The exceptional cases are (d, k) = (7, 12)
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and (d, k) = (11, 10). In both cases, there is a two-dimensional complement
to Lk(1) inside Sk(1).

Using a di�erent and more e�cient approach, we computed, over more
than 800 processor-days, the dimension of 4986 di�erent spaces Sk(1) over
186 di�erent imaginary quadratic �elds. The precise scope of our computa-
tions is given in Tables 2, 3 and 4, where D and h denote the discriminant
and the class number of K respectively. In only 29 of these spaces were
we able to observe genuine forms. The precise data about these exceptional
cases is provided in Table 5.

|D| 3 4 7 8 11 15 19 20 23 24 31

h 1 1 1 1 1 2 1 2 3 2 3
k 6 219 216 217 217 217 115 120 100 83 101 74

|D| 35 39 40 43 47 51 52 55 56 59 67

h 2 4 2 1 5 2 2 4 4 3 1
k 6 86 67 73 83 52 75 65 45 55 60 58

|D| 68 71 79 83 84 87 88 91 95 103 104

h 4 7 5 3 4 6 2 2 8 5 6
k 6 53 38 33 41 50 36 45 50 30 30 32

|D| 107 111 115 116 119 120 123 127 131 132 136

h 3 8 2 6 10 4 2 5 5 4 4
k 6 35 28 40 33 25 38 35 25 32 33 32

|D| 139 143 148 151 152 155 159 163 164 167 168

h 3 10 2 7 6 4 10 1 8 11 4
k 6 29 20 31 21 24 26 19 33 24 18 26

|D| 179 183 184 187 191 195 199 203 211 212 215

h 5 8 4 2 13 4 9 4 3 6 14
k 6 24 19 25 25 15 27 17 23 21 17 14

Table 2. the scope of our computations, part 1(a)

In Section 2, we brie�y discuss the conjectural connections between the
spaces S0(1) and Abelian varieties de�ned over K of GL2-type. In Section 3,
we make some speculations in light of the data we collect. In particular, we
make a quantitative conjecture about the paucity of genuine cuspidal Bianchi
modular forms of level one and pose a question which can be seen as an
analogue of Maeda's conjecture for Bianchi modular forms. Finally in Section
4, we explain how we carried out our computations. As usual, the starting
point of our approach is the so called �Eichler-Shimura-Harder" isomorphism
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|D| 219 223 227 228 231 232 235 239 244 247 248

h 4 7 5 4 12 2 2 15 6 6 8
k 6 20 14 17 18 13 21 23 12 17 13 16

|D| 251 255 259 260 263 264 267 271 276 280 283

h 7 12 4 8 13 8 2 11 8 4 3
k 6 15 14 17 14 13 15 21 12 16 16 17

|D| 287 291 292 295 296 299 303 307 308 311 312

h 14 4 4 8 10 8 10 3 8 19 4
k 6 12 19 16 13 13 13 11 15 13 11 13

|D| 319 323 327 328 331 335 339 340 344 347 355

h 10 4 12 4 3 18 6 4 10 5 4
k 6 11 12 10 13 14 11 15 14 10 12 13

|D| 356 359 367 371 372 376 379 383 388 391 395

h 12 19 9 8 4 8 3 17 4 14 8
k 6 11 9 11 10 12 12 13 8 11 9 10

|D| 399 403 404 407 408 411 415 419 420 424 427

h 16 2 14 16 4 6 10 9 8 6 2
k 6 8 12 9 8 10 12 10 12 11 10 13

Table 3. the scope of our computations, part 1(b)

which allows us to replace Sk(1) with the cohomology of the relevant Bianchi
group with special non-trivial coe�cients. Then to compute this cohomology
space, we use the program Bianchi.gp [Rah10], which analyzes the structure
of the Bianchi group via its action on hyperbolic 3-space (which is isomorphic
to the associated symmetric space SL2(C)/SU2). We then feed this group-
geometric information into an equivariant spectral sequence that gives us an
explicit description of the second cohomology of the Bianchi group, with the
relevant coe�cients.
Acknowledgments. We wish to thank John Cannon, John Cremona and

Stephen S. Gelbart for useful discussions. We are grateful to Dan Yasaki who
reworked his Magma program to compute for us the number �eld generated
by the Hecke aigenvalues of the genuine weight 2 cuspidal Bianchi modular
forms that we found for the �eld Q(
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|D| 431 435 436 439 440 443 447 451 452

h 21 4 6 15 12 5 14 6 8
k 6 8 13 11 9 8 12 10 12 11

|D| 455 456 463 467 471 472 479 483 487

h 20 8 7 7 16 6 25 4 7
k 6 7 10 8 10 7 11 7 11 8

|D| 488 491 499 520 532 547 555 560 568

h 10 9 3 4 4 3 4 4 4
k 6 9 10 10 9 10 11 11 7 10

|D| 571 595 627 643 667 696 708 715 723

h 5 4 4 3 4 12 4 4 4
k 6 11 9 11 9 9 4 7 7 9

|D| 760 763 795 883 907 955 1003 1027 1051

h 4 4 4 3 3 4 4 4 5
k 6 7 7 7 6 7 6 6 5 5

|D| 1123 1227 1243 1387 1411 1507 1555 1723 1747

h 5 4 4 4 4 4 4 5 5
k 6 4 5 4 4 4 4 4 3 3

|D| 1867

h 5
k 6 3

Table 4. the scope of our computations, part 2

the database of cell complexes used for our calculations has been generated.
The second author thanks the Algebra and Geometry Group of the Math-
ematics Department of the University of Barcelona for the post-doctoral
fellowship under which he carried out most of his work that went into this
paper. Moreover, he thanks the Mathematical Sciences Research Institute of
the University of California and the Max Planck Institute for Mathematics
for the wonderful hospitality that he received during his stays. Finally, we
thank Frank Calegari and Lassina Dembélè for their constructive comments
on the paper.

1. Background

Let K be an imaginary quadratic �eld with ring of integers O. Let Γ be
the Bianchi group SL2(O). It is a discrete subgroup of the real Lie group
SL2(C) and thus acts discontinuously on hyperbolic 3-space. Let YΓ be the
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|D| 7 11 71 87 91 155 199 223 231 339

k 12 10 1 2 6 4 1 0 4 1
dim 2 2 2 2 2 2 4 2 2 2

|D| 344 407 415

k 1 0 0
dim 2 2 2

|D| 455 483 571 571 643 760 1003 1003 1051

k 0 1 0 1 0 2 0 1 0
dim 2 2 2 2 2 2 2 2 2

Table 5. the cases where there are genuine classes

quotient hyperbolic 3-fold. The Borel-Serre compacti�cation, see [Ser70,
appendix], XΓ of YΓ is a compact 3-fold with boundary ∂XΓ whose interior
is homeomorphic to YΓ. When the discriminant of K is smaller than −4,
∂XΓ consists of hK disjoint 2-tori where hK is the class number of K.

Given n > 0, let C[x, y]n denote the space of homogeneous polynomials
of degree n on variables x, y with complex coe�cients. SL2(C) acts on this
space in the obvious way permitted by the two variables. Consider the
SL2(C)-module

En := C[x, y]n ⊗C C[x, y]n

where the overline on the second factor is to indicate that the action on this
factor is twisted with complex conjugation. When considered as a Γ-module,
En gives rise to a locally constant sheaf En on YΓ whose stalks are isomorphic
to En. Consider the long exact sequence

. . .→ H i
c(YΓ; En)→ H i(XΓ; Ēn)→ H i(∂XΓ; Ēn)→ . . .

where H i
c denotes the compactly supported cohomology and Ēn is a certain

natural extension of En to XΓ.
The cuspidal cohomology H i

cusp is de�ned as the image of the compactly

supported cohomology. The Eisenstein cohomology H i
Eis is the complement

of the cuspidal cohomology inside H i and it is isomorphic to the image of the
restriction map inside the cohomology of the boundary. The decomposition
H i = H i

cusp ⊕H i
Eis respects the Hecke action which is de�ned, as usual, via

correspondences on XΓ.
By construction, the embedding YΓ ↪→ XΓ is a homotopy invariance. To-

gether with the fact that YΓ is a K(Γ, 1)-space, we get the isomorphisms

H i(XΓ; Ēn) ' H i(YΓ; En) ' H i(Γ; En).

Via these isomorphisms, we de�ne the cuspidal and Eisenstein parts of
H i(Γ; En).
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Let Sn(1) denote the space of level one cuspidal Bianchi modular forms
(over K) of weight n+ 2. It is well known that

Sn(1) ' H1
cusp(YΓ; En) ' H2

cusp(YΓ; En)

as Hecke modules. Here the �rst isomorphism was established by Harder
and the second follows from duality, see [AS86].

In [FGT10], a formula for the dimension of the space Ln(1) has been
given for all �elds K and weights n. We will compare the dimension of
Ln(1), which we obtain via their formula, to the dimension of Sn(1), which
we will obtain via our computer programs. The following Proposition will
allow us to deduce the size of the cuspidal cohomology, and hence of Sn(1),
once we have computed the size of the whole cohomology. It is well-known
to the specialists, however for the convenience of the reader we include a
proof of it.

Proposition 1. Let K be an imaginary quadratic �eld. Then in the above

notation

dim H2
Eis(XΓ; Ēn) =

{
hK − 1, if n = 0,

hK , else.

where hK is the class number of K.

Proof. It is well-known (see Theorem 2.1 of [Har75]) that the map

H2(XΓ; Ēn) −→ H2(∂XΓ; Ēn)

is surjective for n > 0 and its image has codimension one for n = 0.
Assume that the discriminant of K is less than −4, that is, K is not equal

to Q(i) nor Q(
√
−3). Then the boundary ∂XΓ is a disjoint union of 2-tori,

indexed by the class group of K. Below we prove that the dimension of
H2(T ; Ēn) is one for every boundary component T of ∂XΓ, which clearly
gives our claim.

Let c ∈ K ∪ {∞} be a cusp and let Γc be its stabilizer in Γ (which is a
parabolic subgroup). Then Γc is the fundamental group of Tc. In fact, Tc is a
K(Γc, 1)-space. Hence we can turn our attention to computing H2(Γc; En).
Composition of the cup product and the well-known perfect pairing (·, ·) :
En ⊗C En → C (see, for example, Section 2.4. [Ber08]) gives us a pairing

H0(Γc; En)×H2(Γc; En)
∪ // H2(Γc; En ⊗C En)

(·,·)
��

H2(Γc; C) ' C.
Here the last isomorphism follows from the fact that Tc is a compact 2-fold
(see also proof of Prop.3.5. of [�11] for a direct algebraic argument). Thus
the dimension we are looking for is equal to that of H0(Γc; En). Clearly, if
n = 0, the latter dimension is 1 and thus the dimension of H2(∂XΓ; Ēn) is
hK as desired.
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Let us now assume that n 6= 0. Conjugation by a matrix in SL(K) which
takes c to the cusp at in�nity induces an isomorphism

Γc ' Γ∞ = ( ∗ ∗0 ∗ ) ⊂ SL2(OK).

Consider the normal subgroup Γ+
∞ := ( 1 ∗

0 1 ) of Γ∞. Then Γ+
∞ is a free Abelian

group on two generators. We are now going to determine the submodule EΓ+
∞

n

of En invariant under its action. As the generators are of the form ( 1 ∗
0 1 ), it

is clear that the vector xn⊗ xn is �xed by Γ+
∞. One shows, proceeding as in

Lemma 2.4. of [Wie07], that there are no other �xed vectors. Hence

H0(Γ+
∞; En) = EΓ+

∞
n = 〈xn ⊗ xn〉

is of complex dimension one. Let µ := Γ∞/Γ
+
∞ =

{
(±1 0

0 ±1 )
}
. As we are

considering modules over C, it follows that

H0(Γ∞; En) ' H0(Γ+
∞; En)µ

is the invariant submodule under µ. We easily check that the action of µ
on En is trivial, and so

H0(Γc; En) ' H0(Γ+
∞; En)

is again of complex dimension one. This completes the proof with our as-
sumption of the discriminant of K.

When K is Q(i) or Q(
√
−3), due to the extra units, the cross-sections of

the cusps, which are again parametrized by the class group, are 2-orbifolds
whose underlying manifolds are 2-spheres (torus folded by an involution).
As the second cohomology of the 2-sphere is one dimensional, the result
follows. �

2. Abelian varieties of GL(2)-type

There is a widely believed conjectural connection between Bianchi new-
forms of weight 2 over K and Abelian varieties of GL2-type de�ned over
K (see [EGM82],[Cre92],[Tay95]) which is expressed in terms of the asso-
ciated L-functions. In particular, an Abelian variety of GL2-type over K,
that is not de�nable over Q nor of CM -type, with everywhere good reduc-
tion is expected to give rise to newforms in S0(1)+ that are not in L0(1).
Here S0(1)+ denotes the plus-subspace of S0(1) in the sense of [EGM82] and
[Cre84]. Equivalently, S0(1)+ can be seen as the space of cuspidal Bianchi
modular forms of weight two for GL2(OK).

In the reverse direction, the newforms in S0(1)+ are expected1 to corre-
spond to Abelian varieties of GL2-type over K which have everywhere good
reduction. As listed in Table 5, we have found eight imaginary quadratic
�elds for which S0(1) contained non-lifted classes. For only six of these

1There are some natural exceptions coming from elliptic newforms with inner twists,
see Cremona [Cre92] which are avoided if we consider newforms in L0(1)

+.
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�elds, the non-lifted classes were infact contained in S0(1)+. In Table 6 be-
low, we list the (necessarily totally real) number �eld F generated by the
Hecke eigenvalues of the non-lifted newforms in these six cases.

|D| 223 415 455 571 643 1003

F Q(
√

2) Q(
√

3) Q(
√

5) Q(
√

5) Q Q(
√

7)
Table 6. the number �eld generated by the Hecke eigenval-
ues of nonlifted newforms in S0(1)+

We have computed these �elds using Dan Yasaki's program, see [Yas],
in Magma which computes the Hecke action on S0(Γ0(n))+ for congruence
subgroups of type Γ0(n) of Bianchi groups. Note that as this program only
treats GL2-cohomology with trivial weight, that is k = 0, we could not have
used it for our experiment.

Table 6 tells us that there should exist an elliptic curve de�ned over
Q(
√
−643), and not over Q, which has everywhere good reduction and it

should be modular. Indeed we know by Krämer [Krä84] that there is such an
elliptic curve over Q(

√
−643) and it does seem to be modular, see Scheutzow

[Sch92]. Similarly, there should exist Abelian surfaces de�ned over Q(
√
−d)

with d = 223, 415, 455, 571, 1003 and not over Q, which have everywhere
good reduction and real multiplication by

√
2,
√

3,
√

5,
√

5,
√

7 respectively
and they should be modular. Locating such surfaces is a highly nontrivial
task, see [�2s, Section 8].

3. Comments

The data collected in this paper make it clear that the spaces of cuspidal
Bianchi modular forms of level one are generically made of forms which are
not genuine. Accordingly, we conjecture the following.

Conjecture 2. Let K be an imaginary quadratic �eld. Let Sk(1) denote the

space of level one cuspidal Bianchi modular forms over K of weight k + 2.
Then there are only �nitely many k for which the space Sk(1) contains non-

lifed forms.

Let us make a comparison with other types of modular forms. For the case
of Hilbert modular forms (this the case of the algebraic group ResF/Q(SL2)
where F is a totally real �eld) and Siegel modular forms of genus 2 (the case
of the algebraic group Sp4), one has considerable amount of genuine level one
cuspidal forms. However, the case of the modular forms for SL3 is similar
to our case. Here in the range of the data collected by Ash and Pollack, see
[AP08], the spaces of level one modular forms for SL3 are completely made of
those which are the symmetric square lifts of classical holomorphic modular
forms. They in fact conjecture that this is always the case.

It is interesting to note that for the Hilbert and Siegel modular forms of
genus 2, where we have plenty of genuine forms, the associated symmetric
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spaces are Hermitian, while for the Bianchi and SL3 modular forms, where
there is an extreme paucity of genuine forms, the associated symmetric spaces
fail to be Hermitian. Is this part of a general phenomenon ?

Next we shall pose a question about the non-lifted newforms in Sk(1)
inspired by classical Maeda's conjecture. The nontrivial automorphism σ ∈
Gal(K/Q) of K acts on the set of newforms in Sk(1) as an involution, again
denoted σ. Thus for every newform f has a twin, denoted σf . The Hecke
eigenvalues c(·, π) associated to the Hecke operators2 Tπ satisfy the relation

c(σf, π) = c(f, σ(π))

for every π ∈ O. Recall that just as in the case of elliptic modular forms, for
a newform f in Sk(1) with Hecke eigenvalue �eld F , there is a newform f τ in
Sk(1) for every τ ∈ Gal(F/Q) with the property that c(f τ , π) = τ(c(f, π))
for every π ∈ O. We say that f and the f τ form one Galois orbit.

Question 3. Let K be an imaginary quadratic �eld. Is it true that for
every k > 0, the set of non-lifted newforms in Sk(1), modulo the action of
Gal(K/Q), forms one Galois orbit ?

In all except one of the cases where we observed non-lifted newforms, the
dimension of the non-lifted subspace was only two. In this case, the answer to
the above question is automatically yes as the two non-lifted newforms have
to be twins. It is crucial to check the situation (d, k) = (199, 2) where we
have a four dimensional subspace of non-lifted forms, however so far we have
not implemented Hecke operators in our programs and Yasaki's program
only works with k = 0. As Frank Calegari remarked to us, if there are two
elliptic curves de�ned over K with good reduction everywhere and such that
neither come from Q nor are conjugates of each other, then the answer to
our question above would be no for S2(1). Note that the analogue of this
conjecture for Hilbert modular forms over real quadratic �elds holds in the
range of the computations performed by Doi and Ishii, see [DHI98] p.568.

4. Method of the computations

In this section, we will explain how we computed the cohomology of the
investigated Bianchi groups.

Letm be a square-free positive integer andK = Q(
√
−m ) be an imaginary

quadratic number �eld with ring of integers O−m, which we also just denote
by O. Consider the familiar action (we give an explicit formula for it in
lemma 4) of the group Γ := SL2(O) ⊂ GL2(C) on hyperbolic three-space,
for which we will use the upper-half space model H.

As a set,

H = {(z, ζ) ∈ C× R | ζ > 0}.

2Observe that since we are not working within the adelic setting, we only consider
Hecke operators which stabilize the connected components of the adelic symmetric space.
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Lemma 4 (Poincaré). If γ =
(
a b
c d

)
∈ GL2(C), the action of γ on H is given

by γ · (z, ζ) = (z′, ζ ′), where

ζ ′ =
|det γ|ζ

|cz − d|2 + ζ2|c|2
, z′ =

(
d− cz

)
(az − b)− ζ2c̄a

|cz − d|2 + ζ2|c|2
.

The Bianchi�Humbert theory [Bia92], [Hum15] gives a fundamental do-
main for the action of Γ on H, which we shall call the Bianchi fundamental

polyhedron. It is a polyhedron in hyperbolic space up to the missing ver-
tex ∞, and up to a missing vertex for each non-trivial ideal class if O−m is
not a principal ideal domain. We observe the following notion of strictness
of the fundamental domain: the interior of the Bianchi fundamental polyhe-
dron contains no two points which are identi�ed by Γ. Swan [Swa71] proves
a theorem which implies that the boundary of the Bianchi fundamental poly-
hedron consists of �nitely many cells.

4.1. A cell complex for the Bianchi groups. Swan further produces a
concept for an algorithm to compute the Bianchi fundamental polyhedron.
Such an algorithm has been implemented by Cremona [Cre84] for the �ve
cases where O−m is Euclidean, and by his students Whitley [Whi90] for the
non-Euclidean principal ideal domain cases, Bygott [Byg98] for a case of class
number 2 and Lingham ([Lin05], used in [CL07]) for some cases of class num-
ber 3; and �nally Aranés [Ara10] for arbitrary class numbers. Another algo-
rithm based on this concept has independently implemented in [Rah10] for all
Bianchi groups; and we make explicit use of the cell complexes it produces.
Other results of the employed implementation are described in [Rah11].

De�nition 5. A pair of elements (µ, λ) ∈ O2 is called unimodular if the
ideal sum µO + λO equals O.

The boundary of H is the Riemann sphere ∂H = C∪{∞} (as a set), which
contains the complex plane C. The totally geodesic surfaces in H are the
Euclidean vertical planes (we de�ne vertical as orthogonal to the complex
plane) and the Euclidean hemispheres centred on the complex plane.

Notation 6. Given a unimodular pair (µ, λ) ∈ O2 with µ 6= 0, let Sµ,λ ⊂ H
denote the hemisphere given by the equation |µz − λ|2 + |µ|2ζ2 = 1.

This hemisphere has centre λ/µ on the complex plane C, and radius 1/|µ|.
Let
B :=

{
(z, ζ) ∈ H: The inequality |µz − λ|2 + |µ|2ζ2 > 1

is ful�lled for all unimodular pairs (µ, λ) ∈ O2 with µ 6= 0
}
.

Then B is the set of points in H which lie above or on all hemispheres Sµ,λ.

Lemma 7 ([Swa71]). The set B contains representatives for all the orbits

of points under the action of SL2(O) on H.

The action extends continuously to the boundary ∂H, which is a Riemann
sphere.
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In Γ := SL2(O−m), consider the stabiliser subgroup Γ∞ of the point∞ ∈ ∂H.
Excluding the two cases m = 1 and m = 3 of Gaussian and Eisenstein
integers, the latter group is given as

Γ∞ =

{
±
(

1 λ
0 1

)
| λ ∈ O

}
,

which performs translations by the elements of O with respect to the Eu-
clidean geometry of the upper-half space H.

Notation 8. A fundamental domain for Γ∞ in the complex plane (as a
subset of ∂H) is given by the rectangle

D0 :=

{
{x+ y

√
−m ∈ C | 0 6 x 6 1, 0 6 y 6 1}, m ≡ 1 or 2 mod 4,

{x+ y
√
−m ∈ C | −1

2 6 x 6
1
2 , 0 6 y 6 1

2}, m ≡ 3 mod 4.

And a fundamental domain for Γ∞ in H is given by

D∞ := {(z, ζ) ∈ H | z ∈ D0}.

De�nition 9. We de�ne the Bianchi fundamental polyhedron as

D := D∞ ∩B.

We can check that the computed polyhedron is indeed a fundamental
domain for Γ using the following observation of Poincaré [Poi83]: After a
cell subdivision which makes the cell stabilizers �x the cells point-wise, the
2-cells (�faces�) of the fundamental polyhedron appear in pairs (σ, γ ·σ) with
γ ∈ Γ � so for every orbit of faces, we have exactly two representatives �
such that with the orientation for which the lower side of the face σ lies on
the polyhedron, the upper side of γ · σ lies on the polyhedron. We induce a
cell structure on H by the images under Γ of the faces, edges and vertices of
the Bianchi fundamental polyhedron.

4.2. The Flöge cellular complex. In order to obtain a cell complex with
compact quotient space, we proceed in the following way due to Flöge [Flö83].
The boundary of H is the Riemann sphere ∂H, which, as a topological space,
is made up of the complex plane C compacti�ed with the cusp∞. The totally
geodesic surfaces in H are the Euclidean vertical planes (we de�ne vertical as
orthogonal to the complex plane) and the Euclidean hemispheres centered on
the complex plane. The action of the Bianchi groups extends continuously to
the boundary ∂H. The cellular closure of the re�ned cell complex in H∪∂H
consists of H and

(
Q(
√
−m) ∪ {∞}

)
⊂ (C ∪ {∞}) ∼= ∂H. The SL2(O−m)�

orbit of a cusp λ
µ in

(
Q(
√
−m) ∪ {∞}

)
corresponds to the ideal class [(λ, µ)]

of O−m. It is well-known that this does not depend on the choice of the

representative λ
µ . We extend the re�ned cell complex to a cell complex X̃

by joining to it, in the case that O−m is not a principal ideal domain, the
SL2(O−m)�orbits of the cusps λ

µ for which the ideal (λ, µ) is not principal.

We call the latter cusps the singular cusps. At the singular cusps, we equip
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X̃ with the �horoball topology� described in [Flö83]. This simply means
that the set of cusps, which is discrete in ∂H, is located at the hyperbolic

extremities of X̃ : No neighborhood of a cusp, except the whole X̃, contains
any other cusp.

We retract X̃ in the following, SL2(O−m)�equivariant, way. On the
Bianchi fundamental polyhedron, the retraction is given by the vertical pro-
jection (away from the cusp ∞) onto its facets which are closed in H ∪ ∂H.
The latter are the facets which do not touch the cusp∞, and are the bottom
facets with respect to our vertical direction. The retraction is continued on
H by the group action. It is proven in [Flö80] that this retraction is con-

tinuous. We call the retract of X̃ the Flöge cellular complex and denote it
by X. So in the principal ideal domain cases, X is a retract of the re�ned
cell complex, obtained by contracting the Bianchi fundamental polyhedron
onto its cells which do not touch the boundary of H. In [RF11], it is checked
that the Flöge cellular complex is contractible. Further details about the
Flöge cellular complex and homological computations with it are described
in [Rah12a].

4.3. The spectral sequence. Let X be our Flöge complex constructed
as above. Next we will consider the spectral sequence associated to the
double complex HomZΓ(Θ∗, C

∗
Z(X,M)), where Θ∗ is the standard resolution

of Z over ZΓ and C∗(X,M) is the cellular co-chain complex of X with ZΓ-
module coe�cientsM . We can (see [Bro82], p. 164) derive the �rst-quadrant
spectral sequence

Ep,q1 (M) =
⊕
σ∈Σp

Hq(Γσ; M) =⇒ Hp+q(Γ; M)

where Σp denotes the Γ-conjugacy classes of p-cells of X. Observe that Γσ
will be a �nite group whose order is divisible only by 2 and/or 3 unless σ is
the class of a singular cusp, in which case Γσ is a free Abelian group on two
unipotent generators.

Assume thatM admits an additional module structure over a ring where 6
is invertible (in fact we are interested in the case whereM is a complex vector
space). Then the �nite ones among the higher cohomology groups of the Γσ
vanish. Thus, when there are no singular cusps (equivalently, when the class
number of O is one), the spectral sequence concentrates on the row q = 0
and stabilizes on the E2-page. Otherwise, the spectral sequence concentrates
on the rows q = 0, 1, 2 and stabilizes at the E3-page.

As we shall see below, the dimension of the module H2(Γ; M), which we
want to determine, is the same as the dimension of

E2,0
2 ' E2,0

1 /Im(d1,0
1 ),

where the di�erential d1,0
1 is between

E1,0
1 '

⊕
σ∈Σ1

MΓσ −→
⊕
σ∈Σ2

M ' E2,0
1 .
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The abutment of the spectral sequence gives us

H2(Γ; M) ' E2,0
3 ⊕ E0,2

3 .

Here E0,2
3 '

⊕
sH

2(Γs; M) where the summation is over Γ-classes of singu-
lar cusps s.

Moreover, E2,0
3 = E2,0

2 /Im(d0,1
2 ) where the di�erential d0,1

2 is between⊕
s singular

H1(Γs; M) −→ E2,0
2 .

We determine the rank of this di�erential as follows.

Theorem 10 (Théorème 8 [Ser70]). Suppose that the coe�cient module M
is equipped with a non-degenerate Γ-invariant C-bilinear form. Then the rank

of the map from H1(Γ; M) to the disjoint sum of the H1(Γs; M), induced
by restriction from H1(Γ; M) to H1(Γs; M), equals half of the rank of the

disjoint sum of the H1(Γs; M).

The local topology of this map is studied in [Rah12b]. The image of this
restriction-induced map can be identi�ed with the image of the epimorphism
in the short exact sequence of the spectral sequence's dévissage,

0→ E1,0
2 −→ H1(Γ; M) −→ kerd0,1

2 → 0.

Let us assume from now on that M = En for some n. As we have seen
in the proof of Proposition 1, there is a perfect pairing on M , which is a
non-degenerate Γ-invariant C-bilinear form. So the theorem of Serre applies,
and we obtain the following corollary. Note for this purpose that the proof
of Proposition 1 shows that

dimH0(Γs; M) = dimH2(Γs; M) = 1.

When the cross-section of the cusp s is a torus, we have

dimH1(Γs; M) = 2 · dimH2(Γs; M) = 2.

In the cases when K is Q(i) or Q(
√
−3), we have

dimH1(Γs; M) = 0.

Corollary 11. The rank of the di�erential

d0,1
2 :

⊕
s singular

H1(Γs; M) −→ E2,0
2

is the number of non-trivial ideal classes.

Remark 12. The above discussion implies that

H2(Γ; M) '

 ⊕
s singular

H2(Γs; M)

⊕ (E2,0
2 /Im(d0,1

2 )
)
,

and the dimension of H2(Γ; M) is the same as that of E2,0
2 .
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4.4. The procedure of the computations. We compute the representa-
tives of faces in E2,0

1 and the di�erential d1,0
1 of our equivariant spectral se-

quence with trivial integer coe�cients with the program Bianchi.gp [Rah10].
The second author has implemented a MAGMA script that uses the cell sta-
bilizers and identi�cations obtained with Bianchi.gp to compute the action
on the coe�cient module M that we are interested in. We then deduce
the term E2,0

1 and the di�erential d1,0
1 with respect to our coe�cients. The

quotient

E2,0
2 ' E2,0

1 /Im(d1,0
1 )

now admits the dimension of H2(Γ; M) by Remark 12.
As linear algebra over number �elds is more expensive compared to work-

ing over �nite �elds, we employ the following shortcut. Recall that by the
universal coe�cients theorem, the dimension of H2(Γ; M(Fp)) (�the mod p
dimension") is greater than or equal to the dimension of H2(Γ; M(C)) (�the
complex dimension�). We start with computing the mod p-dimensions for
primes p 6 200. If we �nd for a particular p for which the mod p dimension
is equal to the lower bound of Finis-Grunewald-Tirao then we infer that the
complex dimension is equal to the mod p dimension. Note that by Prop. 3.2
(d) of [�11], this implies that H2(Γ; M(O)) has no p-torsion. If this is not
the case for the primes in our range, then we compute the complex dimension
directly by computing H2(Γ; M(K)).

4.5. Execution of the computations. We applied the above described
computations to a database of cell complexes for 186 Bianchi groups, which
has been established on the computing clusters of the Weizmann Institute
of Science, using over �fty processor-months. This database includes all
the cases of ideal class numbers 3 and 5, most of the cases of ideal class
number 4 and all cases with the absolute value of the discriminant less than
500. Almost all of our dimension computations were carried out using the
nodes of the computer clusters at the Universities of Duisburg-Essen and
Luxembourg.
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